1
|
Deltourbe LG, Sugrue J, Maloney E, Dubois F, Jaquaniello A, Bergstedt J, Patin E, Quintana-Murci L, Ingersoll MA, Duffy D. Steroid hormone levels vary with sex, aging, lifestyle, and genetics. SCIENCE ADVANCES 2025; 11:eadu6094. [PMID: 40153492 PMCID: PMC11952096 DOI: 10.1126/sciadv.adu6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Steroid hormone levels vary greatly among individuals, between sexes, with age, and across health and disease. What drives variance in steroid hormones and how they vary in individuals over time are not well studied. To address these questions, we measured 17 steroid hormones in a sex-balanced cohort of 949 healthy donors aged 20 to 69 years. We investigated associations between steroid levels and biological sex, age, clinical and demographic data, genetics, and plasma proteomics. Steroid hormone levels were strongly affected by sex and age, and a high number of lifestyle habits. Key observations were the broad impact of hormonal birth control in female donors and the relationship with smoking in male donors. In a 10-year follow-up study, we identified significant associations between steroid hormone levels and health status only in male donors. These observations highlight biological and lifestyle parameters affecting steroid hormones, and underlie the importance of considering sex, age, and potentially gendered behaviors in the treatment of hormone-related diseases.
Collapse
Affiliation(s)
- Léa G. Deltourbe
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris 75014, and Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Jamie Sugrue
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Elizabeth Maloney
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Université Paris Cité, Paris, France
| | - Florian Dubois
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Jaquaniello
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris 75015, France
| | - Jacob Bergstedt
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris 75015, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris 75015, France
- Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Molly A. Ingersoll
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris 75014, and Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Mavridou M, Pearce SH. Exploring antigenic variation in autoimmune endocrinopathy. Front Immunol 2025; 16:1561455. [PMID: 40093006 PMCID: PMC11906412 DOI: 10.3389/fimmu.2025.1561455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune disorders develop owing to a misdirected immune response against self-antigen. Genetic studies have revealed that numerous variants in genes encoding immune system proteins are associated with the development of autoimmunity. Indeed, many of these genetic variants in key immune receptors or transcription factors are common in the pathogenesis of several different autoimmune conditions. In contrast, the proclivity to develop autoimmunity to any specific target organ or tissue is under-researched. This has particular relevance to autoimmune endocrine conditions, where organ-specific involvement is the rule. Genetic polymorphisms in the genes encoding the targets of autoimmune responses have been shown to be associated with predisposition to several autoimmune diseases, including type 1 diabetes, autoimmune thyroid disease and Addison's disease. Mechanistically, variations leading to decreased intrathymic expression, overexpression, different localisation, alternative splicing or post-translational modifications can interfere in the tolerance induction process. This review will summarise the different ways genetic variations in certain genes encoding endocrine-specific antigens (INS, TSHR, TPO, CYP21A2, PIT-1) may predispose to different autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Maria Mavridou
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
| | - Simon H Pearce
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
3
|
Iommi-Diez S, Feliu-Sagala M, Almanzo S. Atypical presentation of Addison's disease with chest pain and dizziness: A case report and literature review. Semergen 2024; 51:102440. [PMID: 39708544 DOI: 10.1016/j.semerg.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Affiliation(s)
- S Iommi-Diez
- Servicio de Medicina Familiar y Comunitaria, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - M Feliu-Sagala
- Servicio de Medicina Familiar y Comunitaria, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - S Almanzo
- Departamento de Cirugía, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Brutvan T, Jezkova J, Kotasova M, Krsek M. Adrenal insufficiency - causes and laboratory diagnosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024. [PMID: 39380209 DOI: 10.5507/bp.2024.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Adrenal insufficiency (AI) manifests as a clinical syndrome arising from either the direct impairment of adrenal glands, leading to primary AI characterized by deficiencies in glucocorticoids and mineralocorticoids, or adrenal cortex atrophy due to diminished adrenocorticotropic hormone (ACTH) stimulation, a consequence of hypothalamic and/or pituitary damage, resulting in secondary AI. The diagnosis of AI is based on clinical assessment and biochemical tests, including basal hormone level measurements and stimulation tests. In evaluating the results of laboratory tests, it is necessary to consider factors that may influence both pre-analytical and analytical phases, as well as the chosen methodology. Correct diagnosis of adrenal insufficiency and timely initiation of suitable replacement therapy are paramount. These steps are crucial not only for managing the condition but also to avert potentially life-threatening adrenal crises.
Collapse
Affiliation(s)
- Tomas Brutvan
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Jezkova
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marcela Kotasova
- Institute of Clinical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Krsek
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
5
|
Artaza H, Eriksson D, Lavrichenko K, Aranda-Guillén M, Bratland E, Vaudel M, Knappskog P, Husebye ES, Bensing S, Wolff ASB, Kämpe O, Røyrvik EC, Johansson S. Rare copy number variation in autoimmune Addison's disease. Front Immunol 2024; 15:1374499. [PMID: 38562931 PMCID: PMC10982488 DOI: 10.3389/fimmu.2024.1374499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Autoimmune Addison's disease (AAD) is a rare but life-threatening endocrine disorder caused by an autoimmune destruction of the adrenal cortex. A previous genome-wide association study (GWAS) has shown that common variants near immune-related genes, which mostly encode proteins participating in the immune response, affect the risk of developing this condition. However, little is known about the contribution of copy number variations (CNVs) to AAD susceptibility. We used the genome-wide genotyping data from Norwegian and Swedish individuals (1,182 cases and 3,810 controls) to investigate the putative role of CNVs in the AAD aetiology. Although the frequency of rare CNVs was similar between cases and controls, we observed that larger deletions (>1,000 kb) were more common among patients (OR = 4.23, 95% CI 1.85-9.66, p = 0.0002). Despite this, none of the large case-deletions were conclusively pathogenic, and the clinical presentation and an AAD-polygenic risk score were similar between cases with and without the large CNVs. Among deletions exclusive to individuals with AAD, we highlight two ultra-rare deletions in the genes LRBA and BCL2L11, which we speculate might have contributed to the polygenic risk in these carriers. In conclusion, rare CNVs do not appear to be a major cause of AAD but further studies are needed to ascertain the potential contribution of rare deletions to the polygenic load of AAD susceptibility.
Collapse
Affiliation(s)
- Haydee Artaza
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ksenia Lavrichenko
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Maribel Aranda-Guillén
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Eirik Bratland
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Eystein S. Husebye
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sophie Bensing
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olle Kämpe
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ellen C. Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K. G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Yokota S, Yuki M. Immune-mediated hemolytic anemia and pure red cell aplasia in a Jack Russell Terrier during treatment for hypoadrenocorticism. Vet Clin Pathol 2024; 53:69-73. [PMID: 38433116 DOI: 10.1111/vcp.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
An 11-year-old neutered male Jack Russell Terrier was presented to Yuki Animal Hospital for regenerative anemia during the treatment of hypoadrenocorticism. A blood smear examination showed spherocytes, polychromatic erythrocytes, and erythrocyte ghosts. The direct agglutination test was positive at 37°C. The dog was then diagnosed with immune-mediated hemolytic anemia (IMHA). Although prednisolone and mycophenolate mofetil were administered, the hematocrit and reticulocyte count decreased, and nonregenerative anemia developed. A bone marrow examination was performed to diagnose the cause of the nonregenerative anemia. Histologic and cytologic bone marrow examination revealed a normocellular to hypercellular medulla with severe erythroid hypoplasia. No proliferation of lymphocytes or lymphoblast-appearing cells was observed. This dog was diagnosed with pure red cell aplasia (PRCA). Despite treatment with immunosuppressive agents, the patient died of thrombosis. Although these associations were unclear, this is the first report of PRCA diagnosis following IMHA and while treating hypoadrenocorticism.
Collapse
|
7
|
Sandru F, Petca RC, Dumitrascu MC, Petca A, Ionescu (Miron) AI, Baicoianu-Nitescu LC. Cutaneous Manifestations in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED): A Comprehensive Review. Biomedicines 2024; 12:132. [PMID: 38255237 PMCID: PMC10813467 DOI: 10.3390/biomedicines12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), or polyglandular autoimmune syndrome type 1 (PAS-1/APS-1), is a rare autosomal recessive disorder linked to mutations in the autoimmune regulator (AIRE) gene. This review provides a detailed analysis of cutaneous manifestations in APECED, focusing on chronic mucocutaneous candidiasis (CMC), alopecia areata (AA), and vitiligo. The classic triad of hypoparathyroidism, adrenal insufficiency, and CMC serves as a diagnostic cornerstone. However, the varied clinical spectrum of APECED, particularly its cutaneous presentations, poses a diagnostic challenge. CMC, often an early sign, varies in prevalence across populations, including Finnish (100%), Irish (100%), Saudi Arabian (80%), Italian (60-74.7%), North American (51-86%), and Croatian (57.1%) populations. Similarly, AA prevalence varies in different populations. Vitiligo also exhibits variable prevalence across regions. The review synthesizes the current knowledge arising from a narrative analysis of 14 significant human studies published in English up to October 2023. Moreover, this paper underscores the importance of early detection and monitoring, emphasizing cutaneous manifestations as key diagnostic indicators. Ongoing research and clinical vigilance are crucial for unraveling the complexities of this rare autoimmune syndrome and enhancing patient care.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.S.); (L.-C.B.-N.)
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Urology, ‘Prof. Dr. Th. Burghele’ Clinical Hospital, 050659 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Andreea-Iuliana Ionescu (Miron)
- Department of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Livia-Cristiana Baicoianu-Nitescu
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.S.); (L.-C.B.-N.)
