1
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
3
|
Zhao T, Guan X, Hu Y, Zhang Z, Yang H, Shi X, Han J, Mei H, Wang L, Shao L, Wu H, Chen Q, Zhao Y, Pan J, Hao Y, Dong Z, Long X, Deng Q, Zhao S, Zhang M, Zhu Y, Ma X, Chen Z, Deng Y, Si Z, Li X, Zhang T, Gu F, Gu X, Fang L. Population-wide DNA methylation polymorphisms at single-nucleotide resolution in 207 cotton accessions reveal epigenomic contributions to complex traits. Cell Res 2024:10.1038/s41422-024-01027-x. [PMID: 39420233 DOI: 10.1038/s41422-024-01027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
DNA methylation plays multiple regulatory roles in crop development. However, the relationships of methylation polymorphisms with genetic polymorphisms, gene expression, and phenotypic variation in natural crop populations remain largely unknown. Here, we surveyed high-quality methylomes, transcriptomes, and genomes obtained from the 20-days-post-anthesis (DPA) cotton fibers of 207 accessions and extended the classical framework of population genetics to epigenetics. Over 287 million single methylation polymorphisms (SMPs) were identified, 100 times more than the number of single nucleotide polymorphisms (SNPs). These SMPs were significantly enriched in intragenic regions while depleted in transposable elements. Association analysis further identified a total of 5,426,782 cis-methylation quantitative trait loci (cis-meQTLs), 5078 cis-expression quantitative trait methylation (cis-eQTMs), and 9157 expression quantitative trait loci (eQTLs). Notably, 36.39% of cis-eQTM genes were not associated with genetic variation, indicating that a large number of SMPs associated with gene expression variation are independent of SNPs. In addition, out of the 1715 epigenetic loci associated with yield and fiber quality traits, only 36 (2.10%) were shared with genome-wide association study (GWAS) loci. The construction of multi-omics regulatory networks revealed 43 cis-eQTM genes potentially involved in fiber development, which cannot be identified by GWAS alone. Among these genes, the role of one encoding CBL-interacting protein kinase 10 in fiber length regulation was successfully validated through gene editing. Taken together, our findings prove that DNA methylation data can serve as an additional resource for breeding purposes and can offer opportunities to enhance and expedite the crop improvement process.
Collapse
Affiliation(s)
- Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ziqian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yang
- Damo Academy, Alibaba Group, Hangzhou, Zhejiang, China
| | - Xiaowen Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyao Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Lei Shao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongyu Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianqian Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaying Pan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yupeng Hao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuan Long
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengjun Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Mengke Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Yumeng Zhu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Xiaowei Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zequan Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayuan Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Li
- Damo Academy, Alibaba Group, Hangzhou, Zhejiang, China
- Hupan Lab, Hangzhou, Zhejiang, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China.
| | - Fei Gu
- Damo Academy, Alibaba Group, Hangzhou, Zhejiang, China.
- Hupan Lab, Hangzhou, Zhejiang, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advance Seed Institute, Key Laboratory of Plant FactoryGeneration-adding Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, China.
| |
Collapse
|
4
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
5
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
6
|
Li L, Sun M, Wang J, Wan S. Multi-omics based artificial intelligence for cancer research. Adv Cancer Res 2024; 163:303-356. [PMID: 39271266 DOI: 10.1016/bs.acr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
With significant advancements of next generation sequencing technologies, large amounts of multi-omics data, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have been accumulated, offering an unprecedented opportunity to explore the heterogeneity and complexity of cancer across various molecular levels and scales. One of the promising aspects of multi-omics lies in its capacity to offer a holistic view of the biological networks and pathways underpinning cancer, facilitating a deeper understanding of its development, progression, and response to treatment. However, the exponential growth of data generated by multi-omics studies present significant analytical challenges. Processing, analyzing, integrating, and interpreting these multi-omics datasets to extract meaningful insights is an ambitious task that stands at the forefront of current cancer research. The application of artificial intelligence (AI) has emerged as a powerful solution to these challenges, demonstrating exceptional capabilities in deciphering complex patterns and extracting valuable information from large-scale, intricate omics datasets. This review delves into the synergy of AI and multi-omics, highlighting its revolutionary impact on oncology. We dissect how this confluence is reshaping the landscape of cancer research and clinical practice, particularly in the realms of early detection, diagnosis, prognosis, treatment and pathology. Additionally, we elaborate the latest AI methods for multi-omics integration to provide a comprehensive insight of the complex biological mechanisms and inherent heterogeneity of cancer. Finally, we discuss the current challenges of data harmonization, algorithm interpretability, and ethical considerations. Addressing these challenges necessitates a multidisciplinary collaboration, paving the promising way for more precise, personalized, and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mengtao Sun
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
7
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
8
|
Breeze CE, Lin BM, Winkler CA, Franceschini N. African ancestry-derived APOL1 risk genotypes show proximal epigenetic associations. BMC Genomics 2024; 25:452. [PMID: 38714935 PMCID: PMC11077761 DOI: 10.1186/s12864-024-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Apolipoprotein L1 (APOL1) coding variants, termed G1 and G2, are established genetic risk factors for a growing spectrum of diseases, including kidney disease, in individuals of African ancestry. Evidence suggests that the risk variants, which show a recessive mode of inheritance, lead to toxic gain-of-function changes of the APOL1 protein. Disease occurrence and presentation vary, likely due to modifiers or second hits. To understand the role of the epigenetic landscape in relation to APOL1 risk variants, we performed methylation quantitative trait locus (meQTL) analysis to identify differentially methylated CpGs influenced by APOL1 risk variants in 611 African American individuals. We identified five CpGs that were significantly associated with APOL1 risk alleles in discovery and replication studies, and one CpG-APOL1 association was independent of other genomic variants. Our study highlights proximal DNA methylation alterations that may help explain the variable disease risk and clinical manifestation of APOL1 variants.
Collapse
Affiliation(s)
- Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Cheryl A Winkler
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Basic Research Program, Frederick National Laboratory, Frederick, MD, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Tian X, Guo J, Song Y, Yu Q, Liu C, Fu Z, Shi Y, Shao Y, Yuan Z. Intraspecific differentiation of Lindera obtusiloba as revealed by comparative plastomic and evolutionary analyses. Ecol Evol 2024; 14:e11119. [PMID: 38469045 PMCID: PMC10927362 DOI: 10.1002/ece3.11119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Lindera obtusiloba Blume is the northernmost tree species in the family Lauraceae, and it is a key species in understanding the evolutionary history of this family. The species of L. obtusiloba in East Asia has diverged into the Northern and Southern populations, which are geographically separated by an arid belt. Though the morphological differences between populations have been observed and well documented, intraspecific variations at the plastomic level have not been systematically investigated to date. Here, ten chloroplast genomes of L. obtusiloba individuals were sequenced and analyzed along with three publicly available plastomes. Comparative plastomic analysis suggests that both the Northern and the Southern populations share similar overall structure, gene order, and GC content in their plastomes although the size of the plasome and the level of intraspecific variability do vary between the two populations. The Northern have relatively larger plastomes while the Southern population possesses higher intraspecific variability, which could be attributed to the complexity of the geological environments in the South. Phylogenomic analyses also support the split of the Northern and Southern clades among L. obtusiloba individuals. However, there is no obvious species boundary between var. obtusiloba and var. heterophylla in the Southern population, indicating that gene flow could still occur between these two varieties, and this could be used as a good example of reticulate evolution. It is also found that a few photosynthesis-related genes are under positive selection, which is mainly related to the geological and environmental differences between the Northern and the Southern regions. Our results provide a reference for phylogenetic analysis within species and suggest that phylogenomic analyses with a sufficient number of nuclear and chloroplast genomic target loci from widely distributed individuals could provide a deeper understanding of the population evolution of the widespread species.
