1
|
Yang Y, Bai D, Jiang L, Chen Y, Wang M, Wang W, Wang H, He Q, Bu G, Long J, Yuan D. Stilbene glycosides alleviate atherosclerosis partly by promoting lipophagy of dendritic cells. Int Immunopharmacol 2024; 143:113223. [PMID: 39357204 DOI: 10.1016/j.intimp.2024.113223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from lipid metabolism disorders and immune imbalances. Dendritic cells (DCs) are key cells that regulate adaptive and adaptive immunity. When DCs engulf excessive amounts lipids, their function is altered, thereby, accelerating the inflammatory process of AS. Cellular lipophagy serves to reduce lipid accumulation and maintain cellular lipid metabolism balance. In this study, we investigated the effectiveness of 2,3,5,4'-tetrahydroxystilbene 2-O-β-D-glucoside (TSG) in intervening in the promotion of DCs lipid accumulation by ox-LDL, as well as its role in downregulating lipophagy. Our findings indicate that TSG reduces the maturity of DCs and promotes the differentiation of T cells towards Treg, thereby correcting the imbalanced Treg/Th17. These effects of TSG are closely associated with its inhibition of the PI3K-AKT-mTOR signaling pathway. After administering TSG to ApoE-/- mice that were fed a high-fat diet, there was a noticeable decrease in harmful blood lipids found in the serum. Additionally, the imbalanced Treg/Th17 levels in the spleen were restored, and the levels of pro-inflammatory factor IL-6 and IL-17A in the serum decreased, while the level of anti-inflammatory factor IL-10 increased. Furthermore, the arterial DCs showed a decrease in P62 content. Ultimately, these changes resulted in a reduction in plaque area. It is worth noting that the autophagy inhibitor chloroquine significantly altered the effects of TSG on ApoE-/- mice. In conclusion, this study reveals that TSG can alleviate AS. This is partly achieved through the activation of autophagy in DCs. By intervening in the lipophagy of DCs, it is possible to regulate the immune function of these cells, which in turn helps control the inflammation associated with AS. This presents a potential method for intervening in AS.
Collapse
Affiliation(s)
- Yunjun Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Dandan Bai
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Linhong Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Yanran Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Mengyuan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Wenxin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Haixia Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Qiongshan He
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Guirong Bu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China; Department of Pharmacy, Wuxi Huishan Traditional Chinese Medicine Hospital, Huijing Road 188, Wuxi 214100, Jiangsu, PR China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
2
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
3
|
Liu L, Hu J, Lei H, Qin H, Wang C, Gui Y, Xu D. Regulatory T Cells in Pathological Cardiac Hypertrophy: Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2024; 38:999-1015. [PMID: 37184744 DOI: 10.1007/s10557-023-07463-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathological cardiac hypertrophy is linked to immune-inflammatory injury, and regulatory T cells (Tregs) play a crucial role in suppressing immune-inflammatory responses. However, the precise role of Tregs in pathological cardiac hypertrophy remains unclear. OBJECTIVE To summarize the current knowledge on the role and mechanisms of Tregs in pathological cardiac hypertrophy and explore their perspectives and challenges as a new therapeutic approach. RESULTS Treg cells may play an important protective role in pressure overload (hypertension, aortic stenosis), myocardial infarction, metabolic disorders (diabetes, obesity), acute myocarditis, cardiomyopathy (hypertrophic cardiomyopathy, storage diseases), and chronic obstructive pulmonary disease-related pathological cardiac hypertrophy. Although some challenges remain, the safety and efficacy of Treg-based therapies have been confirmed in some clinical trials, and engineered antigen-specific Treg cells may have better clinical application prospects due to stronger immunosuppressive function and stability. CONCLUSION Targeting the immune-inflammatory response via Treg-based therapies might provide a promising and novel future approach to the prevention and treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hao Lei
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Huali Qin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunfang Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajun Gui
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Yan Q, Liu S, Sun Y, Chen C, Yang Y, Yang S, Lin M, Long J, Lin Y, Liang J, Ai Q, Chen N. CC chemokines Modulate Immune responses in Pulmonary Hypertension. J Adv Res 2024; 63:171-186. [PMID: 37926143 PMCID: PMC11380027 DOI: 10.1016/j.jare.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) represents a progressive condition characterized by the remodeling of pulmonary arteries, ultimately culminating in right heart failure and increased mortality rates. Substantial evidence has elucidated the pivotal role of perivascular inflammatory factors and immune dysregulation in the pathogenesis of PH. Chemokines, a class of small secreted proteins, exert precise control over immune cell recruitment and functionality, particularly with respect to their migration to sites of inflammation. Consequently, chemokines emerge as critical drivers facilitating immune cell infiltration into the pulmonary tissue during inflammatory responses. This review comprehensively examines the significant contributions of CC chemokines in the maintenance of immune cell homeostasis and their pivotal role in regulating inflammatory responses. The central focus of this discussion is directed towards elucidating the precise immunoregulatory actions of CC chemokines concerning various immune cell types, including neutrophils, monocytes, macrophages, lymphocytes, dendritic cells, mast cells, eosinophils, and basophils, particularly in the context of pH processes. Furthermore, this paper delves into an exploration of the underlying pathogenic mechanisms that underpin the development of PH. Specifically, it investigates processes such as cellular pyroptosis, examines the intricate crosstalk between bone morphogenetic protein receptor type 2 (BMPR2) mutations and the immune response, and sheds light on key signaling pathways involved in the inflammatory response. These aspects are deemed critical in enhancing our understanding of the complex pathophysiology of PH. Moreover, this review provides a comprehensive synthesis of findings from experimental investigations targeting immune cells and CC chemokines. AIM OF REVIEW In summary, the inquiry into the inflammatory responses mediated by CC chemokines and their corresponding receptors, and their potential in modulating immune reactions, holds promise as a prospective avenue for addressing PH. The potential inhibition of CC chemokines and their receptors stands as a viable strategy to attenuate the inflammatory cascade and ameliorate the pathological manifestations of PH. Nonetheless, it is essential to acknowledge the current state of clinical trials and the ensuing progress, which regrettably appears to be less than encouraging. Substantial hurdles exist in the successful translation of research findings into clinical applications. The intention is that such emphasis could potentially foster the advancement of potent therapeutic agents presently in the process of clinical evaluation. This, in turn, may further bolster the potential for effective management of PH.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Zhang K, Li Y, Ge X, Meng L, Kong J, Meng X. Regulatory T cells protect against diabetic cardiomyopathy in db/db mice. J Diabetes Investig 2024; 15:1191-1201. [PMID: 38943657 PMCID: PMC11363098 DOI: 10.1111/jdi.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/01/2024] Open
Abstract
AIMS/INTRODUCTION Regulatory T cells (Tregs) have protected against many cardiovascular diseases. This study was intended to explore the effect of Tregs on diabetic cardiomyopathy (DCM) using a db/db mouse model. MATERIALS AND METHODS Eight-week-old male db/db mice were randomly divided into four groups: the control group, administered 200 μL phosphate-buffered saline; the small-dose Treg group, administered 105 Tregs; the large-dose Treg group, administered 106 Tregs; and the PC group, administered 100 μg anti-CD25 specific antibody (PC61) and 106 Tregs. After 12 weeks, mice were euthanized. Transthoracic echocardiography was carried out at the beginning and end of the experiment. Relevant basic experiments to evaluate the effects of Tregs on DCM were carried out. RESULTS Echocardiography showed that the impaired diastolic and systolic functions were significantly improved in mice administered large-dose Tregs. Large-dose Tregs significantly ameliorated myocardial hypertrophy and fibrosis, and decreased hypertrophic gene expression and collagen deposition. The protective effects of Tregs on diabetic hearts were associated with decreased oxidative stress, inflammatory response and apoptosis. In addition, Tregs promoted the activation of the phosphatidylinositol 3-kinase-protein kinase B signaling pathway, whereas they inhibited extracellular signal-regulated kinase 1/2 and Jun N-terminal kinase phosphorylation, which might be responsible for the cardioprotective role of Tregs against DCM. CONCLUSIONS Tregs ameliorated myocardial hypertrophy and fibrosis, improved cardiac dysfunction, and protected against DCM progression in db/db mice. The mechanisms involved a decrease of inflammatory response, oxidative stress and apoptosis, which might be mediated by phosphatidylinositol 3-kinase-protein kinase B and mitogen-activated protein kinase pathways. Hence, Tregs might serve as a promising therapeutic approach for DCM treatment.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunyi Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Ge
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Ministry of Education of China, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
6
|
Cao W, Wang K, Wang J, Chen Y, Gong H, Xiao L, Pan W. Causal relationship between immune cells and risk of myocardial infarction: evidence from a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416112. [PMID: 39257847 PMCID: PMC11384581 DOI: 10.3389/fcvm.2024.1416112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hanxian Gong
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Lei Xiao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
7
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Jiang H, Sun X, Wu Y, Xu J, Xiao C, Liu Q, Fang L, Liang Y, Zhou J, Wu Y, Lin Z. Contribution of Tregs to the promotion of constructive remodeling after decellularized extracellular matrix material implantation. Mater Today Bio 2024; 27:101151. [PMID: 39104900 PMCID: PMC11298607 DOI: 10.1016/j.mtbio.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.