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
8
|
Jankowska K, Dudek P, Stasiek M, Suchta K. Autoimmune polyendocrine syndromes associated with autoimmune rheumatic diseases. Reumatologia 2023; 61:225-238. [PMID: 37745144 PMCID: PMC10515125 DOI: 10.5114/reum/170266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Autoimmune polyendocrine syndromes (APSs), also called autoimmune polyglandular syndromes, are a group of autoimmune diseases characterized by the co-occurrence of dysfunctions of several (at least two) endocrine glands. They develop under the influence of environmental factors in genetically predisposed people. Autoimmune polyendocrine syndromes may accompany autoimmune rheumatic diseases and worsen their course - APS-2 and APS-3 are the most common. The APS-2 includes the coexistence of, e.g. Hashimoto's disease, celiac disease and rheumatoid arthritis (RA). In APS-3, rheumatic diseases such as RA, systemic lupus erythematosus, and Sjögren's syndrome may coexist with Hashimoto's disease, type 1 diabetes and hypogonadism or other endocrinopathies. Undiagnosed endocrine diseases may be the reason for the intensification of metabolic disorders observed in the course of rheumatic diseases, cause the ineffectiveness of rheumatological treatment and also increase the frequency of bone fractures due to osteoporosis, cardiovascular complications and even miscarriages when coexistent, e.g. Hashimoto's disease with hypothyroiditis, which increases the risk of pregnancy loss. It is important to be able to conduct an extensive interview, paying attention to the symptoms of possible endocrinopathy as well as the features of other autoimmune disorders in the physical examination (e.g. vitiligo or darkening of the skin in Addison's disease). Depending on the history and physical examination, screening for various APSs is advised.
Collapse
Affiliation(s)
- Katarzyna Jankowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, Warsaw, Poland
| | - Piotr Dudek
- Biological Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Małgorzata Stasiek
- Biological Therapy Center, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Poland
| |
Collapse
|
9
|
Shaikh S, Nagendra L, Shaikh S, Pappachan JM. Adrenal Failure: An Evidence-Based Diagnostic Approach. Diagnostics (Basel) 2023; 13:diagnostics13101812. [PMID: 37238296 DOI: 10.3390/diagnostics13101812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The diagnosis of adrenal insufficiency (AI) requires a high index of suspicion, detailed clinical assessment including detailed drug history, and appropriate laboratory evaluation. The clinical characteristics of adrenal insufficiency vary according to the cause, and the presentation may be myriad, e.g. insidious onset to a catastrophic adrenal crisis presenting with circulatory shock and coma. Secondary adrenal insufficiency (SAI) often presents with only glucocorticoid deficiency because aldosterone production, which is controlled by the renin angiotensin system, is usually intact, and rarely presents with an adrenal crisis. Measurements of the basal serum cortisol at 8 am (<140 nmol/L or 5 mcg/dL) coupled with adrenocorticotrophin (ACTH) remain the initial tests of choice. The cosyntropin stimulation (short synacthen) test is used for the confirmation of the diagnosis. Newer highly specific cortisol assays have reduced the cut-off points for cortisol in the diagnosis of AI. The salivary cortisol test is increasingly being used in conditions associated with abnormal cortisol binding globulin (CBG) levels such as pregnancy. Children and infants require lower doses of cosyntropin for testing. 21-hydoxylase antibodies are routinely evaluated to rule out autoimmunity, the absence of which would require secondary causes of adrenal insufficiency to be ruled out. Testing the hypothalamic-pituitary-adrenal (HPA) axis, imaging, and ruling out systemic causes are necessary for the diagnosis of AI. Cancer treatment with immune checkpoint inhibitors (ICI) is an emerging cause of both primary AI and SAI and requires close follow up. Several antibodies are being implicated, but more clarity is required. We update the diagnostic evaluation of AI in this evidence-based review.
Collapse
Affiliation(s)
- Salomi Shaikh
- KGN Diabetes and Endocrine Centre, Mumbai 400001, India
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research Center, Mysore 570015, India
| | - Shehla Shaikh
- Department of Endocrinology, Saifee Hospital, Mumbai 400004, India
| | - Joseph M Pappachan
- Department of Endocrinology & Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, UK
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
10
|
Howarth S, Giovanelli L, Napier C, Pearce SH. Heterogeneous natural history of Addison's disease: mineralocorticoid deficiency may predominate. Endocr Connect 2023; 12:e220305. [PMID: 36398876 PMCID: PMC9782445 DOI: 10.1530/ec-22-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Autoimmune Addison's disease (AAD) is defined as primary adrenal insufficiency due to immune-mediated destruction of the adrenal cortex. This destruction of steroid-producing cells has historically been thought of as an irreversible process, with linear progression from an ACTH-driven compensated phase to overt adrenal insufficiency requiring lifelong glucocorticoid replacement. However, a growing body of evidence suggests that this process may be more heterogeneous than previously thought, with potential for complete or partial recovery of glucocorticoid secretion. Although patients with persistent mineralocorticoid deficiency despite preserved or recovered glucocorticoid function are anecdotally mentioned, few well-documented cases have been reported to date. We present three patients in the United Kingdom who further challenge the long-standing hypothesis that AAD is a progressive, irreversible disease process. We describe one patient with a 4-year history of mineralocorticoid-only Addison's disease, a patient with spontaneous recovery of adrenal function and one patient with clinical features of adrenal insufficiency despite significant residual cortisol function. All three patients show varying degrees of mineralocorticoid deficiency, suggesting that recovery of zona fasciculata function in the adrenal cortex may occur independently to that of the zona glomerulosa. We outline the current evidence for heterogeneity in the natural history of AAD and discuss possible mechanisms for the recovery of adrenal function.
Collapse
Affiliation(s)
- Sophie Howarth
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Luca Giovanelli
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Catherine Napier
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simon H Pearce
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Jackson D, Di Bella A. Concurrent hypoadrenocorticism, immune‐mediated thrombocytopenia and immune‐mediated haemolytic anaemia in a Jack Russell Terrier dog. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Jackson
- Southern Counties Veterinary Specialists Ringwood UK
| | | |
Collapse
|
12
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Abstract
Adrenal insufficiency (AI), first described by Thomas Addison in 1855, is characterised by inadequate hormonal production by the adrenal gland, which could either be primary, due to destruction of the adrenal cortex, or secondary/tertiary, due to lack of adrenocorticotropic hormone or its stimulation by corticotropin-releasing hormone. This was an invariably fatal condition in Addison's days with most patients dying within a few years of diagnosis. However, discovery of cortisone in the 1940s not only improved the life expectancy of these patients but also had a dramatic effect on their overall quality of life. The diagnosis, easily confirmed by demonstrating inappropriately low cortisol secretion, is often delayed by months, and many patients present with acute adrenal crisis. Sudden withdrawal from chronic glucocorticoid therapy is the most common cause of AI. Currently, there remains a wide variation in the management of this condition across Europe. As primary AI is a relatively rare condition, most medical specialists will only manage a handful of these patients in their career. Despite many advances in recent years, there is currently no curative option, and modern cortisol replacement regimens fail to adequately mimic physiological cortisol rhythm. A number of new approaches including allograft of adrenocortical tissue and stem cell therapy are being tried but remain largely experimental.
Collapse
Affiliation(s)
- Rajeev Kumar
- Diabetes and Endocrinology, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - W S Wassif
- Clinical Biochemistry, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| |
Collapse
|
14
|
Younes N, Bourdeau I, Lacroix A. Latent Adrenal Insufficiency: From Concept to Diagnosis. Front Endocrinol (Lausanne) 2021; 12:720769. [PMID: 34512551 PMCID: PMC8429826 DOI: 10.3389/fendo.2021.720769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
Primary adrenal insufficiency (PAI) is a rare disease and potentially fatal if unrecognized. It is characterized by destruction of the adrenal cortex, most frequently of autoimmune origin, resulting in glucocorticoid, mineralocorticoid, and adrenal androgen deficiencies. Initial signs and symptoms can be nonspecific, contributing to late diagnosis. Loss of zona glomerulosa function may precede zona fasciculata and reticularis deficiencies. Patients present with hallmark manifestations including fatigue, weight loss, abdominal pain, melanoderma, hypotension, salt craving, hyponatremia, hyperkalemia, or acute adrenal crisis. Diagnosis is established by unequivocally low morning serum cortisol/aldosterone and elevated ACTH and renin concentrations. A standard dose (250 µg) Cosyntropin stimulation test may be needed to confirm adrenal insufficiency (AI) in partial deficiencies. Glucocorticoid and mineralocorticoid substitution is the hallmark of treatment, alongside patient education regarding dose adjustments in periods of stress and prevention of acute adrenal crisis. Recent studies identified partial residual adrenocortical function in patients with AI and rare cases have recuperated normal hormonal function. Modulating therapies using rituximab or ACTH injections are in early stages of investigation hoping it could maintain glucocorticoid residual function and delay complete destruction of adrenal cortex.
Collapse
Affiliation(s)
| | | | - Andre Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| |
Collapse
|
15
|
Hahner S, Ross RJ, Arlt W, Bancos I, Burger-Stritt S, Torpy DJ, Husebye ES, Quinkler M. Adrenal insufficiency. Nat Rev Dis Primers 2021; 7:19. [PMID: 33707469 DOI: 10.1038/s41572-021-00252-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
Adrenal insufficiency (AI) is a condition characterized by an absolute or relative deficiency of adrenal cortisol production. Primary AI (PAI) is rare and is caused by direct adrenal failure. Secondary AI (SAI) is more frequent and is caused by diseases affecting the pituitary, whereas in tertiary AI (TAI), the hypothalamus is affected. The most prevalent form is TAI owing to exogenous glucocorticoid use. Symptoms of AI are non-specific, often overlooked or misdiagnosed, and are related to the lack of cortisol, adrenal androgen precursors and aldosterone (especially in PAI). Diagnosis is based on measurement of the adrenal corticosteroid hormones, their regulatory peptide hormones and stimulation tests. The goal of therapy is to establish a hormone replacement regimen that closely mimics the physiological diurnal cortisol secretion pattern, tailored to the patient's daily needs. This Primer provides insights into the epidemiology, mechanisms and management of AI during pregnancy as well as challenges of long-term management. In addition, the importance of identifying life-threatening adrenal emergencies (acute AI and adrenal crisis) is highlighted and strategies for prevention, which include patient education, glucocorticoid emergency cards and injection kits, are described.
