1
|
Schultz DC, Chávez-Riveros A, Goertzen MG, Brummel BR, Paes RA, Santos NM, Tenneti S, Abboud KA, Rocca JR, Seabra G, Li C, Chakrabarti D, Huigens RW. Chloroformate-mediated ring cleavage of indole alkaloids leads to re-engineered antiplasmodial agents. Org Biomol Chem 2024; 22:8423-8436. [PMID: 39113550 DOI: 10.1039/d4ob00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Natural product ring distortion strategies have enabled rapid access to unique libraries of stereochemically complex compounds to explore new chemical space and increase our understanding of biological processes related to human disease. Herein is described the development of a ring-cleavage strategy using the indole alkaloids yohimbine, apovincamine, vinburnine, and reserpine that were reacted with a diversity of chloroformates paired with various alcohol/thiol nucleophiles to enable the rapid synthesis of 47 novel small molecules. Ring cleavage reactions of yohimbine and reserpine produced two diastereomeric products in moderate to excellent yields, whereas apovincamine and vinburnine produced a single diastereomeric product in significantly lower yields. Free energy calculations indicated that diastereoselectivity regarding select ring cleavage reactions from yohimbine and apovincamine is dictated by the geometry and three-dimensional structure of reactive cationic intermediates. These compounds were screened for antiplasmodial activity due to the need for novel antimalarial agents. Reserpine derivative 41 was found to exhibit interesting antiplasmodial activities against Plasmodium falciparum parasites (EC50 = 0.50 μM against Dd2 cultures), while its diastereomer 40 was found to be three-fold less active (EC50 = 1.78 μM). Overall, these studies demonstrate that the ring distortion of available indole alkaloids can lead to unique compound collections with re-engineered biological activities for exploring and potentially treating human disease.
Collapse
Affiliation(s)
- Daniel C Schultz
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Alejandra Chávez-Riveros
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Michael G Goertzen
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Beau R Brummel
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Raphaella A Paes
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Natalia M Santos
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | - James R Rocca
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
- McKnight Brain Institute, J H Miller Health Center, University of Florida, Gainesville, Florida 32610, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
2
|
Trouvé J, Delahaye V, Tomasini M, Rajeshwaran P, Roisnel T, Poater A, Gramage-Doria R. Repurposing a supramolecular iridium catalyst via secondary Zn⋯O[double bond, length as m-dash]C weak interactions between the ligand and substrate leads to ortho-selective C(sp 2)-H borylation of benzamides with unusual kinetics. Chem Sci 2024; 15:11794-11806. [PMID: 39092112 PMCID: PMC11290415 DOI: 10.1039/d4sc01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
The iridium-catalyzed C-H borylation of benzamides typically leads to meta and para selectivities using state-of-the-art iridium-based N,N-chelating bipyridine ligands. However, reaching ortho selectivity patterns requires extensive trial-and-error screening via molecular design at the ligand first coordination sphere. Herein, we demonstrate that triazolylpyridines are excellent ligands for the selective iridium-catalyzed ortho C-H borylation of tertiary benzamides and, importantly, we demonstrate the almost negligible effect of the first coordination sphere in the selectivity, which is so far unprecedented in iridium C-H bond borylations. Remarkably, the activity is dramatically enhanced by exploiting a remote Zn⋯O[double bond, length as m-dash]C weak interaction between the substrate and a rationally designed molecular-recognition site in the catalyst. Kinetic studies and DFT calculations indicate that the iridium-catalyzed C-H activation step is not rate-determining, this being unique for remotely controlled C-H functionalizations. Consequently, a previously established supramolecular iridium catalyst designed for meta-borylation of pyridines is now compatible with the ortho-borylation of benzamides, a regioselectivity switch that is counter-intuitive regarding precedents in the literature. In addition, we highlight the role of the cyclohexene additive in avoiding the formation of undesired side-products as well as accelerating the HBpin release event that precedes the catalyst regeneration step, which is highly relevant for the design of powerful and selective iridium borylating catalysts.
Collapse
Affiliation(s)
| | | | - Michele Tomasini
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | | | | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona c/Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | | |
Collapse
|
3
|
Schreiber SL. Molecular glues and bifunctional compounds: Therapeutic modalities based on induced proximity. Cell Chem Biol 2024; 31:1050-1063. [PMID: 38861986 DOI: 10.1016/j.chembiol.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
This Perspective explores molecular glues and bifunctional compounds-proximity-inducing compounds-and offers a framework to understand and exploit their similarity to hotspots, missense mutations, and posttranslational modifications (PTMs). This view is also shown to be relevant to intramolecular glues, where compounds induce contacts between distinct domains of the same protein. A historical perspective of these compounds is presented that shows the field has come full circle from molecular glues targeting native proteins, to bifunctionals targeting fusion proteins, and back to molecular glues and bifunctionals targeting native proteins. Modern screening methods and data analyses with pre-selected target proteins are shown to yield either cooperative molecular glues or bifunctional compounds that induce proximity, thereby enabling novel functional outcomes.
Collapse
Affiliation(s)
- Stuart L Schreiber
- Arena BioWorks, Broad Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Sun Y, He Q, Lv X, Zhang N, Yan W, Sun J, Zhuang L. Switchable Site-Selective Benzanilide C(sp 2)-H Bromination via Promoter Regulation. Molecules 2024; 29:2861. [PMID: 38930925 PMCID: PMC11206611 DOI: 10.3390/molecules29122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Regioselective benzanilide bromination that generates either regioisomer from the same starting material is desirable. Herein, we develop switchable site-selective C(sp2)-H bromination by promoter regulation. This protocol leads to regiodivergent brominated benzanilide starting from the single substrate via selection of promoters. The protocol demonstrates excellent regioselectivity and good tolerance of functional groups with high yields. The utility effectiveness of this method has been well exemplified in the late-stage modification of biologically important molecules.
Collapse
|
5
|
Anosike IS, Beng TK. Harnessing the 1,3-azadiene-anhydride reaction for the regioselective and stereocontrolled synthesis of lactam-fused bromotetrahydropyrans by bromoetherification of lactam-tethered trisubstituted tertiary alkenols. RSC Adv 2024; 14:18501-18507. [PMID: 38860240 PMCID: PMC11163878 DOI: 10.1039/d4ra02523g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Halo-cycloetherification of lactam-tethered alkenols enables the construction of oxygen-heterocycles that are fused to nitrogen heterocycles via intramolecular halonium-induced nucleophilic addition. Specifically, tetrahydropyrans (THPs) that are fused to a nitrogen heterocycle constitute the core of several bioactive molecules, including tachykinin receptor antagonists and alpha-1 adrenergic antagonists. Although the literature is replete with successful examples of the halo-cycloetherification of simple mono- or disubstituted primary alkenols, methods for the modular, efficient, regioselective, and stereocontrolled intramolecular haloetherification of sterically encumbered trisubstituted tertiary alkenols are rare. Here, we describe a simple intramolecular bromoetherification strategy that meets these benchmarks and proceeds with exclusive 6-endo regioselectivity. The transformation employs mild and water-tolerant conditions, which bodes well for late-stage diversification. The hindered ethers contain four contiguous stereocenters as well as one halogen-bearing tetrasubstituted stereocenter.
