1
|
Paulus A, Ahrens F, Schraut A, Hofmann H, Schiller T, Sura T, Becher D, Uebe R. MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria. Nat Commun 2024; 15:10657. [PMID: 39653729 PMCID: PMC11628618 DOI: 10.1038/s41467-024-55121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Organelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles. Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation. These phenotypic defects result from the disrupted targeting of a subset of magnetosomal proteins that contain C-terminal glycine-rich integral membrane domains. Phylogenetic analyses reveal an ancient evolutionary link between MamF-like proteins and plastidial Tic20. Our findings redefine the molecular roles of MamF-like proteins and suggest that organelle-specific protein targeting systems also play a role in bacterial organelle formation.
Collapse
Affiliation(s)
- Anja Paulus
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Frederik Ahrens
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Annika Schraut
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Hannah Hofmann
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Tim Schiller
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Thomas Sura
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - René Uebe
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Murphy MP, O'Neill LAJ. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 2024; 626:271-279. [PMID: 38326590 DOI: 10.1038/s41586-023-06866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Sidorczuk K, Mackiewicz P, Pietluch F, Gagat P. Characterization of signal and transit peptides based on motif composition and taxon-specific patterns. Sci Rep 2023; 13:15751. [PMID: 37735485 PMCID: PMC10514287 DOI: 10.1038/s41598-023-42987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023] Open
Abstract
Targeting peptides or presequences are N-terminal extensions of proteins that encode information about their cellular localization. They include signal peptides (SP), which target proteins to the endoplasmic reticulum, and transit peptides (TP) directing proteins to the organelles of endosymbiotic origin: chloroplasts and mitochondria. TPs were hypothesized to have evolved from antimicrobial peptides (AMPs), which are responsible for the host defence against microorganisms, including bacteria, fungi and viruses. In this study, we performed comprehensive bioinformatic analyses of amino acid motifs of targeting peptides and AMPs using a curated set of experimentally verified proteins. We identified motifs frequently occurring in each type of presequence showing specific patterns associated with their amino acid composition, and investigated their position within the presequence. We also compared motif patterns among different taxonomic groups and identified taxon-specific features, providing some evolutionary insights. Considering the functional relevance and many practical applications of targeting peptides and AMPs, we believe that our analyses will prove useful for their design, and better understanding of protein import mechanism and presequence evolution.
Collapse
Affiliation(s)
- Katarzyna Sidorczuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Filip Pietluch
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Przemysław Gagat
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
4
|
Gomez-Casati DF, Barchiesi J, Busi MV. Mitochondria and chloroplasts function in microalgae energy production. PeerJ 2022; 10:e14576. [PMID: 36545385 PMCID: PMC9762248 DOI: 10.7717/peerj.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Microalgae are organisms that have the ability to perform photosynthesis, capturing CO2 from the atmosphere to produce different metabolites such as vitamins, sugars, lipids, among others, many of them with different biotechnological applications. Recently, these microorganisms have been widely studied due to their possible use to obtain clean energy. It has been postulated that the growth of microalgae and the production of high-energy metabolites depend on the correct function of cellular organelles such as mitochondria and chloroplasts. Thus, the development of different genetic tools to improve the function of these organelles is of high scientific and technological interest. In this paper we review the recent advances in microalgae engineering and the role of cellular organelles in order to increase cell productivity and biomass.
Collapse
|
5
|
Uthanumallian K, Iha C, Repetti SI, Chan CX, Bhattacharya D, Duchene S, Verbruggen H. Tightly Constrained Genome Reduction and Relaxation of Purifying Selection during Secondary Plastid Endosymbiosis. Mol Biol Evol 2022; 39:msab295. [PMID: 34613411 PMCID: PMC8763093 DOI: 10.1093/molbev/msab295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.
