1
|
Yang J, Zhou K, Zhou C, Khamsi PS, Voloshchuk O, Hernandez L, Kovac J, Ebrahimi A, Liu Z. Label-free rapid antimicrobial susceptibility testing with machine-learning based dynamic holographic laser speckle imaging. Biosens Bioelectron 2025; 278:117312. [PMID: 40054155 PMCID: PMC11954659 DOI: 10.1016/j.bios.2025.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Antimicrobial resistance (AMR) presents a significant global challenge, creating an urgent need for rapid and sensitive antimicrobial susceptibility testing (AST) methods to guide timely treatment decisions. Traditional AST techniques, such as broth microdilution, disk diffusion, and gradient diffusion assays, require extended incubation times, delaying critical therapeutic interventions. In this study, we present a dynamic holographic laser speckle imaging (DhLSI) system, coupled with machine learning algorithms, for rapid assessment of bacterial susceptibility upon antibiotic treatment. Our method operates by utilizing a reference beam to enhance the detection of weak scattering signals, capable of performing AST at bacterial concentrations as low as 103 CFU/mL, while producing results consistent with those obtained using the standard concentration of 105 CFU/mL. By employing artificial neural networks (ANN) to analyze dynamic speckle patterns, the DhLSI system can determine bacterial susceptibility within 2-3 h. The system was validated using model Gram-positive and Gram-negative bacterial strains, as well as two antibiotic treatments with different mechanisms of action. Experiments conducted on bacteria incubated on different days demonstrated consistent performance. This approach offers a rapid, label-free platform for early-stage infection diagnosis and effective antimicrobial stewardship, with the potential to be implemented in clinical settings to address AMR challenges.
Collapse
Affiliation(s)
- Jinkai Yang
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Keren Zhou
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Chen Zhou
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Pouya Soltan Khamsi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Landon Hernandez
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Aida Ebrahimi
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States; Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Zhiwen Liu
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, United States; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
2
|
Sun G, Wang L, Dong Z, Zhang Y, Yang Y, Hu M, Fang H. The Current Status, Hotspots, and Development Trends of Nanoemulsions: A Comprehensive Bibliometric Review. Int J Nanomedicine 2025; 20:2937-2968. [PMID: 40093547 PMCID: PMC11910037 DOI: 10.2147/ijn.s502490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Nanoemulsions, which are characterized by their nanometer-scale droplets, have gained significant attention in different fields, such as medicine, food, cosmetics, and agriculture, because of their unique properties. With an increasing number of countries engaging in research on nanoemulsions, interest in their properties, preparation methods, and applications has increased. Hence, tracing the relevant research on nanoemulsions published in the past ten years on a global scale, by conducting data mining and visualization analysis on a sufficiently large text dataset through bibliometrics, sorting out and summarizing certain indicators, the development history, research status and research hotspots in the field of nanoemulsions can be clearly revealed, providing reference value and significance for subsequent research. This bibliometric review examines the research landscape of nanoemulsions from 2013-2023 via the SCI-E and SSCI databases, providing insights into the current status, hotspots, and future trends of this field. To offer a comprehensive overview, this analysis includes publication counts, author keywords, institutional contributions, research areas, prolific authors, highly cited papers and hot research papers. The findings reveal that China led in nanoemulsions research, followed by USA, India, and Brazil, with the University of Massachusetts emerging as a key player with the highest average number of citations per article (ACPP) and h-index. Food Chemistry, Pharmaceutics, and the Journal of Drug Delivery Science and Technology are among the top journals publishing in this area. Chemistry, pharmacology, and pharmacy emerged as the primary research domains, with McClements DJ as the most prolific and influential author. In keyword analysis, essential oil nanoemulsions are currently the main preparation direction, and various characteristics of nanoemulsions, such as their bioavailability, stability, biocompatibility, and antioxidant and antibacterial properties, have also been studied extensively. Research hotspots are focused mostly on the development of new applications and technologies for nanoemulsions.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Liying Wang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yanxiao Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yan Yang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Miao Hu
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, People's Republic of China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Sharma S, Saxena D, Kautu A, Chopra S, Joshi KB. Self-responsive biomimetic short lipopeptide-based delivery systems for enhanced antibiotic efficacy against drug-resistant infections. RSC Med Chem 2025:d4md00911h. [PMID: 40093517 PMCID: PMC11907645 DOI: 10.1039/d4md00911h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Biocompatible short peptide amphiphile nanostructures were developed as an innovative platform for the efficient delivery of meropenem. These nanostructures exhibit self-responsive behavior, specifically targeting infection sites and releasing the antibiotic in a controlled manner. Testing against clinically relevant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Staphylococcus aureus (VRSA), demonstrated their ability to enhance antibiotic concentration at the site of infection, significantly improving therapeutic efficacy. By reducing the required dosages, this approach minimizes systemic cytotoxicity and mitigates the side effects associated with higher drug concentrations. The study highlights the potential of these nanostructures as a promising strategy to combat drug-resistant bacterial infections, addressing a critical global health challenge.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar-470003 Madhya Pradesh India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar-470003 Madhya Pradesh India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute Sitapur Road, Janakipuram Extension Lucknow India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar-470003 Madhya Pradesh India
| |
Collapse
|
4
|
Liao M, Gong H, Ge T, Shen K, Campana M, McBain AJ, Wu C, Hu X, Lu JR. Probing antimicrobial synergy by novel lipopeptides paired with antibiotics. J Colloid Interface Sci 2025; 681:82-94. [PMID: 39591858 DOI: 10.1016/j.jcis.2024.11.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Antimicrobial resistance (AMR) is fast becoming a major global challenge in both hospital and community settings as many current antibiotics and treatment processes are under the threat of being rendered less effective or ineffective. Synergistic combination of an antibiotic and an aiding agent with a different set of properties provides an important but largely unexploited option to 'repurpose' existing biomaterial's space while addressing issues of potency, spectrum, toxicity and resistance in early stages of antimicrobial drug discovery. This work explores how to combine tetracycline/minocycline (TC/MC) with a broad-spectrum antimicrobial lipopeptide that has been designed to improve the efficiency of membrane targeting and intramembrane accumulation, thereby enhancing antimicrobial efficacy. Experimental measurements of fractional inhibition concentration index (FICI) were undertaken from binary antibiotic-lipopeptide combinations. Most FICI values were found to be lower than 0.5 against both Gram-positive and Gram-negative bacterial strains studied including 3 AMR strains, revealing strong synergetic effects via favorable membrane-lytic interactions. The antimicrobial actions of this type of binary combinations are featured by the fast time-killing and high TC/MC uptake, benefited from effective membrane-lytic disruptions by the lipopeptide. This study thus provides an important mechanistic understanding of the combined antibiotic-lipopeptide approach to improve the therapeutic potential of conventional antibiotics by illustrating how amphiphilic lipopeptide-antibiotic combinations interact with biological membranes, providing a promising alternative to combat AMR through rational design of lipopeptide as an aiding agent.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Tianhao Ge
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL UK.