Collapse
Affiliation(s)
- Stefanie Hahner
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Richard J Ross
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Wiebke Arlt
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephanie Burger-Stritt
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
16
|
Pearce SHS, Gan EH, Napier C. MANAGEMENT OF ENDOCRINE DISEASE: Residual adrenal function in Addison's disease. Eur J Endocrinol 2021; 184:R61-R67. [PMID: 33306039 PMCID: PMC7849375 DOI: 10.1530/eje-20-0894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/08/2020] [Indexed: 11/08/2022]
Abstract
Over the last 10 years, evidence has accumulated that autoimmune Addison's disease (AAD) is a heterogeneous disease. Residual adrenal function, characterised by persistent secretion of cortisol, other glucocorticoids and mineralocorticoids is present in around 30% of patients with established AAD, and appears commoner in men. This persistent steroidogenesis is present in some patients with AAD for more than 20 years, but it is commoner in people with shorter disease duration. The clinical significance of residual adrenal function is not fully clear at the moment, but as it signifies an intact adrenocortical stem cell population, it opens up the possibility of regeneration of adrenal steroidogenesis and improvement in adrenal failure for some patients.
Collapse
Affiliation(s)
- Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
- Correspondence should be addressed to S H S Pearce;
| | - Earn H Gan
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Catherine Napier
- Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| |
Collapse
|
17
|
Bijnen M, Bajénoff M. Gland Macrophages: Reciprocal Control and Function within Their Niche. Trends Immunol 2021; 42:120-136. [PMID: 33423933 DOI: 10.1016/j.it.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The human body contains dozens of endocrine and exocrine glands, which regulate physiological processes by secreting hormones and other factors. Glands can be subdivided into contiguous tissue modules, each consisting of an interdependent network of cells that together perform particular tissue functions. Among those cells are macrophages, a diverse type of immune cells endowed with trophic functions. In this review, we discuss recent findings on how resident macrophages support tissue modules within glands via the creation of mutually beneficial cell-cell circuits. A better comprehension of gland macrophage function and local control within their niche is essential to achieve a refined understanding of gland physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
18
|
Jokkel Z, Piroska M, Szalontai L, Hernyes A, Tarnoki DL, Tarnoki AD. Twin and family studies on epigenetics of autoimmune diseases. TWIN AND FAMILY STUDIES OF EPIGENETICS 2021:169-191. [DOI: 10.1016/b978-0-12-820951-6.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Gershony LC, Belanger JM, Hytönen MK, Lohi H, Famula TR, Oberbauer AM. Genetic characterization of Addison's disease in Bearded Collies. BMC Genomics 2020; 21:833. [PMID: 33243158 PMCID: PMC7690126 DOI: 10.1186/s12864-020-07243-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary hypoadrenocorticism (or Addison's disease, AD) is an autoimmune disease that results in destruction of the adrenal cortex and consequent adrenal insufficiency. The disease has been described in purebred and mixed breed dogs, although some breeds, including the Bearded Collie, are at increased risk for AD. Candidate gene approaches have yielded few associations that appear to be breed-specific. A single other genome-wide association study reported no significant regions of association for AD in Standard Poodles. The present study aimed to identify genomic regions of association for canine AD in Bearded Collies. RESULTS Our study consists of the first genome-wide association analysis to identify a genome-wide significant region of association with canine AD (CFA18). Peaks of suggestive association were also noted on chromosomes 11, 16 and 29. Logistic regression analysis supported an additive effect of risk genotypes at these smaller effect loci on the probability of disease associated with carrying a risk genotype on CFA18. Potential candidate genes involved in adrenal steroidogenesis, regulation of immune responses and/or inflammation were identified within the associated regions of chromosomes 11 and 16. The gene-poor regions of chromosomes 18 and 29 may, however, harbor regulatory sequences that can modulate gene expression and contribute to disease susceptibility. CONCLUSION Our findings support the polygenic and complex nature of canine AD and identified a strongly associated locus on CFA18 that, when combined with three other smaller effect loci, was predictive of disease. The results offer progress in the identification of susceptibility loci for canine AD in the Bearded Collie. Further studies are needed to confirm association with the suggested candidate genes and identify actual causative mutations involved with AD susceptibility in this breed.
Collapse
Affiliation(s)
- Liza C Gershony
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA
- Brazilian National Council for Scientific and Technological Development (CNPq) fellow, Brasilia, DF, 71605, Brazil
| | - Janelle M Belanger
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, and Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; Folkhälsan Research Center, Helsinki, 00290, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, and Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; Folkhälsan Research Center, Helsinki, 00290, Finland
| | - Thomas R Famula
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA
| | - Anita M Oberbauer
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
20
|
Thomsen H, Li X, Sundquist K, Sundquist J, Försti A, Hemminki K. Familial associations for Addison's disease and between Addison's disease and other autoimmune diseases. Endocr Connect 2020; 9:1114-1120. [PMID: 33112839 PMCID: PMC7774767 DOI: 10.1530/ec-20-0328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/05/2023]
Abstract
DESIGN Addison's disease (AD) is a rare autoimmune disease (AID) of the adrenal cortex, present as an isolated AD or part of autoimmune polyendocrine syndromes (APSs) 1 and 2. Although AD patients present with a number of AID co-morbidities, population-based family studies are scarce, and we aimed to carry out an unbiased study on AD and related AIDs. METHODS We collected data on patients diagnosed with AIDs in Swedish hospitals and calculated standardized incidence ratios (SIRs) in families for concordant AD and for other AIDs, the latter as discordant relative risks. RESULTS The number of AD patients was 2852, which accounted for 0.4% of all hospitalized AIDs. A total of 62 persons (3.6%) were diagnosed with familial AD. The SIR for siblings was remarkably high, reaching 909 for singleton siblings diagnosed before age 10 years. It was 32 in those diagnosed past age 29 years and the risk for twins was 323. SIR was 9.44 for offspring of affected parents. AD was associated with 11 other AIDs, including thyroid AIDs and type 1 diabetes and some rarer AIDs such as Guillain-Barre syndrome, myasthenia gravis, polymyalgia rheumatica and Sjögren's syndrome. CONCLUSIONS The familial risk for AD was very high implicating genetic etiology, which for juvenile siblings may be ascribed to APS-1. The adult part of sibling risk was probably contributed by recessive polygenic inheritance. AD was associated with many common AIDs; some of these were known co-morbidities in AD patients while some other appeared to more specific for a familial setting.
Collapse
Affiliation(s)
- Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- GeneWerk GmbH, Heidelberg, Germany
- Correspondence should be addressed to H Thomsen:
| | - Xinjun Li
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Departments of Family Medicine and Community Health, Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Departments of Family Medicine and Community Health, Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
21
|
Quandt Z, Young A, Perdigoto AL, Herold KC, Anderson MS. Autoimmune Endocrinopathies: An Emerging Complication of Immune Checkpoint Inhibitors. Annu Rev Med 2020; 72:313-330. [PMID: 32886542 DOI: 10.1146/annurev-med-050219-034237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitors (CPIs) reverse immune suppression that is thought to allow malignant growth. Despite remarkable efficacy in a subset of cancers, their use is accompanied by immune-related adverse events, including endocrinopathies such as hypophysitis, thyroid dysfunction, diabetes, and adrenalitis. These conditions are heterogenous, with differing incidence across CPI types, but are unified by the acuity and extremity of tissue-specific organ failure. Their occurrence may be associated with beneficial tumor control. Further understanding of the risk factors and mechanisms of these endocrine immunotoxicities can help optimize CPI use as well as improve understanding of spontaneous autoimmune diseases.
Collapse
Affiliation(s)
- Zoe Quandt
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, California 94143, USA; , , .,Diabetes Center, University of California, San Francisco, California 94143, USA
| | - Arabella Young
- Diabetes Center, University of California, San Francisco, California 94143, USA.,QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Ana Luisa Perdigoto
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Kevan C Herold
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; .,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Mark S Anderson
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, California 94143, USA; , , .,Diabetes Center, University of California, San Francisco, California 94143, USA
| |
Collapse
|
22
|
de Guia RM. Stress, glucocorticoid signaling pathway, and metabolic disorders. Diabetes Metab Syndr 2020; 14:1273-1280. [PMID: 32755820 DOI: 10.1016/j.dsx.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Glucocorticoids and the GR serve as an essential molecular mediator of stress and different physiologic processes. This review summarizes main findings from studies on the role of the GC/GR signaling in the modulation of genes for nutrient processing by the different organs involved in metabolic diseases. METHODS Descriptive review of relevant papers known to the author was conducted. RESULTS Several high-throughput screenings in the past 15 years have identified potential GR DNA-binding regions in different cell types with genes that are annotated to be important for the control of metabolism. Transcriptional regulation of these GC-responsive genes provides links between the hypothalamic-pituitary-adrenal axis (HPA) and systemic energy homeostasis in both physiological and pathophysiological states. Future studies must reconsider the use of agonist, the utilization of animal models of stress and metabolic disorders, and validation in humans. CONCLUSION This review recapitulates the significant role of the GC/GR signaling in molecular metabolic control and metabolic disorders. Potential future research focus and optimizations have also been identified.