Collapse
Affiliation(s)
| | - Cintia Iha
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Sebastian Duchene
- Deptartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Caspari OD, Lafontaine I. The role of antimicrobial peptides in the evolution of endosymbiotic protein import. PLoS Pathog 2021; 17:e1009466. [PMID: 33857255 PMCID: PMC8049325 DOI: 10.1371/journal.ppat.1009466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Oliver D. Caspari
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), Paris, France
- * E-mail: (ODC); (IL)
| | - Ingrid Lafontaine
- UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), Paris, France
- * E-mail: (ODC); (IL)
| |
Collapse
|
7
|
Kumar A, Dhiman D, Shaha C. Sestrins: Darkhorse in the regulation of mitochondrial health and metabolism. Mol Biol Rep 2020; 47:8049-8060. [DOI: 10.1007/s11033-020-05769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
|
8
|
Zhang J, Wu S, Boehlein SK, McCarty DR, Song G, Walley JW, Myers A, Settles AM. Maize defective kernel5 is a bacterial TamB homologue required for chloroplast envelope biogenesis. J Cell Biol 2019; 218:2638-2658. [PMID: 31235479 PMCID: PMC6683743 DOI: 10.1083/jcb.201807166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Zhang et al. show that the maize dek5 locus is required for chloroplast envelope biogenesis and encodes a TamB-like protein. Bacterial TamB proteins facilitate insertion of β-barrel outer membrane proteins, indicating plastids have a conserved mechanism for envelope membrane biogenesis. Chloroplasts are of prokaryotic origin with a double-membrane envelope separating plastid metabolism from the cytosol. Envelope membrane proteins integrate chloroplasts with the cell, but envelope biogenesis mechanisms remain elusive. We show that maize defective kernel5 (dek5) is critical for envelope biogenesis. Amyloplasts and chloroplasts are larger and reduced in number in dek5 with multiple ultrastructural defects. The DEK5 protein is homologous to rice SSG4, Arabidopsis thaliana EMB2410/TIC236, and Escherichia coli tamB. TamB functions in bacterial outer membrane biogenesis. DEK5 is localized to the envelope with a topology analogous to TamB. Increased levels of soluble sugars in dek5 developing endosperm and elevated osmotic pressure in mutant leaf cells suggest defective intracellular solute transport. Proteomics and antibody-based analyses show dek5 reduces levels of Toc75 and chloroplast envelope transporters. Moreover, dek5 chloroplasts reduce inorganic phosphate uptake with at least an 80% reduction relative to normal chloroplasts. These data suggest that DEK5 functions in plastid envelope biogenesis to enable transport of metabolites and proteins.
Collapse
Affiliation(s)
- Junya Zhang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Susan K Boehlein
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL.,Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL.,Horticultural Sciences Department, University of Florida, Gainesville, FL
| | - Gaoyuan Song
- Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Justin W Walley
- Plant Pathology and Microbiology, Iowa State University, Ames, IA
| | - Alan Myers
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - A Mark Settles
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL .,Horticultural Sciences Department, University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Petrů M, Wideman J, Moore K, Alcock F, Palmer T, Doležal P. Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria. BMC Biol 2018; 16:141. [PMID: 30466434 PMCID: PMC6251230 DOI: 10.1186/s12915-018-0607-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Bacteria and mitochondria contain translocases that function to transport proteins across or insert proteins into their inner and outer membranes. Extant mitochondria retain some bacterial-derived translocases but have lost others. While BamA and YidC were integrated into general mitochondrial protein transport pathways (as Sam50 and Oxa1), the inner membrane TAT translocase, which uniquely transports folded proteins across the membrane, was retained sporadically across the eukaryote tree. RESULTS We have identified mitochondrial TAT machinery in diverse eukaryotic lineages and define three different types of eukaryote-encoded TatABC-derived machineries (TatAC, TatBC and TatC-only). Here, we investigate TatAC and TatC-only machineries, which have not been studied previously. We show that mitochondria-encoded TatAC of the jakobid Andalucia godoyi