| |
Collapse
|
5
|
Hashem AH, Abdel-Maksoud MA, Fatima S, Almutairi SM, Ghorab MA, El-Batal AI, El-Sayyad GS. Synthesis and characterization of innovative GA@Ag-CuO nanocomposite with potent antimicrobial and anticancer properties. Sci Rep 2025; 15:689. [PMID: 39753578 PMCID: PMC11699129 DOI: 10.1038/s41598-024-76446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis. spectrophotometer reveals that, the observed peak in the spectrum was formed by the observed O.D. at 0.755, and confirmed that the produced GA@Ag-CuO nanocomposite was small and discernible at 360 nm. The particles' diameters varied from 9.5 nm to 49.5 nm, with a mean diameter of 25.53 ± 1.4 nm. The created Gum Arabic filtrate was rich in active functional groups, and the provided polydisperse NPs were intended to reduce, stabilize, and the produced filtrate act as capping agents. Based on the XRD data, the synthesized GA@Ag-CuO nanocomposite was crystallized and had a face-centered (fcc) crystal structure. Biosafety of GA@Ag-CuO nanocomposite was assessed toward Wi 38 normal cell line, where it showed safety toward the tested cell line where IC50 was 154.2 µg/mL. Antimicrobial results confirmed that, GA@Ag-CuO nanocomposite has antibacterial activity with MICs 15.6, 125, 31.25 and 125 µg/mL against S. epidermis, S. aureus, L. plantrum, and S. typhimurium, respectively. Likewise, it showed antifungal activity toward C. albicans and C. neoformans with MICs 62.5 and 15.62 µg/ml, respectively. Moreover, GA@Ag-CuO nanocomposite displayed promising anticancer activity with IC50 26.11 and 59.5 µg/ml toward MCF-7 and Hep-G2, respectively. In conclusion, the novel GA@Ag-CuO nanocomposite demonstrated promising antibacterial, antifungal, and anticancer activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Saeedah M Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Dept. of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
- School of Veterinary Medicine, Department of Molecular Biosciences, University of California, Davis, CA, 95616-8741, USA
| | - Ahmed I El-Batal
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galal City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
6
|
Kasturiarachchi JC. A study on antimicrobial activity of lysine-like peptoids for the development of new antimicrobials. Arch Microbiol 2025; 207:21. [PMID: 39745532 DOI: 10.1007/s00203-024-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis. These peptoids have undergone a biological analysis to determine the structure-activity relationships that define their antibacterial activity. Each peptoid is composed of nine repeating N-substituted glycine monomers (9-mer). The monomer units were synthesized with three distinct alkyl side chain lengths: four-carbon butyl monomers, six-carbon hexyl monomers, and eight-carbon octyl monomers. Out of 12 different peptoids, only one peptoid called Tosyl-Octyl-Peptoid (TOP) demonstrated significant broad-spectrum bactericidal activity. TOP kills bacteria under non-dividing and dividing conditions. The Minimum Inhibitory Concentrations values of TOP for Staphylococcus epidermidis, Escherichia coli and Klebsiella were 20 µM, whereas Methicillin-resistant Staphylococcus aureus and Methicillin-sensitive Staphylococcus aureus were 40 µM. The highest MIC values were observed for Pseudomonas aeruginosa at 80 µM. The selectivity ratio was calculated, by dividing the 10% haemolysis activity (5 mM) by the median of the MIC (50 µM) yielding a selective ratio for TOP as 100. This selective ratio is well above previously reported peptidomimetics selective ratio of around 20. TOP shows broad-spectrum bactericidal action in both dividing and non-dividing bacteria in co-culture systems and intracellular bacterial killing activity. These results add new information about the antimicrobial peptoids and aid in the future design of synthetic peptoids with increased therapeutic potential.
Collapse
|
7
|
Ahmed S, Shams S, Trivedi D, Lima C, McGalliard R, Parry CM, Carrol ED, Muhamadali H, Goodacre R. Metabolic response of Klebsiella oxytoca to ciprofloxacin exposure: a metabolomics approach. Metabolomics 2024; 21:8. [PMID: 39676074 PMCID: PMC11646952 DOI: 10.1007/s11306-024-02206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Rapid detection and identification of pathogens and antimicrobial susceptibility is essential for guiding appropriate antimicrobial therapy and reducing morbidity and mortality associated with sepsis. OBJECTIVES The metabolic response of clinical isolates of Klebsiella oxytoca exposed to different concentrations of ciprofloxacin (the second generation of quinolones antibiotics) were studied in order to investigate underlying mechanisms associated with antimicrobial resistance (AMR). METHODS Metabolomics investigations were performed using Fourier-transform infrared (FT-IR) spectroscopy as a metabolic fingerprinting approach combined with gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. RESULTS Our findings demonstrated that metabolic fingerprints provided by FT-IR analysis allowed for the differentiation of susceptible and resistant isolates. GC-MS analysis validated these findings, while also providing a deeper understanding of the metabolic alterations caused by exposure to ciprofloxacin. GC-MS metabolic profiling detected 176 metabolic features in the cellular extracts cultivated on BHI broth, and of these, 137 could be identified to Metabolomics Standards Initiative Level 2. Data analysis showed that 40 metabolites (30 Level 2 and 10 unknown) were differentiated between susceptible and resistant isolates. The identified metabolites belonging to central carbon metabolism; arginine and proline metabolism; alanine, aspartate and glutamate metabolism; and pyruvate metabolism. Univariate receiver operating characteristic (ROC) curve analyses revealed that six of these metabolites (glycerol-3-phosphate, O-phosphoethanolamine, asparagine dehydrate, maleimide, tyrosine, and alanine) have a crucial role in distinguishing susceptible from resistant isolates (AUC > 0.84) and contributing to antimicrobial resistance in K. oxtytoca. CONCLUSION Our study provides invaluable new insights into the mechanisms underlying development of antimicrobial resistance in K. oxytoca suggests potential therapeutic targets for prevention and identification of AMR in K. oxytoca infections.
Collapse
Affiliation(s)
- Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
- Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Kurdistan Region, Iraq
| | - Sahand Shams
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Dakshat Trivedi
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
- Clinical Metabolomics Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Rachel McGalliard
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Christopher M Parry
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, United Kingdom
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom.
| |
Collapse
|
8
|
Zou P, Huang L, Li Y, Liu D, Che J, Zhao T, Li H, Li J, Cui YN, Yang G, Li Z, Li LL, Gao C. Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407152. [PMID: 39279551 DOI: 10.1002/adma.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (NCefoTs) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp "concentrated island-liked clusters" on the surface of NCefoTs promote the efficient penetration of NCefoTs through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered NCefoTs transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of NCefoTs in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of NCefoTs, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated E. coli MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in NCefoTs, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an "on demands" strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.
Collapse
Affiliation(s)
- Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Junwei Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Te Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Hui Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100083, China
| | - Jiaxin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Nan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
9
|
Coluccio A, Lopez Palomera F, Spero MA. Anaerobic bacteria in chronic wounds: Roles in disease, infection and treatment failure. Wound Repair Regen 2024; 32:840-857. [PMID: 39129662 DOI: 10.1111/wrr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O2) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds. In this perspective article, we examine how anaerobic bacteria and their distinct physiologies support persistent, antibiotic-recalcitrant infections. We describe the anaerobic energy metabolisms bacteria rely on for long-term survival in the wound environment, and why many antibiotics become less effective under hypoxic conditions. We also discuss obligate anaerobes, which are among the most prevalent taxa to colonise chronic wounds, yet their potential roles in influencing the microbial community and wound healing have been overlooked. All of the most common obligate anaerobes found in chronic wounds are opportunistic pathogens. We consider how these organisms persist in the wound environment and interface with host physiology to hinder wound healing processes or promote chronic inflammation. Finally, we apply our understanding of anaerobic physiologies to evaluate current treatment practices and to propose new strategies for treating chronic wound infections.
Collapse
Affiliation(s)
- Alison Coluccio
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Melanie A Spero
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
10
|
Yi J, Pei C, Zhang T, Qin Q, Gu X, Li Y, Ruan D, Wan J, Qiao L. Nanoscale Multipatterning Zn,Co-ZIF@FeOOH for Eradication of Multidrug-Resistant Bacteria and Antibacterial Treatment of Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58217-58225. [PMID: 39435754 DOI: 10.1021/acsami.4c10935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The rising incidence of infections caused by multidrug-resistant bacteria highlights the urgent need for innovative bacterial eradication strategies. Metal ions, such as Zn2+ and Co2+, have bactericidal effects by disrupting bacterial cell membranes and interfering with essential cellular processes. This has led to increased attention toward metal-organic frameworks (MOFs) as potential nonantibiotic bactericidal agents. However, the uniform and enhanced localized release of bactericidal metal ions remains a challenge. Herein, we introduce a nanoscale multipatterned Zn,Co-ZIF@FeOOH, featuring a multipod-like morphology with spiky corners, and dual-bactericidal metal ions. Compared to pure Zn,Co-ZIF, the multipod-like morphology of Zn,Co-ZIF@FeOOH exhibits enhanced adhesion toward bacterial surfaces via topological and multiple interactions of electrostatic interaction, significantly increasing the local release of Zn2+ and Co2+. Additionally, the spiky corners of the spindle-shaped FeOOH nanorods physically penetrate bacterial membranes, causing damage and further enhancing adhesion to bacteria. Nine Gram-negative and one Gram-positive bacteria were selected for in vitro test. Notably, the nanoscale multipatterned Zn,Co-ZIF@FeOOH exhibited high bactericidal efficacy against various multidrug-resistant bacteria, including extended-spectrum β-lactamase-producing (ESBL+) bacteria and carbapenem-resistant bacteria, performing well in both acidic and neutral environments. The wound healing activity of Zn,Co-ZIF@FeOOH was further demonstrated using female Balb/c mouse models infected with bacteria, where the materials show robust antibacterial efficacy and commendable biocompatibility. This study showcases the assembly of metal oxide/MOF composites for nanoscale multipatterning, aims at synergistic bacterial eradication and offers insights into developing nanomaterial-based strategies against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jia Yi
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Congcong Pei
- School of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Tangming Zhang
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai 200433, China
| | - Xiaoxia Gu
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Yekan Li
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Danping Ruan
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Liang Qiao
- Minhang Hospital, and Department of Chemistry, Fudan University, Shanghai 200000, China
| |
Collapse
|
11
|
Bann SJ, Cochrane SA. A novel approach for the synthesis of the cyclic lipopeptide globomycin. RSC Med Chem 2024; 16:d4md00685b. [PMID: 39493230 PMCID: PMC11528322 DOI: 10.1039/d4md00685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Cyclic lipopeptides (CLiPs) are a highly diverse class of secondary metabolites produced by bacteria and fungi. Examples of CLiPs have been found that possess potent antimicrobial activity against multidrug-resistant Gram-negative bacteria. Globomycin is a 19-membered CLiP that kills both Gram-positive and Gram-negative bacteria through inhibition of lipoprotein signal peptidase II (Lsp). It can only be obtained in small quantities from its Streptomyces producer strain, so there has been much interest in development of synthetic methods to access globomycin and analogues. Globomycin contains an N-terminal anti-α-methyl-β-hydroxy nonanoyl lipid tail, whose hydroxyl group forms an ester with the C-terminal carboxylate. Constructing the anti-arrangement between the α-methyl and β-hydroxy is synthetically challenging and previous globomycin syntheses are not compatible with diversification of the lipid tail after the stereocenters have been installed. Herein, we describe a new approach for the synthesis of globomycin that allows for facile lipid diversification. Using an anti-Evans Aldol condensation, a common intermediate is obtained that allows different "lipid swapping" through Grubbs-catalyzed cross-metathesis. Upon auxiliary cleavage, the resulting lipid can then be utilized in solid-phase peptide synthesis. Given the plethora of lipopeptides that contain β-hydroxy lipids, this method offers a convenient approach for convergent generation of lipopeptide analogues.