Collapse
Affiliation(s)
- Xiangyu Tian
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| | - Jia Guo
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education)Guangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinGuangxiChina
| | - Qunfei Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaYunnanChina
| | - Chao Liu
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingYunnanChina
| | - Zhixi Fu
- College of Life SciencesSichuan Normal UniversityChengduChina
| | - Yuhua Shi
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yizhen Shao
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhiliang Yuan
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
10
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
11
|
Chen Y, Ni P, Fu R, Murphy KJ, Wyeth RC, Bishop CD, Huang X, Li S, Zhan A. (Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2772. [PMID: 36316814 DOI: 10.1002/eap.2772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kieran J Murphy
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Cory D Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
de Carvalho CF, Slate J, Villoutreix R, Soria-Carrasco V, Riesch R, Feder JL, Gompert Z, Nosil P. DNA methylation differences between stick insect ecotypes. Mol Ecol 2023; 32:6809-6823. [PMID: 37864542 DOI: 10.1111/mec.17165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.
Collapse
Affiliation(s)
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Rüdiger Riesch
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| | - Jeffrey L Feder
- Department of Biology, Notre Dame University, South Bend, Indiana, USA
| | | | - Patrik Nosil
- School of Biosciences, University of Sheffield, Sheffield, UK
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
13
|
Rubi TL, do Prado JR, Knowles LL, Dantzer B. Patterns of Genetic And Epigenetic Diversity Across A Range Expansion in The White-Footed Mouse ( Peromyscus Leucopus). Integr Org Biol 2023; 5:obad038. [PMID: 37942286 PMCID: PMC10628966 DOI: 10.1093/iob/obad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Indexed: 11/10/2023] Open
Abstract
Populations at the leading front of a range expansion must rapidly adapt to novel conditions. Increased epigenetic diversity has been hypothesized to facilitate adaptation and population persistence via non-genetic phenotypic variation, especially if there is reduced genetic diversity when populations expand (i.e., epigenetic diversity compensates for low genetic diversity). In this study, we use the spatial distribution of genetic and epigenetic diversity to test this hypothesis in populations of the white-footed mouse (Peromyscus leucopus) sampled across a purported recent range expansion gradient. We found mixed support for the epigenetic compensation hypothesis and a lack of support for expectations for expansion populations of mice at the range edge, which likely reflects a complex history of expansion in white-footed mice in the Upper Peninsula of Michigan. Specifically, epigenetic diversity was not increased in the population at the purported edge of the range expansion in comparison to the other expansion populations. However, input from an additional ancestral source populations may have increased genetic diversity at this range edge population, counteracting the expected genetic consequences of expansion, as well as reducing the benefit of increased epigenetic diversity at the range edge. Future work will expand the focal populations to include expansion areas with a single founding lineage to test for the robustness of a general trend that supports the hypothesized compensation of reduced genetic diversity by epigenetic variation observed in the expansion population that was founded from a single historical source.
Collapse
Affiliation(s)
- T L Rubi
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - J R do Prado
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - L L Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - B Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Goeldel C, Johannes F. Stochasticity in gene body methylation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102436. [PMID: 37597469 DOI: 10.1016/j.pbi.2023.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/21/2023]
Abstract
Gene body methylation (gbM) is a widely conserved epigenetic feature of plant genomes. Efforts to delineate the mechanisms by which gbM contributes to transcriptional regulation remain largely inconclusive, and its evolutionary significance continues to be debated. Curiously, although steady-state gbM levels are remarkably stable across mitotic and meiotic cell divisions, the methylation status of individual CG dinucleotides in gbM genes is highly stochastic. How can these two seemingly contradictory observations be reconciled? Here, we discuss how stochastic processes relate to gbM maintenance dynamics. We show that a quantitative understanding of these processes can shed deeper insights into the molecular and evolutionary biology of this enigmatic epigenetic trait.
Collapse
Affiliation(s)
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich, Germany.
| |
Collapse
|
15
|
Catalán A, Merondun J, Knief U, Wolf JBW. Chromatin accessibility, not 5mC methylation covaries with partial dosage compensation in crows. PLoS Genet 2023; 19:e1010901. [PMID: 37747941 PMCID: PMC10575545 DOI: 10.1371/journal.pgen.1010901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/13/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The evolution of genetic sex determination is often accompanied by degradation of the sex-limited chromosome. Male heterogametic systems have evolved convergent, epigenetic mechanisms restoring the resulting imbalance in gene dosage between diploid autosomes (AA) and the hemizygous sex chromosome (X). Female heterogametic systems (AAf Zf, AAm ZZm) tend to only show partial dosage compensation (0.5 < Zf:AAf < 1) and dosage balance (0.5
Collapse
Affiliation(s)
- Ana Catalán
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Justin Merondun
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Ulrich Knief
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jochen B. W. Wolf
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Chen C, Wang J, Pan D, Wang X, Xu Y, Yan J, Wang L, Yang X, Yang M, Liu G. Applications of multi-omics analysis in human diseases. MedComm (Beijing) 2023; 4:e315. [PMID: 37533767 PMCID: PMC10390758 DOI: 10.1002/mco2.315] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Multi-omics usually refers to the crossover application of multiple high-throughput screening technologies represented by genomics, transcriptomics, single-cell transcriptomics, proteomics and metabolomics, spatial transcriptomics, and so on, which play a great role in promoting the study of human diseases. Most of the current reviews focus on describing the development of multi-omics technologies, data integration, and application to a particular disease; however, few of them provide a comprehensive and systematic introduction of multi-omics. This review outlines the existing technical categories of multi-omics, cautions for experimental design, focuses on the integrated analysis methods of multi-omics, especially the approach of machine learning and deep learning in multi-omics data integration and the corresponding tools, and the application of multi-omics in medical researches (e.g., cancer, neurodegenerative diseases, aging, and drug target discovery) as well as the corresponding open-source analysis tools and databases, and finally, discusses the challenges and future directions of multi-omics integration and application in precision medicine. With the development of high-throughput technologies and data integration algorithms, as important directions of multi-omics for future disease research, single-cell multi-omics and spatial multi-omics also provided a detailed introduction. This review will provide important guidance for researchers, especially who are just entering into multi-omics medical research.