represent the minimal functional pathway capable of substituting for the Escherichia coli TatABC complex and can transport at least one substrate. However, selected TatC-only machineries, from multiple eukaryotic lineages, were not capable of supporting the translocation of this substrate across the bacterial membrane. Despite the multiple losses of the TatC gene from the mitochondrial genome, the gene was never transferred to the cell nucleus. Although the major constraint preventing nuclear transfer of mitochondrial TatC is likely its high hydrophobicity, we show that in chloroplasts, such transfer of TatC was made possible due to modifications of the first transmembrane domain. CONCLUSIONS At its origin, mitochondria inherited three inner membrane translocases Sec, TAT and Oxa1 (YidC) from its bacterial ancestor. Our work shows for the first time that mitochondrial TAT has likely retained its unique function of transporting folded proteins at least in those few eukaryotes with TatA and TatC subunits encoded in the mitochondrial genome. However, mitochondria, in contrast to chloroplasts, abandoned the machinery multiple times in evolution. The overall lower hydrophobicity of the Oxa1 protein was likely the main reason why this translocase was nearly universally retained in mitochondrial biogenesis pathways.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Jeremy Wideman
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kristoffer Moore
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
10
|
|
11
|
Radzvilavicius AL, Blackstone NW. The evolution of individuality revisited. Biol Rev Camb Philos Soc 2018; 93:1620-1633. [DOI: 10.1111/brv.12412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Neil W. Blackstone
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115 U.S.A
| |
Collapse
|
12
|
Provorov NA, Onishchuk OP. Microbial Symbionts of Insects: Genetic Organization, Adaptive Role, and Evolution. Microbiology (Reading) 2018. [DOI: 10.1134/s002626171802011x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Identification and Characterization of a Bacterial Homolog of Chloride Intracellular Channel (CLIC) Protein. Sci Rep 2017; 7:8500. [PMID: 28819106 PMCID: PMC5561075 DOI: 10.1038/s41598-017-08742-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022] Open
Abstract
Chloride intracellular channels (CLIC) are non-classical ion channels lacking a signal sequence for membrane targeting. In eukaryotes, they are implicated in cell volume regulation, acidification, and cell cycle. CLICs resemble the omega class of Glutathione S-transferases (GST), yet differ from them in their ability to form ion channels. They are ubiquitously found in eukaryotes but no prokaryotic homolog has been characterized. We found that indanyloxyacetic acid-94 (IAA-94), a blocker of CLICs, delays the growth of Escherichia coli. In silico analysis showed that the E. coli stringent starvation protein A (SspA) shares sequence and structural homology with CLICs. Similar to CLICs, SspA lacks a signal sequence but contains an omega GST fold. Electrophysiological analysis revealed that SspA auto-inserts into lipid bilayers and forms IAA-94-sensitive ion channels. Substituting the ubiquitously conserved residue leucine 29 to alanine in the pore-forming region increased its single-channel conductance. SspA is essential for cell survival during acid-induced stress, and we found that acidic pH increases the open probability of SspA. Further, IAA-94 delayed the growth of wild-type but not sspA null mutant E. coli. Our results for the first time show that CLIC-like proteins exist in bacteria in the form of SspA, forming functional ion channels.
Collapse
|
14
|
Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement. PLoS One 2016; 11:e0166338. [PMID: 27861576 PMCID: PMC5115734 DOI: 10.1371/journal.pone.0166338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the “green” dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts (“dinotoms”): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
Collapse
|
15
|
McFadden GI, Yeh E. The apicoplast: now you see it, now you don't. Int J Parasitol 2016; 47:137-144. [PMID: 27773518 DOI: 10.1016/j.ijpara.2016.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. Here we review the initial discovery of the apicoplast, and recount the major new insights into apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be removed from malaria parasites in vitro, ultimately completing its reduction by chemical supplementation.