Collapse
Affiliation(s)
- Samantha J Bann
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG UK
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG UK
| |
Collapse
|
12
|
Yang B, Xin X, Cao X, Nasifu L, Nie Z, He B. Phenotypic and genotypic perspectives on detection methods for bacterial antimicrobial resistance in a One Health context: research progress and prospects. Arch Microbiol 2024; 206:409. [PMID: 39302440 DOI: 10.1007/s00203-024-04131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The widespread spread of bacterial antimicrobial resistance (AMR) and multidrug-resistant bacteria poses a significant threat to global public health. Traditional methods for detecting bacterial AMR are simple, reproducible, and intuitive, requiring long time incubation and high labor intensity. To quickly identify and detect bacterial AMR is urgent for clinical treatment to reduce mortality rate, and many new methods and technologies were required to be developed. This review summarizes the current phenotypic and genotypic detection methods for bacterial AMR. Phenotypic detection methods mainly include antimicrobial susceptibility tests, while genotypic detection methods have higher sensitivity and specificity and can detect known or even unknown drug resistance genes. However, most of the current tests are either genotypic or phenotypic and rarely combined. Combining the advantages of phenotypic and genotypic methods, combined with the joint application of multiple rapid detection methods may be the trend for future AMR testing. Driven by rapid diagnostic technology, big data analysis, and artificial intelligence, detection methods of bacterial AMR are expected to constantly develop and innovate. Adopting rational detection methods and scientific data analysis can better address the challenges of bacterial AMR and ensure human health and social well-being.
Collapse
Affiliation(s)
- Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqi Xin
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lubanga Nasifu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Biology, Muni University, Arua, Uganda
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
13
|
Kesharwani S, Eeba, Tandi M, Agarwal N, Sundriyal S. Design and synthesis of non-hydroxamate lipophilic inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): in silico, in vitro and antibacterial studies. RSC Adv 2024; 14:27530-27554. [PMID: 39221132 PMCID: PMC11362829 DOI: 10.1039/d4ra05083e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway operating in several pathogens, including Mycobacterium and Plasmodium. Since a DXR homologue is not present in humans, it is an important antimicrobial target. Fosmidomycin (FSM) and its analogues inhibit DXR function by chelating the divalent metal (Mn2+ or Mg2+) in its active site via a hydroxamate metal binding group (MBG). The latter, however, enhances the polarity of molecules and is known to display metabolic instability and toxicity issues. While attempts have been made to increase the lipophilicity of FSM by substituting the linker chain and prodrug approach, very few efforts have been made to replace the hydroxamate group with other lipophilic MBGs. We report a systematic in silico and experimental investigation to identify novel MBGs for designing non-hydroxamate lipophilic DXR inhibitors. The SAR studies with selected MBG fragments identified novel inhibitors of E. Coli DXR with IC50 values ranging from 0.29 to 106 μM. The promising inhibitors were also screened against ESKAPE pathogens and M. tuberculosis.
Collapse
Affiliation(s)
- Sharyu Kesharwani
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Eeba
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Mile Stone, Gurugram-Faridabad Expressway Faridabad 121001 Haryana India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (BITS) Pilani Campus, Vidya Vihar, Pilani Rajasthan 333 031 India
| |
Collapse
|
14
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
15
|
Parthasarathy A, Miranda RR, Bedore TJ, Watts LM, Mantravadi PK, Wong NH, Chu J, Adjei JA, Rana AP, Savka MA, Bulman ZP, Borrego EJ, Hudson AO. Interaction of Acinetobacter sp. RIT 592 induces the production of broad-spectrum antibiotics in Exiguobacterium sp. RIT 594. Front Pharmacol 2024; 15:1456027. [PMID: 39148551 PMCID: PMC11324575 DOI: 10.3389/fphar.2024.1456027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most alarming global public health challenges of the 21st century. Over 3 million antimicrobial-resistant infections occur in the United States annually, with nearly 50,000 cases being fatal. Innovations in drug discovery methods and platforms are crucial to identify novel antibiotics to combat AMR. We present the isolation and characterization of potentially novel antibiotic lead compounds produced by the cross-feeding of two rhizosphere bacteria, Acinetobacter sp. RIT 592 and Exiguobacterium sp. RIT 594. We used solid-phase extraction (SPE) followed by liquid chromatography (LC) to enrich antibiotic extracts and subsequently mass spectrometry (MS) analysis of collected fractions for compound structure identification and characterization. The MS data were processed through the Global Natural Product Social Molecular Networking (GNPS) database. The supernatant from RIT 592 induced RIT 594 to produce a cocktail of antimicrobial compounds active against Gram-positive and negative bacteria. The GNPS analysis indicated compounds with known antimicrobial activity in the bioactive samples, including oligopeptides and their derivatives. This work emphasizes the utility of microbial community-based platforms to discover novel clinically relevant secondary metabolites. Future work includes further structural characterization and antibiotic activity evaluation of the individual compounds against pathogenic multidrug-resistant (MDR) bacteria.
Collapse
Affiliation(s)
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States
| | - T J Bedore
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Lizabeth M Watts
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | | | - Narayan H Wong
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Jonathan Chu
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Joseph A Adjei
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Amisha P Rana
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Eli J Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
16
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
17
|
Park JH, Bae KS, Kang J, Yoon JK, Lee SH. Comprehensive Assessment of Multidrug-Resistant and Extraintestinal Pathogenic Escherichia coli in Wastewater Treatment Plant Effluents. Microorganisms 2024; 12:1119. [PMID: 38930502 PMCID: PMC11205404 DOI: 10.3390/microorganisms12061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Multidrug-resistant (MDR) Escherichia coli poses a significant threat to public health, contributing to elevated rates of morbidity, mortality, and economic burden. This study focused on investigating the antibiotic resistance profiles, resistance and virulence gene distributions, biofilm formation capabilities, and sequence types of E. coli strains resistant to six or more antibiotic classes. Among 918 strains isolated from 33 wastewater treatment plants (WWTPs), 53.6% (492/918) demonstrated resistance, 32.5% (298/918) were MDR, and over 8% (74/918) were resistant to six or more antibiotic classes, exhibiting complete resistance to ampicillin and over 90% to sulfisoxazole, nalidixic acid, and tetracycline. Key resistance genes identified included sul2, blaTEM, tetA, strA, strB, and fimH as the predominant virulence genes linked to cell adhesion but limited biofilm formation; 69% showed no biofilm formation, and approximately 3% were strong producers. Antibiotic residue analysis detected ciprofloxacin, sulfamethoxazole, and trimethoprim in all 33 WWTPs. Multilocus sequence typing analysis identified 29 genotypes, predominantly ST131, ST1193, ST38, and ST69, as high-risk clones of extraintestinal pathogenic E. coli. This study provided a comprehensive analysis of antibiotic resistance in MDR E. coli isolated from WWTPs, emphasizing the need for ongoing surveillance and research to effectively manage antibiotic resistance.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environment Research, Yangpyeong-gun, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Kyung-Seon Bae
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Jihyun Kang
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Jeong-Ki Yoon
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Soo-Hyung Lee
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| |
Collapse
|
18
|
Wang Y, Zhang Y, Su R, Wang Y, Qi W. Antimicrobial therapy based on self-assembling peptides. J Mater Chem B 2024; 12:5061-5075. [PMID: 38726712 DOI: 10.1039/d4tb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The emergence of drug-resistant microorganisms has threatened global health, and microbial infections have severely limited the use of medical materials. For example, the attachment and colonization of pathogenic bacteria to medical implant materials can lead to wound infections, inflammation and complications, as well as implant failure, shortening their lifespan and even resulting in patient death. In the era of antibiotic resistance, antimicrobial drug discovery needs to prioritize unconventional therapies that act on new targets or adopt new mechanisms. In this regard, supramolecular antimicrobial peptides have emerged as attractive therapeutic platforms, both as bactericides for combination antibiotics and as delivery vehicles. By taking advantage of their programmable intermolecular and intramolecular interactions, peptides can be modified to form higher-order structures (including nanofibers and nanoparticles) with unique functionality. This paper begins with an analysis of the relationship between peptide self-assembly and antimicrobial activity, describes in detail the research and development of various self-assembled antimicrobial peptides in recent years, and finally explores different combinatorial strategies for self-assembling antimicrobial peptides.