Collapse
Affiliation(s)
- Roldan M de Guia
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Keio Global Research Institute (KGRI) and Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan; Czech Centre for Phenogenomics (CCP), Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
23
|
Grouthier V, Lebrun‐Vignes B, Moey M, Johnson DB, Moslehi JJ, Salem J, Bachelot A. Immune Checkpoint Inhibitor-Associated Primary Adrenal Insufficiency: WHO VigiBase Report Analysis. Oncologist 2020; 25:696-701. [PMID: 32390168 PMCID: PMC7418341 DOI: 10.1634/theoncologist.2019-0555] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have transformed cancer therapy but may also trigger autoimmune adverse drug reactions (ADRs) referred to as immune-related adverse events (irAEs). Although endocrinopathies are among the most common form of irAEs, primary adrenal insufficiency (PAI) is infrequent and has only been published in case reports. The aim of this study was to identify and characterize the main features of PAI-irAE. MATERIALS AND METHODS Suspected PAI-irAE cases were identified using VigiBase, the World Health Organization's pharmacovigilance database of individual case safety reports. RESULTS From September 2, 2008, through October 5, 2018, a total of 50,108 ICI-associated ADRs were reported. Since 2008, there were 451 cases of PAI-irAE identified of which 45 were "definite PAI" and 406 "possible PAI." Patients were mainly male (58.1%) with a median age of 66 years (range, 30-95). Indications of ICI were predominantly for melanoma (41.2%) and lung cancer (28.6%). The majority of patients were treated with ICI monotherapy (nivolumab: 44.3%, pembrolizumab: 11.7%, ipilimumab: 23.6%), and 17.9% were treated with ICI combination therapy. These events occurred with a median time to onset of 120 days (range, 6-576). ICI-associated PAI was associated with significant morbidity (≥90% severe) and mortality (7.3%). Fatality rates were similar in the subgroups of combination therapy versus monotherapy. There were no relevant differences in clinical or demographical characteristics and outcomes between "definite" versus "possible" PAI group. CONCLUSION Our study represents the largest clinical description and characterization of PAI-irAE. Although ICI-associated PAI is a rare adverse event, early recognition is important to implement corticosteroid treatment. Further studies are required to elucidate risk factors and reversibility of this rare but severe irAE. Clinical trial identification number. NCT03492242 IMPLICATIONS FOR PRACTICE: Immune checkpoint inhibitor (ICI)-associated primary adrenal insufficiency (PAI) is a rare adverse event that is important to recognize because it may be severe and life-threatening, requiring emergent and often lifelong hormonal replacement therapy. Awareness regarding this ICI-related endocrinopathy is strongly encouraged among clinicians in addition to patient education about common PAI symptoms that should prompt urgent medical evaluation. In clinical practice, close monitoring and investigation for PAI is crucial to allow for early management and to further define the pathophysiology and prognosis of ICI-PAI. Corticotrophin (adrenocorticotrophic hormone) circulating level evaluation may be often lacking but should be considered as part of the diagnostic workup to differentiate PAI from secondary (central) adrenal insufficiency.
Collapse
Affiliation(s)
- Virginie Grouthier
- Department of Endocrinology, Diabetes and Nutrition, University of Bordeaux, USN Haut LevequeBordeauxFrance
| | - Bénédicte Lebrun‐Vignes
- Pharmacovigilance Unit, Department of Pharmacology, Unité de Cardio‐Oncologie Sorbonne Université–Groupe de Recherche Clinique en Cardio‐Oncologie (UNICO‐GRECO), INSERM Centre d'Investigation Clinique (CIC)‐1901, Pitié‐Salpêtrière Hospital, Assistance Publique–Hôpitaux de Paris (AP‐HP)ParisFrance
- Equipe d'Accueil 7379 EpiDermE, Université Paris‐Est Créteil (UPEC)ParisFrance
| | - Melissa Moey
- Cardio‐Oncology Program, Departments of Medicine and Pharmacology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Douglas B. Johnson
- Cardio‐Oncology Program, Departments of Medicine and Pharmacology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Javid J. Moslehi
- Cardio‐Oncology Program, Departments of Medicine and Pharmacology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Joe‐Elie Salem
- Pharmacovigilance Unit, Department of Pharmacology, Unité de Cardio‐Oncologie Sorbonne Université–Groupe de Recherche Clinique en Cardio‐Oncologie (UNICO‐GRECO), INSERM Centre d'Investigation Clinique (CIC)‐1901, Pitié‐Salpêtrière Hospital, Assistance Publique–Hôpitaux de Paris (AP‐HP)ParisFrance
- Cardio‐Oncology Program, Departments of Medicine and Pharmacology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anne Bachelot
- Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance and Centre de Référence des Pathologies Gynécologiques Rares, Institute of Cardiometabolism and Nutrition (ICAN), Pitié‐Salpêtrière Hospital, Assistance Publique–Hôpitaux de Paris (AP‐HP)ParisFrance
| |
Collapse
|
24
|
Napier C, Allinson K, Gan EH, Mitchell AL, Gilligan LC, Taylor AE, Arlt W, Pearce SHS. Natural History of Adrenal Steroidogenesis in Autoimmune Addison's Disease Following Diagnosis and Treatment. J Clin Endocrinol Metab 2020; 105:5821191. [PMID: 32300791 PMCID: PMC7250207 DOI: 10.1210/clinem/dgaa187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 01/02/2023]
Abstract
CONTEXT The natural history of adrenal function in autoimmune Addison disease once diagnosed and treated has not been systematically studied, but several case reports of recovery from established adrenal failure suggest it may not be uniform. OBJECTIVE To ascertain steroidogenic function in autoimmune Addison disease immediately following diagnosis and during prolonged treatment. DESIGN We studied peak serum cortisol in response to ACTH1-24 in 20 newly diagnosed autoimmune Addison disease patients at first presentation and then again within a month. We also studied 37 patients with established Addison disease (for between 7 months and 44 years) in a medication-free state, measuring peak serum cortisol responses to ACTH1-24 and the urine LC-MS steroid metabolome. RESULTS Adrenal steroidogenesis declined rapidly after steroid replacement treatment for newly diagnosed Addison disease was started, with a peak serum cortisol falling from 138 ± 19 nmol/L (SEM) at presentation to 63 ± 13 nmol/L over 4 weeks (P < 0.003).Six of 37 participants (16%) with established Addison disease had detectable serum cortisol and urine glucocorticoid and mineralocorticoid metabolites during repeat testing, indicating variable degrees of residual adrenal function. CONCLUSION Autoimmune Addison disease is a heterogeneous condition, showing a rapid decline in adrenal steroidogenesis during the first few weeks following diagnosis, but low-level residual function in a minority of patients, which appears to persist for many years.
Collapse
Affiliation(s)
- Catherine Napier
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne
- Newcastle upon Tyne Hospitals NHS Trust, Royal Victoria Infirmary, UK
| | - Kathleen Allinson
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne
- Newcastle upon Tyne Hospitals NHS Trust, Royal Victoria Infirmary, UK
| | - Earn H Gan
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne
- Newcastle upon Tyne Hospitals NHS Trust, Royal Victoria Infirmary, UK
| | - Anna L Mitchell
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne
- Newcastle upon Tyne Hospitals NHS Trust, Royal Victoria Infirmary, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Simon H S Pearce
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne
- Newcastle upon Tyne Hospitals NHS Trust, Royal Victoria Infirmary, UK
- Correspondence and Reprint Requests: Dr. Catherine Napier, Endocrine Unit, Leazes Wing, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals, Queen Victoria Road, NE1 4LP, UK. E-mail:
| |
Collapse
|
25
|
Hernandez-Bures A, White AG, Riordan L. Presumptive iatrogenic hypoadrenocorticism induced by high-dose ketoconazole administration in a dog. J Vet Intern Med 2019; 33:2235-2238. [PMID: 31448839 PMCID: PMC6766512 DOI: 10.1111/jvim.15604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/15/2019] [Indexed: 11/29/2022] Open
Abstract
A 11‐year‐old male neutered Shih Tzu was referred to a tertiary facility with a history of weight loss, decreased appetite, polydipsia, and lethargy. The dog had a 10‐year history of nonspecific allergic dermatitis and was being treated with 16 mg/kg of ketoconazole q12h for Malassezia dermatitis. Vague gastrointestinal signs, hypocholesterolemia, and lack of a stress leukogram increased suspicion for hypoadrenocorticism (HA). An adrenocorticotropic hormone (ACTH) stimulation test identified hypocortisolemia on pre‐ and post‐ACTH samples and ketoconazole was discontinued. After a short course of corticosteroid treatment, an ACTH stimulation test was repeated and pre‐ACTH cortisol concentration was within the reference range, and the post‐ACTH cortisol concentration was mildly increased. The temporal association between return of adequate adrenocortical cortisol production and discontinuation of ketoconazole led to the conclusion that the dog had developed iatrogenic HA secondary to ketoconazole treatment.