Collapse
Affiliation(s)
- Chongyang Chen
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
| | - Jing Wang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Donghui Pan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xinyu Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Yuping Xu
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Junjie Yan
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Lizhen Wang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern ToxicologyShenzhen Medical Key Discipline of Health Toxicology (2020–2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Min Yang
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Gong‐Ping Liu
- Co‐innovation Center of NeurodegenerationNantong UniversityNantongChina
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Kumar M, Rani K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 2023:10.1007/s11033-023-08539-6. [PMID: 37294468 DOI: 10.1007/s11033-023-08539-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell's biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence. EPIGENETIC MECHANISMS AND MARKS The methylation of homologous loci by three different modifications-genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently. EPIGENOMICS' CONSEQUENCES FOR GENOME STABILITY AND GENE EXPRESSION: DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation. TRANSGENERATIONAL INHERITANCE AND SOURCES OF EPIGENETIC VARIATION: Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant's remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles. EPIGENOMICS IN CROP IMPROVEMENT To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding. CONCLUSIONS AND FUTURE PROSPECTUS A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant's ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.
Collapse
Affiliation(s)
- Mithlesh Kumar
- AICRN On Potential Crops, ARS Mandor, Agriculture University, Jodhpur, 342 304, Rajasthan, India.
| | - Kirti Rani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Jodhpur, 342 003, Rajasthan, India
| |
Collapse
|
18
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
19
|
Silliman K, Spencer LH, White SJ, Roberts SB. Epigenetic and Genetic Population Structure is Coupled in a Marine Invertebrate. Genome Biol Evol 2023; 15:evad013. [PMID: 36740242 PMCID: PMC10468963 DOI: 10.1093/gbe/evad013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023] Open
Abstract
Delineating the relative influence of genotype and the environment on DNA methylation is critical for characterizing the spectrum of organism fitness as driven by adaptation and phenotypic plasticity. In this study, we integrated genomic and DNA methylation data for two distinct Olympia oyster (Ostrea lurida) populations while controlling for within-generation environmental influences. In addition to providing the first characterization of genome-wide DNA methylation patterns in the oyster genus Ostrea, we identified 3,963 differentially methylated loci between populations. Our results show a clear coupling between genetic and epigenetic patterns of variation, with 27% of variation in interindividual methylation differences explained by genotype. Underlying this association are both direct genetic changes in CpGs (CpG-SNPs) and genetic variation with indirect influence on methylation (mQTLs). When comparing measures of genetic and epigenetic population divergence at specific genomic regions this relationship surprisingly breaks down, which has implications for the methods commonly used to study epigenetic and genetic coupling in marine invertebrates.
Collapse
Affiliation(s)
- Katherine Silliman
- South Carolina Department of Natural Resources, Marine Resources Research
Institute, Charleston, South Carolina
| | - Laura H Spencer
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of
Washington, Seattle
| |
Collapse
|
20
|
Varotto S, Krugman T, Aiese Cigliano R, Kashkush K, Kondić-Špika A, Aravanopoulos FA, Pradillo M, Consiglio F, Aversano R, Pecinka A, Miladinović D. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3987-4003. [PMID: 35678824 PMCID: PMC9729329 DOI: 10.1007/s00122-022-04122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment, University of Padova, Viale dell'Università, 16 35020, Legnaro, Italy.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beersheba, 84105, Israel
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Fillipos A Aravanopoulos
- Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GR54006, Greece
| | - Monica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Federica Consiglio
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Università 133, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Acad Sci, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| |
Collapse
|
21
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
22
|
Hillary RF, McCartney DL, McRae AF, Campbell A, Walker RM, Hayward C, Horvath S, Porteous DJ, Evans KL, Marioni RE. Identification of influential probe types in epigenetic predictions of human traits: implications for microarray design. Clin Epigenetics 2022; 14:100. [PMID: 35948928 PMCID: PMC9367152 DOI: 10.1186/s13148-022-01320-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CpG methylation levels can help to explain inter-individual differences in phenotypic traits. Few studies have explored whether identifying probe subsets based on their biological and statistical properties can maximise predictions whilst minimising array content. Variance component analyses and penalised regression (epigenetic predictors) were used to test the influence of (i) the number of probes considered, (ii) mean probe variability and (iii) methylation QTL status on the variance captured in eighteen traits by blood DNA methylation. Training and test samples comprised ≤ 4450 and ≤ 2578 unrelated individuals from Generation Scotland, respectively. RESULTS As the number of probes under consideration decreased, so too did the estimates from variance components and prediction analyses. Methylation QTL status and mean probe variability did not influence variance components. However, relative effect sizes were 15% larger for epigenetic predictors based on probes with known or reported methylation QTLs compared to probes without reported methylation QTLs. Relative effect sizes were 45% larger for predictors based on probes with mean Beta-values between 10 and 90% compared to those based on hypo- or hypermethylated probes (Beta-value ≤ 10% or ≥ 90%). CONCLUSIONS Arrays with fewer probes could reduce costs, leading to increased sample sizes for analyses. Our results show that reducing array content can restrict prediction metrics and careful attention must be given to the biological and distribution properties of CpG probes in array content selection.
Collapse
Affiliation(s)
- Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-7088, USA.,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095-1772, USA
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| |
Collapse
|
23
|
De Kort H, Toivainen T, Van Nieuwerburgh F, Andrés J, Hytönen TP, Honnay O. Signatures of polygenic adaptation align with genome-wide methylation patterns in wild strawberry plants. THE NEW PHYTOLOGIST 2022; 235:1501-1514. [PMID: 35575945 DOI: 10.1111/nph.18225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic inheritance can drive adaptive evolution independently of DNA sequence variation. However, to what extent epigenetic variation represents an autonomous evolutionary force remains largely elusive. Through gene ontology and comparative analyses of genomic and epigenomic variation of wild strawberry plants raised in distinct drought settings, we characterised genome-wide covariation between single nucleotide polymorphisms (SNPs) and differentially methylated cytosines (DMCs). Covariation between SNPs and DMCs was independent of genomic proximity, but instead associated with fitness-related processes such as stress responses, genome regulation and reproduction. We expected this functional SNP-DMC covariation to be driven by adaptive evolution canalising SNP and DMC variation, but instead observed significantly lower covariation with DMCs for adaptive rather than for neutral SNPs. Drought-induced DMCs frequently co-varied with tens of SNPs, suggesting high genomic redundancy as a broad potential basis for polygenic adaptation of gene expression. Our findings suggest that stress-responsive DMCs initially co-vary with many SNPs under increased environmental stress, and that natural selection acting upon several of these SNPs subsequently reduces standing covariation with stress-responsive DMCs. Our study supports DNA methylation profiles that represent complex quantitative traits rather than autonomous evolutionary forces. We provide a conceptual framework for polygenic regulation and adaptation shaping genome-wide methylation patterns in plants.