Collapse
Affiliation(s)
- Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
6
|
Hansen T, Danková D, Bæk M, Grlaš L, Olsen CA. Sulfur(VI) Fluoride Exchange Chemistry in Solid-Phase Synthesis of Compound Arrays: Discovery of Histone Deacetylase Inhibitors. JACS AU 2024; 4:1854-1862. [PMID: 38818074 PMCID: PMC11134391 DOI: 10.1021/jacsau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Multistep synthesis performed on solid support is a powerful means to generate small-molecule libraries for the discovery of chemical probes to dissect biological mechanisms as well as for drug discovery. Therefore, expansion of the collection of robust chemical transformations amenable to solid-phase synthesis is desirable for achieving chemically diverse libraries for biological testing. Here, we show that sulfur(VI) fluoride exchange (SuFEx) chemistry, exemplified by pairing phenols with aryl fluorosulfates, can be used for the solid-phase synthesis of biologically active compounds. As a case study, we designed and synthesized a library of 84 hydroxamic acid-containing small molecules, providing a rich source of inhibitors with diverse selectivity profiles across the human histone deacetylase enzyme family. Among other discoveries, we identified a scaffold that furnished inhibitors of HDAC11 with exquisite selectivity in vitro and a selective inhibitor of HDAC6 that was shown to affect the acetylation of α-tubulin over histone sites H3K18, H3K27, as well as SMC3 in cultured cells. Our results encourage the further use of SuFEx chemistry for the synthesis of diverse small-molecule libraries and provide insight for future design of selective HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | - Linda Grlaš
- Center for Biopharmaceuticals
and Department of Drug Design and Pharmacology, Faculty of Health
and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals
and Department of Drug Design and Pharmacology, Faculty of Health
and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Luz Tibaldi-Bollati M, Nicotra V, Oksdath-Mansilla G, García ME. Expanding Diterpene Complexity and Diversity via Photoinduced Ring Distortions. Chempluschem 2024; 89:e202300537. [PMID: 38029375 DOI: 10.1002/cplu.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Natural products and their semi-synthetic derivatives undoubtedly constitute an important source of therapeutic agents. Their importance lies in their own origin and evolution, since they have great chemical diversity, biochemical specificity, and pharmacological properties. Currently, there is a renewed interest in the development of methodologies capable of efficiently modifying the chemical structure of these bioactive platforms. In this work, the photoderivatization of the diterpene solidagenone was performed using a complexity-to-diversity-oriented approach. By exploring [2+2]-photocycloaddition, photoinduced-hydrogen abstraction, and photoxygenation reactions, a set of solidagenone derivatives was obtained, showing different ring fusions, side chain rearrangements, and modifications of the original furan ring's substitution pattern. The derivatives obtained were characterised by NMR methodologies. To evaluate the structural diversity of the labdane-derived compounds, their physicochemical properties, structural similarity, and chemical space were analysed. These results suggest that photochemical reactions are a useful tool for performing ring distortion transformations, generating derivatives of natural compounds with wide diversity, structural complexity, and with potential biological properties.
Collapse
Affiliation(s)
- María Luz Tibaldi-Bollati
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Viviana Nicotra
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Manuela E García
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
8
|
Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, Strohbach JW, Rukavina A, Brennsteiner V, Ogilvie K, Marella N, Kladnik K, Ciuffa R, Majmudar JD, Field SD, Bensimon A, Ferrari L, Ferrada E, Ng A, Zhang Z, Degliesposti G, Boeszoermenyi A, Martens S, Stanton R, Müller AC, Hannich JT, Hepworth D, Superti-Furga G, Kubicek S, Schenone M, Winter GE. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 2024; 384:eadk5864. [PMID: 38662832 DOI: 10.1126/science.adk5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions. We report proteome-wide maps of protein-binding propensity for 407 structurally diverse small-molecule fragments. We verified that identified interactions can be advanced to active chemical probes of E3 ubiquitin ligases, transporters, and kinases. Integrating machine learning binary classifiers further enabled interpretable predictions of fragment behavior in cells. The resulting resource of fragment-protein interactions and predictive models will help to elucidate principles of molecular recognition and expedite ligand discovery efforts for hitherto undrugged proteins.
Collapse
Affiliation(s)
- Fabian Offensperger
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gary Tin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Miquel Duran-Frigola
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Ersilia Open Source Initiative, Cambridge CB1 3DE, UK
| | - Elisa Hahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sarah Dobner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Andrea Rukavina
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenth Brennsteiner
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kevin Ogilvie
- Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Nara Marella
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katharina Kladnik
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Rodolfo Ciuffa
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | | | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Evandro Ferrada
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Amanda Ng
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Zhechun Zhang
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - Gianluca Degliesposti
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andras Boeszoermenyi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna Biocenter 5, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Vienna Biocenter 5, 1030 Vienna, Austria
| | - Robert Stanton
- Molecular Informatics, Machine Learning and Computational Sciences, Early Clinical Development, Pfizer, Cambridge, MA 02139, USA
| | - André C Müller
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - J Thomas Hannich
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - Georg E Winter
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
9
|
Lee H, Kim J, Koh M. Medium-Sized Ring Expansion Strategies: Enhancing Small-Molecule Library Development. Molecules 2024; 29:1562. [PMID: 38611841 PMCID: PMC11013129 DOI: 10.3390/molecules29071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The construction of a small molecule library that includes compounds with medium-sized rings is increasingly essential in drug discovery. These compounds are essential for identifying novel therapeutic agents capable of targeting "undruggable" targets through high-throughput and high-content screening, given their structural complexity and diversity. However, synthesizing medium-sized rings presents notable challenges, particularly with direct cyclization methods, due to issues such as transannular strain and reduced degrees of freedom. This review presents an overview of current strategies in synthesizing medium-sized rings, emphasizing innovative approaches like ring-expansion reactions. It highlights the challenges of synthesis and the potential of these compounds to diversify the chemical space for drug discovery, underscoring the importance of medium-sized rings in developing new bioactive compounds.
Collapse
Affiliation(s)
- Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
10
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter T, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: diversity-oriented synthesis-based photoreactive stereoprobes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582206. [PMID: 38464067 PMCID: PMC10925180 DOI: 10.1101/2024.02.27.582206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.
Collapse
|
11
|
Bracken AK, Gekko CE, Suss NO, Lueders EE, Cui Q, Fu Q, Lui ACW, Anderson ET, Zhang S, Abbasov ME. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids. J Am Chem Soc 2024; 146:2524-2548. [PMID: 38230968 PMCID: PMC11000255 DOI: 10.1021/jacs.3c10741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Natural products perennially serve as prolific sources of drug leads and chemical probes, fueling the development of numerous therapeutics. Despite their scarcity, natural products that modulate protein function through covalent interactions with lysine residues hold immense potential to unlock new therapeutic interventions and advance our understanding of the biological processes governed by these modifications. Phloroglucinol meroterpenoids constitute one of the most expansive classes of natural products, displaying a plethora of biological activities. However, their mechanism of action and cellular targets have, until now, remained elusive. In this study, we detail the concise biomimetic synthesis, computational mechanistic insights, physicochemical attributes, kinetic parameters, molecular mechanism of action, and functional cellular targets of several phloroglucinol meroterpenoids. We harness synthetic clickable analogues of natural products to probe their disparate proteome-wide reactivity and subcellular localization through in-gel fluorescence scanning and cell imaging. By implementing sample multiplexing and a redesigned lysine-targeting probe, we streamline a quantitative activity-based protein profiling, enabling the direct mapping of global reactivity and ligandability of proteinaceous lysines in human cells. Leveraging this framework, we identify numerous lysine-meroterpenoid interactions in breast cancer cells at tractable protein sites across diverse structural and functional classes, including those historically deemed undruggable. We validate that phloroglucinol meroterpenoids perturb biochemical functions through stereoselective and site-specific modification of lysines in proteins vital for breast cancer metabolism, including lipid signaling, mitochondrial respiration, and glycolysis. These findings underscore the broad potential of phloroglucinol meroterpenoids for targeting functional lysines in the human proteome.