Collapse
Affiliation(s)
| | - Amelia G White
- Dermatology Service, Auburn University College of Veterinary Medicine, Auburn, Alabama
| | - Laura Riordan
- Florida Veterinary Referral Center and 24-Hour Emergency, Estero, Florida
| |
Collapse
|
26
|
Pearce SH, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, Walker-Smith T, Carnegie C, Martin KF, Boelaert K, Gilbert J, Higham CE, Muller I, Murray RD, Perros P, Razvi S, Vaidya B, Wernig F, Kahaly GJ. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves' Hyperthyroidism: A Phase I Study. Thyroid 2019; 29:1003-1011. [PMID: 31194638 PMCID: PMC6648194 DOI: 10.1089/thy.2019.0036] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Graves' disease is one of the most common autoimmune conditions, but treatment remains imperfect. This study explores the first-in-human use of antigen-specific immunotherapy with a combination of two thyrotropin receptor (TSHR) peptides (termed ATX-GD-59) in Graves' hyperthyroidism. Methods: Twelve participants (11 female) with previously untreated mild to moderate Graves' hyperthyroidism were enrolled in a Phase I open label trial to receive 10 doses of ATX-GD-59 administered intradermally over an 18-week period. Adverse events, tolerability, changes in serum free thyroid hormones, and TSHR autoantibodies were measured. Results: Ten subjects received all 10 doses of ATX-GD-59, five (50%) of whom had free triiodothyronine within the reference interval by the 18-week visit. Two further subjects had improved free thyroid hormones by the end of the study (7/10 responders), whereas three subjects showed worsening thyrotoxicosis during the study. Serum TSHR autoantibody concentrations reduced during the study and correlated with changes in free thyroid hormones (r = 0.85, p = 0.002 for TSHR autoantibody vs. free triiodothyronine). Mild injection-site swelling and pain were the most common adverse events. Conclusions: These preliminary data suggest that ATX-GD-59 is a safe and well-tolerated treatment. The improvement in free thyroid hormones in 70% of subjects receiving the medication suggests potential efficacy as a novel treatment for Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Simon H.S. Pearce
- Institute for Genetic Medicine, Newcastle University, and Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Colin Dayan
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham United Kingdom
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
- Apitope International NV, Diepenbeek, Belgium
| | - Kevin Barrell
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | - Natalie Olive
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | | | | | | | | | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham United Kingdom
| | - Jackie Gilbert
- Department of Endocrinology, King's College Hospital, London, United Kingdom
| | - Claire E. Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ilaria Muller
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robert D. Murray
- Department of Endocrinology, St. James's University Hospital, Leeds, United Kingdom
| | - Petros Perros
- Endocrine Unit, Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Salman Razvi
- Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bijay Vaidya
- Macleod Diabetes & Endocrine Centre, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Florian Wernig
- Department of Endocrinology, Imperial College, London, United Kingdom
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
27
|
Natri H, Garcia AR, Buetow KH, Trumble BC, Wilson MA. The Pregnancy Pickle: Evolved Immune Compensation Due to Pregnancy Underlies Sex Differences in Human Diseases. Trends Genet 2019; 35:478-488. [PMID: 31200807 PMCID: PMC6611699 DOI: 10.1016/j.tig.2019.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
Abstract
We hypothesize that, ancestrally, sex-specific immune modulation evolved to facilitate survival of the pregnant person in the presence of an invasive placenta and an immunologically challenging pregnancy - an idea we term the 'pregnancy compensation hypothesis' (PCH). Further, we propose that sex differences in immune function are mediated, at least in part, by the evolution of gene content and dosage on the sex chromosomes, and are regulated by reproductive hormones. Finally, we propose that changes in reproductive ecology in industrialized environments exacerbate these evolved sex differences, resulting in the increasing risk of autoimmune disease observed in females, and a counteracting reduction in diseases such as cancer that can be combated by heightened immune surveillance. The PCH generates a series of expectations that can be tested empirically and that may help to identify the mechanisms underlying sex differences in modern human diseases.
Collapse
Affiliation(s)
- Heini Natri
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Angela R Garcia
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth H Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
28
|
Aslaksen S, Wolff AB, Vigeland MD, Breivik L, Sheng Y, Oftedal BE, Artaza H, Skinningsrud B, Undlien DE, Selmer KK, Husebye ES, Bratland E. Identification and characterization of rare toll-like receptor 3 variants in patients with autoimmune Addison's disease. J Transl Autoimmun 2019; 1:100005. [PMID: 32743495 PMCID: PMC7388336 DOI: 10.1016/j.jtauto.2019.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is a classic organ-specific autoimmune disease characterized by an immune-mediated attack on the adrenal cortex. As most autoimmune diseases, AAD is believed to be caused by a combination of genetic and environmental factors, and probably interactions between the two. Persistent viral infections have been suggested to play a triggering role, by invoking inflammation and autoimmune destruction. The inability of clearing infections can be due to aberrations in innate immunity, including mutations in genes involved in the recognition of conserved microbial patterns. In a whole exome sequencing study of anonymized AAD patients, we discovered several rare variants predicted to be damaging in the gene encoding Toll-like receptor 3 (TLR3). TLR3 recognizes double stranded RNAs, and is therefore a major factor in antiviral defense. We here report the occurrence and functional characterization of five rare missense variants in TLR3 of patients with AAD. Most of these variants occurred together with a common TLR3 variant that has been associated with a wide range of immunopathologies. The biological implications of these variants on TLR3 function were evaluated in a cell-based assay, revealing a partial loss-of-function effect of three of the rare variants. In addition, rare mutations in other members of the TLR3-interferon (IFN) signaling pathway were detected in the AAD patients. Together, these findings indicate a potential role for TLR3 and downstream signaling proteins in the pathogenesis in a subset of AAD patients.
Collapse
Affiliation(s)
- Sigrid Aslaksen
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Anette B Wolff
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Magnus D Vigeland
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Lars Breivik
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Haydee Artaza
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | | | - Dag E Undlien
- Institute of Clinical Medicine, University of Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Norway
| | - Kaja K Selmer
- Department of Research and Development, Division of Neuroscience, Oslo University Hospital and the University of Oslo, Norway.,National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway.,KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| |
Collapse
|
29
|
Treeful AE, Rendahl AK, Friedenberg SG. DLA class II haplotypes show sex-specific associations with primary hypoadrenocorticism in Standard Poodle dogs. Immunogenetics 2019; 71:373-382. [PMID: 30968193 DOI: 10.1007/s00251-019-01113-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Addison's disease (AD) is a life-threatening endocrine disorder that occurs spontaneously in both humans and dogs. Associations between MHC class II genes and AD have been shown in several human studies. Our goal was to identify MHC class II associations with AD in a large population of Standard Poodles, a breed highly predisposed to AD. We sequenced exon 2 of the class II genes DLA-DRB1, DLA-DQA1, and DLA-DQB1 in 110 affected and 101 unaffected Standard Poodles and tested for association with AD. After correcting for population structure, two haplotypes were found to confer risk of developing AD in a sex-specific manner: DLA-DRB1*015:01-DQA1*006:01-DQB1*023:01 in males (x2p = 0.03, OR 2.1) and DLA-DRB1*009:01-DQA1*001:01-DQB1*008:01:1 in females (x2p = 0.02, OR 8.43). Sex-specific associations have been previously described in human populations, but this is the first report of this kind in dogs. Consistent with findings in other studies, we found the DLA-DQA1*006:01 allele (x2p = 0.04) to be associated with AD in males independent of haplotype. In females, the haplotype DLA-DRB1*009:01-DQA1*001:01-DQB1*008:01:1 confers a very high risk for developing AD, although its frequency was rare (9 of 124 females) in our study population. Further studies are warranted to validate the findings of this exploratory dataset and to assess the usefulness of this haplotype as a risk marker for AD in female Standard Poodles. Our results highlight the importance of evaluating MHC class II disease associations in large populations, and accounting for both biological sex and population structure.
Collapse
Affiliation(s)
- Amy E Treeful
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Aaron K Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
30
|
Gershony LC, Belanger JM, Short AD, Le M, Hytönen MK, Lohi H, Famula TR, Kennedy LJ, Oberbauer AM. DLA class II risk haplotypes for autoimmune diseases in the bearded collie offer insight to autoimmunity signatures across dog breeds. Canine Genet Epidemiol 2019; 6:2. [PMID: 30783534 PMCID: PMC6376674 DOI: 10.1186/s40575-019-0070-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/24/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Primary hypoadrenocorticism (Addison's disease, AD) and symmetrical lupoid onychodystrophy (SLO) are two clinical conditions with an autoimmune etiology that occur in multiple dog breeds. In man, autoimmunity is associated with polymorphisms in immune-related genes that result in a reduced threshold for, or defective regulation of, T cell activation. The major histocompatibility complex (MHC) class II genes encode molecules that participate in these functions, and polymorphisms within these genes have been associated with autoimmune conditions in dogs and humans. Bearded collies have a relatively high prevalence of autoimmune diseases, particularly AD and SLO. Our study assessed the relationship between particular MHC (dog leukocyte antigen, DLA) class II haplotypes and the two autoimmune diseases most common in this breed. Moreover, five unrelated breeds at increased risk for AD were studied for comparative purposes and analyzed in the context of extant literature. RESULTS A single DLA class II three-locus haplotype, determined by sequence-based typing, was associated with increased risk for AD (DLA-DRB1*009:01/DQA1*001:01/DQB1*008:02) in bearded collies. Comparative analysis with the five additional breeds showed limited allele sharing, with DQA1*001:01 and DQB1*002:01 being the only alleles observed in all breeds. A distinct three-locus risk haplotype (DLA-DRB1*001:01/DQA1*001:01/DQB1*002:01) was associated with AD in the West Highland white terrier and Leonberger. Two different risk haplotypes were associated with increased risk for SLO in the bearded collie (DLA-DRB1*018:01/DQA1*001:01/DQB1*002:01 and DLA-DRB1*018:01/DQA1*001:01/ DQB1*008:02). CONCLUSION Two-locus DQ haplotypes composed of DLA-DQA1*001:01 in association with DLA-DQB1*002:01 or DLA-DQB1*008:02 make up the four risk haplotypes identified in the present study and are also found in other risk haplotypes previously associated with diabetes mellitus and hypothyroidism across different dog breeds. Our findings build upon previously published data to suggest that this two-locus (DQ) model serves as a good indicator for susceptibility to multiple organ-specific autoimmune diseases in the canine population. However, it is also clear that additional loci are necessary for actual disease expression. Investigation of affected and unaffected dogs carrying these predisposing DQ haplotype signatures may allow for the identification of those additional genetic components that determine autoimmune disease expression and organ specificity.