Collapse
Affiliation(s)
- Hongjing Jiang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Xuheng Sun
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yindi Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Qing Liu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Lijun Fang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yuanfeng Liang
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510006, Guangzhou, Guangdong, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| |
Collapse
|
9
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Jaatinen K, Shah P, Mazhari R, Hayden Z, Wargowsky R, Jepson T, Toma I, Perkins J, McCaffrey TA. RNAseq of INOCA patients identifies innate, invariant, and acquired immune changes: potential autoimmune microvascular dysfunction. Front Cardiovasc Med 2024; 11:1385457. [PMID: 38978787 PMCID: PMC11228317 DOI: 10.3389/fcvm.2024.1385457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Background Ischemia with non-obstructive coronary arteries (INOCA) is a major clinical entity that involves potentially 20%-30% of patients with chest pain. INOCA is typically attributed either to coronary microvascular disease and/or vasospasm, but is likely distinct from classical coronary artery disease (CAD). Objectives To gain insights into the etiology of INOCA and CAD, RNA sequencing of whole blood from patients undergoing both stress testing and elective invasive coronary angiography (ICA) was conducted. Methods Stress testing and ICA of 177 patients identified 40 patients (23%) with INOCA compared to 39 controls (stress-, ICA-). ICA+ patients divided into 38 stress- and 60 stress+. RNAseq was performed by Illumina with ribosomal RNA depletion. Transcriptome changes were analyzed by DeSeq2 and curated by manual and automated methods. Results Differentially expressed genes for INOCA were associated with elevated levels of transcripts related to mucosal-associated invariant T (MAIT) cells, plasmacytoid dendritic cells (pcDC), and memory B cells, and were associated with autoimmune diseases such as rheumatoid arthritis. Decreased transcripts were associated with neutrophils, but neutrophil transcripts, per se, were not less abundant in INOCA. CAD transcripts were more related to T cell functions. Conclusions Elevated transcripts related to pcDC, MAIT, and memory B cells suggest an autoimmune component to INOCA. Reduced neutrophil transcripts are likely attributed to chronic activation leading to increased translation and degradation. Thus, INOCA could result from stimulation of B cell, pcDC, invariant T cell, and neutrophil activation that compromises cardiac microvascular function.
Collapse
Affiliation(s)
- Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Palak Shah
- INOVA Heart and Vascular Institute, Fairfax, VA, United States
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, Washington, DC, United States
| | - Zane Hayden
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- The St. Laurent Institute, Woburn, MA, United States
- True Bearing Diagnostics, Washington, DC, United States
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- Department of Clinical Research and Leadership, The George Washington University, Washington, DC, United States
| | - John Perkins
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- True Bearing Diagnostics, Washington, DC, United States
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
12
|
Li C, Zhang L, Zhang L, Zhang G. Correlation between elevated HCLS1 levels and heart failure: A diagnostic biomarker. Medicine (Baltimore) 2024; 103:e38484. [PMID: 38847679 PMCID: PMC11155546 DOI: 10.1097/md.0000000000038484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024] Open
Abstract
The correlation between hematopoietic cell-specific lyn substrate 1 (HCLS1) expression levels and heart failure (HF) remains unclear. HF datasets GSE192886 and GSE196656 profiles were generated from GPL24676 and GPL20301 platforms in gene expression omnibus (GEO) database and differentially expressed genes (DEGs) were obtained, which was followed by weighted gene co-expression network analysis, protein-protein interaction (PPI) networks, functional enrichment analysis and comparative toxicogenomics database (CTD) analysis. Heatmaps of gene expression levels were plotted. TargetScan was used to screen miRNAs regulating central DEGs. A total of 500 DEGs were found and mainly concentrated in leukocyte activation, protein phosphorylation, and protein complexes involved in cell adhesion, PI3K Akt signaling pathway, Notch signaling pathway, and right ventricular cardiomyopathy. PPI network identified 15 core genes (HCLS1, FERMT3, CD53, CD34, ITGAL, EP300, LYN, VAV1, ITGAX, LEP, ITGB1, IGF1, MMP9, SMAD2, RAC2). Heatmap shows that 4 genes (EP300, CD53, HCLS1, LYN) are highly expressed in HF tissue samples. We found that 4 genes (EP300, CD53, HCLS1, LYN) were associated with heart diseases, cardiovascular diseases, edema, rheumatoid arthritis, necrosis, and inflammation. HCLS1 is highly expressed in HF and maybe its target.
Collapse
Affiliation(s)
- Chunguang Li
- Clinical Lab Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Blood Transfusion Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Long Zhang
- Geriatric Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Guang Zhang
- Clinical Lab Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Chen S, Li Z, Li H, Zeng X, Yuan H, Li Y. RNA Sequencing of Whole Blood in Premature Coronary Artery Disease: Identification of Novel Biomarkers and Involvement of T Cell Imbalance. J Cardiovasc Transl Res 2024; 17:638-647. [PMID: 38038868 DOI: 10.1007/s12265-023-10465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Serum biomarkers were explored based on the peripheral blood gene expression profiles of premature coronary artery disease (PCAD). RNA sequencing (RNA-Seq) was used to detect PCAD-specific differentially expressed genes (DEGs). Quantitative real-time polymerase chain reaction (RT-PCR) was used to validate the most significant DEGs, and enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the effect on corresponding serum proteins. Fifty-nine PCAD-specific DEGs were identified. Functional analysis showed positive regulation of T cell-mediated cytotoxicity, regulation of T cell-mediated immunity, and the regulation of alpha-beta T cell proliferation which were enriched in PCAD. RT-PCR validated the significant difference in the expression of BAG6, MUC5B, and APOA2 between PCAD and late-onset coronary artery disease (LCAD) patients. ELISA validation showed serum MUC5B increased dramatically in PCAD when compared to LCAD. Our study found T cells contribute to the occurrence of PCAD, and the inflammatory factor MUC5B may be a novel serum marker in PCAD patients.
Collapse
Affiliation(s)
- Si Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoli Zeng
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
15
|
Park JE, Kim DH. Advanced Immunomodulatory Biomaterials for Therapeutic Applications. Adv Healthc Mater 2024:e2304496. [PMID: 38716543 DOI: 10.1002/adhm.202304496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted biological defense system modulating complex immune responses against pathogens and foreign materials plays a critical role in tissue homeostasis and disease progression. Recently developed biomaterials that can specifically regulate immune responses, nanoparticles, graphene, and functional hydrogels have contributed to the advancement of tissue engineering as well as disease treatment. The interaction between innate and adaptive immunity, collectively determining immune responses, can be regulated by mechanobiological recognition and adaptation of immune cells to the extracellular microenvironment. Therefore, applying immunomodulation to tissue regeneration and cancer therapy involves manipulating the properties of biomaterials by tailoring their composition in the context of the immune system. This review provides a comprehensive overview of how the physicochemical attributes of biomaterials determine immune responses, focusing on the physical properties that influence innate and adaptive immunity. This review also underscores the critical aspect of biomaterial-based immune engineering for the development of novel therapeutics and emphasizes the importance of understanding the biomaterials-mediated immunological mechanisms and their role in modulating the immune system.
