1
|
Lu Y, Berenson A, Lane R, Guelin I, Li Z, Chen Y, Shah S, Yin M, Soto-Ugaldi LF, Fiszbein A, Fuxman Bass JI. A large-scale cancer-specific protein-DNA interaction network. Life Sci Alliance 2024; 7:e202402641. [PMID: 39013578 PMCID: PMC11252446 DOI: 10.26508/lsa.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Cancer development and progression are generally associated with gene dysregulation, often resulting from changes in the transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network, as well as an extensive promoter clone resource for future studies. Highly connected TFs bind to promoters of genes associated with either good or poor cancer prognosis, suggesting that strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene-targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activators or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF ESR1 in DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study broadens our knowledge of the TFs involved in cancer gene regulation and provides a valuable resource for future studies and therapeutics.
Collapse
Affiliation(s)
- Yunwei Lu
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
| | - Anna Berenson
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
- https://ror.org/05qwgg493 Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Ryan Lane
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
| | - Isabelle Guelin
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
| | - Zhaorong Li
- https://ror.org/05qwgg493 Bioinformatics Program, Boston University, Boston, MA, USA
| | - Yilin Chen
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
| | - Sakshi Shah
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
| | - Meimei Yin
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
| | | | - Ana Fiszbein
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
- https://ror.org/05qwgg493 Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- https://ror.org/05qwgg493 Bioinformatics Program, Boston University, Boston, MA, USA
| | - Juan Ignacio Fuxman Bass
- https://ror.org/05qwgg493 Biology Department, Boston University, Boston, MA, USA
- https://ror.org/05qwgg493 Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- https://ror.org/05qwgg493 Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
Wang Y, Liu S, Wang Y, Li B, Liang J, Chen Y, Tang B, Yu S, Wang H. KDM5B promotes SMAD4 loss-driven drug resistance through activating DLG1/YAP to induce lipid accumulation in pancreatic ductal adenocarcinoma. Cell Death Discov 2024; 10:252. [PMID: 38789418 PMCID: PMC11126577 DOI: 10.1038/s41420-024-02020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inactivated suppressor of mothers against decapentaplegic homolog (SMAD) 4 significantly affects cancer development in pancreatic ductal adenocarcinoma (PDAC). However, the contribution of smad4 loss to drug resistance in PDAC is largely undetermined. In the present study, we reported that the loss of SMAD4 endows PDAC cells the ability to drug resistance through upregulating histone lysine demethylase, Lysine-Specific Demethylase 5B (KDM5B, also known as JARID1B or PLU1). Upregulated KDM5B was found in PDAC, associated with poor prognosis and recurrence of PDAC patients. Upregulated KDM5B promotes PDAC tumor malignancy, i.e. cancer cells stemness and drug resistance in vitro and in vivo, while KDM5B knockout exerts opposite effects. Mechanistically, loss of Smad4-mediated upregulation of KDM5B promotes drug resistance through inhibiting the discs-large homolog 1 (DLG1), thereby facilitating nuclear translocation of YAP to induce de novo lipogenesis. Moreover, m6A demethylase FTO is involved in the upregulation of KDM5B by maintaining KDM5B mRNA stability. Collectively, the present study suggested FTO-mediated KDM5B stabilization in the context of loss of Smad4 activate DLG1/YAP1 pathway to promote tumorigenesis by reprogramming lipid accumulation in PDAC. Our study confirmed that the KDM5B-DLG1-YAP1 pathway axis plays a crucial role in the genesis and progression of PDAC, and KDM5B was expected to become a target for the treatment of PDAC. The schematic diagram of KDM5B-DLG1-YAP pathway axis in regulating drug resistance of PDAC to gemcitabine (GEM). In the context of SMAD4 loss PDAC cells, FTO-mediated stabilization and upregulation of KDM5B promotes drug resistance through directly targeting DLG1 to promote YAP1 translocation to nucleus to induce de novo lipogenesis (DNL).
Collapse
Affiliation(s)
- Yumin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Shiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, P. R. China
| | - Baibei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Jiaming Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Hongquan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
- Pharmaceutical College Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
3
|
Zhang J, Miao N, Lao L, Deng W, Wang J, Zhu X, Huang Y, Lin H, Zeng W, Zhang W, Tan L, Yuan X, Zeng X, Zhu J, Chen X, Song E, Yang L, Nie Y, Huang D. Activation of Bivalent Gene POU4F1 Promotes and Maintains Basal-like Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307660. [PMID: 38491910 PMCID: PMC11132042 DOI: 10.1002/advs.202307660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive molecular subtype of breast cancer with worse prognosis and fewer treatment options. The underlying mechanisms upon BLBC transcriptional dysregulation and its upstream transcription factors (TFs) remain unclear. Here, among the hyperactive candidate TFs of BLBC identified by bioinformatic analysis, POU4F1 is uniquely upregulated in BLBC and is associated with poor prognosis. POU4F1 is necessary for the tumor growth and malignant phenotypes of BLBC through regulating G1/S transition by direct binding at the promoter of CDK2 and CCND1. More importantly, POU4F1 maintains BLBC identity by repressing ERα expression through CDK2-mediated EZH2 phosphorylation and subsequent H3K27me3 modification in ESR1 promoter. Knocking out POU4F1 in BLBC cells reactivates functional ERα expression, rendering BLBC sensitive to tamoxifen treatment. In-depth epigenetic analysis reveals that the subtype-specific re-configuration and activation of the bivalent chromatin in the POU4F1 promoter contributes to its unique expression in BLBC, which is maintained by DNA demethylase TET1. Together, these results reveal a subtype-specific epigenetically activated TF with critical role in promoting and maintaining BLBC, suggesting that POU4F1 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Nanyan Miao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Plastic SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wen Deng
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Cellular & Molecular Diagnostics CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wenfeng Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Luyuan Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xin Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Jingkun Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
4
|
Wachtel M, Surdez D, Grünewald TGP, Schäfer BW. Functional Classification of Fusion Proteins in Sarcoma. Cancers (Basel) 2024; 16:1355. [PMID: 38611033 PMCID: PMC11010897 DOI: 10.3390/cancers16071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcomas comprise a heterogeneous group of malignant tumors of mesenchymal origin. More than 80 entities are associated with different mesenchymal lineages. Sarcomas with fibroblastic, muscle, bone, vascular, adipocytic, and other characteristics are distinguished. Nearly half of all entities contain specific chromosomal translocations that give rise to fusion proteins. These are mostly pathognomonic, and their detection by various molecular techniques supports histopathologic classification. Moreover, the fusion proteins act as oncogenic drivers, and their blockade represents a promising therapeutic approach. This review summarizes the current knowledge on fusion proteins in sarcoma. We categorize the different fusion proteins into functional classes, including kinases, epigenetic regulators, and transcription factors, and describe their mechanisms of action. Interestingly, while fusion proteins acting as transcription factors are found in all mesenchymal lineages, the others have a more restricted pattern. Most kinase-driven sarcomas belong to the fibroblastic/myofibroblastic lineage. Fusion proteins with an epigenetic function are mainly associated with sarcomas of unclear differentiation, suggesting that epigenetic dysregulation leads to a major change in cell identity. Comparison of mechanisms of action reveals recurrent functional modes, including antagonism of Polycomb activity by fusion proteins with epigenetic activity and recruitment of histone acetyltransferases by fusion transcription factors of the myogenic lineage. Finally, based on their biology, we describe potential approaches to block the activity of fusion proteins for therapeutic intervention. Overall, our work highlights differences as well as similarities in the biology of fusion proteins from different sarcomas and provides the basis for a functional classification.
Collapse
Affiliation(s)
- Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), CH-8008 Zurich, Switzerland
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp-Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership between DKFZ and Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| |
Collapse
|
5
|
Li X, Li J, Liu Y, Sun L, Tai Q, Gao S, Jiang W. Inhibition of KDM5B participates in immune microenvironment remodeling in pancreatic cancer by inducing STING expression. Cytokine 2024; 175:156451. [PMID: 38163400 DOI: 10.1016/j.cyto.2023.156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of lysine demethylase 5B (KDM5B)-mediated dimethyl-lysine 4 histone H3 (H3K4me2) demethylation on immune microenvironment remodeling in pancreatic cancer. METHODS Pan 02 mouse pancreatic cancer cell lines were cultured and used to establish tumor model in vivo. RT-qPCR and Western blot were used to detect the expression of stimulator of interferon gene (STING) and KDM5B in pancreatic cancer tissues and Pan 02 cells. The specific demethylation domain of KDM5B was detected by isothermal titration calorimetry binding assay. The regulatory roles of KDM5B in cell apoptosis and remodeling of immune microenvironment in vitro and in vivo were explored after loss-of functions in KDM5B. RESULTS KDM5B was highly expressed but STING was poorly expressed in pancreatic cancer tissues and Pan 02 cells. After knockdown of KDM5B, CD8+ T cells recognized and killed Pan 02 cells, which promoted the infiltration of CD8+ T cells in Pan 02 cells, thus improving the anti-tumor ability. The PHD domain in KDM5B specifically bound to H3K4me2 peptide and inhibition of KDM5B induced STING expression. Knockdown of KDM5B up-regulated STING expression to promote apoptosis, thus regulating the immune microenvironment and inhibiting the growth of tumor in mice. Meanwhile, knockdown of KDM5B and STING simultaneously counteracted the knockdown effect of KDM5B. CONCLUSION Inhibition of KDM5B can promote the expression of STING through H3K4me2 demethylation, which promoted the recognition and killing of Pan 02 cells by CD8+ T cells, thus improving the anti-tumor ability and regulating the immune microenvironment.