Collapse
Affiliation(s)
- Liza C. Gershony
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
- Brazilian National Council for Scientific and Technological Development (CNPq) fellow, Brasília, Brazil
| | - Janelle M. Belanger
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Andrea D. Short
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK
| | - Myly Le
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Marjo K. Hytönen
- Research Programs Unit, Molecular Neurology, and Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Hannes Lohi
- Research Programs Unit, Molecular Neurology, and Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Thomas R. Famula
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Lorna J. Kennedy
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, UK
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
31
|
Nassoro DD, Mkhoi ML, Sabi I, Meremo AJ, Lawala PS, Mwakyula IH. Adrenal Insufficiency: A Forgotten Diagnosis in HIV/AIDS Patients in Developing Countries. Int J Endocrinol 2019; 2019:2342857. [PMID: 31341472 PMCID: PMC6612386 DOI: 10.1155/2019/2342857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 11/17/2022] Open
Abstract
Adrenal insufficiency (AI) is one of the most common endocrine disease in patients with HIV/AIDS, leading to high morbidity and mortality in HIV patients who become critically ill. Various etiologies are associated with the condition, including cytomegalovirus (CMV), Mycobacterium tuberculosis, lymphoma, Kaposi's sarcoma, and drugs such as rifampin, among others. HIV patients with advanced disease develop relative cortisol deficiency largely due to the reduction of cortisol reserve, which predisposes patients to adrenal crisis in periods of stress or critical illness. The prevalence of AI in HIV/AIDS patients during HAART era is higher in developing than developed countries, probably due to limited access to both diagnosis and adequate treatments which increases the risk of opportunistic infections. The clinical features of functional adrenal insufficiency in HIV/AIDS patients can be masked by various infectious, noninfectious, and iatrogenic causes, which reduce clinical recognition of the condition. Development of simple screening algorithms may help clinicians reach the diagnosis when approaching these patients. In many low-income countries, most HIV patients are diagnosed with advanced disease; thus, further research is necessary to elucidate the prevalence of adrenal insufficiency in HIV/AIDS patients and the condition's impact on mortality in this population.
Collapse
Affiliation(s)
- David D. Nassoro
- Department of Internal Medicine, Mbeya Zonal Referral Hospital, Mbeya, Tanzania
- Department of Internal Medicine, University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Mkhoi L. Mkhoi
- Department of Microbiology and Immunology, School of Medicine & Dentistry, College of Health Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Issa Sabi
- National Institute for Medical Research, Mbeya Medical Research Center, Mbeya, Tanzania
| | - Alfred J. Meremo
- Department of Internal Medicine, School of Medicine & Dentistry, College of Health Sciences, The University of Dodoma, Dodoma, Tanzania
| | - Paul S. Lawala
- Department of Psychiatry and Mental Health, University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
- Department of Psychiatry and Mental Health, Mbeya Zonal Referral Hospital, Mbeya, Tanzania
| | - Issakwisa Habakkuk Mwakyula
- Department of Internal Medicine, Mbeya Zonal Referral Hospital, Mbeya, Tanzania
- Department of Internal Medicine, University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| |
Collapse
|
32
|
Hellesen A, Bratland E. The potential role for infections in the pathogenesis of autoimmune Addison's disease. Clin Exp Immunol 2018; 195:52-63. [PMID: 30144040 DOI: 10.1111/cei.13207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Autoimmune Addison's disease (AAD), or primary adrenocortical insufficiency, is a classical organ-specific autoimmune disease with 160 years of history. AAD is remarkably homogeneous with one major dominant self-antigen, the cytochrome P450 21-hydroxylase enzyme, which is targeted by both autoantibodies and autoreactive T cells. Like most autoimmune diseases, AAD is thought to be caused by an unfortunate combination of genetic and environmental factors. While the number of genetic associations with AAD is increasing, almost nothing is known about environmental factors. A major environmental factor commonly proposed for autoimmune diseases, based partly on experimental and clinical data and partly on shared pathways between anti-viral immunity and autoimmunity, is viral infections. However, there are few reports associating viral infections to AAD, and it has proved difficult to establish which immunological processes that could link any viral infection with the initiation or progression of AAD. In this review, we will summarize the current knowledge on the underlying mechanisms of AAD and take a closer look on the potential involvement of viruses.
Collapse
Affiliation(s)
- A Hellesen
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, Bergen, Norway
| | - E Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Eriksson D, Bianchi M, Landegren N, Dalin F, Skov J, Hultin-Rosenberg L, Mathioudaki A, Nordin J, Hallgren Å, Andersson G, Tandre K, Rantapää Dahlqvist S, Söderkvist P, Rönnblom L, Hulting AL, Wahlberg J, Dahlqvist P, Ekwall O, Meadows JRS, Lindblad-Toh K, Bensing S, Rosengren Pielberg G, Kämpe O. Common genetic variation in the autoimmune regulator (AIRE) locus is associated with autoimmune Addison's disease in Sweden. Sci Rep 2018; 8:8395. [PMID: 29849176 PMCID: PMC5976627 DOI: 10.1038/s41598-018-26842-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is the predominating cause of primary adrenal failure. Despite its high heritability, the rarity of disease has long made candidate-gene studies the only feasible methodology for genetic studies. Here we conducted a comprehensive reinvestigation of suggested AAD risk loci and more than 1800 candidate genes with associated regulatory elements in 479 patients with AAD and 2394 controls. Our analysis enabled us to replicate many risk variants, but several other previously suggested risk variants failed confirmation. By exploring the full set of 1800 candidate genes, we further identified common variation in the autoimmune regulator (AIRE) as a novel risk locus associated to sporadic AAD in our study. Our findings not only confirm that multiple loci are associated with disease risk, but also show to what extent the multiple risk loci jointly associate to AAD. In total, risk loci discovered to date only explain about 7% of variance in liability to AAD in our study population.
Collapse
Affiliation(s)
- Daniel Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden.
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nils Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frida Dalin
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jakob Skov
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lina Hultin-Rosenberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Argyri Mathioudaki
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessika Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Hallgren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karolina Tandre
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lars Rönnblom
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna-Lena Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette Wahlberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Endocrinology, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sophie Bensing
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden
- K.G. Jebsen Center for Autoimmune Diseases, Bergen, Norway
| |
Collapse
|
34
|
Hellesen A, Bratland E, Husebye ES. Autoimmune Addison's disease - An update on pathogenesis. ANNALES D'ENDOCRINOLOGIE 2018; 79:157-163. [PMID: 29631795 DOI: 10.1016/j.ando.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease.
Collapse
Affiliation(s)
- Alexander Hellesen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, 5021 Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, 5021 Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; K.G. Jebsen Senter for Autoimmune Sykdommer, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; Department of Medicine (Solna), Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
35
|
Skov J, Höijer J, Magnusson PKE, Ludvigsson JF, Kämpe O, Bensing S. Heritability of Addison's disease and prevalence of associated autoimmunity in a cohort of 112,100 Swedish twins. Endocrine 2017; 58:521-527. [PMID: 29039147 PMCID: PMC5693969 DOI: 10.1007/s12020-017-1441-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/25/2017] [Indexed: 01/17/2023]
Abstract
PURPOSE The pathophysiology behind autoimmune Addison's disease (AAD) is poorly understood, and the relative influence of genetic and environmental factors remains unclear. In this study, we examined the heritability of AAD and explored disease-associated autoimmune comorbidity among Swedish twins. METHODS A population-based longitudinal cohort of 112,100 Swedish twins was used to calculate the heritability of AAD, and to explore co-occurrence of 10 organ-specific autoimmune disorders in twin pairs with AAD. Diagnoses were collected 1964-2012 through linkage to the Swedish National Patient Register. The Swedish Prescribed Drug Register was used for additional diagnostic precision. When available, biobank serum samples were used to ascertain the AAD diagnosis through identification of 21-hydroxylase autoantibodies. RESULTS We identified 29 twins with AAD. Five out of nine (5/9) monozygotic pairs and zero out of fifteen (0/15) dizygotic pairs were concordant for AAD. The probandwise concordance for monozygotic twins was 0.71 (95% CI 0.40-0.90) and the heritability 0.97 (95% CI 0.88-99). Autoimmune disease patterns of monozygotic twin pairs affected by AAD displayed a higher degree of similarity than those of dizygotic twins, with an incidence rate ratio of 15 (95% CI 1.8-116) on the number of shared autoimmune diagnoses within pairs. CONCLUSIONS The heritability of AAD appears to be very high, emphasizing the need for further research on the genetic etiology of the disease. Monozygotic twin concordance for multiple autoimmune manifestations suggests strong genetic influence on disease specificity in organ-specific autoimmunity.
Collapse
Affiliation(s)
- Jakob Skov
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden.
| | - Jonas Höijer
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176, Stockholm, Sweden
| |
Collapse
|
36
|
Proust-Lemoine E, Reynaud R, Delemer B, Tabarin A, Samara-Boustani D. Group 3: Strategies for identifying the cause of adrenal insufficiency: diagnostic algorithms. ANNALES D'ENDOCRINOLOGIE 2017; 78:512-524. [DOI: 10.1016/j.ando.2017.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Chanson P, Guignat L, Goichot B, Chabre O, Boustani DS, Reynaud R, Simon D, Tabarin A, Gruson D, Reznik Y, Raffin Sanson ML. Group 2: Adrenal insufficiency: screening methods and confirmation of diagnosis. ANNALES D'ENDOCRINOLOGIE 2017; 78:495-511. [DOI: 10.1016/j.ando.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
|
39
|
Abstract
We review here the macrophages found in endocrine tissues, placing emphasis on those residing in the islets of Langerhans of the pancreas. The islets represent the endocrine organ where macrophages have been examined in great detail and where our own studies and experience have been directed.