Collapse
Affiliation(s)
- Yuqi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yexi Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
19
|
Aziz NMA, Goda DA, Abdel-Meguid DI, El-Sharouny EE, Soliman NA. A comparative study of the biosynthesis of CuNPs by Niallia circulans G9 and Paenibacillus sp. S4c strains: characterization and application as antimicrobial agents. Microb Cell Fact 2024; 23:156. [PMID: 38802818 PMCID: PMC11131221 DOI: 10.1186/s12934-024-02422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Biosynthesis of metallic nanoparticles using microorganisms are a fabulous and emerging eco-friendly science with well-defined sizes, shapes and controlled monodispersity. Copper nanoparticles, among other metal particles, have sparked increased attention due to their applications in electronics, optics, catalysis, and antimicrobial agents. RESULTS This investigation explains the biosynthesis and characterization of copper nanoparticles from soil strains, Niallia circulans G9 and Paenibacillus sp. S4c by an eco-friendly method. The maximum reduction of copper ions and maximum synthesis CuNPs was provided by these strains. Biogenic formation of CuNPs have been characterized by UV-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray analysis and transmission electron microscopy analysis. Using UV-visible spectrum scanning, the synthesised CuNPs' SPR spectra showed maximum absorption peaks at λ304&308 nm. TEM investigation of the produced CuNPs revealed the development of spherical/hexagonal nanoparticles with a size range of 13-100 nm by the G9 strain and spherical nanoparticles with a size range of 5-40 nm by the S4c strain. Functional groups and chemical composition of CuONPs were also confirmed. The antimicrobial activity of the biosynthesized CuNPs were investigated against some human pathogens. CuNPs produced from the G9 strain had the highest activity against Candida albicans ATCC 10,231 and the lowest against Pseudomonas aeruginosa ATCC 9027. CuNPs from the S4c strain demonstrated the highest activity against Escherichia coli ATCC 10,231 and the lowest activity against Klebsiella pneumonia ATCC 13,883. CONCLUSION The present work focused on increasing the CuNPs production by two isolates, Niallia circulans G9 and Paenibacillus sp. S4c, which were then characterized alongside. The used analytics and chemical composition techniques validated the existence of CuONPs in the G9 and S4c biosynthesized nano cupper. CuNPs of S4c are smaller and have a more varied shape than those of G9 strain, according to TEM images. In terms of antibacterial activity, the biosynthesized CuNPs from G9 and S4c were found to be more effective against Candida albicans ATCC 10,231 and E. coli ATCC 10,231, respectively.
Collapse
Affiliation(s)
- Nahla M Abdel Aziz
- Botany and Microbiology Department, Faculty of Science, Alexandria University, 21526, Alexandria, Egypt
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, P.O. 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Dina I Abdel-Meguid
- Botany and Microbiology Department, Faculty of Science, Alexandria University, 21526, Alexandria, Egypt
| | - Ebaa E El-Sharouny
- Botany and Microbiology Department, Faculty of Science, Alexandria University, 21526, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, P.O. 21934, New Borg El-Arab City, Alexandria, Egypt.
| |
Collapse
|
20
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
22
|
Palacios-Rodriguez AP, Espinoza-Culupú A, Durán Y, Sánchez-Rojas T. Antimicrobial Activity of Bacillus amyloliquefaciens BS4 against Gram-Negative Pathogenic Bacteria. Antibiotics (Basel) 2024; 13:304. [PMID: 38666980 PMCID: PMC11047741 DOI: 10.3390/antibiotics13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024] Open
Abstract
Worldwide, bacterial resistance is one of the most severe public health problems. Currently, the failure of antibiotics to counteract superbugs highlights the need to search for new molecules with antimicrobial potential to combat them. The objective of this research was to evaluate the antimicrobial activity of Bacillus amyloliquefaciens BS4 against Gram-negative bacteria. Thirty yeasts and thirty-two Bacillus isolates were tested following the agar well-diffusion method. Four Bacillus sp. strains (BS3, BS4, BS17, and BS21) showed antagonistic activity against E. coli ATCC 25922 using bacterial culture (BC) and the cell-free supernatant (CFS), where the BS4 strain stood out, showing inhibitory values of 20.50 ± 0.70 mm and 19.67 ± 0.58 mm for BC and CFS, respectively. The Bacillus sp. BS4 strain can produce antioxidant, non-hemolytic, and antimicrobial metabolites that exhibit activity against several microorganisms such as Salmonella enterica, Klebsiella pneumoniae, Shigella flexneri, Enterobacter aerogenes, Proteus vulgaris, Yersinia enterocolitica, Serratia marcescens, Aeromonas sp., Pseudomonas aeruginosa, Candida albicans, and Candida tropicalis. According to the characterization of the supernatant, the metabolites could be proteinaceous. The production of these metabolites is influenced by carbon and nitrogen sources. The most suitable medium to produce antimicrobial metabolites was TSB broth. The one-factor-at-a-time method was used to standardize parameters such as pH, agitation, temperature, carbon source, nitrogen source, and salts, resulting in the best conditions of pH 7, 150 rpm, 28 °C, starch (2.5 g/L), tryptone (20 g/L), and magnesium sulfate (0.2 g/L), respectively. Moreover, the co-culture was an excellent strategy to improve antimicrobial activity, achieving maximum antimicrobial activity with an inhibition zone of 21.85 ± 1.03 mm. These findings position the Bacillus amyloliquefaciens BS4 strain as a promising candidate for producing bioactive molecules with potential applications in human health.
Collapse
Affiliation(s)
- Ana Paula Palacios-Rodriguez
- Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (A.P.P.-R.); (Y.D.)
| | - Abraham Espinoza-Culupú
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Yerson Durán
- Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (A.P.P.-R.); (Y.D.)
| | - Tito Sánchez-Rojas
- Laboratory of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (A.P.P.-R.); (Y.D.)
| |
Collapse
|
23
|
Tuytschaevers S, Aden L, Greene Z, Nixon C, Shaw W, Hatch D, Kumar G, Miranda RR, Hudson AO. Isolation, whole-genome sequencing, and annotation of two antibiotic-producing and antibiotic-resistant bacteria, Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838, collected from the environment. PLoS One 2024; 19:e0293943. [PMID: 38412159 PMCID: PMC10898753 DOI: 10.1371/journal.pone.0293943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/22/2023] [Indexed: 02/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human health since infections caused by antimicrobial-resistant bacteria are life-threatening conditions with minimal treatment options. Bacteria become resistant when they develop the ability to overcome the compounds that are meant to kill them, i.e., antibiotics. The increasing number of resistant pathogens worldwide is contrasted by the slow progress in the discovery and production of new antibiotics. About 700,000 global deaths per year are estimated as a result of drug-resistant infections, which could escalate to nearly 10 million by 2050 if we fail to address the AMR challenge. In this study, we collected and isolated bacteria from the environment to screen for antibiotic resistance. We identified several bacteria that showed resistance to multiple clinically relevant antibiotics when tested in antibiotic susceptibility disk assays. We also found that two strains, identified as Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838 via whole genome sequencing and annotation, produce bactericidal compounds against both Gram-positive and Gram-negative bacteria in disc-diffusion inhibitory assays. We mined the two strains' whole-genome sequences to gain more information and insights into the antibiotic resistance and production by these bacteria. Subsequently, we aim to isolate, identify, and further characterize the novel antibiotic compounds detected in our assays and bioinformatics analysis.