Collapse
Affiliation(s)
- Xuesong Li
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China.
| | - Jiazhuang Li
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Ying Liu
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Li Sun
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Qingyang Tai
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Shoubao Gao
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Weiwei Jiang
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| |
Collapse
|
6
|
Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, Huang L, Tang N, Qiu J, Huang A, Xia J. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res 2024; 43:35. [PMID: 38287371 PMCID: PMC10823730 DOI: 10.1186/s13046-024-02957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a matter of great global public health importance; however, its current therapeutic effectiveness is deemed inadequate, and the range of therapeutic targets is limited. The aim of this study was to identify early growth response 1 (EGR1) as a transcription factor target in HCC and to explore its role and assess the potential of gene therapy utilizing EGR1 for the management of HCC. METHODS In this study, both in vitro and in vivo assays were employed to examine the impact of EGR1 on the growth of HCC. The mouse HCC model and human organoid assay were utilized to assess the potential of EGR1 as a gene therapy for HCC. Additionally, the molecular mechanism underlying the regulation of gene expression and the suppression of HCC growth by EGR1 was investigated. RESULTS The results of our investigation revealed a notable decrease in the expression of EGR1 in HCC. The decrease in EGR1 expression promoted the multiplication of HCC cells and the growth of xenografted tumors. On the other hand, the excessive expression of EGR1 hindered the proliferation of HCC cells and repressed the development of xenografted tumors. Furthermore, the efficacy of EGR1 gene therapy was validated using in vivo mouse HCC models and in vitro human hepatoma organoid models, thereby providing additional substantiation for the anti-cancer role of EGR1 in HCC. The mechanistic analysis demonstrated that EGR1 interacted with the promoter region of phosphofructokinase-1, liver type (PFKL), leading to the repression of PFKL gene expression and consequent inhibition of PFKL-mediated aerobic glycolysis. Moreover, the sensitivity of HCC cells and xenografted tumors to sorafenib was found to be increased by EGR1. CONCLUSION Our findings suggest that EGR1 possesses therapeutic potential as a tumor suppressor gene in HCC, and that EGR1 gene therapy may offer benefits for HCC patients.
Collapse
Affiliation(s)
- Mingang Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Muyu Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lele Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yunmeng Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ziyi Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Lu Y, Berenson A, Lane R, Guelin I, Li Z, Chen Y, Shah S, Yin M, Soto-Ugaldi LF, Fiszbein A, Fuxman Bass JI. A large-scale cancer-specific protein-DNA interaction network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577099. [PMID: 38352498 PMCID: PMC10862707 DOI: 10.1101/2024.01.24.577099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cancer development and progression are generally associated with dysregulation of gene expression, often resulting from changes in transcription factor (TF) sequence or expression. Identifying key TFs involved in cancer gene regulation provides a framework for potential new therapeutics. This study presents a large-scale cancer gene TF-DNA interaction network as well as an extensive promoter clone resource for future studies. Most highly connected TFs do not show a preference for binding to promoters of genes associated with either good or poor cancer prognosis, suggesting that emerging strategies aimed at shifting gene expression balance between these two prognostic groups may be inherently complex. However, we identified potential for oncogene targeted therapeutics, with half of the tested oncogenes being potentially repressed by influencing specific activator or bifunctional TFs. Finally, we investigate the role of intrinsically disordered regions within the key cancer-related TF estrogen receptor ɑ (ESR1) on DNA binding and transcriptional activity, and found that these regions can have complex trade-offs in TF function. Altogether, our study not only broadens our knowledge of TFs involved in the cancer gene regulatory network but also provides a valuable resource for future studies, laying a foundation for potential therapeutic strategies targeting TFs in cancer.
Collapse
Affiliation(s)
- Yunwei Lu
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Anna Berenson
- Biology Department, Boston University, Boston, MA, 02215, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, 02215, USA
| | - Ryan Lane
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Isabelle Guelin
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Yilin Chen
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Sakshi Shah
- Biology Department, Boston University, Boston, MA, 02215, USA
| | - Meimei Yin
- Biology Department, Boston University, Boston, MA, 02215, USA
| | | | - Ana Fiszbein
- Biology Department, Boston University, Boston, MA, 02215, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, 02215, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Juan Ignacio Fuxman Bass
- Biology Department, Boston University, Boston, MA, 02215, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, 02215, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
8
|
Huang L, Yang H, Chen K, Yuan J, Li J, Dai G, Gu M, Shi Y. The suppressive efficacy of THZ1 depends on KRAS mutation subtype and is associated with super-enhancer activity and the PI3K/AKT/mTOR signalling in pancreatic ductal adenocarcinoma: A hypothesis-generating study. Clin Transl Med 2023; 13:e1500. [PMID: 38037549 PMCID: PMC10689978 DOI: 10.1002/ctm2.1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Inhibition of CDK7, a potent transcription regulator, may bring new hope for treating pancreatic ductal adenocarcinoma (PDAC), which is featured by large genetic heterogeneity and abundant KRAS mutations. This investigation aimed at exploring the discrepant efficacies of THZ1, a small-molecule covalent CDK7 inhibitor, on PDACs with different KRAS mutations and the underlying mechanisms. METHODS Associations of CDK7 expression with survival by KRAS mutations were first assessed. Effects of THZ1 on PDAC by different KRAS mutations were then investigated in vitro and in vivo. Moreover, the effects of THZ1 on gene transcription and phosphorylation of RNA polymerase II (RNAPOLII) in different KRAS mutant PDACs were assessed, and the effect of THZ1 on super-enhancer activity was evaluated using chromatin immunoprecipitation sequencing. Lastly, the effects of THZ1 on the binding of H3K27ac to PIK3CA and on the PI3K/AKT/mTOR signalling were analysed. RESULTS High CDK7 expression was significantly linked to worse survival within PDAC patients carrying KRAS-G12V mutation but not in those with KRAS-G12D mutation. The apoptosis-inducing effect of THZ1 was markedly stronger in KRAS-G12V PDAC than KRAS-G12D cancer. THZ1 significantly inhibited the growth of xenograft tumour with KRAS-G12V mutation, and the inhibition was markedly stronger than for KRAS-G12D tumour. In mini-cell-derived xenograft (CDX) models, THZ1 significantly suppressed KRAS-G12V PDAC but not KRAS-G12D cancer. THZ1 significantly suppressed the phosphorylation of RNAPOLII, and this effect was stronger in KRAS-G12V PDAC (especially at ser5). KRAS-G12V PDAC had more H3K27ac-binding super-enhancers, and the inhibition of THZ1 on super-enhancer activity was also stronger in KRAS-G12V PDAC. Furthermore, THZ1 significantly weakened the binding of H3K27ac to PIK3CA in KRAS-G12V PDAC. THZ1 significantly suppressed the PI3K/AKT/mTOR pathway and its downstream markers, and this effect was stronger in KRAS-G12V cells. CONCLUSIONS In this hypothesis-generating study, THZ1 might selectively inhibit certain PDACs with KRAS-G12V mutation more potently compared with some other PDACs with KRAS-G12D mutation, which might be associated with its effect on super-enhancer activity and the PI3K/AKT/mTOR signalling. Our findings might offer novel key clues for the precise management of PDAC and important evidence for future targeted trial design. HIGHLIGHTS THZ1 had a stronger effect on PDAC-bearing KRAS-G12V mutation than G12D mutation. Suppressive effect of THZ1 on phosphorylation of RNAPOLII was stronger in KRAS-G12V than KRAS-G12D PDAC. Inhibition of THZ1 on super-enhancer activity and H3K27ac binding to PIK3CA was stronger in KRAS-G12V PDAC. Suppressive effect of THZ1 on PI3K/AKT/mTOR pathway was stronger in KRAS-G12V PDAC.
Collapse
Affiliation(s)
- Lei Huang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Yang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaidi Chen
- School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Jing Yuan
- Department of PathologyChinese PLA General HospitalBeijingChina
| | - Jie Li
- Department of PathologyChinese PLA General HospitalBeijingChina
| | - Guanghai Dai
- Department of Medical OncologyChinese PLA General HospitalBeijingChina
| | - Mancang Gu
- School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
- Academy of Chinese Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Shi
- Department of General SurgeryShanghai Seventh People's HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
9
|
Shen P, Ye K, Xiang H, Zhang Z, He Q, Zhang X, Cai MC, Chen J, Sun Y, Lin L, Qi C, Zhang M, Cheung LWT, Shi T, Yin X, Li Y, Di W, Zang R, Tan L, Zhuang G. Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer. SCIENCE ADVANCES 2023; 9:eadj0123. [PMID: 37992178 PMCID: PMC10664987 DOI: 10.1126/sciadv.adj0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Transcriptional dysregulation is a recurring pathogenic hallmark and an emerging therapeutic vulnerability in ovarian cancer. Here, we demonstrated that ovarian cancer exhibited a unique dependency on the regulatory machinery of transcriptional termination, particularly, cleavage and polyadenylation specificity factor (CPSF) complex. Genetic abrogation of multiple CPSF subunits substantially hampered neoplastic cell viability, and we presented evidence that their indispensable roles converged on the endonuclease CPSF3. Mechanistically, CPSF perturbation resulted in lengthened 3'-untranslated regions, diminished intronic polyadenylation and widespread transcriptional readthrough, and consequently suppressed oncogenic pathways. Furthermore, we reported the development of specific CPSF3 inhibitors building upon the benzoxaborole scaffold, which exerted potent antitumor activity. Notably, CPSF3 blockade effectively exacerbated genomic instability by down-regulating DNA damage repair genes and thus acted in synergy with poly(adenosine 5'-diphosphate-ribose) polymerase inhibition. These findings establish CPSF3-dependent transcriptional termination as an exploitable driving mechanism of ovarian cancer and provide a promising class of boron-containing compounds for targeting transcription-addicted human malignancies.
Collapse
Affiliation(s)
- Peiye Shen
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mei-Chun Cai
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfei Chen
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunheng Sun
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Lin
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Meiying Zhang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lydia W. T. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xia Yin
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wen Di
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongyu Zang
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
van Gogh M, Glaus Garzon JF, Sahin D, Knopfova L, Benes P, Boyman O, Jurisica I, Borsig L. Tumor Cell-Intrinsic c-Myb Upregulation Stimulates Antitumor Immunity in a Murine Colorectal Cancer Model. Cancer Immunol Res 2023; 11:1432-1444. [PMID: 37478172 PMCID: PMC10548106 DOI: 10.1158/2326-6066.cir-22-0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/08/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023]
Abstract
The transcription factor c-Myb is overexpressed in many different types of solid tumors, including colorectal cancer. However, its exact role in tumorigenesis is unclear. In this study, we show that tumor-intrinsic c-Myb expression in mouse models of colon cancer and melanoma suppresses tumor growth. Although no differences in proliferation, apoptosis, and angiogenesis of tumors were evident in tumors with distinct levels of c-Myb expression, we observed changes in intratumoral immune cell infiltrates. MC38 tumors with upregulated c-Myb expression showed increased numbers of CD103+ dendritic cells and eosinophils, but decreased tumor-associated macrophages (TAM). Concomitantly, an increase in the number of activated cytotoxic CD8+ T cells upon c-Myb upregulation was observed, which correlated with a pro-inflammatory tumor microenvironment and increased numbers of M1 polarized TAMs. Mechanistically, c-Myb upregulation in immunogenic MC38 colon cancer cells resulted in enhanced expression of immunomodulatory genes, including those encoding β2-microglobulin and IFNβ, and decreased expression of the gene encoding the chemokine receptor CCR2. The increased numbers of activated cytotoxic CD8+ T cells contributed to tumor growth attenuation. In poorly immunogenic CT26, LLC, and B16-BL6 tumor cells, c-Myb upregulation did not affect the immunomodulatory gene expression. Despite this, c-Myb upregulation led to reduced B16-BL6 tumor growth but it did not affect tumor growth of CT26 and LLC tumors. Altogether, we postulate that c-Myb functions as a tumor suppressor in a tumor cell-type specific manner and modulates antitumor immunity.