Collapse
Affiliation(s)
| | - Ellen Yeh
- Department of Biochemistry, Stanford Medical School, Stanford, CA, USA; Department of Pathology, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
16
|
Provorov NA, Tikhonovich IA, Vorobyov NI. Symbiogenesis as a model for reconstructing the early stages of genome evolution. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Shokal U, Yadav S, Atri J, Accetta J, Kenney E, Banks K, Katakam A, Jaenike J, Eleftherianos I. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiol 2016; 16:16. [PMID: 26862076 PMCID: PMC4746768 DOI: 10.1186/s12866-016-0634-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/02/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Symbiotic interactions between microbes and animals are common in nature. Symbiotic organisms are particularly common in insects and, in some cases, they may protect their hosts from pathogenic infections. Wolbachia and Spiroplasma endosymbionts naturally inhabit various insects including Drosophila melanogaster fruit flies. Therefore, this symbiotic association is considered an excellent model to investigate whether endosymbiotic bacteria participate in host immune processes against certain pathogens. Here we have investigated whether the presence of Wolbachia alone or together with Spiroplasma endosymbionts in D. melanogaster adult flies affects the immune response against the virulent insect pathogen Photorhabdus luminescens and against non-pathogenic Escherichia coli bacteria. RESULTS We found that D. melanogaster flies carrying no endosymbionts, those carrying both Wolbachia and Spiroplasma, and those containing Wolbachia only had similar survival rates after infection with P. luminescens or Escherichia coli bacteria. However, flies carrying both endosymbionts or Wolbachia only contained higher numbers of E. coli cells at early time-points post infection than flies without endosymbiotic bacteria. Interestingly, flies containing Wolbachia only had lower titers of this endosymbiont upon infection with the pathogen P. luminescens than uninfected flies of the same strain. We further found that the presence of Wolbachia and Spiroplasma in D. melanogaster up-regulated certain immune-related genes upon infection with P. luminescens or E. coli bacteria, but it failed to alter the phagocytic ability of the flies toward E. coli inactive bioparticles. CONCLUSION Our results suggest that the presence of Wolbachia and Spiroplasma in D. melanogaster can modulate immune signaling against infection by certain insect pathogenic and non-pathogenic bacteria. Results from such studies are important for understanding the molecular basis of the interactions between endosymbiotic bacteria of insects and exogenous microbes.
Collapse
Affiliation(s)
- Upasana Shokal
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Shruti Yadav
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Jaishri Atri
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Julia Accetta
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Eric Kenney
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Katherine Banks
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - Akash Katakam
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| | - John Jaenike
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - Ioannis Eleftherianos
- Insect Infection and Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, 5675 Science and Engineering Hall, 800 22nd Street NW, Washington, D.C. 20052, USA.
| |
Collapse
|
18
|
Yamashita A, Fujimoto M, Katayama K, Yamaoka S, Tsutsumi N, Arimura SI. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana. PLoS One 2016; 11:e0146717. [PMID: 26752045 PMCID: PMC4713473 DOI: 10.1371/journal.pone.0146717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs), while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles). Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN). The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenta Katayama
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Yamaoka
- Laboratory of Plant Molecular Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
19
|
Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae. Sci Rep 2015; 5:14465. [PMID: 26403826 PMCID: PMC4585924 DOI: 10.1038/srep14465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/28/2015] [Indexed: 01/16/2023] Open
Abstract
The forfeiting of photosynthetic capabilities has occurred independently many times throughout eukaryotic evolution. But almost all non-photosynthetic plants and algae still retain a colorless plastid and an associated genome, which performs fundamental processes apart from photosynthesis. Unfortunately, little is known about the forces leading to photosynthetic loss; this is largely because there is a lack of data from transitional species. Here, we compare the plastid genomes of two “transitional” green algae: the photosynthetic, mixotrophic Auxenochlorella protothecoides and the non-photosynthetic, obligate heterotroph Prototheca wickerhamii. Remarkably, the plastid genome of A. protothecoides is only slightly larger than that of P. wickerhamii, making it among the smallest plastid genomes yet observed from photosynthetic green algae. Even more surprising, both algae have almost identical plastid genomic architectures and gene compositions (with the exception of genes involved in photosynthesis), implying that they are closely related. This close relationship was further supported by phylogenetic and substitution rate analyses, which suggest that the lineages giving rise to A. protothecoides and P. wickerhamii diverged from one another around six million years ago.