Collapse
Affiliation(s)
- Serena Tuytschaevers
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Leila Aden
- Rochester Prep High School, Rochester, New York, United States of America
| | - Zacchaeus Greene
- Rochester Prep High School, Rochester, New York, United States of America
| | - Chanei Nixon
- Rochester Prep High School, Rochester, New York, United States of America
| | - Wade Shaw
- Rochester Prep High School, Rochester, New York, United States of America
| | - Dillan Hatch
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Girish Kumar
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Renata Rezende Miranda
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America
| |
Collapse
|
24
|
Garza-Cervantes JA, Mendiola-Garza G, León-Buitimea A, Morones-Ramírez JR. Synergistic antibacterial effects of exopolysaccharides/nickel-nanoparticles composites against multidrug-resistant bacteria. Sci Rep 2023; 13:21519. [PMID: 38057583 PMCID: PMC10700344 DOI: 10.1038/s41598-023-48821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The need for an alternative treatment to fight infectious diseases caused by antibiotic-resistant bacteria is increasing. A possible way to overcome bacterial resistance to antibiotics is by reintroducing commonly used antibiotics with a sensitizer capable of enhancing their antimicrobial effect in resistant bacteria. Here, we use a composite composed of exopolysaccharide capped-NiO NPs, with antimicrobial effects against antibiotic-resistant Gram-positive and Gram-negative bacteria. It potentiated the antimicrobial effects of four different antibiotics (ampicillin, kanamycin, chloramphenicol, and ciprofloxacin) at lower concentrations than their minimal inhibitory concentrations. We observed that the Ni-composite synergistically enhanced, fourfold, the antibacterial effect of kanamycin and chloramphenicol against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, as well as ampicillin against multidrug-resistant Staphylococcus aureus, and ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa by eightfold. We also found that Ni-composite could not inhibit biofilm synthesis on the tested bacterial strains. Our results demonstrated the possibility of using metal nanoparticles, like NiO, as a sensitizer to overcome bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Javier A Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - Gricelda Mendiola-Garza
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico.
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico.
| |
Collapse
|
25
|
Serna N, López-Laguna H, Aceituno P, Rojas-Peña M, Parladé E, Voltà-Durán E, Martínez-Torró C, Sánchez JM, Di Somma A, Carratalá JV, Livieri AL, Ferrer-Miralles N, Vázquez E, Unzueta U, Roher N, Villaverde A. Efficient Delivery of Antimicrobial Peptides in an Innovative, Slow-Release Pharmacological Formulation. Pharmaceutics 2023; 15:2632. [PMID: 38004610 PMCID: PMC10674355 DOI: 10.3390/pharmaceutics15112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Both nanostructure and multivalency enhance the biological activities of antimicrobial peptides (AMPs), whose mechanism of action is cooperative. In addition, the efficacy of a particular AMP should benefit from a steady concentration at the local place of action and, therefore, from a slow release after a dynamic repository. In the context of emerging multi-resistant bacterial infections and the urgent need for novel and effective antimicrobial drugs, we tested these concepts through the engineering of four AMPs into supramolecular complexes as pharmacological entities. For that purpose, GWH1, T22, Pt5, and PaD, produced as GFP or human nidogen-based His-tagged fusion proteins, were engineered as self-assembling oligomeric nanoparticles ranging from 10 to 70 nm and further packaged into nanoparticle-leaking submicron granules. Since these materials slowly release functional nanoparticles during their time-sustained unpacking, they are suitable for use as drug depots in vivo. In this context, a particular AMP version (GWH1-NIDO-H6) was selected for in vivo validation in a zebrafish model of a complex bacterial infection. The GWH1-NIDO-H6-secreting protein granules are protective in zebrafish against infection by the multi-resistant bacterium Stenotrophomonas maltophilia, proving the potential of innovative formulations based on nanostructured and slowly released recombinant AMPs in the fight against bacterial infections.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Patricia Aceituno
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mauricio Rojas-Peña
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Julieta M. Sánchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Andrea L. Livieri
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| |
Collapse
|
26
|
Iwase T, Ito K, Nishimura T, Miyakawa K, Ryo A, Kobayashi H, Mitsunaga M. Photoimmunotechnology as a powerful biological tool for molecular-based elimination of target cells and microbes, including bacteria, fungi and viruses. Nat Protoc 2023; 18:3390-3412. [PMID: 37794073 DOI: 10.1038/s41596-023-00874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/12/2023] [Indexed: 10/06/2023]
Abstract
Microbial pathogens, including bacteria, fungi and viruses, can develop resistance to clinically used drugs; therefore, finding new therapeutic agents is an ongoing challenge. Recently, we reported the photoimmuno-antimicrobial strategy (PIAS), a type of photoimmunotechnology, that enables molecularly targeted elimination of a wide range of microbes, including the viral pathogen severe acute respiratory syndrome coronavirus 2 and the multidrug-resistant bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA). PIAS works in the same way as photoimmunotherapy (PIT), which has been used to treat recurrent head and neck cancer in Japan since 2020. Both PIAS and PIT use a monoclonal antibody conjugated to a phthalocyanine derivative dye that undergoes a shape change when photoactivated. This shape change induces a structural change in the antibody-dye conjugate, resulting in physical stress within the binding sites of the conjugate and disrupting them. Therefore, targeting accuracy and flexibility can be determined based on the specificity of the antibody used. In this protocol, we describe how to design a treatment strategy, label monoclonal antibodies with the dye and characterize the products. We provide detailed examples of how to set up and perform PIAS and PIT applications in vitro and in vivo. These examples are PIAS against microbes using MRSA as a representative subject, PIAS against viruses using severe acute respiratory syndrome coronavirus 2 in VeroE6/TMPRSS2 cells, PIAS against MRSA-infected animals, and in vitro and in vivo PIT against cancer cells. The in vitro and in vivo protocols can be completed in ~3 h and 2 weeks, respectively.
Collapse
Affiliation(s)
- Tadayuki Iwase
- Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kimihiro Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Mitsunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Ali Khan M, El-Kersh DM, Islam MS, Ara Khan S, Kamli H, Sarkar C, Bhuia MS, Islam T, Chandra Shill M, Gobe GC, Sönmez Gürer E, Setzer WN, Sharifi-Rad J, Torequl Islam M. Mikania micrantha Kunth: An Ethnopharmacological Treasure Trove of Therapeutic Potential. Chem Biodivers 2023; 20:e202300392. [PMID: 37715705 DOI: 10.1002/cbdv.202300392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
Mikania micrantha is utilized as a therapeutic for the treatment of various human ailments including insect bites, rashes and itches of skin, chicken pox, healing of sores and wounds, colds and fever, nausea, jaundice, rheumatism, and respiratory ailments. This study aimed at summarizing the traditional uses, phytochemical profile, and biological activities of M. micrantha based on obtainable information screened from different databases. An up-to-date search was performed on M. micrantha in PubMed, Science Direct, clinicaltrials.gov, and Google Scholar databases with specific keywords. No language restrictions were imposed. Published articles, theses, seminar/conference papers, abstracts, and books on ethnobotany, phytochemistry and pharmacological evidence were considered. Based on the inclusion criteria, this study includes 53 published records from the above-mentioned databases. The results suggest that fresh leaves and whole plant are frequently used in folk medicine. The plant contains more than 150 different phytochemicals under the following groups: essential oils, phenolics and flavonoids, terpenes, terpene lactones, glycosides, and sulfated flavonoids. It contains carbohydrates and micronutrients including vitamins and major and trace minerals. M. micrantha possesses antioxidant, anti-inflammatory, anti-microbial, anti-dermatophytic, anti-protozoal, anthelmintic, cytotoxic, anxiolytic, anti-diabetic, lipid-lowering and antidiabetic, spasmolytic, memory-enhancing, wound-healing, anti-aging, and thrombolytic activities. No clinical studies have been reported to date. M. micrantha might be one of the potential sources of phytotherapeutic compounds against diverse ailments in humans. Studies are required to confirm its safety profile in experimental animals prior to initiating clinical trials. Moreover, adequate investigation is also crucial to clarify exact mechanism of action for each biological effect.