Collapse
Affiliation(s)
- Hanne De Kort
- Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | | | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo P Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Olivier Honnay
- Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| |
Collapse
|
24
|
Liu S, Tengstedt ANB, Jacobsen MW, Pujolar JM, Jónsson B, Lobón-Cervià J, Bernatchez L, Hansen MM. Genome-wide methylation in the panmictic European eel (Anguilla anguilla). Mol Ecol 2022; 31:4286-4306. [PMID: 35767387 DOI: 10.1111/mec.16586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
The role of methylation in adaptive, developmental and speciation processes has attracted considerable interest, but interpretation of results is complicated by diffuse boundaries between genetic and non-genetic variation. We studied whole genome genetic and methylation variation in the European eel, distributed from subarctic to subtropical environments, but with panmixia precluding genetically based local adaptation beyond single-generation responses. Overall methylation was 70.9%, with hypomethylation predominantly found in promoters and first exons. Redundancy analyses involving juvenile glass eels showed 0.06% and 0.03% of the variance at SNPs to be explained by localities and environmental variables, respectively, with GO terms of genes associated with outliers primarily involving neural system functioning. For CpGs 2.98% and 1.36% of variance was explained by localities and environmental variables. Differentially methylated regions particularly included genes involved in developmental processes, with hox clusters featuring prominently. Life stage (adult versus glass eels) was the most important source of inter-individual variation in methylation, likely reflecting both ageing and developmental processes. Demethylation of transposable elements relative to pure European eel was observed in European X American eel hybrids, possibly representing postzygotic barriers in this system characterized by prolonged speciation and ongoing gene flow. Whereas the genetic data are consistent with a role of single-generation selective responses, the methylation results underpin the importance of epigenetics in the life cycle of eels and suggests interactions between local environments, development and phenotypic variation mediated by methylation variation. Eels are remarkable by having retained eight hox clusters, and the results suggest important roles of methylation at hox genes for adaptive processes.
Collapse
Affiliation(s)
- Shenglin Liu
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Magnus W Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjarni Jónsson
- North West Iceland Nature Center, Iceland.,The Icelandic Parliament, Reykjavík, Iceland
| | | | - Louis Bernatchez
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
| | | |
Collapse
|
25
|
Hong N, Sun G, Zuo X, Chen M, Liu L, Wang J, Feng X, Shi W, Gong M, Ma P. Application of informatics in cancer research and clinical practice: Opportunities and challenges. CANCER INNOVATION 2022; 1:80-91. [PMID: 38089452 PMCID: PMC10686161 DOI: 10.1002/cai2.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 10/15/2024]
Abstract
Cancer informatics has significantly progressed in the big data era. We summarize the application of informatics approaches to the cancer domain from both the informatics perspective (e.g., data management and data science) and the clinical perspective (e.g., cancer screening, risk assessment, diagnosis, treatment, and prognosis). We discuss various informatics methods and tools that are widely applied in cancer research and practices, such as cancer databases, data standards, terminologies, high-throughput omics data mining, machine-learning algorithms, artificial intelligence imaging, and intelligent radiation. We also address the informatics challenges within the cancer field that pursue better treatment decisions and patient outcomes, and focus on how informatics can provide opportunities for cancer research and practices. Finally, we conclude that the interdisciplinary nature of cancer informatics and collaborations are major drivers for future research and applications in clinical practices. It is hoped that this review is instrumental for cancer researchers and clinicians with its informatics-specific insights.
Collapse
Affiliation(s)
- Na Hong
- Department of Medical SciencesDigital Health China Technologies Co., Ltd.BeijingChina
| | - Gang Sun
- Xinjiang Cancer Center, Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionThe Affiliated Cancer Hospital of Xinjiang Medical UniversityÜrümqiChina
| | - Xiuran Zuo
- Department of Information, Central Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Meng Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Liu
- Big Data Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiani Wang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaobin Feng
- Hepato‐Pancreato‐Biliary Center, Beijing Tsinghua Changgung HospitalSchool of Clinical Medicine, Tsinghua UniversityBeijingChina
| | - Wenzhao Shi
- Department of Medical SciencesDigital Health China Technologies Co., Ltd.BeijingChina
| | - Mengchun Gong
- Department of Medical SciencesDigital Health China Technologies Co., Ltd.BeijingChina
- Institute of Health ManagementSouthern Medical UniversityGuangzhouChina
| | - Pengcheng Ma
- Big Data Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
27
|
Gao Y, Chen Y, Li S, Huang X, Hu J, Bock DG, MacIsaac HJ, Zhan A. Complementary genomic and epigenomic adaptation to environmental heterogeneity. Mol Ecol 2022; 31:3598-3612. [PMID: 35560847 DOI: 10.1111/mec.16500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri, using reduced-representation methods. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.
Collapse
Affiliation(s)
- Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dan G Bock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Yunnan, 650091, China.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Costes V, Chaulot-Talmon A, Sellem E, Perrier JP, Aubert-Frambourg A, Jouneau L, Pontlevoy C, Hozé C, Fritz S, Boussaha M, Le Danvic C, Sanchez MP, Boichard D, Schibler L, Jammes H, Jaffrézic F, Kiefer H. Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clin Epigenetics 2022; 14:54. [PMID: 35477426 PMCID: PMC9047354 DOI: 10.1186/s13148-022-01275-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Conflicting results regarding alterations to sperm DNA methylation in cases of spermatogenesis defects, male infertility and poor developmental outcomes have been reported in humans. Bulls used for artificial insemination represent a relevant model in this field, as the broad dissemination of bull semen considerably alleviates confounding factors and enables the precise assessment of male fertility. This study was therefore designed to assess the potential for sperm DNA methylation to predict bull fertility. RESULTS A unique collection of 100 sperm samples was constituted by pooling 2-5 ejaculates per bull from 100 Montbéliarde bulls of comparable ages, assessed as fertile (n = 57) or subfertile (n = 43) based on non-return rates 56 days after insemination. The DNA methylation profiles of these samples were obtained using reduced representation bisulfite sequencing. After excluding putative sequence polymorphisms, 490 fertility-related differentially methylated cytosines (DMCs) were identified, most of which were hypermethylated in subfertile bulls. Interestingly, 46 genes targeted by DMCs are involved in embryonic and fetal development, sperm function and maturation, or have been related to fertility in genome-wide association studies; five of these were further analyzed by pyrosequencing. In order to evaluate the prognostic value of fertility-related DMCs, the sperm samples were split between training (n = 67) and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values obtained on the training set. The predictive accuracy of this model was 72% on the testing set and 72% on individual ejaculates collected from an independent cohort of 20 bulls. CONCLUSION This study, conducted on the largest set of bull sperm samples so far examined in epigenetic analyses, demonstrated that the sperm methylome is a valuable source of male fertility biomarkers. The next challenge is to combine these results with other data on the same sperm samples in order to improve the quality of the model and better understand the interplay between DNA methylation and other molecular features in the regulation of fertility. This research may have potential applications in human medicine, where infertility affects the interaction between a male and a female, thus making it difficult to isolate the male factor.