Collapse
Affiliation(s)
- Merel van Gogh
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Dilara Sahin
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Benes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and, Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital (UHN), Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Gu Q, Li L, Yao J, Dong FY, Gan Y, Zhou S, Wang X, Wang XF. Identification and verification of the temozolomide resistance feature gene DACH1 in gliomas. Front Oncol 2023; 13:1120103. [PMID: 36959804 PMCID: PMC10028258 DOI: 10.3389/fonc.2023.1120103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction The most important chemotherapy treatment for glioma patients is temozolomide. However, the development of drug resistance severely restricts the use of temozolomide. Therefore, elucidating the mechanism of temozolomide resistance, enhancing temozolomide sensitivity, and extending patient survival are urgent tasks for researchers. Methods Temozolomide resistance hub differential genes were identified using differential analysis and protein interaction analysis from the GEO datasets (GSE100736 and GSE113510). These genes were further studied in glioma patients treated with temozolomide in the TCGA and CGGA databases. Patients from the mRNAseq_325 dataset (CGGA) were considered as the training set to construct a risk model for predicting glioma sensitivity to temozolomide, while patients from the mRNAseq_693 dataset (CGGA) and TCGA-GBM dataset were considered as the validation set to evaluate the performance of models. PCR and western blot were performed to determine the difference in expression of the feature gene DACH1 between glioma cells and temozolomide-resistant glioma cells. The alterations in the sensitivity of tumor cells to temozolomide were also observed after DACH1 was silenced. The patients were then divided into two groups based on the expression of DACH1, and the differences in patient survival rates, molecular pathway activation, and level of immune infiltration were compared. Results Based on four signature genes (AHR, DACH1, MGMT, and YAP1), a risk model for predicting glioma sensitivity to temozolomide was constructed, and the results of timeROC in both the training and validation sets showed that the model had good predictive performance. The expression of the signature gene DACH1 was significantly downregulated in temozolomide-resistant cells, according to the results of the PCR and western blot experiments. The sensitivity of tumor cells to temozolomide was significantly reduced after DACH1 was silenced. DACH1 probably regulates temozolomide resistance in glioblastoma through the transcriptional dysregulation in cancer and ECM. Discussion This study constructs a risk model that can predict glioma susceptibility to temozolomide and validates the function of the feature gene DACH1, which provides a promising target for the research of temozolomide resistance.
Collapse
|
13
|
Saddeek S, Almassabi R, Mobashir M. Role of ZNF143 and Its Association with Gene Expression Patterns, Noncoding Mutations, and the Immune System in Human Breast Cancer. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010027. [PMID: 36675976 PMCID: PMC9865137 DOI: 10.3390/life13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The function of noncoding sequence variations at ZNF143 binding sites in breast cancer cells is currently not well understood. Distal elements and promoters, also known as cis-regulatory elements, control the expression of genes. They may be identified by functional genomic techniques and sequence conservation, and they frequently show cell- and tissue-type specificity. The creation, destruction, or modulation of TF binding and function may be influenced by genetic modifications at TF binding sites that affect the binding affinity. Therefore, noncoding mutations that affect the ZNF143 binding site may be able to alter the expression of some genes in breast cancer. In order to understand the relationship among ZNF143, gene expression patterns, and noncoding mutations, we adopted an integrative strategy in this study and paid close attention to putative immunological signaling pathways. The immune system-related pathways ErbB, HIF1a, NF-kB, FoxO, JAK-STAT, Wnt, Notch, cell cycle, PI3K-AKT, RAP1, calcium signaling, cell junctions and adhesion, actin cytoskeleton regulation, and cancer pathways are among those that may be significant, according to the overall analysis.
Collapse
Affiliation(s)
- Salma Saddeek
- Department of Chemistry, Faculty of Sciences, Universty of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Rehab Almassabi
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, 17121 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
14
|
Almowallad S, Alqahtani LS, Mobashir M. NF-kB in Signaling Patterns and Its Temporal Dynamics Encode/Decode Human Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122012. [PMID: 36556376 PMCID: PMC9788026 DOI: 10.3390/life12122012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Defects in signaling pathways are the root cause of many disorders. These malformations come in a wide variety of types, and their causes are also very diverse. Some of these flaws can be brought on by pathogenic organisms and viruses, many of which can obstruct signaling processes. Other illnesses are linked to malfunctions in the way that cell signaling pathways work. When thinking about how errors in signaling pathways might cause disease, the idea of signalosome remodeling is helpful. The signalosome may be conveniently divided into two types of defects: phenotypic remodeling and genotypic remodeling. The majority of significant illnesses that affect people, including high blood pressure, heart disease, diabetes, and many types of mental illness, appear to be caused by minute phenotypic changes in signaling pathways. Such phenotypic remodeling modifies cell behavior and subverts normal cellular processes, resulting in illness. There has not been much progress in creating efficient therapies since it has been challenging to definitively confirm this connection between signalosome remodeling and illness. The considerable redundancy included into cell signaling systems presents several potential for developing novel treatments for various disease conditions. One of the most important pathways, NF-κB, controls several aspects of innate and adaptive immune responses, is a key modulator of inflammatory reactions, and has been widely studied both from experimental and theoretical perspectives. NF-κB contributes to the control of inflammasomes and stimulates the expression of a number of pro-inflammatory genes, including those that produce cytokines and chemokines. Additionally, NF-κB is essential for controlling innate immune cells and inflammatory T cells' survival, activation, and differentiation. As a result, aberrant NF-κB activation plays a role in the pathogenesis of several inflammatory illnesses. The activation and function of NF-κB in relation to inflammatory illnesses was covered here, and the advancement of treatment approaches based on NF-κB inhibition will be highlighted. This review presents the temporal behavior of NF-κB and its potential relevance in different human diseases which will be helpful not only for theoretical but also for experimental perspectives.
Collapse
Affiliation(s)
- Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, S-17121 Stockholm, Sweden
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi 110025, India
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| |
Collapse
|
15
|
Ahmad Mir S, Paramita Mohanta P, Kumar Meher R, baitharu I, Kumar Raval M, Kumar Behera A, Nayak B. Structural insights into conformational stability and binding of thiazolo-[2,3-b] quinazolinone derivatives with EGFR-TKD and in-vitro study. Saudi J Biol Sci 2022; 29:103478. [PMID: 36389208 PMCID: PMC9646979 DOI: 10.1016/j.sjbs.2022.103478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Heterocyclic molecules are well-known drugs against various diseases including cancer. Many tyrosine kinase inhibitors including erlotinib, osimertinib, and sunitinib were developed and approved but caused adverse effects among treated patients. Which prevents them from being used as cancer therapeutics. In this study, we strategically developed heterocyclic thiazolo-[2,3-b]quinazolinone derivatives by an organic synthesis approach. These synthesized molecules were assessed against the epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) by in silico methods. Molecular docking simulations unravel derivative 17 showed better binding energy scores and followed Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. The binding affinity displayed by synthetic congener and reference molecule erlotinib was found to be -8.26 ± 0.0033 kcal/mol and -7.54 ± 0.1411 kcal/mol with the kinase domain. Further, molecular dynamic simulations were conducted thrice to validate the molecular docking study and achieved significant results. Both synthetic derivative and reference molecule attained stability in the active site of the TKD. The synthetic congener and erlotinib showed free energy binding (ΔGbind) -102.975 ± 3.714 kJ/mol and -130.378 ± 0.355 kJ/mol computed by Molecular Mechanics Poison Boltzmann Surface Area (MM-PBSA) method. In addition, the motions of each sampled system including the Apo complex were determined by the principal component analysis and Gibbs energy landscape analysis. The in-vitro apoptosis study was performed using MCF-7 and H-1299 cancer cell lines. However, thiazolo-[2,3-]-quinazoline derivative 17 showed fair anti-proliferative activity against MCF-7 and H-1299. Further, the in-vivo study is necessary to determine the effectivity of the potent anti-proliferative, non-toxic molecule against TKD.
Collapse
Affiliation(s)
- Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | | | - Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | - Iswar baitharu
- Department of Environmental Sciences Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | - Mukesh Kumar Raval
- Department of Chemistry, Gangadhar Meher University, Sambalpur-768019, Odisha, India
| | - Ajaya Kumar Behera
- Department of Chemistry, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyoti Vihar-768019, Odisha, India
| |
Collapse
|
16
|
Zhang L, Fan S, Vera J, Lai X. A network medicine approach for identifying diagnostic and prognostic biomarkers and exploring drug repurposing in human cancer. Comput Struct Biotechnol J 2022; 21:34-45. [PMID: 36514340 PMCID: PMC9732137 DOI: 10.1016/j.csbj.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a heterogeneous disease mainly driven by abnormal gene perturbations in regulatory networks. Therefore, it is appealing to identify the common and specific perturbed genes from multiple cancer networks. We developed an integrative network medicine approach to identify novel biomarkers and investigate drug repurposing across cancer types. We used a network-based method to prioritize genes in cancer-specific networks reconstructed using human transcriptome and interactome data. The prioritized genes show extensive perturbation and strong regulatory interaction with other highly perturbed genes, suggesting their vital contribution to tumorigenesis and tumor progression, and are therefore regarded as cancer genes. The cancer genes detected show remarkable performances in discriminating tumors from normal tissues and predicting survival times of cancer patients. Finally, we developed a network proximity approach to systematically screen drugs and identified dozens of candidates with repurposable potential in several cancer types. Taken together, we demonstrated the power of the network medicine approach to identify novel biomarkers and repurposable drugs in multiple cancer types. We have also made the data and code freely accessible to ensure reproducibility and reusability of the developed computational workflow.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
| | - Shiwei Fan
- College of Computer Science, Sichuan University, Chengdu, China
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany,Comprehensive Cancer Center Erlangen, Erlangen, Germany,BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Corresponding author at: Universitätsklinikum Erlangen, Erlangen, Germany; Tampere University, Tampere, Finland.
| |
Collapse
|
17
|
Zatzman M, Fuligni F, Ripsman R, Suwal T, Comitani F, Edward LM, Denroche R, Jang GH, Notta F, Gallinger S, Selvanathan SP, Toretsky JA, Hellmann MD, Tabori U, Huang A, Shlien A. Widespread hypertranscription in aggressive human cancers. SCIENCE ADVANCES 2022; 8:eabn0238. [PMID: 36417526 PMCID: PMC9683723 DOI: 10.1126/sciadv.abn0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/07/2022] [Indexed: 05/10/2023]
Abstract
Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.