Collapse
Affiliation(s)
- Ji-Eun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
- Biomedical Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
16
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
17
|
Liu YJ, Li R, Xiao D, Yang C, Li YL, Chen JL, Wang Z, Zhao XG, Shan ZG. Incorporating machine learning and PPI networks to identify mitochondrial fission-related immune markers in abdominal aortic aneurysms. Heliyon 2024; 10:e27989. [PMID: 38590878 PMCID: PMC10999885 DOI: 10.1016/j.heliyon.2024.e27989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose The aim of this study is to investigate abdominal aortic aneurysm (AAA), a disease characterised by inflammation and progressive vasodilatation, for novel gene-targeted therapeutic loci. Methods To do this, we used weighted co-expression network analysis (WGCNA) and differential gene analysis on samples from the GEO database. Additionally, we carried out enrichment analysis and determined that the blue module was of interest. Additionally, we performed an investigation of immune infiltration and discovered genes linked to immune evasion and mitochondrial fission. In order to screen for feature genes, we used two PPI network gene selection methods and five machine learning methods. This allowed us to identify the most featrue genes (MFGs). The expression of the MFGs in various cell subgroups was then evaluated by analysis of single cell samples from AAA. Additionally, we looked at the expression levels of the MFGs as well as the levels of inflammatory immune-related markers in cellular and animal models of AAA. Finally, we predicted potential drugs that could be targeted for the treatment of AAA. Results Our research identified 1249 up-regulated differential genes and 3653 down-regulated differential genes. Through WGCNA, we also discovered 44 genes in the blue module. By taking the point where several strategies for gene selection overlap, the MFG (ITGAL and SELL) was produced. We discovered through single cell research that the MFG were specifically expressed in T regulatory cells, NK cells, B lineage, and lymphocytes. In both animal and cellular models of AAA, the MFGs' mRNA levels rose. Conclusion We searched for the AAA novel targeted gene (ITGAL and SELL), which most likely function through lymphocytes of the B lineage, NK cells, T regulatory cells, and B lineage. This analysis gave AAA a brand-new goal to treat or prevent the disease.
Collapse
Affiliation(s)
- Yi-jiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Rui Li
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Di Xiao
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Cui Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Yan-lin Li
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Jia-lin Chen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
| | - Zhan Wang
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Xin-guo Zhao
- Yinan County People's Hospital, Linyi, 276300, China
| | - Zhong-gui Shan
- The First Affiliated Hospital of Xiamen University, School of Medicine Xiamen University, NO.55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| |
Collapse
|
18
|
Zhang YS, Chen YQ. Dysfunctional regulatory T cell: May be an obstacle to immunotherapy in cardiovascular diseases. Biomed Pharmacother 2024; 173:116359. [PMID: 38430633 DOI: 10.1016/j.biopha.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammatory responses are linked to cardiovascular diseases (CVDs) in various forms. Tregs, members of CD4+ T cells, play important roles in regulating immune system and suppressing inflammatory response, thus contributing to maintaining immune homeostasis. However, Tregs exert their powerful suppressive function relying on the stable phenotype and function. The stability of Tregs primarily depends on the FOXP3 (Forkhead box P3) expression and epigenetic regulation. Although Tregs are quite stable under physiological conditions, prolonged exposure to inflammatory cues, Tregs may lose suppressive function and require proinflammatory phenotype, namely plastic Tregs or ex-Tregs. There are extensive researches have established the beneficial role of Tregs in CVDs. Nevertheless, the potential risks of dysfunctional Tregs lack deep research. Anti-inflammatory and immunological modulation have been hotspots in the treatment of CVDs. Tregs are appealing because of their crucial role in resolving inflammation and promoting tissue repair. If alleviating inflammatory response through modulating Tregs could be a new therapeutic strategy for CVDs, the next step to consider is how to prevent the formation of dysfunctional Tregs or reverse detrimental Tregs to normal phenotype.
Collapse
Affiliation(s)
- Yu-Sha Zhang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Ya-Qin Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
19
|
Jin C, Li X, Luo Y, Zhang C, Zuo D. Associations between pan-immune-inflammation value and abdominal aortic calcification: a cross-sectional study. Front Immunol 2024; 15:1370516. [PMID: 38605946 PMCID: PMC11007162 DOI: 10.3389/fimmu.2024.1370516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Abdominal aortic calcification (AAC) pathogenesis is intricately linked with inflammation. The pan-immune-inflammation value (PIV) emerges as a potential biomarker, offering reflection into systemic inflammatory states and assisting in the prognosis of diverse diseases. This research aimed to explore the association between PIV and AAC. Methods Employing data from the National Health and Nutrition Examination Survey (NHANES), this cross-sectional analysis harnessed weighted multivariable regression models to ascertain the relationship between PIV and AAC. Trend tests probed the evolving relationship among PIV quartiles and AAC. The study also incorporated subgroup analysis and interaction tests to determine associations within specific subpopulations. Additionally, the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression were used for characteristics selection to construct prediction model. Nomograms were used for visualization. The receiver operator characteristic (ROC) curve, calibration plot and decision curve analysis were applied for evaluate the predictive performance. Results From the cohort of 3,047 participants, a distinct positive correlation was observed between PIV and AAC. Subsequent to full adjustments, a 100-unit increment in PIV linked to an elevation of 0.055 points in the AAC score (β=0.055, 95% CI: 0.014-0.095). Categorizing PIV into quartiles revealed an ascending trend: as PIV quartiles increased, AAC scores surged (β values in Quartile 2, Quartile 3, and Quartile 4: 0.122, 0.437, and 0.658 respectively; P for trend <0.001). Concurrently, a marked rise in SAAC prevalence was noted (OR values for Quartile 2, Quartile 3, and Quartile 4: 1.635, 1.842, and 2.572 respectively; P for trend <0.01). Individuals aged 60 or above and those with a history of diabetes exhibited a heightened association. After characteristic selection, models for predicting AAC and SAAC were constructed respectively. The AUC of AAC model was 0.74 (95%CI=0.71-0.77) and the AUC of SAAC model was 0.84 (95%CI=0.80-0.87). According to the results of calibration plots and DCA, two models showed high accuracy and clinical benefit. Conclusion The research findings illuminate the potential correlation between elevated PIV and AAC presence. Our models indicate the potential utility of PIV combined with other simple predictors in the assessment and management of individuals with AAC.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xunjia Li
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Zuo
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, China
- Department of Rehabilitation Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
20
|
Zhang Y, Zhang Z, Li H, Chu C, Liang G, Fan N, Wei R, Zhang T, Li L, Wang B, Li X. Increased miR-6132 promotes deep vein thrombosis formation by downregulating FOXP3 expression. Front Cardiovasc Med 2024; 11:1356286. [PMID: 38572308 PMCID: PMC10987872 DOI: 10.3389/fcvm.2024.1356286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Background Deep vein thrombosis (DVT) is associated with aberrant gene expression that is a common peripheral vascular disease. Here, we aimed to elucidate that the epigenetic modification of forkhead box protein 3 (FOXP3) at the post-transcriptional level, which might be the key trigger leading to the down-regulation of FOXP3 expression in DVT. Methods In order to explore the relationship between microRNAs (miRNAs) and FOXP3, mRNA and microRNA microarray analysis were performed. Dual luciferase reporter assay was used to verify the upstream miRNAs of FOXP3. Quantitative real-time polymerase chain reaction, flow cytometry and Western blot were used to detect the relative expression of miR-6132 and FOXP3. Additionally, DVT models were established to investigate the role of miR-6132 by Murine Doppler Ultrasound and Hematoxylin-Eosin staining. Results Microarray and flow cytometry results showed that the FOXP3 expression was decreased while miR-6132 level was increased substantially in DVT, and there was significant negative correlation between miR-6132 and FOXP3. Moreover, we discovered that overexpressed miR-6132 reduced FOXP3 expression and aggravated DVT formation, while miR-6132 knockdown increased FOXP3 expression and alleviated DVT formation. Dual luciferase reporter assay validated the direct binding of miR-6132 to FOXP3. Conclusion Collectively, our data elucidate a new avenue through which up-regulated miR-6132 contributes to the formation and progression of DVT by inhibiting FOXP3 expression.