Collapse
Affiliation(s)
- Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colby E Gekko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nina O Suss
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qi Cui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Andy C W Lui
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
12
|
Artault M, Cantin T, Longuet M, Vitse K, Mbengo CDM, Guégan F, Michelet B, Martin-Mingot A, Thibaudeau S. Exploring Superacid-Promoted Skeletal Reorganization of Aliphatic Nitrogen-Containing Compounds. Angew Chem Int Ed Engl 2024; 63:e202316458. [PMID: 37984060 DOI: 10.1002/anie.202316458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Here we report a method to reorganize the core structure of aliphatic unsaturated nitrogen-containing substrates exploiting polyprotonation in superacid solutions. The superelectrophilic activation of N-isopropyl systems allows for the selective formal Csp3 -H activation/cyclization or homologation / functionalization of nitrogen-containing substrates. This study also reveals that this skeletal reorganization can be controlled through protonation interplay. The mechanism of this process involves an original sequence of C-N bond cleavage, isopropyl cation generation and subsequent C-N bond and C-C bond formation. This was demonstrated through in situ NMR analysis and labelling experiments, also confirmed by DFT calculations.
Collapse
Affiliation(s)
- Maxime Artault
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Thomas Cantin
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Mélissa Longuet
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Kassandra Vitse
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | | | - Frédéric Guégan
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Bastien Michelet
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Agnès Martin-Mingot
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| |
Collapse
|
13
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. Proc Natl Acad Sci U S A 2024; 121:e2313210120. [PMID: 38147547 PMCID: PMC10769859 DOI: 10.1073/pnas.2313210120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023] Open
Abstract
Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rodrigo P. Baptista
- Department of Medicine, Houston Methodist Research Institute, Houston, TX77030
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA92037
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA02142
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA30602
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics, University of Georgia, Athens, GA30602
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
14
|
Zhang Y, Deng G. Controllable Access to Diazo-functionalized 2-Methylene-2,3-dihydrofurans and Diazo-functionalized Furans from Enynones and Diazo Carbonyl Compounds. J Org Chem 2023. [PMID: 38051954 DOI: 10.1021/acs.joc.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Using enynones and diazo carbonyl compounds as identical starting materials, methods for chemoselective and regioselective constructs of diazo-functionalized 2-methylene-2,3-dihydrofurans and diazo-functionalized trisubstituted furans have been established in a AgSbF6/DBU/DCE/0 °C system and a AgSbF6/DBU/Et2O·BF3/DCE/0 °C system, respectively. A Lewis acid and organic base cocontrolled reaction for the synthesis of diazo-functionalized trisubstituted furans is infrequent. For diazo-functionalized 2-methylene-2,3-dihydrofuran synthesis, the reaction possesses excellent diastereoselectivity and Z-selectivity. On the basis of Rh2(OAc)4-mediated unique decomposition of diazo-functionalized 2-methylene-2,3-dihydrofurans, an application to diastereoselective construction of a 5-methylene-4,7-dihydro-5H-furo[2,3-c]pyran frame has been achieved for the first time.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | | |
Collapse
|
15
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
16
|
Li S, Sun Y. Phytochemicals targeting epidermal growth factor receptor (EGFR) for the prevention and treatment of HNSCC: A review. Medicine (Baltimore) 2023; 102:e34439. [PMID: 37800790 PMCID: PMC10553117 DOI: 10.1097/md.0000000000034439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is the most common malignancy of the head and neck, the incidence of which continues to rise. The epidermal growth factor receptor is thought to play a key role in the pathogenesis of HNSCC. Inhibition of epidermal growth factor receptor has been identified as an effective target for the treatment of HNSCC. Many phytochemicals have emerged as potential new drugs for the treatment of HNSCC. A systematic search was conducted for research articles published in PubMed, and Medline on relevant aspects. This review provides an overview of the available literature and reports highlighting the in vitro effects of phytochemicals on epidermal growth factor in various HNSCC cell models and in vivo in animal models and emphasizes the importance of epidermal growth factor as a current therapeutic target for HNSCC. Based on our review, we conclude that phytochemicals targeting the epidermal growth factor receptor are potentially effective candidates for the development of new drugs for the treatment of HNSCC. It provides an idea for further development and application of herbal medicines for cancer treatment.
Collapse
Affiliation(s)
- Shaling Li
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Longmatan District, Luzhou City, Sichuan Province, China
| | | |
Collapse
|
17
|
Karale UB, Shinde A, Gaikwad VR, Kalari S, Gourishetti K, Radhakrishnan M, Poornachandra Y, Amanchy R, Chakravarty S, Andugulapati SB, Rode HB. Iron mediated reductive cyclization/oxidation for the generation of chemically diverse scaffolds: An approach in drug discovery. Bioorg Chem 2023; 139:106698. [PMID: 37418784 DOI: 10.1016/j.bioorg.2023.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.
Collapse
Affiliation(s)
- Uttam B Karale
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Akash Shinde
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vikas R Gaikwad
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Saradhi Kalari
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Karthik Gourishetti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Yedla Poornachandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Ramars Amanchy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Haridas B Rode
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
18
|
West CE, Karim M, Falaguera MJ, Speidel L, Green CJ, Logie L, Schwartzentruber J, Ochoa D, Lord JM, Ferguson MAJ, Bountra C, Wilkinson GF, Vaughan B, Leach AR, Dunham I, Marsden BD. Integrative GWAS and co-localisation analysis suggests novel genes associated with age-related multimorbidity. Sci Data 2023; 10:655. [PMID: 37749083 PMCID: PMC10520009 DOI: 10.1038/s41597-023-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Advancing age is the greatest risk factor for developing multiple age-related diseases. Therapeutic approaches targeting the underlying pathways of ageing, rather than individual diseases, may be an effective way to treat and prevent age-related morbidity while reducing the burden of polypharmacy. We harness the Open Targets Genetics Portal to perform a systematic analysis of nearly 1,400 genome-wide association studies (GWAS) mapped to 34 age-related diseases and traits, identifying genetic signals that are shared between two or more of these traits. Using locus-to-gene (L2G) mapping, we identify 995 targets with shared genetic links to age-related diseases and traits, which are enriched in mechanisms of ageing and include known ageing and longevity-related genes. Of these 995 genes, 128 are the target of an approved or investigational drug, 526 have experimental evidence of binding pockets or are predicted to be tractable, and 341 have no existing tractability evidence, representing underexplored genes which may reveal novel biological insights and therapeutic opportunities. We present these candidate targets for exploration and prioritisation in a web application.
Collapse
Affiliation(s)
- Clare E West
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
| | - Mohd Karim
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Maria J Falaguera
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Leo Speidel
- Francis Crick Institute, London, UK
- Genetics Institute, University College London, London, UK
| | | | - Lisa Logie
- Drug Discovery Unit, University of Dundee, Dundee, UK
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield, Cheshire, UK
| | - Jeremy Schwartzentruber
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David Ochoa
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | - Chas Bountra
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graeme F Wilkinson
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield, Cheshire, UK
| | - Beverley Vaughan
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Andrew R Leach
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Gigant N, Drège E, Joseph D. Carbon Nucleophile-Initiated Rauhut-Currier Reaction: An Atom-Economical Synthesis of Highly Functionalized Carbocycles. J Org Chem 2023; 88:12069-12073. [PMID: 37498652 DOI: 10.1021/acs.joc.3c00513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A Rauhut-Currier reaction cascade is achieved in the presence of carbon nucleophiles under mild conditions. This original atom-economical transformation enables an efficient one-pot synthesis of densely substituted carbocycles from readily accessible substrates. The key promoter role of the cesium cation in the cascade process was demonstrated.