Collapse
|
40
|
Gan EH, Pearce SH. MANAGEMENT OF ENDOCRINE DISEASE: Regenerative therapies in autoimmune Addison's disease. Eur J Endocrinol 2017; 176:R123-R135. [PMID: 27810905 DOI: 10.1530/eje-16-0581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/19/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022]
Abstract
The treatment for autoimmune Addison's disease (AAD) has remained virtually unchanged in the last 60 years. Most patients have symptoms that are relatively well controlled with exogenous steroid replacement, but there may be persistent symptoms, recurrent adrenal crisis and poor quality of life, despite good compliance with optimal current treatments. Treatment with conventional exogenous steroid therapy is also associated with premature mortality, increased cardiovascular risk and complications related to excessive steroid replacement. Hence, novel therapeutic approaches have emerged in the last decade attempting to improve the long-term outcome and quality of life of patients with AAD. This review discusses the recent developments in treatment innovations for AAD, including the novel exogenous steroid formulations with the intention of mimicking the physiological biorhythm of cortisol secretion. Our group has also carried out a few studies attempting to restore endogenous glucocorticoid production via immunomodulatory and regenerative medicine approaches. The recent advances in the understanding of adrenocortical stem cell biology, and adrenal plasticity will also be discussed to help comprehend the science behind the therapeutic approaches adopted.
Collapse
Affiliation(s)
- Earn H Gan
- Institute of Genetic MedicineInternational Centre for Life, Centre Parkway, Newcastle upon Tyne, UK
| | - Simon H Pearce
- Institute of Genetic MedicineInternational Centre for Life, Centre Parkway, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Eriksson D, Bianchi M, Landegren N, Nordin J, Dalin F, Mathioudaki A, Eriksson GN, Hultin-Rosenberg L, Dahlqvist J, Zetterqvist H, Karlsson Å, Hallgren Å, Farias FHG, Murén E, Ahlgren KM, Lobell A, Andersson G, Tandre K, Dahlqvist SR, Söderkvist P, Rönnblom L, Hulting AL, Wahlberg J, Ekwall O, Dahlqvist P, Meadows JRS, Bensing S, Lindblad-Toh K, Kämpe O, Pielberg GR. Extended exome sequencing identifies BACH2 as a novel major risk locus for Addison's disease. J Intern Med 2016; 280:595-608. [PMID: 27807919 DOI: 10.1111/joim.12569] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autoimmune disease is one of the leading causes of morbidity and mortality worldwide. In Addison's disease, the adrenal glands are targeted by destructive autoimmunity. Despite being the most common cause of primary adrenal failure, little is known about its aetiology. METHODS To understand the genetic background of Addison's disease, we utilized the extensively characterized patients of the Swedish Addison Registry. We developed an extended exome capture array comprising a selected set of 1853 genes and their potential regulatory elements, for the purpose of sequencing 479 patients with Addison's disease and 1394 controls. RESULTS We identified BACH2 (rs62408233-A, OR = 2.01 (1.71-2.37), P = 1.66 × 10-15 , MAF 0.46/0.29 in cases/controls) as a novel gene associated with Addison's disease development. We also confirmed the previously known associations with the HLA complex. CONCLUSION Whilst BACH2 has been previously reported to associate with organ-specific autoimmune diseases co-inherited with Addison's disease, we have identified BACH2 as a major risk locus in Addison's disease, independent of concomitant autoimmune diseases. Our results may enable future research towards preventive disease treatment.
Collapse
Affiliation(s)
- D Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden
| | - M Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - N Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - F Dalin
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Mathioudaki
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - G N Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - L Hultin-Rosenberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - J Dahlqvist
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - H Zetterqvist
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Å Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Å Hallgren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - F H G Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - E Murén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - K M Ahlgren
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Lobell
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - G Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Tandre
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - S R Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - P Söderkvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - L Rönnblom
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A-L Hulting
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Wahlberg
- Department of Endocrinology, Department of Medical and Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - O Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - P Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - J R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - S Bensing
- Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - K Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - O Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - G R Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Evaluation of the genetic basis of primary hypoadrenocorticism in Standard Poodles using SNP array genotyping and whole-genome sequencing. Mamm Genome 2016; 28:56-65. [PMID: 27864587 DOI: 10.1007/s00335-016-9671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
Primary hypoadrenocorticism, also known as Addison's disease, is an autoimmune disorder leading to the destruction of the adrenal cortex and subsequent loss of glucocorticoid and mineralocorticoid hormones. The disease is prevalent in Standard Poodles and is believed to be highly heritable in the breed. Using genotypes derived from the Illumina Canine HD SNP array, we performed a genome-wide association study of 133 carefully phenotyped Standard Poodles (61 affected, 72 unaffected) and found no markers significantly associated with the disease. We also sequenced the entire genomes of 20 Standard Poodles (13 affected, 7 unaffected) and analyzed the data to identify common variants (including SNPs, indels, structural variants, and copy number variants) across affected dogs and variants segregating within a single pedigree of highly affected dogs. We identified several candidate genes that may be fixed in both Standard Poodles and a small population of dogs of related breeds. Further studies are required to confirm these findings more broadly, as well as additional gene-mapping efforts aimed at fully understanding the genetic basis of what is likely a complex inherited disorder.
Collapse
|
43
|
Pazderska A, Fichna M, Mitchell AL, Napier CM, Gan E, Ruchała M, Santibanez-Koref M, Pearce SH. Impact of Month of Birth on the Risk of Development of Autoimmune Addison's Disease. J Clin Endocrinol Metab 2016; 101:4214-4218. [PMID: 27575942 PMCID: PMC5095257 DOI: 10.1210/jc.2016-2392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONTEXT The pathogenesis of autoimmune Addison's disease (AAD) is thought to be due to interplay of genetic, immune, and environmental factors. A month-of-birth effect, with increased risk for those born in autumn/winter months, has been described in autoimmune conditions such as type 1 diabetes and autoimmune thyroid disease. OBJECTIVE Month-of-birth effect was investigated in 2 independent cohorts of AAD subjects. DESIGN, SETTING, AND PATIENTS The monthly distribution of birth in AAD patients was compared with that of the general population using the cosinor test. A total of 415 AAD subjects from the United Kingdom cohort were compared with 8 180 180 United Kingdom births, and 231 AAD subjects from the Polish cohort were compared with 2 421 384 Polish births. MAIN OUTCOME MEASURES Association between month of birth and the susceptibility to AAD. RESULTS In the entire cohort of AAD subjects, month-of-birth distribution analysis showed significant periodicity with peak of births in December and trough in May (P = .028). Analysis of the odds ratio distribution based on month of birth in 2 cohorts of patients with AAD versus the general population revealed a December peak and May trough, and January peak and July trough, in the United Kingdom and Polish cohorts, respectively. CONCLUSION For the first time, we demonstrate that month of birth exerts an effect on the risk of developing AAD, with excess risk in individuals born in winter months and a protective effect when born in the summer. Exposure to seasonal viral infections in the perinatal period, coupled with vitamin D deficiency, could lead to dysregulation of innate immunity affecting the risk of developing AAD.
Collapse
Affiliation(s)
- Agnieszka Pazderska
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Fichna
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Anna L Mitchell
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Catherine M Napier
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Earn Gan
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Simon H Pearce
- Institute of Genetic Medicine (A.P., A.L.M., C.M.N., E.G., M..S-K., S.H.P.), Newcastle University, Newcastle upon Tyne, NE1 3BZ United Kingdom; Institute of Human Genetics (M.F.), Polish Academy of Sciences, 60-479, Poznan, Poland; and Department of Endocrinology, Metabolism and Internal Medicine (M.F., M.R.), Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
44
|
Uçar A, Baş F, Saka N. Diagnosis and management of pediatric adrenal insufficiency. World J Pediatr 2016; 12:261-274. [PMID: 27059746 DOI: 10.1007/s12519-016-0018-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/24/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Adrenal insufficiency (AI) is a wellknown cause of potentially life-threatening disorders. Defects at each level of the hypothalamic-pituitary-adrenal axis can impair adrenal function, leading to varying degrees of glucocorticoid (GC) deficiency. Iatrogenic AI induced by exogenous GCs is the most common cause of AI. The criteria for the diagnosis and management of iatrogenic AI, neonatal AI, and critical illness-related corticosteroid insufficiency (CIRCI) are not clear. DATA SOURCES We reviewed the recent original publications and classical data from the literature, as well as the clinical, diagnostic and management strategies of pediatric AI. RESULTS Practical points in the diagnosis and management of AI with an emphasis on iatrogenic AI, neonatal AI, and CIRCI are provided. Given the lack of sensitive and practical biochemical tests for diagnosis of subtle AI, GC treatment has to be tailored to highly suggestive clinical symptoms and signs. Treatment of adrenal crisis is well standardized and patients almost invariably respond well to therapy. It is mainly the delay in treatment that is responsible for mortality in adrenal crisis. CONCLUSIONS Education of patients and health care professionals is mandatory for timely interventions for patients with adrenal crisis.
Collapse
Affiliation(s)
- Ahmet Uçar
- Growth-Development and Pediatric Endocrine Unit, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey.
| | - Firdevs Baş
- Growth-Development and Pediatric Endocrine Unit, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurçin Saka
- Growth-Development and Pediatric Endocrine Unit, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Edvardsen K, Hellesen A, Husebye ES, Bratland E. Analysis of cellular and humoral immune responses against cytomegalovirus in patients with autoimmune Addison's disease. J Transl Med 2016; 14:68. [PMID: 26956521 PMCID: PMC4784442 DOI: 10.1186/s12967-016-0822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/25/2016] [Indexed: 01/01/2023] Open
Abstract
Background Autoimmune Addison’s disease (AAD) is caused by multiple genetic and environmental factors. Variants of genes encoding immunologically important proteins such as the HLA molecules are strongly associated with AAD, but any environmental risk factors have yet to be defined. We hypothesized that primary or reactivating infections with cytomegalovirus (CMV) could represent an environmental risk factor in AAD, and that CMV specific CD8+ T cell responses may be dysregulated, possibly leading to a suboptimal control of CMV. In particular, the objective was to assess the HLA-B8 restricted CD8+ T cell response to CMV since this HLA class I variant is a genetic risk factor for AAD. Methods To examine the CD8+ T cell response in detail, we analyzed the HLA-A2 and HLA-B8 restricted responses in AAD patients and healthy controls seropositive for CMV antibodies using HLA multimer technology, IFN-γ ELISpot and a CD107a based degranulation assay. Results No differences between patients and controls were found in functions or frequencies of CMV-specific T cells, regardless if the analyses were performed ex vivo or after in vitro stimulation and expansion. However, individual patients showed signs of reactivating CMV infection correlating with poor CD8+ T cell responses to the virus, and a concomitant upregulation of interferon regulated genes in peripheral blood cells. Several recently diagnosed AAD patients also showed serological signs of ongoing primary CMV infection. Conclusions CMV infection does not appear to be a major environmental risk factor in AAD, but may represent a precipitating factor in individual patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0822-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kine Edvardsen
- Department of Clinical Science, University of Bergen, Laboratory Building, 8th floor, 5021, Bergen, Norway.
| | - Alexander Hellesen
- Department of Clinical Science, University of Bergen, Laboratory Building, 8th floor, 5021, Bergen, Norway. .,Department of Medicine, Haukeland University Hospital, 5020, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Laboratory Building, 8th floor, 5021, Bergen, Norway. .,Department of Medicine, Haukeland University Hospital, 5020, Bergen, Norway.