Collapse
Affiliation(s)
- Matthew Zatzman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan Ripsman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tannu Suwal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | | | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Lee LM, Christodoulou EG, Shyamsunder P, Chen BJ, Lee KL, Fung TK, So CWE, Wong GC, Petretto E, Rackham OJL, Tiong Ong S. A novel network pharmacology approach for leukaemia differentiation therapy using Mogrify ®. Oncogene 2022; 41:5160-5175. [PMID: 36271030 DOI: 10.1038/s41388-022-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukaemia (AML) is a rapidly fatal blood cancer that is characterised by the accumulation of immature myeloid cells in the blood and bone marrow as a result of blocked differentiation. Methods which identify master transcriptional regulators of AML subtype-specific leukaemia cell states and their combinations could be critical for discovering novel differentiation-inducing therapies. In this proof-of-concept study, we demonstrate a novel utility of the Mogrify® algorithm in identifying combinations of transcription factors (TFs) and drugs, which recapitulate granulocytic differentiation of the NB4 acute promyelocytic leukaemia (APL) cell line, using two different approaches. In the first approach, Connectivity Map (CMAP) analysis of these TFs and their target networks outperformed standard approaches, retrieving ATRA as the top hit. We identify dimaprit and mebendazole as a drug combination which induces myeloid differentiation. In the second approach, we show that genetic manipulation of specific Mogrify®-identified TFs (MYC and IRF1) leads to co-operative induction of APL differentiation, as does pharmacological targeting of these TFs using currently available compounds. We also show that loss of IRF1 blunts ATRA-mediated differentiation, and that MYC represses IRF1 expression through recruitment of PML-RARα, the driver fusion oncoprotein in APL, to the IRF1 promoter. Finally, we demonstrate that these drug combinations can also induce differentiation of primary patient-derived APL cells, and highlight the potential of targeting MYC and IRF1 in high-risk APL. Thus, these results suggest that Mogrify® could be used for drug discovery or repositioning in leukaemia differentiation therapy for other subtypes of leukaemia or cancers.
Collapse
MESH Headings
- Humans
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Network Pharmacology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Cell Differentiation/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Lin Ming Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Eleni G Christodoulou
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Pavithra Shyamsunder
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Bei Jun Chen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Kian Leong Lee
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Tsz Kan Fung
- Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Chi Wai Eric So
- Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Gee Chuan Wong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- MRC London Institute of Medical Sciences (LMC), Imperial College London, Faculty of Medicine, London, UK.
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China.
| | - Owen J L Rackham
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - S Tiong Ong
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Haematology, Singapore General Hospital, Singapore, Singapore.
- Department of Medical Oncology, National Cancer Centre, Singapore, Singapore.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
19
|
Lan X, Zhao L, Zhang J, Shao Y, Qv Y, Huang J, Cai L. Comprehensive analysis of karyopherin alpha family expression in lung adenocarcinoma: Association with prognostic value and immune homeostasis. Front Genet 2022; 13:956314. [PMID: 35991543 PMCID: PMC9382304 DOI: 10.3389/fgene.2022.956314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Karyopherin alpha (KPNA), a nuclear transporter, has been implicated in the development as well as the progression of many types of malignancies. Immune homeostasis is a multilevel system which regulated by multiple factors. However, the functional significance of the KPNA family in the pathogenesis of lung adenocarcinoma (LUAD) and the impact of immune homeostasis are not well characterized. Methods: In this study, by integrating the TCGA-LUAD database and Masked Somatic Mutation, we first conducted an investigation on the expression levels and mutation status of the KPNA family in patients with LUAD. Then, we constructed a prognostic model based on clinical features and the expression of the KPNA family. We performed functional enrichment analysis and constructed a regulatory network utilizing the differential genes in high-and low-risk groups. Lastly, we performed immune infiltration analysis using CIBERSORT. Results: Analysis of TCGA datasets revealed differential expression of the KPNA family in LUAD. Kaplan-Meier survival analyses indicated that the high expression of KPNA2 and KPNA4 were predictive of inferior overall survival (OS). In addition, we constructed a prognostic model incorporating clinical factors and the expression level of KPNA4 and KPNA5, which accurately predicted 1-year, 3-years, and 5-years survival outcomes. Patients in the high-risk group showed a poor prognosis. Functional enrichment analysis exhibited remarkable enrichment of transcriptional dysregulation in the high-risk group. On the other hand, gene set enrichment analysis (GSEA) displayed enrichment of cell cycle checkpoints as well as cell cycle mitotic in the high-risk group. Finally, analysis of immune infiltration revealed significant differences between the high-and low-risk groups. Further, the high-risk group was more prone to immune evasion while the inflammatory response was strongly associated with the low-risk group. Conclusions: the KPNA family-based prognostic model reflects many biological aspects of LUAD and provides potential targets for precision therapy in LUAD.
Collapse
Affiliation(s)
- Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingchun Shao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunmeng Qv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | | | - Li Cai
- *Correspondence: Jian Huang, ; Li Cai,
| |
Collapse
|
20
|
Resveratrol Downregulates miR-155-5p to Block the Malignant Behavior of Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6968641. [PMID: 35789645 PMCID: PMC9250436 DOI: 10.1155/2022/6968641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Studies have shown that resveratrol (Res) exerts significant antiproliferative effects in cancer, and regulating the expression of microRNAs (miRNAs) is one the underlying mechanisms of these effects. Overexpression of miR-155-5p leads to oncogenesis. However, it is unclear whether Res exerts antitumor effects by regulating the expression of miR-155-5p, and its specific mechanism in gastric cancer remains unknown. In this study, qRT-PCR was performed to assess the expression of miR-155-5p in gastric cells and clinical tissues, and the MTT assay, plate clone formation test, cell scratch test, Transwell assay, and flow cytometry were performed to investigate the functions of Res on the growth of gastric cancer cells after treatment with miR-155-5p. Western blot analysis was performed to detect the expression of claudin 1, c-Myc, cyclin D1, Bcl-2, and caspase-3 proteins in gastric cancer cell lines after treatment with miR-155-5p and Res. We found that miR-155-5p was overexpressed in gastric cancer cells and clinical tissues, while Res inhibited gastric cancer cell growth by regulating miR-155-5p expression. The results of MTT assay, plate clone formation test, cell scratch test, Transwell test, and flow cytometry showed that miR-155-5p promoted the proliferation, invasion, and metastasis of gastric cancer cell lines and inhibited apoptosis, while Res addition inhibited this effect (
). When miR-155-5p was overexpressed, the expressions of claudin 1, c-Myc, cyclin D1, and Bcl-2 were upregulated and that of caspase-3 was downregulated. Collectively, these results suggest that miR-155-5p may be a therapeutic target in gastric cancer, and Res may be a potential therapeutic agent based on its regulation of miR-155-5p.
Collapse
|
21
|
Ansari RA, Abbas A. Editorial: Epigenetic and Transcriptional Dysregulations in Cancer and Therapeutic Opportunities. Front Genet 2022; 13:857380. [PMID: 35273642 PMCID: PMC8901498 DOI: 10.3389/fgene.2022.857380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rais A Ansari
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
22
|
Gong S, Zhang Y, Tian A, Deng W. Tumor models in various Drosophila tissues. WIREs Mech Dis 2021; 13:e1525. [PMID: 34730289 PMCID: PMC8566734 DOI: 10.1002/wsbm.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
The development of cancer is a complex multistage process. Over the past few decades, the model organism Drosophila melanogaster has been crucial in identifying cancer-related genes and pathways and elucidating mechanisms underlying growth regulation in development. Investigations using Drosophila has yielded new insights into the molecular mechanisms involved in tumor initiation and progression. In this review, we describe various tumor models that have been developed in recent years using different Drosophila tissues, such as the imaginal tissue, the neural tissue, the gut, the ovary, and hematopoietic cells. We discuss underlying genetic alterations, cancer-like characteristics, as well as similarities and key differences among these models. We also discuss how disruptions in stem cell division and differentiation result in tumor formation in diverse tissues, and highlight new concepts developed using the fly model to understand context-dependent tumorigenesis. We further discuss the progress made in Drosophila to explore tumor-host interactions that involve the innate immune response to tumor growth and the cachexia wasting phenotype. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Shangyu Gong
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yichi Zhang
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
23
|
Yang D, Su Z, Wei G, Long F, Zhu YC, Ni T, Liu X, Zhu YZ. H3K4 Methyltransferase Smyd3 Mediates Vascular Smooth Muscle Cell Proliferation, Migration, and Neointima Formation. Arterioscler Thromb Vasc Biol 2021; 41:1901-1914. [PMID: 33827259 DOI: 10.1161/atvbaha.121.314689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Stenosis/enzymology
- Carotid Stenosis/genetics
- Carotid Stenosis/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Rats
- Signal Transduction
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Di Yang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (D.Y., Y.Z.Z.)
| | - Zhenghua Su
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 P.R. China (G.W., T.N.)
| | - Fen Long
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China (Y.C.Z.)
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 P.R. China (G.W., T.N.)