Collapse
Affiliation(s)
- Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Haoyang Li
- International Business School, Tianjin Foreign Studies University, Tianjin, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Gang Liang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Nannan Fan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ran Wei
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Tingting Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Lihua Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
21
|
Xia Y, Gao D, Wang X, Liu B, Shan X, Sun Y, Ma D. Role of Treg cell subsets in cardiovascular disease pathogenesis and potential therapeutic targets. Front Immunol 2024; 15:1331609. [PMID: 38558816 PMCID: PMC10978666 DOI: 10.3389/fimmu.2024.1331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunpeng Sun
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dashi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
23
|
Miyauchi H, Geisberger S, Luft FC, Wilck N, Stegbauer J, Wiig H, Dechend R, Jantsch J, Kleinewietfeld M, Kempa S, Müller DN. Sodium as an Important Regulator of Immunometabolism. Hypertension 2024; 81:426-435. [PMID: 37675565 PMCID: PMC10863658 DOI: 10.1161/hypertensionaha.123.19489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity should be expanded beyond high blood pressure to cellular and molecular salt sensitivity.
Collapse
Affiliation(s)
- Hidetaka Miyauchi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| | - Sabrina Geisberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
| | - Friedrich C. Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
| | - Nicola Wilck
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| | - Johannes Stegbauer
- Department of Nephrology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany (J.S.)
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital, Düsseldorf, Germany (J.S.)
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Norway (H.W.)
| | - Ralf Dechend
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
- HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, Germany (R.D.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Germany (J.J.)
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne, University Hospital Cologne and Faculty of Medicine, University of Cologne, Germany (J.J.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium (M.K.)
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium (M.K.)
- University Multiple Sclerosis Center, Hasselt University/Campus Diepenbeek, Belgium (M.K.)
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
| | - Dominik N. Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (H.M., S.G., F.C.L., N.W., R.D., S.K., D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- Experimental and Clinical Research Center, a joint cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (H.M., F.C.L., N.W., R.D., D.N.M.)
- German Centre for Cardiovascular Research, Partner Site Berlin, Germany (H.M., N.W., R.D., D.N.M.)
| |
Collapse
|
24
|
Zhang H, Kang K, Chen S, Su Q, Zhang W, Zeng L, Lin X, Peng F, Lin J, Chai D. High serum lactate dehydrogenase as a predictor of cardiac insufficiency at follow-up in elderly patients with acute myocardial infarction. Arch Gerontol Geriatr 2024; 117:105253. [PMID: 37956585 DOI: 10.1016/j.archger.2023.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Impairment of cardiac function progresses after acute myocardial infarction (AMI). Lactate dehydrogenase (LDH), a marker of cardiac injury and an enzyme in anaerobic glycolysis, is suggested as a risk factor for patient mortality in inflammatory diseases. METHODS In this study, 448 older and 445 younger AMI patients were recruited and followed up. The effect of baseline serum LDH on post-infarction cardiac function was assessed at follow-up. RESULTS Elderly patients in the high baseline LDH group had a high risk of being diagnosed with cardiac insufficiency during follow-up (adjusted hazard ratio: 3.643, P = 0.007), and the follow-up left ventricular ejection fraction of the quartile subgroup tended to decrease with increasing in baseline serum LDH (adjusted odds ratio: 1.301, P = 0.001) for each 100 U/L increase. The LVDd and LVVd of elderly patients in the high LDH group were not significantly different from those of patients in the normal LDH group at baseline but were further increased in the high LDH group at follow-up. In younger patients, the effect of LDH on post-infarction cardiac structure and function was similar to that in older patients, but unlike older patients, Cox regression analysis showed that LDH was not the predominant influence. CONCLUSION Longitudinal changes in cardiac function were independently associated with high baseline serum LDH levels in patients with AMI. Baseline LDH levels are superior to other myocardial injury markers and may be a useful parameter in predicting future cardiac dysfunction after AMI, especially in the elderly.
Collapse
Affiliation(s)
- Hailin Zhang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Kai Kang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Shuaijie Chen
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Qiong Su
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Weijie Zhang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Lishan Zeng
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Xiaoyan Lin
- Echocardiological Department, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Feng Peng
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Jinxiu Lin
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China
| | - Dajun Chai
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, 20 Chazhong Road, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
25
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Li Y, Yao G, Wang R, Zhu J, Li H, Yang D, Ma S, Fu Y, Liu C, Guan S. Maternal immune activation mediated prenatal chronic stress induces Th17/Treg cell imbalance may relate to the PI3K/Akt/NF-κB signaling pathway in offspring rats. Int Immunopharmacol 2024; 126:111308. [PMID: 38061121 DOI: 10.1016/j.intimp.2023.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
Maternal immune activation (MIA), defined as elevated levels of inflammatory markers beyond the normal range, can occur due to psychological stress, infection, and other disruptions during pregnancy. MIA affects the immune system development in offspring and increases the risk of immune-related disorders. Limited studies have investigated the effects of prenatal stress on offspring's immune system. In this study, pregnant rats were exposed to chronic unpredictable mild stress (CUMS) during pregnancy, involving seven different stressors. We examined the impact of prenatal stress stimuli on the offspring's immune system and observed activation of the PI3K/Akt/NF-κB signaling pathway, resulting in an imbalance of Th17/Treg cells in the offspring's spleen. Our findings revealed increased plasma levels of corticosterone, IL-1β, and IL-6 in female rats exposed to prenatal stress, as well as elevated serum levels of IL-6 and TNF-α in the offspring. Furthermore, we identified a correlation between cytokine levels in female rats and their offspring. Transcriptome sequencing and qPCR experiments indicated differentially expressed mRNAs in offspring exposed to prenatal stress, which may contribute to the imbalance of Th17/Treg cells through the activation of the Gng3-related PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Ye Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Guixiang Yao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Jiashu Zhu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Hongyu Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Deguang Yang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Shuqin Ma
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Youjuan Fu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Can Liu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China.
| |
Collapse
|
27
|
He Y, Zou P, Lu J, Lu Y, Yuan S, Zheng X, Liu J, Zeng C, Liu L, Tang L, Fang Z, Hu X, Liu Q, Zhou S. CD4+ T-Cell Legumain Deficiency Attenuates Hypertensive Damage via Preservation of TRAF6. Circ Res 2024; 134:9-29. [PMID: 38047378 DOI: 10.1161/circresaha.123.322835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND T cells are central to the immune responses contributing to hypertension. LGMN (legumain) is highly expressed in T cells; however, its role in the pathogenesis of hypertension remains unclear. METHODS Peripheral blood samples were collected from patients with hypertension, and cluster of differentiation (CD)4+ T cells were sorted for gene expression and Western blotting analysis. TLGMNKO (T cell-specific LGMN-knockout) mice (Lgmnf/f/CD4Cre), regulatory T cell (Treg)-specific LGMN-knockout mice (Lgmnf/f/Foxp3YFP Cre), and RR-11a (LGMN inhibitor)-treated C57BL/6 mice were infused with Ang II (angiotensin II) or deoxycorticosterone acetate/salt to establish hypertensive animal models. Flow cytometry, 4-dimensional label-free proteomics, coimmunoprecipitation, Treg suppression, and in vivo Treg depletion or adoptive transfer were used to delineate the functional importance of T-cell LGMN in hypertension development. RESULTS LGMN mRNA expression was increased in CD4+ T cells isolated from hypertensive patients and mice, was positively correlated with both systolic and diastolic blood pressure, and was negatively correlated with serum IL (interleukin)-10 levels. TLGMNKO mice exhibited reduced Ang II-induced or deoxycorticosterone acetate/salt-induced hypertension and target organ damage relative to wild-type (WT) mice. Genetic and pharmacological inhibition of LGMN blocked Ang II-induced or deoxycorticosterone acetate/salt-induced immunoinhibitory Treg reduction in the kidneys and blood. Anti-CD25 antibody depletion of Tregs abolished the protective effects against Ang II-induced hypertension in TLGMNKO mice, and LGMN deletion in Tregs prevented Ang II-induced hypertension in mice. Mechanistically, endogenous LGMN impaired Treg differentiation and function by directly interacting with and facilitating the degradation of TRAF6 (tumor necrosis factor receptor-associated factor 6) via chaperone-mediated autophagy, thereby inhibiting NF-κB (nuclear factor kappa B) activation. Adoptive transfer of LGMN-deficient Tregs reversed Ang II-induced hypertension, whereas depletion of TRAF6 in LGMN-deficient Tregs blocked the protective effects. CONCLUSIONS LGMN deficiency in T cells prevents hypertension and its complications by promoting Treg differentiation and function. Specifically targeting LGMN in Tregs may be an innovative approach for hypertension treatment.