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Laboratory Building, 8th floor, 5021, Bergen, Norway.
| |
Collapse
|
46
|
Hanson JM, Tengvall K, Bonnett BN, Hedhammar Å. Naturally Occurring Adrenocortical Insufficiency--An Epidemiological Study Based on a Swedish-Insured Dog Population of 525,028 Dogs. J Vet Intern Med 2015; 30:76-84. [PMID: 26683136 PMCID: PMC4913634 DOI: 10.1111/jvim.13815] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 09/19/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Naturally occurring adrenocortical insufficiency (NOAI) in dogs is considered an uncommon disease with good prognosis with hormonal replacement treatment. However, there are no epidemiological studies with estimates for the general dog population. Objectives To investigate the epidemiological characteristics of NOAI in a large population of insured dogs. Animals Data were derived from 525,028 client‐owned dogs insured by a Swedish insurance company representing 2,364,652 dog‐years at risk (DYAR) during the period between 1995–2006. Methods Retrospective cohort study. Incidence rates, prevalences, and relative risks for dogs with NOAI (AI with no previous claim for hypercortisolism), were calculated for the whole dog population, and for subgroups divided by breed and sex. Mortality rates were calculated and compared in dogs with NOAI and the remaining dogs overall. Results In total 534 dogs were identified with NOAI. The overall incidence was 2.3 cases per 10,000 DYAR. The relative risk of disease was significantly higher in the Portuguese Water Dog, Standard Poodle, Bearded Collie, Cairn Terrier, and Cocker Spaniel compared with other breeds combined. Female dogs overall were at higher risk of developing AI than male dogs (RR 1.85; 95% CI, 1.55–2.22; P < .001). The relative risk of death was 1.9 times higher in dogs with NOAI than in dogs overall. Conclusion and Clinical Importance The data supports the existence of breed‐specific differences in incidence rates of NOAI in dogs.
Collapse
Affiliation(s)
- J M Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - B N Bonnett
- B Bonnett Consulting, Georgian Bluffs, ON, Canada
| | - Å Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
47
|
Boag AM, Christie MR, McLaughlin KA, Syme HM, Graham P, Catchpole B. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease). PLoS One 2015; 10:e0143458. [PMID: 26618927 PMCID: PMC4664467 DOI: 10.1371/journal.pone.0143458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022] Open
Abstract
Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.
Collapse
Affiliation(s)
- Alisdair M. Boag
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Michael R. Christie
- Division of Diabetes & Nutritional Sciences, King’s College London, Hodgkin Building, Guy’s Campus, London, United Kingdom
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Kerry A. McLaughlin
- Division of Diabetes & Nutritional Sciences, King’s College London, Hodgkin Building, Guy’s Campus, London, United Kingdom
| | - Harriet M. Syme
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, United Kingdom
| | - Peter Graham
- Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Wolff ASB, Mitchell AL, Cordell HJ, Short A, Skinningsrud B, Ollier W, Badenhoop K, Meyer G, Falorni A, Kampe O, Undlien D, Pearce SHS, Husebye ES. CTLA-4 as a genetic determinant in autoimmune Addison's disease. Genes Immun 2015. [PMID: 26204230 PMCID: PMC4561510 DOI: 10.1038/gene.2015.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In common with several other autoimmune diseases, autoimmune Addison's disease (AAD) is thought to be caused by a combination of deleterious susceptibility polymorphisms in several genes, together with undefined environmental factors and stochastic events. To date, the strongest genomic association with AAD has been with alleles at the HLA locus, DR3-DQ2 and DR4. The contribution of other genetic variants has been inconsistent. We have studied the association of 16 single-nucleotide polymorphisms (SNPs) within the CD28-CTLA-4-ICOS genomic locus, in a cohort comprising 691 AAD patients of Norwegian and UK origin with matched controls. We have also performed a meta-analysis including 1002 patients from European countries. The G-allele of SNP rs231775 in CTLA-4 is associated with AAD in Norwegian patients (odds ratio (OR)=1.35 (confidence interval (CI) 1.10-1.66), P=0.004), but not in UK patients. The same allele is associated with AAD in the total European population (OR=1.37 (CI 1.13-1.66), P=0.002). A three-marker haplotype, comprising PROMOTER_1661, rs231726 and rs1896286 was found to be associated with AAD in the Norwegian cohort only (OR 2.43 (CI 1.68-3.51), P=0.00013). This study points to the CTLA-4 gene as a susceptibility locus for the development of AAD, and refines its mapping within the wider genomic locus.
Collapse
Affiliation(s)
- A S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - A L Mitchell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - H J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - A Short
- Centre for Integrated Genomic Medical Research, Institute of Population Health, Manchester University, Manchester, UK
| | - B Skinningsrud
- Institute of Medical Genetics, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - W Ollier
- Centre for Integrated Genomic Medical Research, Institute of Population Health, Manchester University, Manchester, UK
| | - K Badenhoop
- Department of Endocrinology and Diabetes, Internal Medicine 1, Johann-Wolfgang-Goethe-University's Hospital, Frankfurt, Germany
| | - G Meyer
- Department of Endocrinology and Diabetes, Internal Medicine 1, Johann-Wolfgang-Goethe-University's Hospital, Frankfurt, Germany
| | - A Falorni
- Department of Medicine, University of Perugia, Perugia, Italy
| | - O Kampe
- Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - D Undlien
- Institute of Medical Genetics, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - S H S Pearce
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - E S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
49
|
Mitchell AL, Bøe Wolff A, MacArthur K, Weaver JU, Vaidya B, Erichsen MM, Darlay R, Husebye ES, Cordell HJ, Pearce SHS. Linkage Analysis in Autoimmune Addison's Disease: NFATC1 as a Potential Novel Susceptibility Locus. PLoS One 2015; 10:e0123550. [PMID: 26042420 PMCID: PMC4456164 DOI: 10.1371/journal.pone.0123550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/04/2015] [Indexed: 11/20/2022] Open
Abstract
Background Autoimmune Addison’s disease (AAD) is a rare, highly heritable autoimmune endocrinopathy. It is possible that there may be some highly penetrant variants which confer disease susceptibility that have yet to be discovered. Methods DNA samples from 23 multiplex AAD pedigrees from the UK and Norway (50 cases, 67 controls) were genotyped on the Affymetrix SNP 6.0 array. Linkage analysis was performed using Merlin. EMMAX was used to carry out a genome-wide association analysis comparing the familial AAD cases to 2706 UK WTCCC controls. To explore some of the linkage findings further, a replication study was performed by genotyping 64 SNPs in two of the four linked regions (chromosomes 7 and 18), on the Sequenom iPlex platform in three European AAD case-control cohorts (1097 cases, 1117 controls). The data were analysed using a meta-analysis approach. Results In a parametric analysis, applying a rare dominant model, loci on chromosomes 7, 9 and 18 had LOD scores >2.8. In a non-parametric analysis, a locus corresponding to the HLA region on chromosome 6, known to be associated with AAD, had a LOD score >3.0. In the genome-wide association analysis, a SNP cluster on chromosome 2 and a pair of SNPs on chromosome 6 were associated with AAD (P <5x10-7). A meta-analysis of the replication study data demonstrated that three chromosome 18 SNPs were associated with AAD, including a non-synonymous variant in the NFATC1 gene. Conclusion This linkage study has implicated a number of novel chromosomal regions in the pathogenesis of AAD in multiplex AAD families and adds further support to the role of HLA in AAD. The genome-wide association analysis has also identified a region of interest on chromosome 2. A replication study has demonstrated that the NFATC1 gene is worthy of future investigation, however each of the regions identified require further, systematic analysis.
Collapse
Affiliation(s)
- Anna L. Mitchell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Anette Bøe Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Katie MacArthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jolanta U. Weaver
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bijay Vaidya
- Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | | | | | - Rebecca Darlay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon H. S. Pearce
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
50
|
Edvardsen K, Bjånesøy T, Hellesen A, Breivik L, Bakke M, Husebye ES, Bratland E. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines. J Interferon Cytokine Res 2015; 35:759-70. [PMID: 25978633 PMCID: PMC4589105 DOI: 10.1089/jir.2014.0171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.
Collapse
Affiliation(s)
- Kine Edvardsen
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Trine Bjånesøy
- 2 Department of Biomedicine, University of Bergen , Bergen, Norway
| | - Alexander Hellesen
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway .,3 Department of Medicine, Haukeland University Hospital , Bergen, Norway
| | - Lars Breivik
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Marit Bakke
- 2 Department of Biomedicine, University of Bergen , Bergen, Norway
| | - Eystein S Husebye
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway .,3 Department of Medicine, Haukeland University Hospital , Bergen, Norway
| | - Eirik Bratland
- 1 Department of Clinical Science, University of Bergen , Bergen, Norway
| |
Collapse
|