Collapse
Affiliation(s)
- Valentin Costes
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Aurélie Chaulot-Talmon
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Eli Sellem
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Aubert-Frambourg
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Charline Pontlevoy
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Chris Hozé
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Marie-Pierre Sanchez
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Didier Boichard
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Hélène Jammes
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Florence Jaffrézic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France. .,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
29
|
Tsaballa A, Sperdouli I, Avramidou EV, Ganopoulos I, Koukounaras A, Ntinas GK. Epigenetic and Physiological Responses to Varying Root-Zone Temperatures in Greenhouse Rocket. Genes (Basel) 2022; 13:364. [PMID: 35205409 PMCID: PMC8871717 DOI: 10.3390/genes13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Greenhouse production of baby leaf vegetables grown in hydroponic floating trays has become extremely popular in recent years. Rocket (Eruca sativa Mill.) can grow in temperatures varying between 10 and 20 °C; nevertheless, a root-zone temperature (RZT) range of 18-23 °C is considered optimal for high productivity, photosynthesis, and production of metabolites. Maintaining such temperatures in winter raises production costs and prevents sustainability. In this study, we tested the impact of lower RZT on plants' status and recorded their responses while providing energy for heating using photovoltaic solar panels. We used three hydroponic tanks for cultivation; a non-heated (control) tank (12 °C) and two heated tanks; a solar panel-powered one (16 °C) and a public grid-powered one (22 °C). Methylation-sensitive amplified polymorphisms (MSAP) analysis of global methylation profiles and chlorophyll fluorescence analysis were employed to assess methylation and physiology levels of rocket leaves. We found that there is demethylation at 16 °C RZT in comparison to 22 °C RZT. Reduction of temperature at 12 °C did not reduce methylation levels further but rather increased them. Furthermore, at 16 °C, the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII) was significantly higher, with a higher PSII electron transport rate (ETR) and a significantly decreased non-regulated energy loss (ΦΝO), suggesting a better light energy use by rocket plants with higher photosynthetic performance. ΦPSII was significantly negatively correlated with DNA methylation levels. Our results show that at 16 °C RZT, where plants grow efficiently without being affected by the cold, DNA methylation and photosynthesis apparatus systems are altered. These findings corroborate previous results where hydroponic production of rocket at RZT of 16 °C is accompanied by sufficient yield showing that rocket can effectively grow in suboptimal yet sustainable root-zone temperatures.
Collapse
Affiliation(s)
- Aphrodite Tsaballa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO-Dimitra), Thermi, 57001 Thessaloniki, Greece; (I.S.); (I.G.); (G.K.N.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO-Dimitra), Thermi, 57001 Thessaloniki, Greece; (I.S.); (I.G.); (G.K.N.)
| | - Evangelia V. Avramidou
- Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization (ELGO-Dimitra), Terma Alkmanos, Ilisia, 11528 Athens, Greece;
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO-Dimitra), Thermi, 57001 Thessaloniki, Greece; (I.S.); (I.G.); (G.K.N.)
| | - Athanasios Koukounaras
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (ELGO-Dimitra), Thermi, 57001 Thessaloniki, Greece; (I.S.); (I.G.); (G.K.N.)
| |
Collapse
|
30
|
Abstract
Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs are increasingly targeted in studies of natural populations. Here, I review some of the insights gained from this research, examine some of the methods currently in use and discuss some of the challenges that researchers working on natural populations are likely to face when probing epigenetic mechanisms. While studies supporting the involvement of epigenetic mechanisms in generating phenotypic variation in natural populations are amassing, many of these studies are currently correlative in nature. Thus, while empirical data point to widespread contributions of epigenetic mechanisms in generating phenotypic variation, there are still concerns as to whether epigenetic variation is instead ultimately controlled by genetic variation. Disentangling these two sources of variation will be a key to resolving the debate about the importance of epigenetic mechanisms, and studies on natural populations that partition the relative contribution of genetic and epigenetic factors to phenotypic variation can play an important role in this debate.
Collapse
Affiliation(s)
- Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden.,Centre for Biodiversity Dynamics, Norwegian University for Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
32
|
CSCS: a chromatin state interface for Chinese Spring bread wheat. ABIOTECH 2021; 2:357-364. [PMID: 36311809 PMCID: PMC9590471 DOI: 10.1007/s42994-021-00048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
A chromosome-level genome assembly of the bread wheat variety Chinese Spring (CS) has recently been published. Genome-wide identification of regulatory elements (REs) responsible for regulating gene activity is key to further mechanistic studies. Because epigenetic activity can reflect RE activity, defining chromatin states based on epigenomic features is an effective way to detect REs. Here, we present the web-based platform Chinese Spring chromatin state (CSCS), which provides CS chromatin signature information. CSCS includes 15 recently published epigenomic data sets including open chromatin and major chromatin marks, which are further partitioned into 15 distinct chromatin states. CSCS curates detailed information about these chromatin states, with trained self-organization mapping (SOM) for segments in all chromatin states and JBrowse visualization for genomic regions or genes. Motif analysis for genomic regions or genes, GO analysis for genes and SOM analysis for new epigenomic data sets are also integrated into CSCS. In summary, the CSCS database contains the combinatorial patterns of chromatin signatures in wheat and facilitates the detection of functional elements and further clarification of regulatory activities. We illustrate how CSCS enables biological insights using one example, demonstrating that CSCS is a highly useful resource for intensive data mining. CSCS is available at http://bioinfo.cemps.ac.cn/CSCS/. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00048-z.
Collapse
|
33
|
Hou Q, Wan X. Epigenome and Epitranscriptome: Potential Resources for Crop Improvement. Int J Mol Sci 2021; 22:12912. [PMID: 34884725 PMCID: PMC8658206 DOI: 10.3390/ijms222312912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/26/2022] Open
Abstract
Crop breeding faces the challenge of increasing food demand, especially under climatic changes. Conventional breeding has relied on genetic diversity by combining alleles to obtain desired traits. In recent years, research on epigenetics and epitranscriptomics has shown that epigenetic and epitranscriptomic diversity provides additional sources for crop breeding and harnessing epigenetic and epitranscriptomic regulation through biotechnologies has great potential for crop improvement. Here, we review epigenome and epitranscriptome variations during plant development and in response to environmental stress as well as the available sources for epiallele formation. We also discuss the possible strategies for applying epialleles and epitranscriptome engineering in crop breeding.