Collapse
Affiliation(s)
- Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, is missing, Egypt
| | - Md Shafiqul Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shams Ara Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Glenda C Gobe
- School of Biomedical Sciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Eda Sönmez Gürer
- Sivas Cumhuriyet University, Faculty of Pharmacy, Department of Pharmacognosy, Sivas, Turkey
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
28
|
Wang L, Zheng W, Zhong L, Yang Y, Chen Y, Hou Q, Yu P, Jiang X. Phenylboronic Acid-Modified Gold Nanoclusters as a Nanoantibiotic to Treat Vancomycin-Resistant Enterococcus faecalis-Caused Infections. ACS NANO 2023; 17:19685-19695. [PMID: 37815027 DOI: 10.1021/acsnano.3c02886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Vancomycin is one of the last lines of defense against certain drug-resistant bacteria-caused infections. However, the high susceptibility to drug resistance and high toxicity seriously limit the application of vancomycin. Nanoantibiotics provide opportunities to solve these problems. Herein, we present mercaptophenylboronic acid (MBA)-modified gold nanoclusters with well-defined molecular formulas and structure (Au44(MBA)18) and excellent antibacterial activities against various drug-resistant bacteria such as vancomycin-resistant Enterococcus faecalis (VRE). Au44(MBA)18 interacts with bacteria by first attaching to teichoic-acid and destroying the cell wall and subsequently binding to the bacterial DNA. Au44(MBA)18 could be administered via multiple routes and has a high biosafety (500 mg/kg, no ototoxicity), overcoming the two major shortcomings of vancomycin (sole administration route and high ototoxicity). Our study is insightful for curing infections caused by multidrug-resistant bacteria using nanoantibiotics with high biosafety.
Collapse
Affiliation(s)
- Le Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- Cancer Research Center, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, People's Republic of China
| | - Wenfu Zheng
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, People's Republic of China
| | - Leni Zhong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yingkun Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Qinghong Hou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Peiyuan Yu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
29
|
Caramiello AM, Bellucci MC, Ottaviano E, Ancona S, Borghi E, Volonterio A. Synthesis of amphiphilic hydantoin-based universal peptidomimetics as antibiotic agents. Org Biomol Chem 2023; 21:7702-7706. [PMID: 37698587 DOI: 10.1039/d3ob01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Three model hydantoin-based universal peptidomimetics were designed and synthetized. Their preferred amphiphilic β-turn conformation was assessed using molecular modeling and NMR experiments, and their antibacterial activity was tested against Gram-positive and Gram-negative bacteria strains, which demonstrated that these compounds could be a captivating class of antibiotics to fight emergent drug resistance.
Collapse
Affiliation(s)
- Alessio M Caramiello
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Maria Cristina Bellucci
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20131 Milano, Italy
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, via Di Rudinì 8, 20142, Milan, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
30
|
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI. Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy. Int J Mol Sci 2023; 24:14897. [PMID: 37834344 PMCID: PMC10573543 DOI: 10.3390/ijms241914897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The misuse of antibiotics and antimycotics accelerates the emergence of antimicrobial resistance, prompting the need for novel strategies to combat this global issue. Metallic nanoparticles have emerged as effective tools for combating various resistant microbes. Numerous studies have highlighted their potential in addressing antibiotic-resistant fungi and bacterial strains. Understanding the mechanisms of action of these nanoparticles, including iron-oxide, gold, zinc oxide, and silver is a central focus of research within the life science community. Various hypotheses have been proposed regarding how nanoparticles exert their effects. Some suggest direct targeting of microbial cell membranes, while others emphasize the release of ions from nanoparticles. The most compelling proposed antimicrobial mechanism of nanoparticles involves oxidative damage caused by nanoparticles-generated reactive oxygen species. This review aims to consolidate knowledge, discuss the properties and mechanisms of action of metallic nanoparticles, and underscore their potential as alternatives to enhance the efficacy of existing medications against infections caused by antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alishba Salman
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Zaryab Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Sadia Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
31
|
Kurćubić VS, Raketić SV, Mašković JM, Mašković PZ, Kurćubić LV, Heinz V, Tomasevic IB. Evaluation of Antimicrobial Activity of Kitaibelia vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. PLANTS (BASEL, SWITZERLAND) 2023; 12:3236. [PMID: 37765400 PMCID: PMC10537753 DOI: 10.3390/plants12183236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The goal of the present research was to screen the antimicrobial activity of an ethanolic extract of Kitaibelia vitifolia against 30 multidrug-resistant (MDR) bacterial strains isolated from healthcare-associated infections. Minimum inhibitory concentrations (MICs) of the samples against the tested bacteria were determined using the microdilution method. MDR bacterial strains were characterized using standard biochemical tests and the commercial identification systems API 20 NE and API 20 E as: Klebsiella spp. (18 isolates-I); methicillin-resistant Staphylococcus aureus (MRSA)-3; Acinetobacter spp.-3; Pseudomonas aeruginosa-5; vancomycin-resistant Enterococcus (VRE)-1. The sensitivity of isolated bacterial strains was determined using the disc diffusion method against 25 commonly used antibiotics. The highest level of sensitivity to K. vitifolia extract was confirmed in 88.89% of Klebsiella spp. isolates, E. coli ATCC 25922, two strains of MRSA (1726, 1063), Acinetobacter spp. strain 1578, and VRE strain 30, like Enterococcus faecalis ATCC 29212 (MIC =< 2.44 μg/mL). The lowest sensitivity was exhibited by 75.00% of Acinetobacter spp. (strains 1577 and 6401), where the highest values for MICs were noted (1250 μg/mL). The results indicate that the extract of K. vitifolia could be a possible source for creating new, efficient, and effective natural medicines for combat against MDR strains of bacteria.
Collapse
Affiliation(s)
- Vladimir S. Kurćubić
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Svetlana V. Raketić
- Microbiology Laboratory for Food and Water, Public Health Institute Čačak, Veselina Milikića 7, 32000 Čačak, Serbia;
| | - Jelena M. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Pavle Z. Mašković
- Department of Chemistry and Chemical Engineering, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia; (J.M.M.); (P.Z.M.)
| | - Luka V. Kurćubić
- Department of Medical Microbiology, University Clinical Center of Serbia, Pasterova 2, 11000 Beograd, Serbia;
| | - Volker Heinz
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Igor B. Tomasevic
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
32
|
Peng J, Liu X, Lu Q, Yuan L, Xu W, Zhang H, Zang H. Ultrashort lipo-tetrapeptide with potent antibacterial activity and local therapeutic effect against Staphylococcus aureus. Int J Antimicrob Agents 2023; 62:106916. [PMID: 37423581 DOI: 10.1016/j.ijantimicag.2023.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Mastitis in dairy cows is a common infectious disease on dairy farms and a major danger to the dairy industry. The harmful bacteria with the greatest clinical isolation rate are Staphylococcus aureus. As a result, bacterial mastitis in dairy cows can lead to decreased milk output, quality, and costs. Traditional antibiotics are currently used to treat mastitis in dairy cows. Nonetheless, long-term usage of high doses of antibiotics increases the risk of the establishment of drug-resistant strains, and the problem of drug residues is becoming more prevalent. We investigated the antibacterial effects of varying molecular side chain length lipopeptides on Staphylococcus aureus ATCC25923 and GS1311 using five tetrapeptide ultrashort lipopeptides developed and synthesised in this study. METHODS To evaluate the application value of the synthesized lipopeptides in the prevention and treatment of mastitis, the lipopeptides with the best antibacterial action were chosen for safety testing and a mouse mastitis model treatment test. RESULTS Three of the lipopeptides produced have strong antibacterial properties. Within the drug's safe concentration range, C16KGGK has an excellent antibacterial action and can have a therapeutic influence on mastitis induced by Staphylococcus aureus infection in mice. CONCLUSION The findings of this study can be used to develop new antibacterial medications and their therapeutic application in the treatment of mastitis in dairy cows.
Collapse
Affiliation(s)
- Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, China.
| | - Xuming Liu
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, China.
| | - Qiangsheng Lu
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, China.
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China.
| | - Wanyou Xu
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, China.
| | - Hecheng Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, China.
| | - Haoyue Zang
- College of Veterinary Medicine, Gansu Agricultural University, Gansu, China.
| |
Collapse
|
33
|
Hurst JH, Kelly MS. Leveraging the human microbiota to target bacterial respiratory pathogens: new paths toward an expanded antimicrobial armamentarium. mBio 2023; 14:e0085423. [PMID: 37338299 PMCID: PMC10470731 DOI: 10.1128/mbio.00854-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Acute respiratory infections are the most frequent infections across the lifespan and are the leading infectious cause of death among children globally. Bacterial respiratory infections are routinely treated with antibiotics, nearly all of which are derived from microbial natural products. Unfortunately, antibiotic-resistant bacteria are an increasingly frequent cause of respiratory infections, and there are few new antibiotics in development that target these pathogens. In the article by Stubbendieck et al., the authors identified Rothia species that demonstrate in vitro and ex vivo growth inhibition of the respiratory pathobiont Moraxella catarrhalis. The authors present experiments suggesting that this activity is mediated at least in part through the secretion of a novel peptidoglycan endopeptidase that targets the M. catarrhalis cell wall. In this commentary, we discuss these findings in the context of the urgent threat of antimicrobial resistance and highlight the promise of the human respiratory microbiota as a source of novel biotherapeutics.