Collapse
Affiliation(s)
- Nicolas Gigant
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | | | |
Collapse
|
20
|
Hudson L, Mason JW, Westphal MV, Richter MJR, Thielman JR, Hua BK, Gerry CJ, Xia G, Osswald HL, Knapp JM, Tan ZY, Kokkonda P, Tresco BIC, Liu S, Reidenbach AG, Lim KS, Poirier J, Capece J, Bonazzi S, Gampe CM, Smith NJ, Bradner JE, Coley CW, Clemons PA, Melillo B, Hon CSY, Ottl J, Dumelin CE, Schaefer JV, Faust AME, Berst F, Schreiber SL, Zécri FJ, Briner K. Diversity-oriented synthesis encoded by deoxyoligonucleotides. Nat Commun 2023; 14:4930. [PMID: 37582753 PMCID: PMC10427684 DOI: 10.1038/s41467-023-40575-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Diversity-oriented synthesis (DOS) is a powerful strategy to prepare molecules with underrepresented features in commercial screening collections, resulting in the elucidation of novel biological mechanisms. In parallel to the development of DOS, DNA-encoded libraries (DELs) have emerged as an effective, efficient screening strategy to identify protein binders. Despite recent advancements in this field, most DEL syntheses are limited by the presence of sensitive DNA-based constructs. Here, we describe the design, synthesis, and validation experiments performed for a 3.7 million-member DEL, generated using diverse skeleton architectures with varying exit vectors and derived from DOS, to achieve structural diversity beyond what is possible by varying appendages alone. We also show screening results for three diverse protein targets. We will make this DEL available to the academic scientific community to increase access to novel structural features and accelerate early-phase drug discovery.
Collapse
Affiliation(s)
- Liam Hudson
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremy W Mason
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Matthias V Westphal
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Matthieu J R Richter
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Jonathan R Thielman
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher J Gerry
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Guoqin Xia
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Heather L Osswald
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John M Knapp
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Zher Yin Tan
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ben I C Tresco
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Shuang Liu
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Katherine S Lim
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Jennifer Poirier
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - John Capece
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Simone Bonazzi
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Christian M Gampe
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Nichola J Smith
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - James E Bradner
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Connor W Coley
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, 02139, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - C Suk-Yee Hon
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Christoph E Dumelin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Jonas V Schaefer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Ann Marie E Faust
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Frédéric Berst
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, CH-4002, Basel, Switzerland
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Frédéric J Zécri
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Karin Briner
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Ginex T, Madruga E, Martinez A, Gil C. MBC and ECBL libraries: outstanding tools for drug discovery. Front Pharmacol 2023; 14:1244317. [PMID: 37637414 PMCID: PMC10457160 DOI: 10.3389/fphar.2023.1244317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Chemical libraries have become of utmost importance to boost drug discovery processes. It is widely accepted that the quality of a chemical library depends, among others, on its availability and chemical diversity which help in rising the chances of finding good hits. In this regard, our group has developed a source for useful chemicals named Medicinal and Biological Chemistry (MBC) library. It originates from more than 30 years of experience in drug design and discovery of our research group and has successfully provided effective hits for neurological, neurodegenerative and infectious diseases. Moreover, in the last years, the European research infrastructure for chemical biology EU-OPENSCREEN has generated the European Chemical Biology library (ECBL) to be used as a source of hits for drug discovery. Here we present and discuss the updated version of the MBC library (MBC v.2022), enriched with new scaffolds and containing more than 2,500 compounds together with ECBL that collects about 100,000 small molecules. To properly address the improved potentialities of the new version of our MBC library in drug discovery, up to 44 among physicochemical and pharmaceutical properties have been calculated and compared with those of other well-known publicly available libraries. For comparison, we have used ZINC20, DrugBank, ChEMBL library, ECBL and NuBBE along with an approved drug library. Final results allowed to confirm the competitive chemical space covered by MBC v.2022 and ECBL together with suitable drug-like properties. In all, we can affirm that these two libraries represent an interesting source of new hits for drug discovery.
Collapse
Affiliation(s)
- Tiziana Ginex
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
| | - Enrique Madruga
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
| |
Collapse
|
22
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551960. [PMID: 37577700 PMCID: PMC10418217 DOI: 10.1101/2023.08.04.551960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Parasites and their hosts are engaged in rapid coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing C. parvum, a parasite of cattle and humans, and C. tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward- genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics University of Georgia, Athens, GA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Beng TK, Eichwald J, Fessenden J, Quigley K, Sharaf S, Jeon N, Do M. Regiodivergent synthesis of sulfone-tethered lactam-lactones bearing four contiguous stereocenters. RSC Adv 2023; 13:21250-21258. [PMID: 37456540 PMCID: PMC10340014 DOI: 10.1039/d3ra03800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Sulfone-tethered lactones/amides/amines display a diverse spectrum of biological activities, including anti-psychotic and anti-hypertensive. Sulfones are also widely present in functional materials and fragrances. We therefore reasoned that a regiodivergent and stereocontrolled strategy that merges the sulfone, lactone, and lactam motifs would likely lead to the discovery of new pharmacophores and functional materials. Here, we report mild conditions for the sulfonyllactonization of γ-lactam-tethered 5-aryl-4(E)-pentenoic acids. The annulation is highly modular, chemoselective, and diastereoselective. With respect to regioselectivity, trisubstituted alkenoic acids display a preference for 5-exo-trig cyclization whereas disubstituted alkenoic acids undergo exclusive 6-endo-trig cyclization. The lactam-fused sulfonyllactones bear angular quaternary as well as four contiguous stereocenters. The products are post-modifiable, especially through a newly developed Co-catalyzed reductive cross-coupling protocol.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jolyn Fessenden
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Kaiden Quigley
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Sapna Sharaf
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Nanju Jeon
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
24
|
Peh G, Gunawan GA, Tay T, Tiong E, Tan LL, Jiang S, Goh YL, Ye S, Wong J, Brown CJ, Zhao H, Ang EL, Wong FT, Lim YH. Further Characterization of Fungal Halogenase RadH and Its Homologs. Biomolecules 2023; 13:1081. [PMID: 37509117 PMCID: PMC10377541 DOI: 10.3390/biom13071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
RadH is one of the flavin-dependent halogenases that has previously exhibited promising catalytic activity towards hydroxycoumarin, hydroxyisoquinoline, and phenolic derivatives. Here, we evaluated new functional homologs of RadH and expanded its specificities for the halogenation of non-tryptophan-derived, heterocyclic scaffolds. Our investigation revealed that RadH could effectively halogenate hydroxyquinoline and hydroxybenzothiophene. Assay optimization studies revealed the need to balance the various co-factor concentrations and where a GDHi co-factor recycling system most significantly improves the conversion and efficiency of the reaction. A crystal structure of RadH was also obtained with a resolution of 2.4 Å, and docking studies were conducted to pinpoint the binding and catalytic sites for substrates.
Collapse
Affiliation(s)
- GuangRong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Gregory A. Gunawan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Terence Tay
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Singapore; (T.T.); (H.Z.)
| | - Elaine Tiong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Shimin Jiang
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Neuros/Immunos #06-04/05, Singapore 138648, Singapore; (S.J.); (C.J.B.)
| | - Yi Ling Goh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Suming Ye
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Joel Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
| | - Christopher J. Brown
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Neuros/Immunos #06-04/05, Singapore 138648, Singapore; (S.J.); (C.J.B.)