Collapse
Affiliation(s)
- Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| |
Collapse
|
34
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Yao N, Schmitz RJ, Johannes F. Epimutations Define a Fast-Ticking Molecular Clock in Plants. Trends Genet 2021; 37:699-710. [PMID: 34016450 PMCID: PMC8282728 DOI: 10.1016/j.tig.2021.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Stochastic gains and losses of DNA methylation at CG dinucleotides are a frequent occurrence in plants. These spontaneous 'epimutations' occur at a rate that is 100 000 times higher than the genetic mutation rate, are effectively neutral at the genome-wide scale, and are stably inherited across mitotic and meiotic cell divisions. Mathematical models have been extraordinarily successful at describing how epimutations accumulate in plant genomes over time, making this process one of the most predictable epigenetic phenomena to date. Here, we propose that their high rate and effective neutrality make epimutations a powerful new molecular clock for timing evolutionary events of the recent past and for age dating of long-lived perennials such as trees.
Collapse
Affiliation(s)
- Nan Yao
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, Garching, Germany; Population Epigenetics and Epigenomics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
36
|
Farquhar KS, Rasouli Koohi S, Charlebois DA. Does transcriptional heterogeneity facilitate the development of genetic drug resistance? Bioessays 2021; 43:e2100043. [PMID: 34160842 DOI: 10.1002/bies.202100043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Non-genetic forms of antimicrobial (drug) resistance can result from cell-to-cell variability that is not encoded in the genetic material. Data from recent studies also suggest that non-genetic mechanisms can facilitate the development of genetic drug resistance. We speculate on how the interplay between non-genetic and genetic mechanisms may affect microbial adaptation and evolution during drug treatment. We argue that cellular heterogeneity arising from fluctuations in gene expression, epigenetic modifications, as well as genetic changes contribute to drug resistance at different timescales, and that the interplay between these mechanisms enhance pathogen resistance. Accordingly, developing a better understanding of the role of non-genetic mechanisms in drug resistance and how they interact with genetic mechanisms will enhance our ability to combat antimicrobial resistance. Also see the video abstract here: https://youtu.be/aefGpdh-bgU.
Collapse
Affiliation(s)
| | - Samira Rasouli Koohi
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G-2E1, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G-2E1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Noshay JM, Springer NM. Stories that can't be told by SNPs; DNA methylation variation in plant populations. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101989. [PMID: 33445144 DOI: 10.1016/j.pbi.2020.101989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 05/23/2023]
Abstract
Epigenetic variation has been observed in many plant populations. This variation can influence qualitative and quantitative traits. A key question is whether there is novel information in the epigenome that is not captured by SNP-based genetic markers. The answer likely varies depending on the sources and stability of epigenetic variation as well as the type of population being studied. We consider the epigenetic variation in several plant systems and how this relates to potential for hidden information that could increase our understanding of phenotypic variation.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
38
|
Liang J, Zhang K, Yang J, Li X, Li Q, Wang Y, Cai W, Teng H, Sun Z. A new approach to decode DNA methylome and genomic variants simultaneously from double strand bisulfite sequencing. Brief Bioinform 2021; 22:6289882. [PMID: 34058751 PMCID: PMC8575003 DOI: 10.1093/bib/bbab201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic and epigenetic contributions to various diseases and biological processes have been well-recognized. However, simultaneous identification of single-nucleotide variants (SNVs) and DNA methylation levels from traditional bisulfite sequencing data is still challenging. Here, we develop double strand bisulfite sequencing (DSBS) for genome-wide accurate identification of SNVs and DNA methylation simultaneously at a single-base resolution by using one dataset. Locking Watson and Crick strand together by hairpin adapter followed by bisulfite treatment and massive parallel sequencing, DSBS simultaneously sequences the bisulfite-converted Watson and Crick strand in one paired-end read, eliminating the strand bias of bisulfite sequencing data. Mutual correction of read1 and read2 can estimate the amplification and sequencing errors, and enables our developed computational pipeline, DSBS Analyzer (https://github.com/tianguolangzi/DSBS), to accurately identify SNV and DNA methylation. Additionally, using DSBS, we provide a genome-wide hemimethylation landscape in the human cells, and reveal that the density of DNA hemimethylation sites in promoter region and CpG island is lower than that in other genomic regions. The cost-effective new approach, which decodes DNA methylome and genomic variants simultaneously, will facilitate more comprehensive studies on numerous diseases and biological processes driven by both genetic and epigenetic variations.
Collapse
Affiliation(s)
| | | | - Jie Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Beijing 100101, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huajing Teng
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| | - Zhongsheng Sun
- Corresponding author: Zhongsheng Sun, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beichen West Road, Chao Yang District, Beijing 100101, China. Tel.: +86 10 64864959; Fax: +86 10 84504120. ; Huajing Teng, Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Fucheng Road, Haidian District, Beijing 100142, China. Tel.: +86 10 88196505.
| |
Collapse
|
39
|
Breeze CE, Batorsky A, Lee MK, Szeto MD, Xu X, McCartney DL, Jiang R, Patki A, Kramer HJ, Eales JM, Raffield L, Lange L, Lange E, Durda P, Liu Y, Tracy RP, Van Den Berg D, Evans KL, Kraus WE, Shah S, Tiwari HK, Hou L, Whitsel EA, Jiang X, Charchar FJ, Baccarelli AA, Rich SS, Morris AP, Irvin MR, Arnett DK, Hauser ER, Rotter JI, Correa A, Hayward C, Horvath S, Marioni RE, Tomaszewski M, Beck S, Berndt SI, London SJ, Mychaleckyj JC, Franceschini N. Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci. Genome Med 2021; 13:74. [PMID: 33931109 PMCID: PMC8088054 DOI: 10.1186/s13073-021-00877-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context.
Collapse
Affiliation(s)
- Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA.
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
- Altius Institute for Biomedical Sciences, Seattle, WA, 98121, USA.
| | - Anna Batorsky
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Mindy D Szeto
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Rong Jiang
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27701, USA
| | - Amit Patki
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Holly J Kramer
- Department of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, IL, USA
- Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, USA
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Russ P Tracy
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - David Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Svati Shah
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Hermant K Tiwari
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiao Jiang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fadi J Charchar
- School of Health and Life Sciences, Federation University Australia, Ballarat, VIC, Australia
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Durham VA Health System, Durham, NC, 27705, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Vitamin D decreases silencer methylation to downregulate renin gene expression. Gene 2021; 786:145623. [PMID: 33798678 DOI: 10.1016/j.gene.2021.145623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Renin, encoded by REN, is an essential enzyme in the renin-angiotensin aldosterone system (RAAS) which is responsible for the maintenance of blood pressure homeostasis. Transcriptional regulation of REN has been linked to enhancer-promoter crosstalk, cAMP response element-binding protein (CREB), the active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and a less well-characterized intronic silencer element. We hypothesized that in addition to these, differential DNA methylation is linked to REN expression and influenced by 1,25(OH)2D3. REN expressing cells (HEK293) were used to elucidate the effect of 1,25(OH)2D3 on REN methylation and expression as quantified by methylation-sensitive qPCR and RT-qPCR, respectively. In vitro 1,25(OH)2D3 supplementation (10 nM) induced significant hypomethylation of the REN silencer (P < 0.050), which was linked to a significant reduction in REN expression (P < 0.010) but had no effect on enhancer methylation. In addition, 1,25(OH)2D3 increased VDR (P < 0.05), as well as TET1 (P < 0.05) expression, suggesting an association between 1,25(OH)2D3 and DNA methylation. Thus, it appears that the silencer element, which is controlled by DNA methylation and influenced by 1,25(OH)2D3, plays an essential role in regulating REN expression.