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (D.Y., Y.Z.Z.)
| |
Collapse
|
24
|
Fan F, Podar K. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Cancers (Basel) 2021; 13:2326. [PMID: 34066181 PMCID: PMC8151277 DOI: 10.3390/cancers13102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the clonal expansion of malignant plasma cells within the bone marrow. Activator Protein-1 (AP-1) transcription factors (TFs), comprised of the JUN, FOS, ATF and MAF multigene families, are implicated in a plethora of physiologic processes and tumorigenesis including plasma cell differentiation and MM pathogenesis. Depending on the genetic background, the tumor stage, and cues of the tumor microenvironment, specific dimeric AP-1 complexes are formed. For example, AP-1 complexes containing Fra-1, Fra-2 and B-ATF play central roles in the transcriptional control of B cell development and plasma cell differentiation, while dysregulation of AP-1 family members c-Maf, c-Jun, and JunB is associated with MM cell proliferation, survival, drug resistance, bone marrow angiogenesis, and bone disease. The present review article summarizes our up-to-date knowledge on the role of AP-1 family members in plasma cell differentiation and MM pathophysiology. Moreover, it discusses novel, rationally derived approaches to therapeutically target AP-1 TFs, including protein-protein and protein-DNA binding inhibitors, epigenetic modifiers and natural products.
Collapse
Affiliation(s)
- Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China;
| | - Klaus Podar
- Department of Internal Medicine II, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems an der Donau, Austria
| |
Collapse
|
25
|
Patel N, Bush WS. Modeling transcriptional regulation using gene regulatory networks based on multi-omics data sources. BMC Bioinformatics 2021; 22:200. [PMID: 33874910 PMCID: PMC8056605 DOI: 10.1186/s12859-021-04126-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. Results We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. Conclusions Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04126-3.
Collapse
Affiliation(s)
- Neel Patel
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
26
|
Wang L, Sun J, Yin Y, Sun Y, Ma J, Zhou R, Chang X, Li D, Yao Z, Tian S, Zhang K, Liu Z, Ma Z. Transcriptional coregualtor NUPR1 maintains tamoxifen resistance in breast cancer cells. Cell Death Dis 2021; 12:149. [PMID: 33542201 PMCID: PMC7862277 DOI: 10.1038/s41419-021-03442-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
To support cellular homeostasis and mitigate chemotherapeutic stress, cancer cells must gain a series of adaptive intracellular processes. Here we identify that NUPR1, a tamoxifen (Tam)-induced transcriptional coregulator, is necessary for the maintenance of Tam resistance through physical interaction with ESR1 in breast cancers. Mechanistically, NUPR1 binds to the promoter regions of several genes involved in autophagy process and drug resistance such as BECN1, GREB1, RAB31, PGR, CYP1B1, and regulates their transcription. In Tam-resistant ESR1 breast cancer cells, NUPR1 depletion results in premature senescence in vitro and tumor suppression in vivo. Moreover, enforced-autophagic flux augments cytoplasmic vacuolization in NUPR1-depleted Tam resistant cells, which facilitates the transition from autophagic survival to premature senescence. Collectively, these findings suggest a critical role for NUPR1 as a transcriptional coregulator in enabling endocrine persistence of breast cancers, thus providing a vulnerable diagnostic and/or therapeutic target for endocrine resistance.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Autophagy/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Binding Sites
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Proliferation/drug effects
- Cellular Senescence/drug effects
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MCF-7 Cells
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic
- Tamoxifen/pharmacology
- Transcription, Genetic
- Transcriptome
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Lingling Wang
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jiashen Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yueyuan Yin
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yanan Sun
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Jinyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Ruimin Zhou
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Xinzhong Chang
- Department of Breast Cancer, Breast Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ding Li
- Department of Clinical Laboratory, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhi Yao
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Ma
- Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
27
|
Palomo-Irigoyen M, Pérez-Andrés E, Iruarrizaga-Lejarreta M, Barreira-Manrique A, Tamayo-Caro M, Vila-Vecilla L, Moreno-Cugnon L, Beitia N, Medrano D, Fernández-Ramos D, Lozano JJ, Okawa S, Lavín JL, Martín-Martín N, Sutherland JD, de Juan VG, Gonzalez-Lopez M, Macías-Cámara N, Mosén-Ansorena D, Laraba L, Hanemann CO, Ercolano E, Parkinson DB, Schultz CW, Araúzo-Bravo MJ, Ascensión AM, Gerovska D, Iribar H, Izeta A, Pytel P, Krastel P, Provenzani A, Seneci P, Carrasco RD, Del Sol A, Martinez-Chantar ML, Barrio R, Serra E, Lazaro C, Flanagan AM, Gorospe M, Ratner N, Aransay AM, Carracedo A, Varela-Rey M, Woodhoo A. HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. J Clin Invest 2021; 130:3848-3864. [PMID: 32315290 PMCID: PMC7324187 DOI: 10.1172/jci130379] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/β-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.
Collapse
Affiliation(s)
- Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Encarni Pérez-Andrés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Marta Iruarrizaga-Lejarreta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Adrián Barreira-Manrique
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Miguel Tamayo-Caro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Laura Vila-Vecilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Leire Moreno-Cugnon
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nagore Beitia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Daniela Medrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - David Fernández-Ramos
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José Lozano
- Bioinformatic Platform, CIBERehd, Instituto de Salud Carlos III, Barcelona, Spain
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - José L Lavín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Virginia Guitiérez de Juan
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Nuria Macías-Cámara
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - David Mosén-Ansorena
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Liyam Laraba
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - Emanuela Ercolano
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | - David B Parkinson
- Institute of Translational and Stratified Medicine, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Devon, United Kingdom
| | | | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Haizea Iribar
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Instituto Biodonostia, San Sebastián, Spain
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Philipp Krastel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Del Sol
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - María Luz Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Eduard Serra
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Group, Institute for Health Science Research Germans Trias I Pujol (IGTP) and Program of Predictive and Personalized Medicine of Cancer (PMPPC), Barcelona, Spain
| | - Conxi Lazaro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, and.,Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Marta Varela-Rey
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Sheppard HE, Dall’Agnese A, Park WD, Shamim MH, Dubrulle J, Johnson HL, Stossi F, Cogswell P, Sommer J, Levy J, Sharifnia T, Wawer MJ, Nabet B, Gray NS, Clemons PA, Schreiber SL, Workman P, Young RA, Lin CY. Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. CELL REPORTS MEDICINE 2021; 2:100188. [PMID: 33521702 PMCID: PMC7817874 DOI: 10.1016/j.xcrm.2020.100188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Chordomas are rare spinal tumors addicted to expression of the developmental transcription factor brachyury. In chordomas, brachyury is super-enhancer associated and preferentially downregulated by pharmacologic transcriptional CDK inhibition, leading to cell death. To understand the underlying basis of this sensitivity, we dissect the brachyury transcription regulatory network and compare the consequences of brachyury degradation with transcriptional CDK inhibition. Brachyury defines the chordoma super-enhancer landscape and autoregulates through binding its super-enhancer, and its locus forms a transcriptional condensate. Transcriptional CDK inhibition and brachyury degradation disrupt brachyury autoregulation, leading to loss of its transcriptional condensate and transcriptional program. Compared with transcriptional CDK inhibition, which globally downregulates transcription, leading to cell death, brachyury degradation is much more selective, inducing senescence and sensitizing cells to anti-apoptotic inhibition. These data suggest that brachyury downregulation is a core tenet of transcriptional CDK inhibition and motivates developing strategies to target brachyury and its autoregulatory feedback loop. Brachyury defines the chordoma super-enhancer landscape Brachyury autoregulates through a transcriptional condensate CDK7/12/13i and brachyury degradation target the brachyury transcriptional condensate Brachyury degradation inhibits chordoma identity genes and induces senescence
Collapse
Affiliation(s)
- Hadley E. Sheppard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Woojun D. Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - M. Hamza Shamim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julien Dubrulle
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hannah L. Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Integrated Microscopy Core, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Joan Levy
- Chordoma Foundation, Durham, NC 27713, USA
| | - Tanaz Sharifnia
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Behnam Nabet
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paul A. Clemons
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Stuart L. Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Therapeutic Innovation Center, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author
| |
Collapse
|
29
|
Lee JH, Park SY, Hwang W, Sung JY, Cho ML, Shim J, Kim YN, Yoon K. Isoharringtonine Induces Apoptosis of Non-Small Cell Lung Cancer Cells in Tumorspheroids via the Intrinsic Pathway. Biomolecules 2020; 10:E1521. [PMID: 33172112 PMCID: PMC7694770 DOI: 10.3390/biom10111521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the major cause of cancer-associated death worldwide, and development of new therapeutic drugs is needed to improve treatment outcomes. Three-dimensional (3D) tumorspheroids offer many advantages over conventional two-dimensional cell cultures due to the similarities to in vivo tumors. We found that isoharringtonine, a natural product purified from Cephalotaxus koreana Nakai, significantly inhibited the growth of tumorspheroids with NCI-H460 cells in a dose-dependent manner and induced apoptotic cell death in our 3D cell culture system. On the other hand, A549 tumorspheroids displayed low sensitivity to isoharringtonine-induced apoptosis. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an orphan nuclear receptor known to regulate proliferation and apoptosis of cancer cells. We observed that knockdown of NR4A1 dramatically increased isoharringtonine-induced cancer cell death in A549 tumorspheroids by activating the intrinsic apoptosis pathway. Furthermore, treatment with combined isoharringtonine and iNR4A1 significantly inhibited multivulva formation in a Caenorhabditis elegans model and tumor development in a xenograft mouse model. Taken together, our data suggest that isoharringtonine is a potential natural product for treatment of non-small cell lung cancers, and inhibition of NR4A1 sensitizes cancer cells to anti-cancer treatment.
Collapse
Affiliation(s)
- Ji Hae Lee
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - So-Young Park
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
| | - Wonbin Hwang
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
| | - Jee Young Sung
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
| | - Myoung-Lae Cho
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jaegal Shim
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
| | - Yong-Nyun Kim
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
| | - Kyungsil Yoon
- Division of Translational Research, National Cancer Center, Goyang 10408, Korea; (J.H.L.); (S.-Y.P.); (W.H.); (J.Y.S.); (J.S.); (Y.-N.K.)
| |
Collapse
|
30
|
Zhang J, Lee D, Dhiman V, Jiang P, Xu J, McGillivray P, Yang H, Liu J, Meyerson W, Clarke D, Gu M, Li S, Lou S, Xu J, Lochovsky L, Ung M, Ma L, Yu S, Cao Q, Harmanci A, Yan KK, Sethi A, Gürsoy G, Schoenberg MR, Rozowsky J, Warrell J, Emani P, Yang YT, Galeev T, Kong X, Liu S, Li X, Krishnan J, Feng Y, Rivera-Mulia JC, Adrian J, Broach JR, Bolt M, Moran J, Fitzgerald D, Dileep V, Liu T, Mei S, Sasaki T, Trevilla-Garcia C, Wang S, Wang Y, Zang C, Wang D, Klein RJ, Snyder M, Gilbert DM, Yip K, Cheng C, Yue F, Liu XS, White KP, Gerstein M. An integrative ENCODE resource for cancer genomics. Nat Commun 2020; 11:3696. [PMID: 32728046 PMCID: PMC7391744 DOI: 10.1038/s41467-020-14743-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.