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Singapore; (T.T.); (H.Z.)
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Singapore; (T.T.); (H.Z.)
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Fong Tian Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Proteos #07-01, Singapore 138673, Singapore; (E.T.); (L.L.T.)
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (G.A.G.); (Y.L.G.); (S.Y.); (J.W.)
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
25
|
Ng BWL, Xu T, Guo Z. Discovery of chemical probes that perturb protein complexes using size exclusion chromatography and chemical proteomics. Mol Cell 2023; 83:1544-1546. [PMID: 37207621 DOI: 10.1016/j.molcel.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Most human proteins lack small-molecule ligands, rendering these proteins "undruggable." In this issue of Molecular Cell, Lazear et al.1 develop a novel chemical proteomic screening platform and discover new chemical probes targeting previously undruggable protein complexes.
Collapse
Affiliation(s)
- Billy Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | - Tongyang Xu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Zhihao Guo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Kuchta R, Heim C, Herrmann A, Maiwald S, Ng YLD, Sosič I, Keuler T, Krönke J, Gütschow M, Hartmann MD, Steinebach C. Accessing three-branched high-affinity cereblon ligands for molecular glue and protein degrader design. RSC Chem Biol 2023; 4:229-234. [PMID: 36908700 PMCID: PMC9994103 DOI: 10.1039/d2cb00223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The Petasis borono-Mannich reaction was employed for an alternative entry towards three-branched cereblon ligands. Such compounds are capabable of making multiple interactions with the protein surface and possess a suitable linker exit vector. The high-affinity ligands were used to assemble prototypic new molecular glues and proteolysis targeting chimeras (PROTACs) targeting BRD4 for degradation. Our results highlight the importance of multicomponent reactions (MCRs) in drug discovery and add new insights into the rapidly growing field of protein degraders.
Collapse
Affiliation(s)
- Robert Kuchta
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| | - Christopher Heim
- Max Planck Institute for Biology Tübingen Tübingen D-72076 Germany .,Interfaculty Institute of Biochemistry, University of Tübingen Tübingen 72076 Germany
| | | | - Samuel Maiwald
- Max Planck Institute for Biology Tübingen Tübingen D-72076 Germany
| | - Yuen Lam Dora Ng
- Charité, Department of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology Berlin D-12203 Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana Ljubljana SI-1000 Slovenia
| | - Tim Keuler
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| | - Jan Krönke
- Charité, Department of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology Berlin D-12203 Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology Tübingen Tübingen D-72076 Germany .,Interfaculty Institute of Biochemistry, University of Tübingen Tübingen 72076 Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| |
Collapse
|
27
|
Zhang J, Liu C, Qiao Y, Wei M, Guan W, Mao Z, Qin H, Fang Z, Guo K. Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates. Chem Sci 2023; 14:2461-2466. [PMID: 36873849 PMCID: PMC9977401 DOI: 10.1039/d2sc05768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A conceptually new methodology to give unusual cyclization products from usual migration substrates was disclosed. The highly complex and structurally important and valuable spirocyclic compounds were produced through radical addition, intramolecular cyclization and ring opening instead of usual migration to the di-functionalization products of olefins. Furthermore, a plausible mechanism was proposed based on a series of mechanistic studies including radical trapping, radical clock, verification experiments of intermediates, isotope labeling and KIE experiments.
Collapse
Affiliation(s)
- Jingming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yaqi Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minghui Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenjing Guan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Ziren Mao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China .,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
28
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
29
|
Korvorapun K, Boni YT, Maier TC, Bauer A, Licher T, Macor JE, Derdau V, Davies HML. Site-Selective C–H Functionalization of N-Aryl and N-Heteroaryl Piperidines, Morpholines, and Piperazines Controlled by a Chiral Dirhodium Tetracarboxylate Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Korkit Korvorapun
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Yannick T. Boni
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia30322, United States
| | - Thomas C. Maier
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Thomas Licher
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - John E. Macor
- Sanofi USA, R&D, Integrated Drug Discovery, 153 Second Ave, Waltham, Massachusetts02451, United States
| | - Volker Derdau
- Sanofi-Aventis Deutschland GmbH, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia30322, United States
| |
Collapse
|
30
|
Avathan Veettil A, Kirchhoff JL, Brieger L, Strohmann C, Wu P. Petasis Sequence Reactions for the Scaffold-Diverse Synthesis of Bioactive Polycyclic Small Molecules. ACS OMEGA 2023; 8:1168-1181. [PMID: 36643548 PMCID: PMC9835185 DOI: 10.1021/acsomega.2c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The multicomponent Petasis reaction is a versatile method to access functionalized amines. The combination of Petasis reaction with subsequent ring-closing reactions is a powerful strategy to build novel polycyclic scaffolds. In this study, we report the generation of a diverse set of small molecules with polycyclic scaffolds featuring a high content of sp3-hybridized carbon atoms and multiple stereogenic centers by employing three-component Petasis reaction (3C-PR)-Intramolecular Diels-Alder (IMDA) and 3C-PR-ring-closing metathesis (RCM)-IMDA sequence reactions. This work demonstrates the wide substrate tolerance and broad applicability to access unexplored polycyclic scaffolds of biological interest using Petasis sequence reactions.
Collapse
Affiliation(s)
- Amrutha
K. Avathan Veettil
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Jan-Lukas Kirchhoff
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Lukas Brieger
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Carsten Strohmann
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
31
|
Gholami F, Yousefnejad F, Larijani B, Mahdavi M. Vinyl azides in organic synthesis: an overview. RSC Adv 2023; 13:990-1018. [PMID: 36686934 PMCID: PMC9811501 DOI: 10.1039/d2ra06726a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Among organic azides, vinyl azides have attracted significant attention, because of their unique properties in organic synthesis, which led to reports of many types of research on this versatile conjugated azide in recent years. This magical precursor can also be converted into intermediates such as iminyl radicals, 2H-azirines, iminyl metal complexes, nitrilium ions, and iminyl ions, making this compound useful in heterocycle synthesis.
Collapse
Affiliation(s)
- Fateme Gholami
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
32
|
Licciardello MP, Workman P. The era of high-quality chemical probes. RSC Med Chem 2022; 13:1446-1459. [PMID: 36545432 PMCID: PMC9749956 DOI: 10.1039/d2md00291d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Small-molecule chemical probes are among the most important tools to study the function of proteins in cells and organisms. Regrettably, the use of weak and non-selective small molecules has generated an abundance of erroneous conclusions in the scientific literature. More recently, minimal criteria have been outlined for investigational compounds, encouraging the selection and use of high-quality chemical probes. Here, we briefly recall the milestones and key initiatives that have paved the way to this new era, illustrate examples of recent high-quality chemical probes and provide our perspective on future challenges and developments.
Collapse
Affiliation(s)
- Marco P. Licciardello
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer ResearchLondonUK
| | - Paul Workman
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer ResearchLondonUK,The Chemical Probes PortalUK
| |
Collapse
|
33
|
Gu J, Peng RK, Guo CL, Zhang M, Yang J, Yan X, Zhou Q, Li H, Wang N, Zhu J, Ouyang Q. Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein-protein interaction inhibitor. Nat Commun 2022; 13:7176. [PMID: 36418900 PMCID: PMC9684509 DOI: 10.1038/s41467-022-34598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the flourishing of synthetic methodology studies has provided concise access to numerous molecules with new chemical space. These compounds form a large library with unique scaffolds, but their application in hit discovery is not systematically evaluated. In this work, we establish a synthetic methodology-based compound library (SMBL), integrated with compounds obtained from our synthetic researches, as well as their virtual derivatives in significantly larger scale. We screen the library and identify small-molecule inhibitors to interrupt the protein-protein interaction (PPI) of GIT1/β-Pix complex, an unrevealed target involved in gastric cancer metastasis. The inhibitor 14-5-18 with a spiro[bicyclo[2.2.1]heptane-2,3'-indolin]-2'-one scaffold, considerably retards gastric cancer metastasis in vitro and in vivo. Since the PPI targets are considered undruggable as they are hard to target, the successful application illustrates the structural specificity of SMBL, demonstrating its potential to be utilized as compound source for more challenging targets.