Collapse
|
41
|
Hu J, Wuitchik SJS, Barry TN, Jamniczky HA, Rogers SM, Barrett RDH. Heritability of DNA methylation in threespine stickleback (Gasterosteus aculeatus). Genetics 2021; 217:1-15. [PMID: 33683369 PMCID: PMC8045681 DOI: 10.1093/genetics/iyab001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.
Collapse
Affiliation(s)
- Juntao Hu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| | - Sara J S Wuitchik
- Informatics Group, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tegan N Barry
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, QC H3A 0C4, Canada
| |
Collapse
|
42
|
Huang KM, Chain FJJ. Copy number variations and young duplicate genes have high methylation levels in sticklebacks. Evolution 2021; 75:706-718. [PMID: 33527399 DOI: 10.1111/evo.14184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Gene duplication is an important driver of genomic diversity that can promote adaptive evolution. However, like most mutations, a newly duplicated gene is often deleterious and removed from the genome by drift or natural selection. The early molecular changes that occur soon after duplication therefore may influence the long-term survival of gene duplicates, but relatively little empirical data exist on the events near the onset of duplication before mutations have time to accumulate. In this study, we contrast gene expression and DNA methylation levels of duplicate genes in the threespine stickleback, Gasterosteus aculeatus, including recently emerged duplications that segregate as copy number variations (CNVs). We find that younger duplicate genes have higher levels of promoter methylation than older genes, and that gene CNVs have higher promoter methylation than non-CNVs. These results suggest preferential duplication of highly methylated genes or rapid methylation changes soon after duplication. We also find a negative association between methylation and expression, providing a putative role for methylation in suppressing transcription that compensates for increases in gene copy numbers and promoting paralog retention. We propose that methylation contributes to the longevity of young duplicate genes, extending the window of opportunity for functional divergence via mutation.
Collapse
Affiliation(s)
- Katherine M Huang
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, 01854.,Comparative Media Studies/Writing, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, 01854
| |
Collapse
|
43
|
Kohil A, Al-Asmakh M, Al-Shafai M, Terranegra A. The Interplay Between Diet and the Epigenome in the Pathogenesis of Type-1 Diabetes. Front Nutr 2021; 7:612115. [PMID: 33585535 PMCID: PMC7876257 DOI: 10.3389/fnut.2020.612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The autoimmune disease, Type 1 Diabetes Mellitus (T1DM), results in the destruction of pancreatic β-cells, and the International Diabetes Federation reports that its incidence is increasing worldwide. T1DM is a complex disease due to the interaction between genetic and environmental factors. Certain dietary patterns and nutrients are known to cause epigenetic modifications in physiological conditions and diseases. However, the interplay between diet and epigenetics is not yet well-understood in the context of T1DM. Several studies have described epigenetic mechanisms involved in the autoimmune reactions that destroy the β-cells, but few explored diet components as potential triggers for epigenetic modifications. Clarifying the link between diet and epigenome can provide new insights into the pathogenesis of T1DM, potentially leading to new diagnostic and therapeutic approaches. In this mini review, we shed light on the influence of the diet-epigenome axis on the pathophysiology of T1DM.
Collapse
Affiliation(s)
- Amira Kohil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | | |
Collapse
|
44
|
Fargeot L, Loot G, Prunier JG, Rey O, Veyssière C, Blanchet S. Patterns of Epigenetic Diversity in Two Sympatric Fish Species: Genetic vs. Environmental Determinants. Genes (Basel) 2021; 12:107. [PMID: 33467145 PMCID: PMC7830833 DOI: 10.3390/genes12010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic components are hypothesized to be sensitive to the environment, which should permit species to adapt to environmental changes. In wild populations, epigenetic variation should therefore be mainly driven by environmental variation. Here, we tested whether epigenetic variation (DNA methylation) observed in wild populations is related to their genetic background, and/or to the local environment. Focusing on two sympatric freshwater fish species (Gobio occitaniae and Phoxinus phoxinus), we tested the relationships between epigenetic differentiation, genetic differentiation (using microsatellite and single nucleotide polymorphism (SNP) markers), and environmental distances between sites. We identify positive relationships between pairwise genetic and epigenetic distances in both species. Moreover, epigenetic marks better discriminated populations than genetic markers, especially in G. occitaniae. In G. occitaniae, both pairwise epigenetic and genetic distances were significantly associated to environmental distances between sites. Nonetheless, when controlling for genetic differentiation, the link between epigenetic differentiation and environmental distances was not significant anymore, indicating a noncausal relationship. Our results suggest that fish epigenetic variation is mainly genetically determined and that the environment weakly contributed to epigenetic variation. We advocate the need to control for the genetic background of populations when inferring causal links between epigenetic variation and environmental heterogeneity in wild populations.
Collapse
Affiliation(s)
- Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Géraldine Loot
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
- Université Paul Sabatier (UPS), Institut Universitaire de France (IUF), F-75231 Paris CEDEX 05, France
| | - Jérôme G. Prunier
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
| | - Olivier Rey
- CNRS, Interaction Hôtes-Parasites-Environnements (IHPE), UMR 5244, F-66860 Perpignan, France;
| | - Charlotte Veyssière
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Station d’Ecologie Théorique et Expérimentale, UMR 5321, F-09200 Moulis, France;
- CNRS, UPS, École Nationale de Formation Agronomique (ENFA), UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse CEDEX 4, France; (G.L.); (C.V.)
| |
Collapse
|
45
|
An introduction to EpiPol (Epigenetic affecting Polymorphism) concept with an in silico identification of CpG-affecting SNPs in the upstream regulatory sequences of human AHR gene. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
46
|
Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 2020; 20:739-761. [PMID: 33089419 DOI: 10.1007/s10142-020-00756-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023]
Abstract
Epigenetics is defined as changes in gene expression that are not associated with changes in DNA sequence but due to the result of methylation of DNA and post-translational modifications to the histones. These epigenetic modifications are known to regulate gene expression by bringing changes in the chromatin state, which underlies plant development and shapes phenotypic plasticity in responses to the environment and internal cues. This review articulates the role of histone modifications and DNA methylation in modulating biotic and abiotic stresses, as well as crop improvement. It also highlights the possibility of engineering epigenomes and epigenome-based predictive models for improving agronomic traits.