Collapse
Affiliation(s)
- Yuhu He
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pu Zou
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junmi Lu
- Pathology (J. Lu), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yufei Lu
- Division of Physical Therapy Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha (Y.L.)
| | - Shuguang Yuan
- Nephrology (S.Y.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xialei Zheng
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cheng Zeng
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liang Tang
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinqun Hu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Departments of Cardiology (Y.H., P.Z., X.Z., J. Liu, C.Z., L.L., L.T., Z.F., X.H., Q.L., S.Z.), The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Alexander MR, Harrison DG. Legumain Regulates Regulatory T Cells in Hypertension. Circ Res 2024; 134:30-32. [PMID: 38175912 PMCID: PMC10768802 DOI: 10.1161/circresaha.123.324010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Matthew R. Alexander
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| | - David G. Harrison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| |
Collapse
|
29
|
Teng Z, Ma Y, Ma X. Letter by Teng et al Regarding Article, "Association of HIV Infection and Incident Abdominal Aortic Aneurysm Among 143 001 Veterans". Circulation 2024; 149:73-74. [PMID: 38153993 DOI: 10.1161/circulationaha.123.066215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Affiliation(s)
- Zhenqing Teng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China (Z.T., Y.M., X.M.)
- The State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, People's Republic of China (Z.T., Y.M., X.M.)
| | - Yitong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China (Z.T., Y.M., X.M.)
- The State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, People's Republic of China (Z.T., Y.M., X.M.)
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China (Z.T., Y.M., X.M.)
- The State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, People's Republic of China (Z.T., Y.M., X.M.)
| |
Collapse
|
30
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
31
|
Liu X, Chen B, Chen J, Wang X, Dai X, Li Y, Zhou H, Wu LM, Liu Z, Yang Y. A Cardiac-Targeted Nanozyme Interrupts the Inflammation-Free Radical Cycle in Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308477. [PMID: 37985164 DOI: 10.1002/adma.202308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Severe systemic inflammation following myocardial infarction (MI) is a major cause of patient mortality. MI-induced inflammation can trigger the production of free radicals, which in turn ultimately leads to increased inflammation in cardiac lesions (i.e., inflammation-free radicals cycle), resulting in heart failure and patient death. However, currently available anti-inflammatory drugs have limited efficacy due to their weak anti-inflammatory effect and poor accumulation at the cardiac site. Herein, a novel Fe-Cur@TA nanozyme is developed for targeted therapy of MI, which is generated by coordinating Fe3+ and anti-inflammatory drug curcumin (Cur) with further modification of tannic acid (TA). Such Fe-Cur@TA nanozyme exhibits excellent free radicals scavenging and anti-inflammatory properties by reducing immune cell infiltration, promoting macrophage polarization toward the M2-like phenotype, suppressing inflammatory cytokine secretion, and blocking the inflammatory free radicals cycle. Furthermore, due to the high affinity of TA for cardiac tissue, Fe-Cur@TA shows an almost tenfold greater in cardiac retention and uptake than Fe-Cur. In mouse and preclinical beagle dog MI models, Fe-Cur@TA nanozyme preserves cardiac function and reduces scar size, suggesting promising potential for clinical translation in cardiovascular disease.
Collapse
Affiliation(s)
- Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Binghua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinfeng Dai
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
32
|
Lutter L, Ter Linde JJM, Brand EC, Hoytema van Konijnenburg DP, Roosenboom B, Horjus Talabur-Horje C, Oldenburg B, van Wijk F. Compartment-driven imprinting of intestinal CD4 T cells in inflammatory bowel disease and homeostasis. Clin Exp Immunol 2023; 214:235-248. [PMID: 37565620 PMCID: PMC10719222 DOI: 10.1093/cei/uxad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
The mucosal immune system is implicated in the etiology and progression of inflammatory bowel diseases. The lamina propria and epithelium of the gut mucosa constitute two separate compartments, containing distinct T-cell populations. Human CD4 T-cell programming and regulation of lamina propria and epithelium CD4 T cells, especially during inflammation, remain incompletely understood. We performed flow cytometry, bulk, and single-cell RNA-sequencing to profile ileal lamina propria and intraepithelial CD4 T cells (CD4CD8αα, regulatory T cells (Tregs), CD69- and CD69high Trm T cells) in controls and Crohn's disease (CD) patients (paired non-inflamed and inflamed). Inflammation results in alterations of the CD4 T-cell population with a pronounced increase in Tregs and migrating/infiltrating cells. On a transcriptional level, inflammation within the epithelium induced T-cell activation, increased IFNγ responses, and an effector Treg profile. Conversely, few transcriptional changes within the lamina propria were observed. Key regulators including the chromatin remodelers ARID4B and SATB1 were found to drive compartment-specific transcriptional programming of CD4 T(reg) cells. In summary, inflammation in CD patients primarily induces changes within the epithelium and not the lamina propria. Additionally, there is compartment-specific CD4 T-cell imprinting, driven by shared regulators, between the lamina propria and the epithelium. The main consequence of intraepithelial adaptation, irrespective of inflammation, seems to be an overall dampening of broad (pro-inflammatory) responses and tight regulation of lifespan. These data suggest differential regulation of the lamina propria and epithelium, with a specific regulatory role in the inflamed epithelium.
Collapse
Affiliation(s)
- Lisanne Lutter
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - José J M Ter Linde
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eelco C Brand
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David P Hoytema van Konijnenburg
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Britt Roosenboom
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Li CJ, Zhai RR, Zhu XY, Guo ZF, Yang H. Discovery of effective combination from Renshen-Fuzi herbal pair against heart failure by spectrum-effect relationship analysis and zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116832. [PMID: 37352946 DOI: 10.1016/j.jep.2023.116832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Ginseng Radix et Rhizoma (roots and rhizomes of Panax ginseng C.A. Mey, Renshen in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese), composition of two traditional Chinese medicinal herbs, has been widely used in traditional Chinese medicine formula, in which Shenfu decoction has been used clinically in China for the treatment of heart failure at present. AIM OF THE STUDY Although the ginsenosides and aconite alkaloids have been proven as the essential bioactive components in Renshen-Fuzi herbal pair, the exact composition of effective components to combat heart failure are still unclear. Therefore, spectrum-effect relationship analysis was performed to reveal its effective combination for anti-heart failure effect. MATERIALS AND METHODS Firstly, the chemical constituents of Renshen-Fuzi herbal pair were identified using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The 39 major compounds in Renshen-Fuzi with five different compatibility ratios were simultaneously quantified using ultra high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ MS/MS). Subsequently, zebrafish models induced by verapamil hydrochloride were constructed and four heart failure-related indexes were selected for pharmacodynamic evaluation of Renshen-Fuzi. To analyze the spectrum-effect relationships, partial least squares regression (PLSR) models were established among the contents of 39 compounds in Renshen-Fuzi with each pharmacodynamic index. According to the contribution of each compound to the whole efficacy, 12 compounds were finally screened out as the effective combination. RESULTS A total of 157 chemical compounds of Renshen-Fuzi herbal pair were identified, in which 39 components were simultaneously determined. The pharmacological effects indicated that Renshen-Fuzi with 1:2 ratio exhibited the best effect based on zebrafish model, which could improve cardiac output and blood flow velocity and inhibit pericardial enlargement and venous blood stasis significantly. A combination of 9 ginsenosides and 3 aconite alkaloids based on a component-efficacy modeling by PLSR was screened, and exerted approximately equivalent pharmacological effects compared with Renshen-Fuzi herbal pair. CONCLUSIONS Our findings elucidated the effective combination of Renshen-Fuzi herbal pair that has been used in clinic for the treatment of heart failure, which could also promote the pharmacological research and quality control of their formula such as Shenfu decoction.