Collapse
Affiliation(s)
- Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew S. Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
34
|
Ahmmed F, Al-Mijalli SH, Abdallah EM, Eissa IH, Ali F, Bhat AR, Jamalis J, Ben Hadda T, Kawsar SMA. Galactoside-Based Molecule Enhanced Antimicrobial Activity through Acyl Moiety Incorporation: Synthesis and In Silico Exploration for Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:998. [PMID: 37513910 PMCID: PMC10385442 DOI: 10.3390/ph16070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a series of galactoside-based molecules, compounds of methyl β-d-galactopyranoside (MDGP, 1), were selectively acylated using 2-bromobenzoyl chloride to obtain 6-O-(2-bromobenzoyl) substitution products, which were then transformed into 2,3,4-tri-O-6-(2-bromobenzoyl) compounds (2-7) with various nontraditional acyl substituents. The chemical structures of the synthesized analogs were characterized by spectroscopic methods and physicochemical and elemental data analyses. The antimicrobial activities of the compounds against five human pathogenic bacteria and two phyto-fungi were evaluated in vitro and it was found that the acyl moiety-induced synthesized analogs exhibited varying levels of antibacterial activity against different bacteria, with compounds 3 and 6 exhibiting broad-spectrum activity and compounds 2 and 5 exhibiting activity against specific bacteria. Compounds 3 and 6 were tested for MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) based on their activity. The synthesized analogs were also found to have potential as a source of new antibacterial agents, particularly against gram-positive bacteria. The antifungal results suggested that the synthesized analogs could be a potential source of novel antifungal agents. Moreover, cytotoxicity testing revealed that the compounds are less toxic. A structure-activity relationship (SAR) investigation revealed that the lauroyl chain [CH3(CH2)10CO-] and the halo-aromatic chain [3(/4)-Cl.C6H4CO-] in combination with sugar, had the most potent activity against bacterial and fungal pathogens. Density functional theory (DFT)-calculated thermodynamic and physicochemical parameters, and molecular docking, showed that the synthesized molecule may block dengue virus 1 NS2B/NS3 protease (3L6P). A 150 ns molecular dynamic simulation indicated stable conformation and binding patterns in a stimulating environment. In silico ADMET calculations suggested that the designed (MDGP, 1) had good drug-likeness values. In summary, the newly synthesized MDGP analogs exhibit potential antiviral activity and could serve as a therapeutic target for dengue virus 1 NS2B/NS3 protease.
Collapse
Affiliation(s)
- Faez Ahmmed
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 116884, Egypt
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | | | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda 60000, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
35
|
Guliy OI, Zaitsev BD, Borodina IA. Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:6292. [PMID: 37514587 PMCID: PMC10383298 DOI: 10.3390/s23146292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
Antibiotics are widely used to treat infectious diseases. This leads to the presence of antibiotics and their metabolic products in the ecosystem, especially in aquatic environments. In many countries, the growth of pathogen resistance to antibiotics is considered a threat to national security. Therefore, methods for determining the sensitivity/resistance of bacteria to antimicrobial drugs are important. This review discusses the mechanisms of the formation of antibacterial resistance and the various methods and sensor systems available for analyzing antibiotic effects on bacteria. Particular attention is paid to acoustic biosensors with active immobilized layers and to sensors that analyze antibiotics directly in liquids. It is shown that sensors of the second type allow analysis to be done within a short period, which is important for timely treatment.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms-Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia
| | - Boris D Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov 410019, Russia
| | - Irina A Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov 410019, Russia
| |
Collapse
|
36
|
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 2023; 87:e0003722. [PMID: 37129495 PMCID: PMC10304793 DOI: 10.1128/mmbr.00037-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Collapse
Affiliation(s)
- Narchonai Ganesan
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Biswajit Mishra
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - LewisOscar Felix
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
37
|
Zhang P, Chen W, Ma YC, Bai B, Sun G, Zhang S, Chang X, Wang Y, Jiang N, Zhang X, Ma S. Design and Synthesis of 4-Fluorophenyl-5-methylene-2(5 H)-furanone Derivatives as Potent Quorum Sensing Inhibitors. J Med Chem 2023. [PMID: 37310919 DOI: 10.1021/acs.jmedchem.2c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quorum sensing inhibitors (QSIs) are a class of compounds that can reduce the pathogenicity of bacteria without affecting bacterial growth. In this study, we designed and synthesized four series of 4-fluorophenyl-5-methylene-2(5H)-furanone derivatives and evaluated their QSI activities. Among them, compound 23e not only showed excellent inhibitory activity against various virulence factors but also significantly enhanced the inhibitory activity of antibiotics ciprofloxacin and clarithromycin against two strains of Pseudomonas aeruginosa in vitro. What is even more exciting is that it remarkably increased the antibacterial effect in vivo in combination with ciprofloxacin in the bacteremia model infected with P. aeruginosa PAO1. Moreover, 23e had little hemolytic activity to mouse erythrocytes. Further, the results of GFP reporter fluorescence strain inhibition and β-galactosidase activity inhibition experiments demonstrated that 23e simultaneously targeted the three quorum sensing systems in P. aeruginosa. As a result, compound 23e could be used as an effective QSI for further development against bacterial infections.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yang-Chun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Guanglin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shenyan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiaohong Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yingmei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Nan Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xianghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
38
|
Khan MMT, Sklar L. Editorial: Environmental contaminants in aquatic systems and chemical safety for environmental and human health, volume II. Front Public Health 2023; 11:1157834. [PMID: 37383263 PMCID: PMC10299172 DOI: 10.3389/fpubh.2023.1157834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/08/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Mohiuddin Md. Taimur Khan
- Department of Civil and Environmental Engineering, Washington State University Tri-Cities, Richland, WA, United States
| | - Larry Sklar
- Center for Molecular Discovery and Cancer Center, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
39
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J Funct Biomater 2023; 14:jfb14050244. [PMID: 37233354 DOI: 10.3390/jfb14050244] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Silver nanoparticles (AgNPs) are the most investigated antibacterial agents against multidrug resistant (MDR) pathogens. They can lead to cellular death by means of different mechanisms, damaging several cell compartments, from the external membrane, to enzymes, DNA and proteins; this simultaneous attack amplifies the toxic effect on bacteria with respect to traditional antibiotics. The effectiveness of AgNPs against MDR bacteria is strongly correlated with their chemical and morphological properties, which influence the pathways involved in cellular damage. In this review, AgNPs' size, shape and modification by functional groups or other materials are reported, both to investigate the different synthetic pathways correlated with nanoparticles' modifications and to evaluate the related effect on their antibacterial activity. Indeed, understanding the synthetic conditions for obtaining performing antibacterial AgNPs could help to tailor new and improved silver-based agents to combat multidrug resistance.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
40
|
Espinoza-Chávez R, Salerno A, Liuzzi A, Ilari A, Milelli A, Uliassi E, Bolognesi ML. Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS BIO & MED CHEM AU 2023; 3:32-45. [PMID: 37101607 PMCID: PMC10125329 DOI: 10.1021/acsbiomedchemau.2c00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 04/28/2023]
Abstract
Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.