Collapse
Affiliation(s)
- Jing Zhang
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Donghoon Lee
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Vineet Dhiman
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Peng Jiang
- Department of Data Science, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Patrick McGillivray
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Jason Liu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - William Meyerson
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Mengting Gu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shantao Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jinrui Xu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Lucas Lochovsky
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Ung
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03765, USA
| | - Lijia Ma
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Shan Yu
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Arif Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Koon-Kiu Yan
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Anurag Sethi
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gamze Gürsoy
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael Rutenberg Schoenberg
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Joel Rozowsky
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Prashant Emani
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yucheng T Yang
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiangmeng Kong
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shuang Liu
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiaotong Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jayanth Krishnan
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yanlin Feng
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jessica Adrian
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Michael Bolt
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Jennifer Moran
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Dominic Fitzgerald
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Claudia Trevilla-Garcia
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Su Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanli Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Kevin Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Chao Cheng
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03765, USA
- Department of Medicine, Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| | - Kevin P White
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
- Tempus Labs, Chicago, IL, 60654, USA.
| | - Mark Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA.
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
31
|
Abbas A, Padmanabhan R, Romigh T, Eng C. PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy. Hum Mol Genet 2020; 28:2826-2834. [PMID: 31127935 PMCID: PMC6735678 DOI: 10.1093/hmg/ddz112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/27/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Control of gene expression is one of the most complex yet continuous physiological processes impacting cellular homeostasis. RNA polymerase II (Pol II) transcription is tightly regulated at promoter-proximal regions by intricate dynamic processes including Pol II pausing, release into elongation and premature termination. Pol II pausing is a phenomenon where Pol II complex pauses within 30–60 nucleotides after initiating the transcription. Negative elongation factor (NELF) and DRB sensitivity inducing factor (DSIF) contribute in the establishment of Pol II pausing, and positive transcription elongation factor b releases (P-TEFb) paused complex after phosphorylating DSIF that leads to dissociation of NELF. Pol II pausing is observed in most expressed genes across the metazoan. The precise role of Pol II pausing is not well understood; however, it’s required for integration of signals for gene regulation. In the present study, we investigated the role of phosphatase and tensin homolog (PTEN) in genome-wide transcriptional regulation using PTEN overexpression and PTEN knock-down models. Here we identify that PTEN alters the expression of hundreds of genes, and its restoration establishes genome-wide Pol II promoter-proximal pausing in PTEN null cells. Furthermore, PTEN re-distributes Pol II occupancy across the genome and possibly impacts Pol II pause duration, release and elongation rate in order to enable precise gene regulation at the genome-wide scale. Our observations demonstrate an imperative role of PTEN in global transcriptional regulation that will provide a new direction to understand PTEN-associated pathologies and its management.
Collapse
Affiliation(s)
- Ata Abbas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
32
|
Benetatos L, Benetatou A, Vartholomatos G. Enhancers and MYC interplay in hematopoiesis. J Mol Med (Berl) 2020; 98:471-481. [PMID: 32144465 DOI: 10.1007/s00109-020-01891-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Transcription requires the fine interplay between enhancers and transcription factors. Enhancers are able to activate transcription of genes involved in normal cell biology, whereas aberrant enhancer activity leads to oncogenesis. MYC is a well-established proto-oncogene involved in half of human cancers amplifying the output of its targets. The crosstalk between MYC and enhancers is known for many years since the discovery of IgH enhancer juxtaposition with MYC in high-grade lymphomas. Here, we focus mainly in the enhancers surrounding MYC in the 8q24 locus. That region comprises several enhancers that associate with other transcription factors, transmembrane receptors, and fusion genes composing complex regulatory networks aberrantly expressed in almost all types of hematological malignancies. Understanding the nature of these interactions in normal blood cells and in leukemias/lymphomas will expand MYC targeting options in the armamentarium against hematological cancers.
Collapse
Affiliation(s)
| | - Agapi Benetatou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | |
Collapse
|
33
|
Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol 2019; 9:1458. [PMID: 31921698 PMCID: PMC6933601 DOI: 10.3389/fonc.2019.01458] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, and can be subcategorized histologically and/or based on PAX-FOXO1 fusion gene status. Over the last four decades, there have been no significant improvements in clinical outcomes for advanced and metastatic RMS patients, underscoring a need for new treatment options for these groups. Despite significant advancements in our understanding of the genomic landscape and underlying biological mechanisms governing RMS that have informed the identification of novel therapeutic targets, development of these therapies in clinical trials has lagged far behind. In this review, we summarize the current frontline multi-modality therapy for RMS according to pediatric protocols, highlight emerging targeted therapies and immunotherapies identified by preclinical studies, and discuss early clinical trial data and the implications they hold for future clinical development.
Collapse
Affiliation(s)
- Celine Chen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Scheer
- Pediatrics 5, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| |
Collapse
|
34
|
Dandawate P, Ghosh C, Palaniyandi K, Paul S, Rawal S, Pradhan R, Sayed AAA, Choudhury S, Standing D, Subramaniam D, Padhye S, Gunewardena S, Thomas SM, O’ Neil M, Tawfik O, Welch DR, Jensen RA, Maliski S, Weir S, Iwakuma T, Anant S, Dhar A. The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice. Gastroenterology 2019; 157:1646-1659.e11. [PMID: 31442435 PMCID: PMC6878178 DOI: 10.1053/j.gastro.2019.08.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The histone lysine demethylase 3A (KDM3A) demethylates H3K9me1 and H3K9Me2 to increase gene transcription and is upregulated in tumors, including pancreatic tumors. We investigated its activities in pancreatic cancer cell lines and its regulation of the gene encoding doublecortin calmodulin-like kinase 1 (DCLK1), a marker of cancer stem cells. METHODS We knocked down KDM3A in MiaPaCa-2 and S2-007 pancreatic cancer cell lines and overexpressed KDM3A in HPNE cells (human noncancerous pancreatic ductal cell line); we evaluated cell migration, invasion, and spheroid formation under hypoxic and normoxic conditions. Nude mice were given orthotopic injections of S2-007 cells, with or without (control) knockdown of KDM3A, and HPNE cells, with or without (control) overexpression of KDM3A; tumor growth was assessed. We analyzed pancreatic tumor tissues from mice and pancreatic cancer cell lines by immunohistochemistry and immunoblotting. We performed RNA-sequencing analysis of MiaPaCa-2 and S2-007 cells with knockdown of KDM3A and evaluated localization of DCLK1 and KDM3A by immunofluorescence. We analyzed the cancer genome atlas for levels of KDM3A and DCLK1 messenger RNA in human pancreatic ductal adenocarcinoma (PDAC) tissues and association with patient survival time. RESULTS Levels of KDM3A were increased in human pancreatic tumor tissues and cell lines, compared with adjacent nontumor pancreatic tissues, such as islet and acinar cells. Knockdown of KDM3A in S2-007 cells significantly reduced colony formation, invasion, migration, and spheroid formation, compared with control cells, and slowed growth of orthotopic tumors in mice. We identified KDM3A-binding sites in the DCLK1 promoter; S2-007 cells with knockdown of KDM3A had reduced levels of DCLK1. HPNE cells that overexpressed KDM3A formed foci and spheres in culture and formed tumors and metastases in mice, whereas control HPNE cells did not. Hypoxia induced sphere formation and increased levels of KDM3A in S2-007 cells and in HPNE cells that overexpressed DCLK1, but not control HPNE cells. Levels of KDM3A and DCLK1 messenger RNA were higher in human PDAC than nontumor pancreatic tissues and correlated with shorter survival times of patients. CONCLUSIONS We found human PDAC samples and pancreatic cancer cell lines to overexpress KDM3A. KDM3A increases expression of DCLK1, and levels of both proteins are increased in human PDAC samples. Knockdown of KDM3A in pancreatic cancer cell lines reduced their invasive and sphere-forming activities in culture and formation of orthotopic tumors in mice. Hypoxia increased expression of KDM3A in pancreatic cancer cells. Strategies to disrupt this pathway might be developed for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Chandrayee Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Kanagaraj Palaniyandi
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Santanu Paul
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sonia Rawal
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Rohan Pradhan
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, Camp, Pune 411001, India
| | - Afreen Asif Ali Sayed
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Subhash Padhye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.,Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, Camp, Pune 411001, India
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sufi M. Thomas
- Department of Otolaryngology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Moura O’ Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Danny R. Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Roy A. Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Sally Maliski
- School of Nursing, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Scott Weir
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
35
|
Niveditha D, Sharma H, Majumder S, Mukherjee S, Chowdhury R, Chowdhury S. Transcriptomic analysis associated with reversal of cisplatin sensitivity in drug resistant osteosarcoma cells after a drug holiday. BMC Cancer 2019; 19:1045. [PMID: 31690262 PMCID: PMC6833242 DOI: 10.1186/s12885-019-6300-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Resistance to chemotherapy is one of the major hurdles in current cancer therapy. With the increasing occurrence of drug resistance, a paradigm shift in treatment strategy is required. Recently “medication vacation” has emerged as a unique, yet uncomplicated strategy in which withdrawal of drug pressure for certain duration allowed tumor cells to regain sensitivity to the drug. However, little is known about the molecular alterations associated with such an outcome. Methods In this study, human osteosarcoma (OS) cells resistant to the extensively used drug cisplatin, were withdrawn from drug pressure, and thereafter cytotoxic response of the cells to the drug was evaluated. We further performed next-generation RNA sequencing and compared transcriptome between parental (OS), resistant (OS-R) and the drug withdrawn (OS-DW) cells. Differentially expressed transcripts were identified, and biological association network (BAN), gene ontology (GO) and pathway enrichment analysis of the differentially regulated transcripts were performed to identify key events associated with withdrawal of drug pressure. Results Following drug withdrawal, the sensitivity of the cells to the drug was found to be regained. Analysis of the expression profile showed that key genes like, IRAK3, IL6ST, RELA, AKT1, FKBP1A and ADIPOQ went significantly down in OS-DW cells when compared to OS-R. Also, genes involved in Wnt signaling, PI3K-Akt, Notch signaling, and ABC transporters were drastically down-regulated in OS-DW cells compared to OS-R. Although, a very small subset of genes maintained similar expression pattern between OS, OS-R and OS-DW, nonetheless majority of the transcriptomic pattern of OS-DW was distinctively different and unique in comparison to either the drug sensitive OS or drug resistant OS-R cells. Conclusion Our data suggests that though drug withdrawal causes reversal of sensitivity, the transcriptomic pattern does not necessarily show significant match with resistant or parental control cells. We strongly believe that exploration of the molecular basis of drug holiday might facilitate additional potential alternative treatment options for aggressive and resistant cancers.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
36
|
Chahal KK, Li J, Kufareva I, Parle M, Durden DL, Wechsler-Reya RJ, Chen CC, Abagyan R. Nilotinib, an approved leukemia drug, inhibits smoothened signaling in Hedgehog-dependent medulloblastoma. PLoS One 2019; 14:e0214901. [PMID: 31539380 PMCID: PMC6754133 DOI: 10.1371/journal.pone.0214901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023] Open
Abstract
Dysregulation of the seven-transmembrane (7TM) receptor Smoothened (SMO) and other components of the Hedgehog (Hh) signaling pathway contributes to the development of cancers including basal cell carcinoma (BCC) and medulloblastoma (MB). However, SMO-specific antagonists produced mixed results in clinical trials, marked by limited efficacy and high rate of acquired resistance in tumors. Here we discovered that Nilotinib, an approved inhibitor of several kinases, possesses an anti-Hh activity, at clinically achievable concentrations, due to direct binding to SMO and inhibition of SMO signaling. Nilotinib was more efficacious than the SMO-specific antagonist Vismodegib in inhibiting growth of two Hh-dependent MB cell lines. It also reduced tumor growth in subcutaneous MB mouse xenograft model. These results indicate that in addition to its known activity against several tyrosine-kinase-mediated proliferative pathways, Nilotinib is a direct inhibitor of the Hh pathway. The newly discovered extension of Nilotinib's target profile holds promise for the treatment of Hh-dependent cancers.