Collapse
Affiliation(s)
- Chu-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Liu D, Zhang Y, Zhang Y, Huang Q, Meng W, Gao J, Mo X, Tian H, Li S. Chloroquine Alleviates Atherosclerosis by Modulating Regulatory T Cells Through the ATM/AMPK/mTOR Signaling Pathway in ApoE -/- Mice. Exp Clin Endocrinol Diabetes 2023; 131:676-685. [PMID: 38056492 DOI: 10.1055/a-2201-8728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND Clinical observation suggests the atheroprotective effect of chloroquine and its derivatives, while its mechanism remains unclear. This study aimed to observe the protective effect of chloroquine against atherosclerosis and explore the underlying mechanism. METHODS Ataxia telangiectasia mutated (ATM) wild-type or haploinsufficient apolipoprotein-E-knockout (ATM+/+ApoE-/- or ATM+/-ApoE-/-) mice were treated with different dosages of chloroquine. Anti-CD25 antibody was used to deplete natural Tregs in ATM+/+ApoE-/- mice. The atherosclerotic burden in different groups of mice was comprehensively evaluated by H&E staining and Masson staining. The effect of chloroquine on the regulatory T cells (Tregs) was assessed in vivo and in vitro by flow cytometry and immunohistochemical staining. The expression of related proteins was detected by real-time polymerase chain reaction and western blotting. RESULTS In ATM+/+ApoE-/- mice, chloroquine alleviated atherosclerotic lesions, stabilized the plaque, and increased Treg counts in the atherosclerotic lesions and spleens. However, in ATM haploinsufficient mice (ATM+/-ApoE-/-), chloroquine no longer prevented atherosclerosis or impacted Treg counts. Abolishing Treg cells using an anti-CD25 antibody in vivo abrogated the atheroprotective effect of chloroquine. In vitro, chloroquine promoted the differentiation of Tregs from naïve T cells, which was accompanied by enhanced ATM/AMP-activated protein kinase (AMPK) activity and reduced downstream mammalian target of rapamycin (mTOR) activity. DISCUSSION These findings suggest that chloroquine ameliorates atherosclerosis and stabilizes plaque by modulating Tregs differentiation through the regulation of the ATM/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Cui X, Li CG, Gao H, Cheng M, Jiang F. Boosting regulatory T cell-dependent immune tolerance by activation of p53. Int Immunopharmacol 2023; 125:111167. [PMID: 37931392 DOI: 10.1016/j.intimp.2023.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Regulatory T cells (Tregs) have critical roles in maintaining immune hemostasis and have important anti-inflammatory functions in diseases. Recently, we identified that CX-5461 (a selective RNA polymerase I inhibitor and p53 activator) acted as a potent immunosuppressive agent, which prevented allogeneic acute rejection in animal models via a molecular mechanism distinct from all those of conventional immunosuppressive drugs. Unexpectedly, we discovered that CX-5461 could promote Treg differentiation. In this review, we have summarized the evidence for a potential role of p53 in mediating Treg differentiation and its possible mechanisms, including regulation of FoxP3 transcription, regulation of the expression of PTEN (phosphatase and tensin homolog), as well as protein-protein interaction with the transcription factor STAT5 (signal transducer and activator of transcription 5). Evidence also suggests that pharmacological p53 activators may potentially be used to boost Treg-mediated immune tolerance. Based on these data, we argue that novel p53 activators such as CX-5461 may represent a distinct class of immunosuppressants that repress conventional T cell-mediated alloimmunity with concomitant boosting of Treg-dependent immune tolerance.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
36
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
37
|
Thomas AL, Godarova A, Wayman JA, Miraldi ER, Hildeman DA, Chougnet CA. Accumulation of immune-suppressive CD4 + T cells in aging - tempering inflammaging at the expense of immunity. Semin Immunol 2023; 70:101836. [PMID: 37632992 PMCID: PMC10840872 DOI: 10.1016/j.smim.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 'immune risk profile' has been shown to predict mortality in the elderly, highlighting the need to better understand age-related immune dysfunction. While aging leads to many defects affecting all arms of the immune system, this review is focused on the accrual of immuno-suppressive CD4 + T cell populations, including FoxP3 + regulatory T cells, and subsets of IL-10-producing T follicular helper cells. New data suggest that such accumulations constitute feedback mechanisms to temper the ongoing progressive low-grade inflammation that develops with age, the so-called "inflammaging", and by doing so, how they have the potential to promote healthier aging. However, they also impair effector immune responses, notably to infections, or vaccines. These studies also reinforce the idea that the aged immune system should not be considered as a poorly functional version of the young one, but more as a dynamic system in which CD4 + T cells, and other immune/non-immune subsets, differentiate, interact with their milieu and function differently than in young hosts. A better understanding of these unique interactions is thus needed to improve effector immune responses in the elderly, while keeping inflammaging under control.
Collapse
Affiliation(s)
- Alyssa L Thomas
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alzbeta Godarova
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Joseph A Wayman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Emily R Miraldi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Johnson CM, Talluru SM, Bubic B, Colbert M, Kumar P, Tsai HL, Varadhan R, Rozati S. Association of Cardiovascular Disease in Patients with Mycosis Fungoides and Sézary Syndrome Compared to a Matched Control Cohort. JID INNOVATIONS 2023; 3:100219. [PMID: 38116332 PMCID: PMC10730311 DOI: 10.1016/j.xjidi.2023.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 12/21/2023] Open
Abstract
Mycosis fungoides/Sézary syndrome (MF/SS) produces a low-grade chronic inflammatory state that may be associated with an increased risk of cardiovascular (CV) events, as seen in other chronic, systemic dermatologic diseases. To assess this association, a retrospective, cross-sectional study was designed in which 421 patients with a biopsy-proven diagnosis of MF/SS were compared with a control cohort of 4,210 age-, gender-, and race-matched patients randomly selected from the National Health and Nutritional Evaluation Survey database. The MF/SS cohort had a 14% prevalence of CV events, which was not statistically different from the control population's prevalence of 13%. In the MF/SS cohort, a multivariable logistic regression model showed that older patients (OR = 1.05 for each year of age, 95% confidence interval = 1.02-1.07) and those diagnosed with hypertension (OR = 3.40, 95% confidence interval = 1.71-6.75) had a higher risk of a CV event (P < 0.001). Risk factors such as gender, race, smoking, diabetes, and obesity were not significantly associated with CV events. Findings suggest that in the MF/SS population, advancing age and hypertension are risk factors for CV events, requiring clinical recognition and management. In addition, further research is needed to understand the complex interplay of how chronic inflammation in MF/SS impacts the immune development of CV disease.
Collapse
Affiliation(s)
- Courtney M Johnson
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sai M Talluru
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bianka Bubic
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michelle Colbert
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Priyanka Kumar
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hua-Ling Tsai
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ravi Varadhan
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Luo Z, Zhang Y, Saleh QW, Zhang J, Zhu Z, Tepel M. Metabolic regulation of forkhead box P3 alternative splicing isoforms and their impact on health and disease. Front Immunol 2023; 14:1278560. [PMID: 37868998 PMCID: PMC10588449 DOI: 10.3389/fimmu.2023.1278560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Forkhead Box P3 (FOXP3) is crucial for the development and suppressive function of human regulatory T cells (Tregs). There are two predominant FOXP3 splicing isoforms in healthy humans, the full-length isoform and the isoform lacking exon 2, with different functions and regulation mechanisms. FOXP3 splicing isoforms show distinct abilities in the cofactor interaction and the nuclear translocation, resulting in different effects on the differentiation, cytokine secretion, suppressive function, linage stability, and environmental adaptation of Tregs. The balance of FOXP3 splicing isoforms is related to autoimmune diseases, inflammatory diseases, and cancers. In response to environmental challenges, FOXP3 transcription and splicing can be finely regulated by T cell antigen receptor stimulation, glycolysis, fatty acid oxidation, and reactive oxygen species, with various signaling pathways involved. Strategies targeting energy metabolism and FOXP3 splicing isoforms in Tregs may provide potential new approaches for the treatment of autoimmune diseases, inflammatory diseases, and cancers. In this review, we summarize recent discoveries about the FOXP3 splicing isoforms and address the metabolic regulation and specific functions of FOXP3 splicing isoforms in Tregs.