Collapse
Affiliation(s)
- Jing Gu
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Rui-Kun Peng
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Chun-Ling Guo
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Meng Zhang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Xiao Yan
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Qian Zhou
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Hongwei Li
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Na Wang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Jinwei Zhu
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Ouyang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| |
Collapse
|
34
|
Torres-Vargas JA, Cheng-Sánchez I, Martínez-Poveda B, Medina MÁ, Sarabia F, García-Caballero M, Quesada AR. Characterization of the activity and the mechanism of action of a new toluquinol derivative with improved potential as an antiangiogenic drug. Biomed Pharmacother 2022; 155:113759. [DOI: 10.1016/j.biopha.2022.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
35
|
Palacios DS. Drug Hunting at the Nexus of Medicinal Chemistry and Chemical Biology and the Discovery of Novel Therapeutic Modalities. J Med Chem 2022; 65:13594-13613. [PMID: 36206538 DOI: 10.1021/acs.jmedchem.2c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecules designed to modulate protein function have been remarkably successful in advancing human health. As the frontiers of medicine and understanding of disease pathogenesis continue to expand, small molecule scientists must also pursue the development of novel therapeutic modalities beyond functional protein modulation to address diseases of unmet medical need. In this vein, this Perspective will highlight two emerging modalities, selective mRNA splice modulation and targeted protein degradation, as mechanisms that affect protein abundance, rather than protein function, to broaden the scope of low-molecular-weight treatable diseases. Key to the elucidation and development of these mechanisms was the interplay and contemporaneous efforts in medicinal chemistry and chemical biology. Continued research at the intersection of these two fields will be critical for the identification of novel targets and mechanisms toward the development of the next generation of small molecule therapeutics.
Collapse
Affiliation(s)
- Daniel S Palacios
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
36
|
Xiang B, Geng R, Zhang Z, Ji X, Zou J, Chen L, Liu J. Identification of the effect and mechanism of Yiyi Fuzi Baijiang powder against colorectal cancer using network pharmacology and experimental validation. Front Pharmacol 2022; 13:929836. [PMID: 36353478 PMCID: PMC9637639 DOI: 10.3389/fphar.2022.929836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/22/2023] Open
Abstract
Background: Yiyi Fuzi Baijiang powder (YFBP) is a traditional Chinese medicine used to treat colorectal cancer, although its bioactivity and mechanisms of action have not been studied in depth yet. The study intended to identify the potential targets and signaling pathways affected by YFBP during the treatment of colorectal cancer through pharmacological network analysis and to further analyze its chemical compositions and molecular mechanisms of action. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), HitPredict (HIT), and Search Tool for Interactions of Chemicals (STITCH) databases were used to screen the bioactive components and promising targets of YFBP. Targets related to colorectal cancer were retrieved from the GeneCards and Gene Ontology databases. Cytoscape software was used to construct the "herb-active ingredient-target" network. The STRING database was used to construct and analyze protein-protein interactions (PPIs). Afterward, the R packages clusterProfiler and Cytoscape Hub plug-in were used to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes. The results of the network pharmacological analysis were also experimentally validated. Results: In total, 33 active components and 128 target genes were screened. Among them, 46 target genes were considered potential therapeutic targets that crossed the CRC target genes. The network pharmacology analysis showed that the active components of YFBP were correlated positively with CRC inflammatory target genes such as TLR4, TNF, and IL-6. The inflammation-related signaling pathways affected by the active components included the TNF-α, interleukin-17, and toll-like receptor signaling pathways. The active ingredients of YFBP, such as luteolin, β-sitosterol, myristic acid, and vanillin, may exert anti-tumor effects by downregulating SMOX expression via anti-inflammatory signaling and regulation of the TLR4/NF-κB signaling pathway. Conclusion: In the present study, the potential active components, potential targets, and key biological pathways involved in the YFBP treatment of CRC were determined, providing a theoretical foundation for further anti-tumor research.
Collapse
Affiliation(s)
- Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhengkun Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuxu Ji
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiaqiong Zou
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Pang Q, Li Y, Xie X, Tang J, Liu Q, Peng C, Li X, Han B. The emerging role of radical chemistry in the amination transformation of highly strained [1.1.1]propellane: Bicyclo[1.1.1]pentylamine as bioisosteres of anilines. Front Chem 2022; 10:997944. [PMID: 36339044 PMCID: PMC9634170 DOI: 10.3389/fchem.2022.997944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Bicyclo[1.1.1]pentylamines (BPCAs), emerging as sp3-rich surrogates for aniline and its derivatives, demonstrate unique structural features and physicochemical profiles in medicinal and synthetic chemistry. In recent years, compared with conventional synthetic approaches, the rapid development of radical chemistry enables the assembly of valuable bicyclo[1.1.1]pentylamines scaffold directly through the amination transformation of highly strained [1.1.1]propellane. In this review, we concisely summarize the emerging role of radical chemistry in the construction of BCPAs motif, highlighting two different and powerful radical-involved strategies including C-centered and N-centered radical pathways under appropriate conditions. The future direction concerning BCPAs is also discussed at the end of this review, which aims to provide some inspiration for the research of this promising project.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Antolin AA, Sanfelice D, Crisp A, Villasclaras Fernandez E, Mica IL, Chen Y, Collins I, Edwards A, Müller S, Al-Lazikani B, Workman P. The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res 2022; 51:D1492-D1502. [PMID: 36268860 PMCID: PMC9825478 DOI: 10.1093/nar/gkac909] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/30/2023] Open
Abstract
We describe the Chemical Probes Portal (https://www.chemicalprobes.org/), an expert review-based public resource to empower chemical probe assessment, selection and use. Chemical probes are high-quality small-molecule reagents, often inhibitors, that are important for exploring protein function and biological mechanisms, and for validating targets for drug discovery. The publication, dissemination and use of chemical probes provide an important means to accelerate the functional annotation of proteins, the study of proteins in cell biology, physiology, and disease pathology, and to inform and enable subsequent pioneering drug discovery and development efforts. However, the widespread use of small-molecule compounds that are claimed as chemical probes but are lacking sufficient quality, especially being inadequately selective for the desired target or even broadly promiscuous in behaviour, has resulted in many erroneous conclusions in the biomedical literature. The Chemical Probes Portal was established as a public resource to aid the selection and best-practice use of chemical probes in basic and translational biomedical research. We describe the background, principles and content of the Portal and its technical development, as well as examples of its applications and use. The Chemical Probes Portal is a community resource and we therefore describe how researchers can be involved in its content and development.