Collapse
Affiliation(s)
- Kirti Kandhwal Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
- Department of Pharmaceutical Sciences, G.J. University of Science and Technology, Hisar, India
| | - Jie Li
- Department of Neurosurgery, Minneapolis, Minnesota, United States of America
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
| | - Milind Parle
- Department of Pharmaceutical Sciences, G.J. University of Science and Technology, Hisar, India
| | - Donald L. Durden
- Department of Pediatrics, Moores Cancer Center, School of Medicine, UCSD and Rady Children’s Hospital, San Diego, La Jolla, California, United States of America
| | - Robert J. Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Clark C. Chen
- Department of Neurosurgery, Minneapolis, Minnesota, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego (UCSD), La Jolla, California, United States of America
| |
Collapse
|
37
|
The AAA+ATPase RUVBL2 is essential for the oncogenic function of c-MYB in acute myeloid leukemia. Leukemia 2019; 33:2817-2829. [PMID: 31138842 PMCID: PMC6887538 DOI: 10.1038/s41375-019-0495-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Subtype-specific leukemia oncogenes drive aberrant gene expression profiles that converge on common essential mediators to ensure leukemia self-renewal and inhibition of differentiation. The transcription factor c-MYB functions as one such mediator in a diverse range of leukemias. Here we show for the first time that transcriptional repression of myeloid differentiation associated c-MYB target genes in AML is enforced by the AAA+ ATPase RUVBL2. Silencing RUVBL2 expression resulted in increased binding of c-MYB to these loci and their transcriptional activation. RUVBL2 inhibition resulted in AML cell apoptosis and severely impaired disease progression of established AML in engrafted mice. In contrast, such inhibition had little impact on normal hematopoietic progenitor differentiation. These data demonstrate that RUVBL2 is essential for the oncogenic function of c-MYB in AML by governing inhibition of myeloid differentiation. They also indicate that targeting the control of c-MYB function by RUVBL2 is a promising approach to developing future anti-AML therapies.
Collapse
|
38
|
Ortmayr K, Dubuis S, Zampieri M. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat Commun 2019; 10:1841. [PMID: 31015463 PMCID: PMC6478870 DOI: 10.1038/s41467-019-09695-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Transcriptional reprogramming of cellular metabolism is a hallmark of cancer. However, systematic approaches to study the role of transcriptional regulators (TRs) in mediating cancer metabolic rewiring are missing. Here, we chart a genome-scale map of TR-metabolite associations in human cells using a combined computational-experimental framework for large-scale metabolic profiling of adherent cell lines. By integrating intracellular metabolic profiles of 54 cancer cell lines with transcriptomic and proteomic data, we unraveled a large space of associations between TRs and metabolic pathways. We found a global regulatory signature coordinating glucose- and one-carbon metabolism, suggesting that regulation of carbon metabolism in cancer may be more diverse and flexible than previously appreciated. Here, we demonstrate how this TR-metabolite map can serve as a resource to predict TRs potentially responsible for metabolic transformation in patient-derived tumor samples, opening new opportunities in understanding disease etiology, selecting therapeutic treatments and in designing modulators of cancer-related TRs. Aberrant gene expression in cancer coincides with drastic changes in metabolism. Here, the authors combined metabolome, transcriptome and proteome data in 54 cancer cell lines to uncover a genome-scale network of associations between transcriptional regulators and metabolites.
Collapse
Affiliation(s)
- Karin Ortmayr
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland
| | - Sébastien Dubuis
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland.
| |
Collapse
|
39
|
Kyrochristos ID, Ziogas DE, Roukos DH. Drug resistance: origins, evolution and characterization of genomic clones and the tumor ecosystem to optimize precise individualized therapy. Drug Discov Today 2019; 24:1281-1294. [PMID: 31009757 DOI: 10.1016/j.drudis.2019.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Progress in understanding and overcoming fatal intrinsic and acquired resistance is slow, with only a few exceptions. Despite advances in modern genome and transcriptome analysis, the controversy of the three different theories on drug resistance and tumor progression, namely dynamic intratumor heterogeneity, pre-existing minor genomic clones and tumor ecosystem, is unresolved. Moreover, evidence on transcriptional heterogeneity suggests the necessity of a drug bank for individualized, precise drug-sensitivity prediction. We propose a cancer type- and stage-specific clinicogenomic and tumor ecosystemic concept toward cancer precision medicine, focusing on early therapeutic resistance and relapse.
Collapse
Affiliation(s)
- Ioannis D Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece
| | - Demosthenes E Ziogas
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, 'G. Hatzikosta' General Hospital, Ioannina, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece; Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|
40
|
Ball CB, Nilson KA, Price DH. Use of the nuclear walk-on methodology to determine sites of RNA polymerase II initiation and pausing and quantify nascent RNAs in cells. Methods 2019; 159-160:165-176. [PMID: 30743000 PMCID: PMC6589122 DOI: 10.1016/j.ymeth.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/12/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) is controlled during initiation, elongation, and termination by a large variety of transcription factors, the state of chromatin modifications, and environmental conditions. Herein we describe experimental approaches for the examination of Pol II transcription at semi-global and genome-wide scales through analysis of nascent Pol II transcripts. We begin with a description of the nuclear walk-on (NWO) assay, which involves rapid isolation of nuclei in the presence of EDTA, followed by extension of about a quarter of the nascent transcripts with 32P-CTP. Labeled nascent transcripts are then analyzed by denaturing PAGE and phosphorimaging followed by densitometry analysis to quantify the signal on the gel. A parallel reaction containing α-amanitin to inhibit Pol II reveals transcription due to Pol I and Pol III, which can be subtracted to yield a profile of Pol II transcription. We then describe how to use the NWO as a front end for PRO-Seq and PRO-Cap methods, which permit the genome-wide characterization of Pol II transcription at nucleotide resolution and provide precise information about sites of transcription initiation and pausing. We discuss strategies for optimizing sequencing methods that capture nascent Pol II transcripts, methods of bias reduction, and approaches for normalizing these and other sequencing datasets using spike-in controls.
Collapse
Affiliation(s)
- Christopher B Ball
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle A Nilson
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Yang RM, Nanayakkara D, Kalimutho M, Mitra P, Khanna KK, Dray E, Gonda TJ. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 2019; 38:5239-5249. [PMID: 30971760 DOI: 10.1038/s41388-019-0789-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.
Collapse
Affiliation(s)
- Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Keck School of Medicine at the Children's Hospital Los Angeles Campus, University of Southern California, Los Angeles, CA, 90027, USA
| | - Devathri Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovations, QUT at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,Mater Research/UQ at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,University of Texas Health, San Antonio, Department of Biochemistry and Structural Biology, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
42
|
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39:1851-1891. [PMID: 30741437 DOI: 10.1002/med.21565] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rachna Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Singh Verma
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Rai
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
43
|
Rampias T, Karagiannis D, Avgeris M, Polyzos A, Kokkalis A, Kanaki Z, Kousidou E, Tzetis M, Kanavakis E, Stravodimos K, Manola KN, Pantelias GE, Scorilas A, Klinakis A. The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Rep 2019; 20:embr.201846821. [PMID: 30665945 PMCID: PMC6399616 DOI: 10.15252/embr.201846821] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Genome‐wide studies in tumor cells have indicated that chromatin‐modifying proteins are commonly mutated in human cancers. The lysine‐specific methyltransferase 2C (KMT2C/MLL3) is a putative tumor suppressor in several epithelia and in myeloid cells. Here, we show that downregulation of KMT2C in bladder cancer cells leads to extensive changes in the epigenetic status and the expression of DNA damage response and DNA repair genes. More specifically, cells with low KMT2C activity are deficient in homologous recombination‐mediated double‐strand break DNA repair. Consequently, these cells suffer from substantially higher endogenous DNA damage and genomic instability. Finally, these cells seem to rely heavily on PARP1/2 for DNA repair, and treatment with the PARP1/2 inhibitor olaparib leads to synthetic lethality, suggesting that cancer cells with low KMT2C expression are attractive targets for therapies with PARP1/2 inhibitors.