Collapse
Affiliation(s)
- Zhidan Luo
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yihua Zhang
- Department of Cardiology, Chongqing Fifth People’s Hospital, Chongqing, China
| | - Qais Waleed Saleh
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jie Zhang
- Department of Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Chongqing, China
| | - Martin Tepel
- Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
40
|
Kong G, Xiong W, Li C, Xiao C, Wang S, Li W, Chen X, Wang J, Chen S, Zhang Y, Gu J, Fan J, Jin Z. Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861. J Nanobiotechnology 2023; 21:364. [PMID: 37794487 PMCID: PMC10552208 DOI: 10.1186/s12951-023-02089-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
Collapse
Affiliation(s)
- Guang Kong
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Xiong
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyu Xiao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjun Chen
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongjie Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
42
|
Hu T, Chen X. Role of neutrophil extracellular trap and immune infiltration in atherosclerotic plaque instability: Novel insight from bioinformatics analysis and machine learning. Medicine (Baltimore) 2023; 102:e34918. [PMID: 37747003 PMCID: PMC10519497 DOI: 10.1097/md.0000000000034918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
The instability of atherosclerotic plaques increases the risk of acute coronary syndrome. Neutrophil extracellular traps (NETs), mesh-like complexes consisting of extracellular DNA adorned with various protein substances, have been recently discovered to play an essential role in atherosclerotic plaque formation and development. This study aimed to investigate novel diagnostic biomarkers that can identify unstable plaques for early distinction and prevention of plaque erosion or disruption. Differential expression analysis was used to identify the differentially expressed NET-related genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. We filtered the characteristic genes using machine learning and estimated diagnostic efficacy using receiver operating characteristic curves. Immune infiltration was detected using single-sample gene set enrichment analysis and the biological signaling pathways involved in characteristic genes utilizing gene set enrichment analysis were explored. Finally, miRNAs- and transcription factors-target genes networks were established. We identified 8 differentially expressed NET-related genes primarily involved in immune-related pathways. Four were identified as capable of distinguishing unstable plaques. More immune cells infiltrated unstable plaques than stable plaques, and these cells were predominantly positively related to characteristic genes. These 4 diagnostic genes are involved in immune responses and the modulation of smooth muscle contractility. Several miRNAs and transcription factors were predicted as upstream regulatory factors, providing further information on the identification and prevention of atherosclerotic plaques rupture. We identified several promising NET-related genes (AQP9, C5AR1, FPR3, and SIGLEC9) and immune cell subsets that may identify unstable atherosclerotic plaques at an early stage and prevent various complications of plaque disruption.
Collapse
Affiliation(s)
- Tingting Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
43
|
Lan T, Zeng Q, Zhu Y, Zheng G, Chen K, Jiang W, Lu W. Xin-Li formula attenuates heart failure induced by a combination of hyperlipidemia and myocardial infarction in rats via Treg immunomodulation and NLRP3 inflammasome inhibition. J Tradit Complement Med 2023; 13:441-453. [PMID: 37693100 PMCID: PMC10491985 DOI: 10.1016/j.jtcme.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
Background and aim Heart failure (HF) is a complex clinical syndrome that represents the end result of several pathophysiologic processes. Despite a dramatic evolution in diagnosis and management of HF, most patients eventually become resistant to therapy. Xin-Li Formula (XLF) is a Chinese medicine formula which shows great potential in the treatment of HF according to our previous studies. The present study was designed to investigate the effects of XLF on HF induced by a combination of hyperlipidemia and myocardial infarction (MI) in rats and reveal the underlying mechanism. Experimental procedure A rat model of HF induced by hyperlipidemia and MI was established with intragastric administration of XLF and Perindopril. In vitro, CD4+ T cells from mouse spleen and LPS/ATP-stimulated THP-1 macrophages were employed. Results and conclusion XLF was shown to have markedly protective effects on MI-induced HF with hyperlipidemia in rats, including improvement of left ventricular function, reduction of left ventricular fibrosis and infarct size. Moreover, XLF administration significantly increased the number of Foxp3+ Tregs, and inhibited mTOR phosphorylation and NLRP3 signaling pathway. In vitro, we found that XLF had induced Treg activation via the inhibition of mTOR phosphorylation in CD4+ T cells. Additionally, XLF inhibited NLRP3 inflammasome activation in LPS/ATP-stimulated THP-1 macrophages. Taken together, this study raises the exciting possibility that Xin-Li Formula may benefit HF patients due to its immunomodulatory and anti-inflammatory effects via Treg activation and NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Taohua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Qiaohuang Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| | - Weihui Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, PR China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510020, PR China
| |
Collapse
|
44
|
Hua X, Bao M, Mo H, Sun Z, Xu M, Chen X, Mo X, Hu G, Tao M, Song J. STING regulates the transformation of the proinflammatory macrophage phenotype by HIF1A into autoimmune myocarditis. Int Immunopharmacol 2023; 121:110523. [PMID: 37354779 DOI: 10.1016/j.intimp.2023.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Macrophages play an essential role in the pathogenesis of autoimmune myocarditis, but the molecular mechanism remains largely unknown. Here, the role of Stimulator of interferon gene (Sting) in autoimmune myocarditis was investigated. Six-week-old male BALB/c mice received two subcutaneous injections of 250 μg α-MyHC peptide to establish experimental autoimmune myocarditis (EAM). With single-cell RNA sequencing analysis of cardiac immune (Cd45+) cells, Sting was found to initiate proinflammatory macrophage differentiation related to the acute EAM phase. Furthermore, proinflammatory macrophages contribute to the pathogenesis of EAM via hypoxia-inducible factor-1α (Hif1α). A higher expression level of Sting was detected in macrophages from myocarditis, which was positively correlated with Hif1α expression. Single-stranded DNA (ssDNA) accumulation in macrophages in myocarditis was observed in the hearts of EAM mice. Pharmacological blockade of STING by C-176 (a specific inhibitor) ameliorated the inflammatory response of EAM and reduced proinflammatory molecule (Ifn-β, Tnf-α, Ccl2, and F4/80) expression and Hif1α expression. In vitro studies revealed that ssDNA activated the expression of Sting; in turn, Sting accelerated proinflammatory molecule expression in mouse macrophages. Inhibition of Hif1α expression could reduce Sting-associated cardiac inflammation and proinflammatory molecule expression. In addition, the expression of STING and ssDNA accumulation in macrophages were observed in human autoimmune myocarditis heart samples. STING activated proinflammatory macrophage via HIF1A, promoting the development of autoimmune myocarditis. The STING signaling pathway might provide a novel mechanism of autoimmune myocarditis and serve as a potential therapeutic target for autoimmune myocarditis patients.
Collapse
Affiliation(s)
- Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital
| | - Mengni Bao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Zhe Sun
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Mengda Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital
| | - Xiuxue Mo
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing 100037, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group at Fuwai Hospital; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| |
Collapse
|
45
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Schmitz T, Freuer D, Linseisen J, Meisinger C. Associations between serum cholesterol and immuno-phenotypical characteristics of circulatory B cells and Tregs. J Lipid Res 2023:100399. [PMID: 37276940 PMCID: PMC10394386 DOI: 10.1016/j.jlr.2023.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Blood lipids play a major role in the manifestation of cardiovascular diseases. Recent research suggested that there are connections between cholesterol levels and immunological alterations. We investigated whether there is an association between serum cholesterol levels (total, HDL, LDL) and immune cells (B cell and regulatory T cells [Tregs]). The analysis was based on data from 231 participants of the MEGA study in Augsburg, Germany, recruited between 2018 and 2021. Most participants was examined two different times within a time period of 9 months. At every visit, fasting venous blood samples were taken. Immune cells were analyzed immediately afterwards using flow cytometry. Using multivariable-adjusted linear regression models, the associations between blood cholesterol concentrations and the relative quantity of several B cell and Treg subsets were analyzed. We found that particularly HDL cholesterol concentrations were significantly associated to some immune cell subpopulations: HDL cholesterol showed significant positive associations with the relative frequency of CD25++ Tregs (as proportion of all CD4+CD25++ T cells) and conventional Tregs (defined as the proportion of CD25+CD127- cells on all CD45RA- CD4+ T cells). Regarding B cells, HDL cholesterol values were inversely associated with the cell surface expression of IgD and with naïve B cells (CD27- IgD+ B cells). In conclusion, HDL cholesterol levels were associated with modifications in the composition of B cell and Tregs subsets demonstrating an important interconnection between lipid metabolism and immune system. Knowing that this association exists might be crucial for a deeper and more comprehensive understanding of the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- T Schmitz
- Epidemiology, Medical Faculty, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany.