Collapse
Affiliation(s)
- Albert A Antolin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Domenico Sanfelice
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Alisa Crisp
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Eloy Villasclaras Fernandez
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Ioan L Mica
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Yi Chen
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Aled Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada,Chemical Probes Portal, www.chemicalprobes.org
| | | | | | - Paul Workman
- To whom correspondence should be addressed. Tel: +44 2087224580;
| |
Collapse
|
39
|
Clopper KC, Taatjes DJ. Chemical inhibitors of transcription-associated kinases. Curr Opin Chem Biol 2022; 70:102186. [PMID: 35926294 PMCID: PMC10676000 DOI: 10.1016/j.cbpa.2022.102186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Transcription by RNA polymerase II (pol II) is regulated by kinases. In recent years, many selective and potent inhibitors of pol II transcription-associated kinases have been developed, and these molecules have advanced understanding of kinase function in mammalian cells. Here, we focus on chemical inhibitors of the transcription-associated kinases CDK7, CDK8, CDK9, CDK12, CDK13, and CDK19. We provide a brief overview of the function of these kinases and common activation mechanisms. We then highlight the advantages of kinase inhibitors compared with other basic research methods, and describe the caveats associated with non-selective compounds (e.g. flavopiridol). We conclude with strategies and recommendations for implementation of chemical inhibitors for experimental analysis of transcription-associated kinases.
Collapse
Affiliation(s)
- Kevin C Clopper
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
40
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
41
|
Chugh V, Chatterjee B, Chang W, Cramer HH, Hindemith C, Randel H, Weyhermüller T, Farès C, Werlé C. An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes. Angew Chem Int Ed Engl 2022; 61:e202205515. [PMID: 35759682 PMCID: PMC9544374 DOI: 10.1002/anie.202205515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/10/2022]
Abstract
An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.
Collapse
Affiliation(s)
- Vishal Chugh
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Hanna H. Cramer
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Carsten Hindemith
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Helena Randel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Christophe Farès
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| |
Collapse
|
42
|
Pavale G, Acharya P, Korgavkar N, Ramana MMV. Design, Synthesis, and Biological Evaluation of quinoxaline bearing tetrahydropyridine derivatives as anticancer, antioxidant, and anti-tubercular agents. Curr Comput Aided Drug Des 2022; 18:CAD-EPUB-125341. [PMID: 35927819 DOI: 10.2174/1573409918666220804142753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoxaline and Tetrahydropyridine derivatives showed various biological properties. The combination of these two scaffolds may contribute to good biological activity and may give novel and efficacious bioactive candidates. OBJECTIVE The present study aimed to identify bioactive agents with quinoxaline bearing tetrahydropyridine derivatives possessing anticancer, antioxidant, and anti-tubercular agents. METHOD A series of novel quinoxaline bearing tetrahydropyridine derivatives have been designed and synthesized in good yields. The synthetic protocol involves three-component Povarov reactions of 6-amino quinoxaline, propenyl guaethol, and substituted aldehydes using BF3•OEt2 as catalyst. The newly synthesized molecules were evaluated for their anticancer activity against four cell lines, i.e. A-549, MCF-7, PC-3, and HepG2. RESULTS The results from in vitro assay indicated that compound 4a proved to be as potent as the standard drug adriamycin against all cell lines with GI50 values <10 μg/ml. Compounds 4b, 4f, and 4i exhibited good cytotoxicity against A-549 cell line. All synthesized molecules were evaluated for their antioxidant activity and the results revealed that the compounds 4a, 4b, and 4i showed promising antioxidant activities against DPPH and H2O2 scavenging. In addition, the anti-mycobacterial activity of the synthesized compounds against MTB H37Rv strain was determined using MABA method. The results indicate that the compounds 4a, 4b, 4g, and 4i showed better anti-mycobacterial activity than the standard drugs pyrazinamide, ciprofloxacin and streptomycin with MIC value 1.6 μg/ml. Furthermore, molecular docking studies and ADME properties showed good pharmacokinetic profile and drug-likeness properties. CONCLUSION These studies showed that a series of novel quinoxaline bearing tetrahydropyridine derivatives exhibit anticancer, anti-mycobacterial, and antioxidant activities.
Collapse
Affiliation(s)
- Ganesh Pavale
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400 098, India
| | - Poornima Acharya
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400 098, India
| | - Nilesh Korgavkar
- Department of Chemistry, Mithibai College, University of Mumbai, Mumbai, India
| | - M M V Ramana
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400 098, India
| |
Collapse
|
43
|
Tsukamoto S, Hlokoane O, Miyako K, Irie R, Sakai R, Oikawa M. Oxa-Michael-based divergent synthesis of artificial glutamate analogs. RSC Adv 2022; 12:22175-22179. [PMID: 36043066 PMCID: PMC9364357 DOI: 10.1039/d2ra03744k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Herein we report stereoselective generation of two skeletons, 1,3-dioxane and tetrahydropyranol, by oxa-Michael reaction as the key reaction from δ-hydroxyenone. The construction of the 1,3-dioxane skeleton, achieved through hemiacetal formation followed by oxa-Michael reaction from δ-hydroxyenone, was exploited to access structurally diverse heterotricyclic artificial glutamate analogs. On the other hand, formation of a novel tetrahydro-2H-pyranol skeleton was accomplished by the inverse reaction order: oxa-Michael reaction followed by hemiacetal formation. Thus, this study succeeded in showing that structural diversity in a compound collection can be acquired by interchanging the order of just two reactions. Among the skeletally diverse, heterotricyclic artificial glutamate analogs synthesized in this study, a neuronally active compound named TKM-50 was discovered in the mice in vivo assay. By interchanging the order of reactions, two types of skeletons were created and a neuroactive artificial glutamate analog was developed.![]()
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- Graduate School of Nanobioscience, Yokohama City University Seto 22-2, Kanazawa-ku Yokohama 236-0027 Japan
| | - Oriel Hlokoane
- Graduate School of Nanobioscience, Yokohama City University Seto 22-2, Kanazawa-ku Yokohama 236-0027 Japan .,Department of Pharmacy, National University of Lesotho P.O. Roma 180 Maseru Lesotho
| | - Kei Miyako
- Faculty of Fisheries Sciences, Hokkaido University Hakodate 041-8611 Japan
| | - Raku Irie
- Graduate School of Nanobioscience, Yokohama City University Seto 22-2, Kanazawa-ku Yokohama 236-0027 Japan
| | - Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University Hakodate 041-8611 Japan
| | - Masato Oikawa
- Graduate School of Nanobioscience, Yokohama City University Seto 22-2, Kanazawa-ku Yokohama 236-0027 Japan
| |
Collapse
|
44
|
Flick AC, Leverett CA, Ding HX, McInturff EL, Fink SJ, Mahapatra S, Carney DW, Lindsey EA, DeForest JC, France SP, Berritt S, Bigi-Botterill SV, Gibson TS, Watson RB, Liu Y, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2020. J Med Chem 2022; 65:9607-9661. [PMID: 35833579 DOI: 10.1021/acs.jmedchem.2c00710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New drugs introduced to the market are privileged structures that have affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates (ADCs), provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This Review is part of a continuing series presenting the most likely process-scale synthetic approaches to 44 new chemical entities approved for the first time anywhere in the world during 2020.
Collapse
Affiliation(s)
- Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Carolyn A Leverett
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co. Ltd., Beijing 100085, China
| | - Emma L McInturff
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Subham Mahapatra
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Scott P France
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Rebecca B Watson
- Pfizer Worldwide Research and Development, La Jolla Laboratories, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Yiyang Liu
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J O'Donnell
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
45
|
Usami Y, Mizobuchi Y, Ijuin M, Yamada T, Morita M, Mizuki K, Yoneyama H, Harusawa S. Synthesis of 6-Halo-Substituted Pericosine A and an Evaluation of Their Antitumor and Antiglycosidase Activities. Mar Drugs 2022; 20:md20070438. [PMID: 35877731 PMCID: PMC9323573 DOI: 10.3390/md20070438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The enantiomers of 6-fluoro-, 6-bromo-, and 6-iodopericosine A were synthesized. An efficient synthesis of both enantiomers of pericoxide via 6-bromopericosine A was also developed. These 6-halo-substituted pericosine A derivatives were evaluated in terms of their antitumor activity against three types of tumor cells (p388, L1210, and HL-60) and glycosidase inhibitory activity. The bromo- and iodo-congeners exhibited moderate antitumor activity similar to pericosine A against the three types of tumor cell lines studied. The fluorinated compound was less active than the others, including pericosine A. In the antitumor assay, no significant difference in potency between the enantiomers was observed for any of the halogenated compounds. Meanwhile, the (−)-6-fluoro- and (−)-6-bromo-congeners inhibited α-glucosidase to a greater extent than those of their corresponding (+)-enantiomers, whereas (+)-iodopericosine A showed increased activity when compared to its (−)-enantiomer.