Collapse
|
20
|
Reyes-Prieto A. The basic genetic toolkit to move in with your photosynthetic partner. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Provorov NA, Tikhonovich IA. Bacterial genome evolution in superspecies systems: An approach to the reconstruction of symbiogenesis processes. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795414080043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Metabolic connectivity as a driver of host and endosymbiont integration. Proc Natl Acad Sci U S A 2015; 112:10208-15. [PMID: 25825767 DOI: 10.1073/pnas.1421375112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of oxygenic photosynthesis in the Archaeplastida common ancestor was foundational for the evolution of multicellular life. It is very likely that the primary endosymbiosis that explains plastid origin relied initially on the establishment of a metabolic connection between the host cell and captured cyanobacterium. We posit that these connections were derived primarily from existing host-derived components. To test this idea, we used phylogenomic and network analysis to infer the phylogenetic origin and evolutionary history of 37 validated plastid innermost membrane (permeome) metabolite transporters from the model plant Arabidopsis thaliana. Our results show that 57% of these transporter genes are of eukaryotic origin and that the captured cyanobacterium made a relatively minor (albeit important) contribution to the process. We also tested the hypothesis that the bacterium-derived hexose-phosphate transporter UhpC might have been the primordial sugar transporter in the Archaeplastida ancestor. Bioinformatic and protein localization studies demonstrate that this protein in the extremophilic red algae Galdieria sulphuraria and Cyanidioschyzon merolae are plastid targeted. Given this protein is also localized in plastids in the glaucophyte alga Cyanophora paradoxa, we suggest it played a crucial role in early plastid endosymbiosis by connecting the endosymbiont and host carbon storage networks. In summary, our work significantly advances understanding of plastid integration and favors a host-centric view of endosymbiosis. Under this view, nuclear genes of either eukaryotic or bacterial (noncyanobacterial) origin provided key elements of the toolkit needed for establishing metabolic connections in the primordial Archaeplastida lineage.
Collapse
|
23
|
Goetze TA, Patil M, Jeshen I, Bölter B, Grahl S, Soll J. Oep23 forms an ion channel in the chloroplast outer envelope. BMC PLANT BIOLOGY 2015; 15:47. [PMID: 25849634 PMCID: PMC4331141 DOI: 10.1186/s12870-015-0445-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/30/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Metabolite, ion and protein translocation into chloroplasts occurs across two membranes, the inner and the outer envelope. Solute and metabolite channels fulfill very important functions in integrating the organelles into the metabolic network of the cell. However so far only a few have been identified. Here we describe the identification and the characterization of the outer envelope protein of 23 kDa, Oep23 from garden pea. RESULTS Oep23 is found in the entire plant lineage from green algae to flowering plants. It is expressed in all organs and developmental states tested so far. The reconstituted recombinant protein Oep23 from pea forms a high conductance ion channel with a maximal conductance in the fully open state of 466 ± 14pS at a holding potential of +100 mV (in 250 mM KCl). The Oep23 channel is cation selective (PK+ : PCl- = 15 : 1) with a voltage dependent open probability of maximal Vmem = 0 mV. CONCLUSION The data indicate that the Oep23 activity represents a single channel unit and does not assemble into a multiple pore complex like bacterial type porins or mitochondrial voltage dependent anion channel. Thus, Oep23 represents a new member of ion channels in the outer envelope of chloroplasts involved in solute exchange.