Collapse
Affiliation(s)
- Rocío
Marisol Espinoza-Chávez
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anastasia Liuzzi
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Ilari
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
41
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
42
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
43
|
Liao M, Gong H, Quan X, Wang Z, Hu X, Chen Z, Li Z, Liu H, Zhang L, McBain AJ, Waigh TA, Zhou J, Lu JR. Intramembrane Nanoaggregates of Antimicrobial Peptides Play a Vital Role in Bacterial Killing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204428. [PMID: 36417574 DOI: 10.1002/smll.202204428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Zongyi Li
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
44
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
45
|
Al-Mijalli SH, Mrabti HN, Ouassou H, Flouchi R, Abdallah EM, Sheikh RA, Alshahrani MM, Awadh AAA, Harhar H, Omari NE, Qasem A, Assaggaf H, Moursi NH, Bouyahya A, Gallo M, Faouzi MEA. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111876. [PMID: 36431011 PMCID: PMC9695135 DOI: 10.3390/life12111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The objectives of this work were to determine the phytochemical composition and antioxidant, anti-diabetic, antibacterial, anti-inflammatory, and anti-acetylcholinesterase properties of Arbutus unedo L. and Laurus nobilis L. EOs. The antioxidant effects were estimated using four complementary methods. In addition, the anti-diabetic activity was assessed by targeting three carbohydrate-hydrolyzing enzymes, namely α-amylase, α-glucosidase, and lipase. The anti-inflammatory and anti-acetylcholinesterase effects were evaluated by testing the inhibitory potential of both plants on lipo-oxygenase and acetylcholinesterase (AChE), respectively. The antimicrobial activity of these oils was evaluated using disc-diffusion, minimum inhibitory concentration (MIC), and minimum lethal concentration (MLC) tests. The chemical composition of L. nobilis essential oil (EO) was dominated by eucalyptol (36.40%), followed by α-terpineole (13.05%), α-terpinyl acetate (10.61%), linalool (10.34%), and northujane (5.74%). The main volatile compounds of A. unedo EOs were decenal (13.47%), α-terpineol (7.8%), and palmitic acid (6.00%). L. nobilis and A. unedo EOs inhibited α-amylase with IC50 values of 42.51 ± 0.012 and 102 ± 0.06 µg/mL, respectively. Moreover, both oils inhibited the activity of α-glucosidase (IC50 = 1.347 ± 0.021 µg/mL and IC50 = 76 ± 0.021 µg/mL) and lipase (IC50 = 21.23 ± 0.021 µg/mL and IC50 = 97.018 ± 0.012 µg/mL, respectively). In addition, L. nobilis EO showed an anti-AChE activity (IC50 = 89.44 ± 0.07 µg/mL) higher than that of A. unedo EO (IC50 = 378.57 ± 0.05 µg/mL). Regarding anti-inflammatory activity, in vitro assays showed that L. nobilis significantly inhibits (IC50 = 48.31 ± 0.07 μg/mL) 5-lipoxygenase compared to A. unedo (IC50 = 86.14 ± 0.05 μg/mL). This was confirmed in vivo via a notable inhibition of inflammation recorded after 6 h of treatment in both plants at a dose of 50 mg/kg. The microbiological results revealed that EOs from both plants inhibited the growth of all tested organisms except P. aeruginosa, with the highest antimicrobial effect for L. nobilis. The results of these tests showed that these two plants possess remarkable biological and pharmacological properties, explaining their medicinal effects and suggesting them as promising sources of natural drugs.
Collapse
Affiliation(s)
- Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Hayat Ouassou
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
| | - Rachid Flouchi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Science and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez BP 2202, Morocco
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco
- Correspondence: (H.H.); (M.G.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10000, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 6203, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (H.H.); (M.G.)
| | - Moulay El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| |
Collapse
|
46
|
Zainab, Yu H, Rehman NU, Ali M, Alam A, Latif A, Shahab N, Amir Khan I, Jabbar Shah A, Khan M, Al-Ghafri A, Al-Harrasi A, Ahmad M. Novel Polyhydroquinoline-Hydrazide-Linked Schiff's Base Derivatives: Multistep Synthesis, Antimicrobial, and Calcium-Channel-Blocking Activities. Antibiotics (Basel) 2022; 11:1568. [PMID: 36358223 PMCID: PMC9686546 DOI: 10.3390/antibiotics11111568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 12/31/2023] Open
Abstract
Polyhydroquinoline (PHQ) are the unsymmetrical Hantzsch derivatives of 1,4-dihydropyridines with several biological applications. In this work, twenty-five (3-27) new Schiff's base derivatives of polyhydroquinoline hydrazide were synthesized in excellent to good yields by a multi-component reaction. The structures of the synthesized products (1-27) were deduced with the help of spectroscopic techniques, such as 1H-, 13C -NMR, and HR-ESI-MS. The synthesized products (1-27) were tested for their antibacterial and in vitro calcium -channel-blocking (CCB) potentials using the agar-well diffusion method, and isolated rat aortic ring preparations, respectively. Among the series, sixteen compounds were found to inhibit the growth of Escherichia coli and Enterococcus faecalis. Among them, compound 17 was observed to be the most potent one at a dose 2 µg/mL, with an 18 mm zone of inhibition against both bacteria when it was compared with the standard drug amoxicillin. Eight compounds showed CCB activity of variable potency; in particular, compound 27 was more potent, with an EC50 value of 0.7 (0.3-1.1) µg/mL, indicating their CCB effect.
Collapse
Affiliation(s)
- Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Haitao Yu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Nazish Shahab
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysis, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Irfan Amir Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Momin Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25120, Pakistan
| | - Ahmed Al-Ghafri
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| |
Collapse
|
47
|
Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis Treatment. Pharmaceutics 2022; 14:pharmaceutics14091956. [PMID: 36145704 PMCID: PMC9502522 DOI: 10.3390/pharmaceutics14091956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Acyldepsipeptides (ADEPs) are a new class of emerging antimicrobial peptides (AMPs), which are currently explored for treatment of pathogenic infections, including tuberculosis (TB). These cyclic hydrophobic peptides have a unique bacterial target to the conventional anti-TB drugs, and present a therapeutic window to overcome Mycobacterium Tuberculosis (M. tb) drug resistance. ADEPs exerts their antibacterial activity on M. tb strains through activation of the protein homeostatic regulatory protease, the caseinolytic protease (ClpP1P2). ClpP1P2 is normally regulated and activated by the ClpP-ATPases to degrade misfolded and toxic peptides and/or short proteins. ADEPs bind and dysregulate all the homeostatic capabilities of ClpP1P2 while inducing non-selective proteolysis. The uncontrolled proteolysis leads to M. tb cell death within the host. ADEPs analogues that have been tested possess cytotoxicity and poor pharmacokinetic and pharmacodynamic properties. However, these can be improved by drug design techniques. Moreover, the use of nanomaterial in conjunction with ADEPs would yield effective synergistic effect. This new mode of action has potential to combat and eradicate the extensive multi-drug resistance (MDR) problem that is currently faced by the public health pertaining bacterial infections, especially TB.
Collapse
|
48
|
Gross S, Müller A, Seinige D, Wohlsein P, Oliveira M, Steinhagen D, Kehrenberg C, Siebert U. Occurrence of Antimicrobial-Resistant Escherichia coli in Marine Mammals of the North and Baltic Seas: Sentinels for Human Health. Antibiotics (Basel) 2022; 11:antibiotics11091248. [PMID: 36140027 PMCID: PMC9495373 DOI: 10.3390/antibiotics11091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is a global health threat that involves complex, opaque transmission processes in the environment. In particular, wildlife appears to function as a reservoir and vector for antimicrobial-resistant bacteria as well as resistance genes. In the present study, the occurrence of antimicrobial-resistant Escherichia coli was determined in marine mammals and various fish species of the North and Baltic Seas. Rectal or faecal swabs were collected from 66 live-caught or stranded marine mammals and 40 fish specimens. The antimicrobial resistance phenotypes and genotypes of isolated E. coli were determined using disk diffusion tests and PCR assays. Furthermore, isolates were assigned to the four major phylogenetic groups of E. coli. Additionally, post mortem examinations were performed on 41 of the sampled marine mammals. The investigations revealed resistant E. coli in 39.4% of the marine mammal samples, while no resistant isolates were obtained from any of the fish samples. The obtained isolates most frequently exhibited resistance against aminoglycosides, followed by β-lactams. Of the isolates, 37.2% showed multidrug resistance. Harbour porpoises (Phocoena phocoena) mainly carried E. coli isolates belonging to the phylogenetic group B1, while seal isolates were most frequently assigned to group B2. Regarding antimicrobial resistance, no significant differences were seen between the two sampling areas or different health parameters, but multidrug-resistant isolates were more frequent in harbour porpoises than in the sampled seals. The presented results provide information on the distribution of antimicrobial-resistant bacteria in the North and Baltic Seas, and highlight the role of these resident marine mammal species as sentinels from a One Health perspective.
Collapse
Affiliation(s)
- Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
| | - Anja Müller
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Diana Seinige
- Office for Veterinary Affairs and Consumer Protection, Ministry of Lower Saxony for Food, Agriculture and Consumer Protection, Alte Grenze 7, 29221 Celle, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Manuela Oliveira
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus Liebig University Giessen, Frankfurter Str. 92, 35392 Giessen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstraße 6, 25761 Büsum, Germany
- Correspondence:
| |
Collapse
|
49
|
Huang W, Sun G, Wang Q, Long Z. The research progress of targeted therapy in acute myeloid leukemia based on bibliometric analysis. Front Oncol 2022; 12:957370. [PMID: 36119476 PMCID: PMC9481238 DOI: 10.3389/fonc.2022.957370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Wanxue Huang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Gongrui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Wang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Zhiguo Long
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
- *Correspondence: Zhiguo Long,
| |
Collapse
|
50
|
Ma Y, Wei M, Wang X, Jiang L, Xiong Y, Cheng J, Tan Y, Liao X, Wang J. Synthesis and antibacterial against
S. aureus
of new ruthenium (II) polypyridine complexes containing pyrene groups. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanyuan Ma
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Ming Wei
- Kangda College of Nanjing Medical University Lianyungang Jiangsu China
| | - Xuerong Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Li Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin People’s Republic of China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| |
Collapse
|