| | - D Freuer
- Epidemiology, Medical Faculty, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - J Linseisen
- Epidemiology, Medical Faculty, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| | - C Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Stenglinstraße 2, 86156 Augsburg, Germany
| |
Collapse
|
47
|
Liao W, He C, Yang S, Zhou M, Zeng C, Luo M, Yu J, Hu S, Duan Y, Liu Z. Bioinformatics and experimental analyses of glutamate receptor and its targets genes in myocardial and cerebral ischemia. BMC Genomics 2023; 24:300. [PMID: 37268894 DOI: 10.1186/s12864-023-09408-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND There is a mutual hemodynamic and pathophysiological basis between the heart and brain. Glutamate (GLU) signaling plays an important role in the process of myocardial ischemia (MI) and ischemic stroke (IS). To further explore the common protective mechanism after cardiac and cerebral ischemic injuries, the relationship between GLU receptor-related genes and MI and IS were analyzed. RESULTS A total of 25 crosstalk genes were identified, which were mainly enriched in the Toll-like receptor signaling pathway, Th17 cell differentiation, and other signaling pathways. Protein-protein interaction analysis suggested that the top six genes with the most interactions with shared genes were IL6, TLR4, IL1B, SRC, TLR2, and CCL2. Immune infiltration analysis suggested that immune cells such as myeloid-derived suppressor cells and monocytes were highly expressed in the MI and IS data. Memory B cells and Th17 cells were expressed at low levels in the MI and IS data; molecular interaction network construction suggested that genes such as JUN, FOS, and PPARA were shared genes and transcription factors; FCGR2A was a shared gene of MI and IS as well as an immune gene. Least absolute shrinkage and selection operator logistic regression analysis identified nine hub genes: IL1B, FOS, JUN, FCGR2A, IL6, AKT1, DRD4, GLUD2, and SRC. Receiver operating characteristic analysis revealed that the area under the curve of these hub genes was > 65% in MI and IS for all seven genes except IL6 and DRD4. Furthermore, clinical blood samples and cellular models showed that the expression of relevant hub genes was consistent with the bioinformatics analysis. CONCLUSIONS In this study, we found that the GLU receptor-related genes IL1B, FOS, JUN, FCGR2A, and SRC were expressed in MI and IS with the same trend, which can be used to predict the occurrence of cardiac and cerebral ischemic diseases and provide reliable biomarkers to further explore the co-protective mechanism after cardiac and cerebral ischemic injury.
Collapse
Affiliation(s)
- Wei Liao
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chunming He
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Man Zhou
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chuan Zeng
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Muyun Luo
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junjian Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shuo Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziyou Liu
- Medical College of Soochow University, Suzhou, Jiangsu, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
48
|
McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, Shah P, Falk Z, Wargowsky R, Goldman J, Jones D, Shtokalo D, Antonets D, Jepson T, Fetisova A, Jaatinen K, Ree N, Ri M. RNAseq profiling of blood from patients with coronary artery disease: Signature of a T cell imbalance. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100033. [PMID: 37303712 PMCID: PMC10256136 DOI: 10.1016/j.jmccpl.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.
Collapse
Affiliation(s)
- Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- Department of Clinical Research and Leadership, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Zhaoqing Yang
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Katz
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jonathan Reiner
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Palak Shah
- INOVA Heart and Vascular Institute, 3300 Gallows Road, Fairfax, VA 22042, United States of America
| | - Zachary Falk
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Dan Jones
- SeqLL, Inc., 3 Federal Street, Billerica, MA 01821, United States of America
| | - Dmitry Shtokalo
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| | - Denis Antonets
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Anastasia Fetisova
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kalingrad 236040, Russia
| | - Maxim Ri
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| |
Collapse
|
49
|
Jiang K, Kang L, Jiang A, Zhao Q. Development and Validation of a Diagnostic Model Based on Hypoxia-Related Genes in Myocardial Infarction. Int J Gen Med 2023; 16:2111-2123. [PMID: 37275329 PMCID: PMC10238209 DOI: 10.2147/ijgm.s407759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Purpose Myocardial infarction (MI) is a common cardiovascular disease, and its underlying pathological mechanism remains unclear. We aimed to develop a diagnostic model to distinguish different subtypes of MI. Patients and Methods The gene expression profiles of MI from the GEO database and hypoxia-related genes (HRGs) from MSigDB were downloaded. Then, the different MI subtypes based on HRGs were identified with unsupervised clustering. The difference of expression patterns and hypoxic-immune status among different subtypes of MI were investigated. The diagnostic model to distinguish the different subtypes of MI was developed and validated. Results Based on HRGs, MI samples were divided into two subtypes, cluster A and cluster B. A total of 211 genes showed significant changes in expression between the two subtypes. Cluster A was characterized by high hypoxia status and low immunity status. Based on weighted gene co-expression network analysis, ROC analysis and LASSO regression algorithm, 5 genes were identified as potential diagnostic markers. Finally, a diagnostic model based on these 5 genes was established, which can distinguish the two subtypes well. Conclusion The five hub genes, including ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A, may be associated with the different subtypes of MI.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| | - Ling Kang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| | - Andong Jiang
- Medical Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| | - Qiang Zhao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, People’s Republic of China
| |
Collapse
|
50
|
Bai Z, Liu Y, Zhao Y, Yan R, Yang L, Ma H, Wang J, Wang T, Li Y, Zhang G, Zhang X, Jia S, Wang H. Aspirin ameliorates atherosclerotic immuno-inflammation through regulating the Treg/Th17 axis and CD39-CD73 adenosine signaling via remodeling the gut microbiota in ApoE -/- mice. Int Immunopharmacol 2023; 120:110296. [PMID: 37187127 DOI: 10.1016/j.intimp.2023.110296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The gut microbiome has been implicated in the development of cardiovascular disease (CVD) and atherosclerosis (AS), a chronic inflammatory condition. Aspirin may improve the immuno-inflammatory status in AS by regulating microbiota dysbiosis. However, the potential role of aspirin in modulating gut microbiota and microbial-derived metabolites remains less explored. In this study, we investigated the effect of aspirin treatment on AS progression by modulating gut microbiota and microbial-derived metabolites in apolipoprotein E-deficient (ApoE-/-) mice. We analyzed the fecal bacterial microbiome and targeted metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs). The immuno-inflammatory status of AS was evaluated by analyzing regulatory T cells (Tregs), Th17 cells, and the CD39-CD73 adenosine signaling pathway involved in purinergic signaling. Our results indicated that aspirin altered gut microbiota, leading to an increase in the phylum Bacteroidetes and a decrease in the Firmicutes to Bacteriodetes (F/B) ratio. Aspirin treatment also increased levels of targeted SCFA metabolites, such as propionic acid, valeric acid, isovaleric acid, and isobutyric acid. Furthermore, aspirin impacted BAs by reducing the level of harmful deoxycholic acid (DCA) and increasing the levels of beneficial isoalloLCA and isoLCA. These changes were accompanied by a rebalancing of the ratio of Tregs to Th17 cells and an increase in the expression of ectonucleotidases CD39 and CD73, thereby ameliorating inflammation. These findings suggest that aspirin has an athero-protective effect with an improved immuno-inflammatory profile, partially attributed to its manipulation of the gut microbiota.
Collapse
Affiliation(s)
- Zhixia Bai
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China; Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yajuan Liu
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China; Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Zhao
- Department of Surgical Oncology II, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ru Yan
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libo Yang
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiyan Ma
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing Wang
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guoshan Zhang
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Shaobin Jia
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|