Collapse
Affiliation(s)
- Yoshihide Usami
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
- Correspondence: ; Tel.: +81-796-90-1087; Fax: +81-796-90-1005
| | - Yoshino Mizobuchi
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Mai Ijuin
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Takeshi Yamada
- Department of Medicinal Molecular Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan;
| | - Mizuki Morita
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Koji Mizuki
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Hiroki Yoneyama
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| | - Shinya Harusawa
- Department of Pharmaceutical Organic Chemistry, Osaka University of Pharmaceutical Sciences, Nasahara 4-20-1, Takatsuki 569-1094, Osaka, Japan; (Y.M.); (M.I.); (M.M.); (K.M.); (H.Y.); (S.H.)
| |
Collapse
|
46
|
Hasan MR, Alsaiari AA, Fakhurji BZ, Molla MHR, Asseri AH, Sumon MAA, Park MN, Ahammad F, Kim B. Application of Mathematical Modeling and Computational Tools in the Modern Drug Design and Development Process. Molecules 2022; 27:4169. [PMID: 35807415 PMCID: PMC9268380 DOI: 10.3390/molecules27134169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.
Collapse
Affiliation(s)
- Md Rifat Hasan
- Department of Mathematics, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Department of Applied Mathematics, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif 21944, Saudi Arabia;
| | - Burhan Zain Fakhurji
- iGene Medical Training and Molecular Research Center, Jeddah 21589, Saudi Arabia;
| | | | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Md Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| | - Foysal Ahammad
- Department of Biological Sciences, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| |
Collapse
|
47
|
Chugh V, Chatterjee B, Chang WC, Cramer HH, Hindemith C, Randel H, Weyhermüller T, Farès C, Werlé C. An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vishal Chugh
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis GERMANY
| | - Basujit Chatterjee
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis GERMANY
| | - Wei-Chieh Chang
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis GERMANY
| | - Hanna H. Cramer
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis GERMANY
| | - Carsten Hindemith
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis GERMANY
| | - Helena Randel
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis GERMANY
| | - Thomas Weyhermüller
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion Anorganische Spektroskopie GERMANY
| | - Christophe Farès
- Max-Planck-Institute für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Nuclear Magnetic Resonance Spectroscopy GERMANY
| | - Christophe Werlé
- Max-Planck-Institut fur chemische Energiekonversion Synergistic Organometallic Catalysis Stiftstrasse 34 - 36 D - 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
48
|
Cook AL, Wyhs N, Sur S, Ptak B, Popoli M, Dobbyn L, Papadopoulos T, Bettegowda C, Papadopoulos N, Vogelstein B, Zhou S, Kinzler KW. An isogenic cell line panel for sequence-based screening of targeted anticancer drugs. iScience 2022; 25:104437. [PMID: 35692635 PMCID: PMC9184558 DOI: 10.1016/j.isci.2022.104437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/11/2022] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
We describe the creation of an isogenic cell line panel representing common cancer pathways, with features optimized for high-throughput screening. More than 1,800 cell lines from three normal human cell lines were generated using CRISPR technologies. Surprisingly, most of these lines did not result in complete gene inactivation despite integration of sgRNA at the desired genomic site. A subset of the lines harbored biallelic disruptions of the targeted tumor suppressor gene, yielding a final panel of 100 well-characterized lines covering 19 frequently lost cancer pathways. This panel included genetic markers optimized for sequence-based ratiometric assays for drug-based screening assays. To illustrate the potential utility of this panel, we developed a high-throughput screen that identified Wee1 inhibitor MK-1775 as a selective growth inhibitor of cells with inactivation of TP53. These cell lines and screening approach should prove useful for researchers studying a variety of cellular and biochemical phenomena. Creation of an isogenic cell line panel representing the loss of 19 cancer pathways HTS confirmed MK-1775 as a selective inhibitor of cells with loss of TP53 These cell lines are useful for studying a variety of cellular biochemical phenomena
Collapse
Affiliation(s)
- Ashley L. Cook
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Wyhs
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Surojit Sur
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blair Ptak
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura Dobbyn
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Tasos Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding author
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Corresponding author
| |
Collapse
|
49
|
Lenci E, Trabocchi A. Diversity‐Oriented Synthesis and Chemoinformatics: A Fruitful Synergy towards Better Chemical Libraries. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Universita degli Studi di Firenze Department of Chemistry Via della Lastruccia 1350019Italia 50019 Sesto Fiorentino ITALY
| | - Andrea Trabocchi
- University of Florence: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" ITALY
| |
Collapse
|
50
|
Hicks EG, Kandel SE, Lampe JN. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (M pro) inhibitors. Bioorg Med Chem Lett 2022; 66:128732. [PMID: 35427739 PMCID: PMC9004148 DOI: 10.1016/j.bmcl.2022.128732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the past two years, the COVID-19 pandemic has caused over 5 million deaths and 250 million infections worldwide. Despite successful vaccination efforts and emergency approval of small molecule therapies, a diverse range of antivirals is still needed to combat the inevitable resistance that will arise from new SARS-CoV-2 variants. The main protease of SARS-CoV-2 (Mpro) is an attractive drug target due to the clinical success of protease inhibitors against other viruses, such as HIV and HCV. However, in order to combat resistance, various chemical scaffolds need to be identified that have the potential to be developed into potent inhibitors. To this end, we screened a high-content protease inhibitor library against Mproin vitro, in order to identify structurally diverse compounds that could be further developed into antiviral leads. Our high-content screening efforts retrieved 27 hits each with > 50% inhibition in our Mpro FRET assay. Of these, four of the top inhibitor compounds were chosen for follow-up due to their potency and drugability (Lipinski's rules of five criteria): anacardic acid, aloesin, aloeresin D, and TCID. Further analysis via dose response curves revealed IC50 values of 6.8 μM, 38.9 μM, 125.3 μM, and 138.0 μM for each compound, respectively. Molecular docking studies demonstrated that the four inhibitors bound at the catalytic active site of Mpro with varying binding energies (-7.5 to -5.6 kcal/mol). Furthermore, Mpro FRET assay kinetic studies demonstrated that Mpro catalysis is better represented by a sigmoidal Hill model than the standard Michaelis-Menten hyperbola, indicating substantial cooperativity of the active enzyme dimer. This result suggests that the dimerization interface could be an attractive target for allosteric inhibitors. In conclusion, we identified two closely-related natural product compounds from the Aloe plant (aloesin and aloeresin D) that may serve as novel scaffolds for Mpro inhibitor design and additionally confirmed the strongly cooperative kinetics of Mpro proteolysis. These results further advance our knowledge of structure-function relationships in Mpro and offer new molecular scaffolds for inhibitor design.
Collapse
Affiliation(s)
- Emily G Hicks
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO 80045, United States.
| |
Collapse
|