Collapse
Affiliation(s)
| | | | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antonis Kokkalis
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evgenia Kousidou
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Kanavakis
- Department of Medical Genetics, Medical School, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.,University Research Institute for the Study and Treatment of Childhood Genetic and Malignant Diseases, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi N Manola
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Gabriel E Pantelias
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) "Demokritos", Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
44
|
Ford K, McDonald D, Mali P. Functional Genomics via CRISPR-Cas. J Mol Biol 2019; 431:48-65. [PMID: 29959923 PMCID: PMC6309720 DOI: 10.1016/j.jmb.2018.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/02/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas proteins have recently emerged as versatile tools to investigate and engineer the genome. The programmability of CRISPR-Cas has proven especially useful for probing genomic function in high-throughput. Facile single-guide RNA library synthesis allows CRISPR-Cas screening to rapidly investigate the functional consequences of genomic, transcriptomic, and epigenomic perturbations. Furthermore, by combining CRISPR-Cas perturbations with downstream single-cell analyses (flow cytometry, expression profiling, etc.), forward screens can generate robust data sets linking genotypes to complex cellular phenotypes. In the following review, we highlight recent advances in CRISPR-Cas genomic screening while outlining protocols and pitfalls associated with screen implementation. Finally, we describe current challenges limiting the utility of CRISPR-Cas screening as well as future research needed to resolve these impediments. As CRISPR-Cas technologies develop, so too will their clinical applications. Looking ahead, patient centric functional screening in primary cells will likely play a greater role in disease management and therapeutic development.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniella McDonald
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
45
|
Xu S, Dong Y, Huo Z, Yu L, Xue J, Wang G, Duan Y. SOX11: a potentially useful marker in surgical pathology: a systematic analysis of SOX11 expression in epithelial and non-epithelial tumours. Histopathology 2018; 74:391-405. [PMID: 30221780 DOI: 10.1111/his.13757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Sanpeng Xu
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
| | - Yuting Dong
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Zitian Huo
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Lu Yu
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Jin Xue
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Guoping Wang
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| | - Yaqi Duan
- Institute of Pathology; Tongji Hospital; Huazhong University of Science and Technology; Wuhan China
- Department of Pathology; School of Basic Medical Science; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
46
|
Jiang L, Huang R, Wu Y, Diao P, Zhang W, Li J, Li Z, Wang Y, Cheng J, Yang J. Overexpression of CDK7 is associated with unfavourable prognosis in oral squamous cell carcinoma. Pathology 2018; 51:74-80. [PMID: 30473182 DOI: 10.1016/j.pathol.2018.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Increased expression of cyclin-dependent kinase 7 (CDK7), an ubiquitous kinase associated with cell cycle and transcription, contributes to human tumourigenesis and associates with patients' prognosis. In the present study, we sought to investigate the expression pattern of CDK7 and its clinicopathological significance in primary oral squamous cell carcinoma (OSCC). The expression of CDK7 mRNA in OSCC was determined by data mining and interrogation using the Oncomine database. Its protein expression was measured by immunohistochemistry in clinical samples from a retrospective cohort of 113 patients with primary OSCC which were treated at our institution from January 2006 to December 2016. The potential associations between CDK7 abundance and multiple clinicopathological parameters as well as patients' survival were assessed. The 4-nitroquinoline 1-oxide (4NQO)-induced OSCC mouse model was developed to monitor CDK7 expression during cancer initiation and progression. The bioinformatics analyses revealed higher CDK7 mRNA in OSCC samples compared to normal counterparts. Our immunohistochemical staining data revealed significant aberrant overexpression of CDK7 in a large subset of OSCC. Elevated CDK7 expression was found to be significantly associated with higher T-stage (p = 0.009) and reduced overall and disease-free survival (Log-rank test, p = 0.022, 0.010, respectively). Both univariate and multivariate Cox regression analysis identified the expression status of CDK7 as an important independent prognostic factor for patients' survival. Increased CDK7 expression was parallel with OSCC development in the 4NQO-induced animal model. Our findings indicate that aberrant CDK7 overexpression associates with T-stage and reduced survival in OSCC, thus suggesting that it might play critical roles underlying oral tumourigenesis and also serve as a novel biomarker with diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Lei Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China; Department of Oral and Maxillofacial Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu, China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Jin Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Zhongwu Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu, China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu, China.
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
47
|
Mitra P. Transcription regulation of MYB: a potential and novel therapeutic target in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:443. [PMID: 30596073 DOI: 10.21037/atm.2018.09.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Basal transcription factors have never been considered as a priority target in the field of drug discovery. However, their unparalleled roles in decoding the genetic information in response to the appropriate signal and their association with the disease progression are very well-established phenomena. Instead of considering transcription factors as such a target, in this review, we discuss about the potential of the regulatory mechanisms that control their gene expression. Based on our recent understanding about the critical roles of c-MYB at the cellular and molecular level in several types of cancers, we discuss here how MLL-fusion protein centred SEC in leukaemia, ligand-estrogen receptor (ER) complex in breast cancer (BC) and NF-κB and associated factors in colorectal cancer regulate the transcription of this gene. We further discuss plausible strategies, specific to each cancer type, to target those bona fide activators/co-activators, which control the regulation of this gene and therefore to shed fresh light in targeting the transcriptional regulation as a novel approach to the future drug discovery in cancer.
Collapse
Affiliation(s)
- Partha Mitra
- Pre-clinical Division, Vaxxas Pty. Ltd. Translational Research Institute, Woolloongabba QLD 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
48
|
Ramos A, Miow QH, Liang X, Lin QS, Putti TC, Lim YP. Phosphorylation of E-box binding USF-1 by PI3K/AKT enhances its transcriptional activation of the WBP2 oncogene in breast cancer cells. FASEB J 2018; 32:fj201801167RR. [PMID: 30183375 DOI: 10.1096/fj.201801167rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
WW domain binding protein 2 (WBP2), a transcriptional coactivator, plays a vital role in breast tumorigenesis. It positively regulates estrogen receptor, Hippo, and Wnt pathways, which subsequently enhance the transcription of downstream target genes contributing to cancer. Understanding the regulation of the expression and activity of WBP2 oncoprotein has implication in cancer therapy. We have previously reported that WBP2 is regulated at the post-translational and post-transcriptional levels. However, its regulation at the transcriptional level is not known. In this study, the minimal promoter region of WBP2 that is critical for its transcription was identified. The E-box motif in the WBP2 promoter was demonstrated to be essential for its transcription. The E-box binding protein upstream stimulatory factor 1 (USF-1) was discovered to be a key transcription factor for WBP2 by yeast one-hybrid analysis and was validated through reporter and chromatin immunoprecipitation assays and tandem mass spectrometry, which also suggested that USF-1 acts by regulating a network of genes, in addition to WBP2, associated with cell movement, proliferation, cell-cycle, and survival cellular processes. USF-1 is overexpressed in majority of the breast cancer cell lines and tissues tested, and has profound effects on cancer cell proliferation. USF-1-mediated transcription of WBP2 was demonstrated to be inducible by insulin, which led to AKT-mediated phosphorylation of USF-1 that modulated its ability to bind to the WBP2 promoter and activate its transcription. This study sheds new light onto the regulation of the WBP2 oncogene at the transcriptional level by a novel oncogenic transcription factor, USF-1. USF-1 is a potential drug target for treatment of WBP2-positive breast cancer.-Ramos, A., Miow, Q. H., Liang, X., Lin, Q. S., Putti, T. C., Lim, Y. P. Phosphorylation of E-box binding USF-1 by PI3K/AKT enhances its transcriptional activation of the WBP2 oncogene in breast cancer cells.
Collapse
Affiliation(s)
- Alisha Ramos
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qing Hao Miow
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xu Liang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qing Song Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Cancer Institute, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
49
|
Wiedemann B, Weisner J, Rauh D. Chemical modulation of transcription factors. MEDCHEMCOMM 2018; 9:1249-1272. [PMID: 30151079 PMCID: PMC6097187 DOI: 10.1039/c8md00273h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription factors (TFs) constitute a diverse class of sequence-specific DNA-binding proteins, which are key to the modulation of gene expression. TFs have been associated with human diseases, including cancer, Alzheimer's and other neurodegenerative diseases, which makes this class of proteins attractive targets for chemical biology and medicinal chemistry research. Since TFs lack a common binding site or structural similarity, the development of small molecules to efficiently modulate TF biology in cells and in vivo is a challenging task. This review highlights various strategies that are currently being explored for the identification and development of modulators of Myc, p53, Stat, Nrf2, CREB, ER, AR, HIF, NF-κB, and BET proteins.
Collapse
Affiliation(s)
- Bianca Wiedemann
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| | - Jörn Weisner
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| | - Daniel Rauh
- Technische Universität Dortmund , Fakultät für Chemie und Chemische Biologie , Otto-Hahn-Strasse 4a , D-44227 Dortmund , Germany . ; ; Tel: +49 (0)231 755 7080
| |
Collapse
|
50
|
Portugal J. Challenging transcription by DNA-binding antitumor drugs. Biochem Pharmacol 2018; 155:336-345. [PMID: 30040927 DOI: 10.1016/j.bcp.2018.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Cancer has been associated with altered gene expression. Therefore, transcription and its regulation by transcription factors are considered key points to be explored in the pursuit of more efficient antitumor agents. This paper reviews the effects of DNA-binding drugs on the interaction between transcription factors and DNA, and it discusses recent advances in the understanding of the mechanisms by which small compounds interfere with the activity of transcription factors and gene expression. Many DNA-binding drugs, some of them in clinical use, can compete with a variety of transcription factors for their preferred binding sites in gene promoters, or they can covalently modify DNA, thus preventing transcription factors from recognizing their binding sites. On the other hand, transcription factor activity can be impaired through modification of the protein factors or their complexes. Several "omic" tools have been developed to explore the genome-wide changes in gene expression induced by DNA-binding drugs, which reveal details of the mechanisms of action. Transcriptomic profiles obtained from drug-treated cells and of samples collected from patients upon treatment provide insights into the in vivo mechanisms of drug action related to the inhibition of gene transcription. The information available about the molecular structure and mechanisms of action of both transcription factors and DNA-binding drugs, together with the new opportunities provided by functional genomics, should encourage the development of new more-selective DNA-binding antitumor drugs to target a single gene with little effect on others.
Collapse
Affiliation(s)
- José Portugal
- Instituto de Diagnóstico Ambiental y Estudios del Agua, CSIC, E-08034 Barcelona, Spain.
| |
Collapse
|