Collapse
Affiliation(s)
- Tom Alexander Goetze
- />Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- />Nanion Technologies GmbH, Gabrielenstr. 9, 80636 München, Germany
| | - Manali Patil
- />Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- />The Munich Center of Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Ingrid Jeshen
- />Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- />The Munich Center of Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Bettina Bölter
- />Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- />The Munich Center of Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Sabine Grahl
- />Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- />The Munich Center of Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Jürgen Soll
- />Department Biologie 1, Botanik, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- />The Munich Center of Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| |
Collapse
|
24
|
Nakabachi A. Horizontal gene transfers in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 7:24-29. [PMID: 32131363 DOI: 10.1016/j.cois.2015.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/28/2015] [Accepted: 03/17/2015] [Indexed: 06/10/2023]
Abstract
Horizontal gene transfer is the transfer of genetic material across species boundaries. Although horizontal gene transfers are relatively rare in animals, the recent rapid accumulation of genomic data has identified increasing amounts of exogenous DNA inserts in insect genomes. Most of the horizontally acquired sequences appear to be non-functional; however, there is growing evidence that some genes are truly expressed and confer novel functions on the recipient insects. These include previously unavailable metabolic properties including digesting food, degrading toxins, providing resistance to pathogens, and facilitating an obligate mutualistic relationship with intracellular bacteria. A recent analysis revealed that an aphid gene of bacterial origin encodes a protein that is transported into the obligate symbiont, paralleling the evolution of endosymbiotic organelles.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| |
Collapse
|
25
|
|
26
|
Rockwell NC, Lagarias JC, Bhattacharya D. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Front Ecol Evol 2014; 2. [PMID: 25729749 DOI: 10.3389/fevo.2014.00066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources; Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|
27
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
28
|
Analysis of the Sam50 translocase of excavate organisms supports evolution of divergent organelles from a common endosymbiotic event. Biosci Rep 2013; 33:BSR20130049. [PMID: 24147756 PMCID: PMC3848468 DOI: 10.1042/bsr20130049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As free-living organisms the ancestors of mitochondria and plastids encoded complete genomes, proteomes and metabolomes. As these symbionts became organelles all these aspects were reduced – genomes have degenerated with the host nucleus now encoding the most of the remaining endosymbiont proteome, while the metabolic processes of the symbiont have been streamlined to the functions of the emerging organelle. By contrast, the topology of the endosymbiont membrane has been preserved, necessitating the development of complex pathways for membrane insertion and translocation. In this study, we examine the characteristics of the endosymbiont-derived β-barrel insertase Sam501 in the excavate super-group. A candidate is further characterized in Trichomonas vaginalis, an unusual eukaryote possessing degenerate hydrogen-producing mitochondria called hydrogenosomes. This information supports a mitochondriate eukaryotic common ancestor with a similarly evolved β-barrel insertase, which has continued to be conserved in degenerate mitochondria.
Collapse
|
29
|
Qiu H, Price DC, Weber APM, Facchinelli F, Yoon HS, Bhattacharya D. Assessing the bacterial contribution to the plastid proteome. TRENDS IN PLANT SCIENCE 2013; 18:680-7. [PMID: 24139901 DOI: 10.1016/j.tplants.2013.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 05/08/2023]
Abstract
Plastids fulfill a variety of different functions (e.g., photosynthesis and amino acid biosynthesis) that rely on proteins of cyanobacterial (i.e., endosymbiont), noncyanobacterial, and 'host' (eukaryotic) origins. Analysis of plastid proteome data from glaucophytes and green algae allows robust inference of protein origins and organelle protein sharing across the >1 billion years of Archaeplastida evolution. Here, we show that more than one-third of genes encoding plastid proteins lack detectable homologs in Cyanobacteria, underlining the taxonomically broad contributions to plastid functions. Chlamydiae and Proteobacteria are the most significant other bacterial sources of plastid proteins. Mapping of plastid proteins to metabolic pathways shows a core set of anciently derived proteins in Archaeplastida, with many others being lineage specific and derived from independent horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | | | | | | | | | | |
Collapse
|
30
|
Facchinelli F, Colleoni C, Ball SG, Weber APM. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? TRENDS IN PLANT SCIENCE 2013; 18:673-679. [PMID: 24126104 DOI: 10.1016/j.tplants.2013.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
The endosymbiont hypothesis proposes that photosynthate from the cyanobiont was exported to the cytosol of the eukaryote host and polymerized from ADP-glucose into glycogen. Chlamydia-like pathogens are the second major source of foreign genes in Archaeplastida, suggesting that these obligate intracellular pathogens had a significant role during the establishment of endosymbiosis, likely through facilitating the metabolic integration between the endosymbiont and the eukaryotic host. In this opinion article, we propose that a hexose phosphate transporter of chlamydial origin was the first transporter responsible for exporting photosynthate out of the cyanobiont. This connection pre-dates the recruitment of the host-derived carbon translocators on the plastid inner membranes of green and red algae, land plants, and photosynthetic organisms of higher order endosymbiotic origin.