Collapse
|
47
|
Shahryary Y, Symeonidi A, Hazarika RR, Denkena J, Mubeen T, Hofmeister B, van Gurp T, Colomé-Tatché M, Verhoeven KJ, Tuskan G, Schmitz RJ, Johannes F. AlphaBeta: computational inference of epimutation rates and spectra from high-throughput DNA methylation data in plants. Genome Biol 2020; 21:260. [PMID: 33023650 PMCID: PMC7539454 DOI: 10.1186/s13059-020-02161-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/02/2020] [Indexed: 01/28/2023] Open
Abstract
Stochastic changes in DNA methylation (i.e., spontaneous epimutations) contribute to methylome diversity in plants. Here, we describe AlphaBeta, a computational method for estimating the precise rate of such stochastic events using pedigree-based DNA methylation data as input. We demonstrate how AlphaBeta can be employed to study transgenerationally heritable epimutations in clonal or sexually derived mutation accumulation lines, as well as somatic epimutations in long-lived perennials. Application of our method to published and new data reveals that spontaneous epimutations accumulate neutrally at the genome-wide scale, originate mainly during somatic development and that they can be used as a molecular clock for age-dating trees.
Collapse
Affiliation(s)
- Yadollah Shahryary
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| | - Aikaterini Symeonidi
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
| | - Rashmi R. Hazarika
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| | - Johanna Denkena
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
| | - Talha Mubeen
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| | | | - Thomas van Gurp
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, Wageningen, The Netherlands
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764 Germany
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, Groningen, 9713 AV Netherlands
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Erlenmeyer-Forum 2, Freising, 85354 Germany
| | - Koen J.F. Verhoeven
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Terrestrial Ecology, Wageningen, Wageningen, The Netherlands
| | - Gerald Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Robert J. Schmitz
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
- Department of Genetics, The University of Georgia, 120 East Green Street, Athens, 30602 USA
| | - Frank Johannes
- Technical University of Munich, Department of Plant Sciences, Liesel-Beckmann-Str. 2, Freising, 85354 Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, Garching, 85748 Germany
| |
Collapse
|
48
|
Singh R, Chandel S, Dey D, Ghosh A, Roy S, Ravichandiran V, Ghosh D. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40:BSR20202160. [PMID: 32815547 PMCID: PMC7494983 DOI: 10.1042/bsr20202160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes and its related complications are increasing significantly globally. Collected evidence suggested that several genetic and environmental factors contribute to diabetes mellitus. Associated complications such as retinopathy, neuropathy, nephropathy and other cardiovascular complications are a direct result of diabetes. Epigenetic factors include deoxyribonucleic acid (DNA) methylation and histone post-translational modifications. These factors are directly related with pathological factors such as oxidative stress, generation of inflammatory mediators and hyperglycemia. These result in altered gene expression and targets cells in the pathology of diabetes mellitus without specific changes in a DNA sequence. Environmental factors and malnutrition are equally responsible for epigenetic states. Accumulated evidence suggested that environmental stimuli alter the gene expression that result in epigenetic changes in chromatin. Recent studies proposed that epigenetics may include the occurrence of 'metabolic memory' found in animal studies. Further study into epigenetic mechanism might give us new vision into the pathogenesis of diabetes mellitus and related complication thus leading to the discovery of new therapeutic targets. In this review, we discuss the possible epigenetic changes and mechanism that happen in diabetes mellitus type 1 and type 2 separately. We highlight the important epigenetic and non-epigenetic therapeutic targets involved in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| |
Collapse
|
49
|
Guevara EE, Lawler RR, Staes N, White CM, Sherwood CC, Ely JJ, Hopkins WD, Bradley BJ. Age-associated epigenetic change in chimpanzees and humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190616. [PMID: 32951551 DOI: 10.1098/rstb.2019.0616] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylation levels have been shown to change with age at sites across the human genome. Change at some of these sites is so consistent across individuals that it can be used as an 'epigenetic clock' to predict an individual's chronological age to within a few years. Here, we examined how the pattern of epigenetic ageing in chimpanzees compares with humans. We profiled genome-wide blood methylation levels by microarray for 113 samples from 83 chimpanzees aged 1-58 years (26 chimpanzees were sampled at multiple ages during their lifespan). Many sites (greater than 65 000) showed significant change in methylation with age and around one-third (32%) of these overlap with sites showing significant age-related change in humans. At over 80% of sites showing age-related change in both species, chimpanzees displayed a significantly faster rate of age-related change in methylation than humans. We also built a chimpanzee-specific epigenetic clock that predicted age in our test dataset with a median absolute deviation from known age of only 2.4 years. However, our chimpanzee clock showed little overlap with previously constructed human clocks. Methylation at CpGs comprising our chimpanzee clock showed moderate heritability. Although the use of a human microarray for profiling chimpanzees biases our results towards regions with shared genomic sequence between the species, nevertheless, our results indicate that there is considerable conservation in epigenetic ageing between chimpanzees and humans, but also substantial divergence in both rate and genomic distribution of ageing-associated sites. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807, USA
| | - Nicky Staes
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA.,Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.,Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Cassandra M White
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | | | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
50
|
Nikhil KL, Korge S, Kramer A. Heritable gene expression variability and stochasticity govern clonal heterogeneity in circadian period. PLoS Biol 2020; 18:e3000792. [PMID: 32745129 PMCID: PMC7425987 DOI: 10.1371/journal.pbio.3000792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
A ubiquitous feature of the circadian clock across life forms is its organization as a network of cellular oscillators, with individual cellular oscillators within the network often exhibiting considerable heterogeneity in their intrinsic periods. The interaction of coupling and heterogeneity in circadian clock networks is hypothesized to influence clock’s entrainability, but our knowledge of mechanisms governing period heterogeneity within circadian clock networks remains largely elusive. In this study, we aimed to explore the principles that underlie intercellular period variation in circadian clock networks (clonal period heterogeneity). To this end, we employed a laboratory selection approach and derived a panel of 25 clonal cell populations exhibiting circadian periods ranging from 22 to 28 h. We report that a single parent clone can produce progeny clones with a wide distribution of circadian periods, and this heterogeneity, in addition to being stochastically driven, has a heritable component. By quantifying the expression of 20 circadian clock and clock-associated genes across our clone panel, we found that inheritance of expression patterns in at least three clock genes might govern clonal period heterogeneity in circadian clock networks. Furthermore, we provide evidence suggesting that heritable epigenetic variation in gene expression regulation might underlie period heterogeneity. How do genetically identical cells exhibit a different circadian phenotype? This study reveals that a single parent clone can produce progeny with a wide distribution of circadian periods and that this heterogeneity, in addition to being stochastically driven, has a heritable component, likely via heritable epigenetic variation in gene expression regulation.
Collapse
Affiliation(s)
- K. L. Nikhil
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sandra Korge
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail:
| |
Collapse
|