Collapse
Affiliation(s)
- Fabio Facchinelli
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
31
|
Cavalier-Smith T. Symbiogenesis: Mechanisms, Evolutionary Consequences, and Systematic Implications. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110411-160320] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Gagat P, Bodył A, Mackiewicz P. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies. Biol Direct 2013; 8:18. [PMID: 23845039 PMCID: PMC3716720 DOI: 10.1186/1745-6150-8-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 07/02/2013] [Indexed: 01/21/2023] Open
Abstract
Background It is commonly assumed that a heterotrophic ancestor of the supergroup Archaeplastida/Plantae engulfed a cyanobacterium that was transformed into a primary plastid; however, it is still unclear how nuclear-encoded proteins initially were imported into the new organelle. Most proteins targeted to primary plastids carry a transit peptide and are transported post-translationally using Toc and Tic translocons. There are, however, several proteins with N-terminal signal peptides that are directed to higher plant plastids in vesicles derived from the endomembrane system (ES). The existence of these proteins inspired a hypothesis that all nuclear-encoded, plastid-targeted proteins initially carried signal peptides and were targeted to the ancestral primary plastid via the host ES. Results We present the first phylogenetic analyses of Arabidopsis thaliana α-carbonic anhydrase (CAH1), Oryza sativa nucleotide pyrophosphatase/phosphodiesterase (NPP1), and two O. sativa α-amylases (αAmy3, αAmy7), proteins that are directed to higher plant primary plastids via the ES. We also investigated protein disulfide isomerase (RB60) from the green alga Chlamydomonas reinhardtii because of its peculiar dual post- and co-translational targeting to both the plastid and ES. Our analyses show that these proteins all are of eukaryotic rather than cyanobacterial origin, and that their non-plastid homologs are equipped with signal peptides responsible for co-translational import into the host ES. Our results indicate that vesicular trafficking of proteins to primary plastids evolved long after the cyanobacterial endosymbiosis (possibly only in higher plants) to permit their glycosylation and/or transport to more than one cellular compartment. Conclusions The proteins we analyzed are not relics of ES-mediated protein targeting to the ancestral primary plastid. Available data indicate that Toc- and Tic-based translocation dominated protein import into primary plastids from the beginning. Only a handful of host proteins, which already were targeted through the ES, later were adapted to reach the plastid via the vesicular trafficking. They represent a derived class of higher plant plastid-targeted proteins with an unusual evolutionary history. Reviewers This article was reviewed by Prof. William Martin, Dr. Philippe Deschamps (nominated by Dr. Purificacion Lopez-Garcia) and Dr Simonetta Gribaldo.
Collapse
Affiliation(s)
- Przemysław Gagat
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Przybyszewskiego 63/77, Wrocław 51-148, Poland
| | | | | |
Collapse
|
33
|
Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, Tandeau de Marsac N, Gugger M, Lockhart PJ, Allen JF, Brune I, Maus I, Pühler A, Martin WF. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol 2013; 5:31-44. [PMID: 23221676 PMCID: PMC3595030 DOI: 10.1093/gbe/evs117] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.
Collapse
Affiliation(s)
- Tal Dagan
- Institute of Genomic Microbiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kay C, Lawler K, Self TJ, Dyall SD, Kerr ID. Localisation of a family of complex-forming β-barrels in theT. vaginalishydrogenosomal membrane. FEBS Lett 2012; 586:4038-45. [DOI: 10.1016/j.febslet.2012.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
35
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
36
|
Harsman A, Niemann M, Pusnik M, Schmidt O, Burmann BM, Hiller S, Meisinger C, Schneider A, Wagner R. Bacterial origin of a mitochondrial outer membrane protein translocase: new perspectives from comparative single channel electrophysiology. J Biol Chem 2012; 287:31437-45. [PMID: 22778261 DOI: 10.1074/jbc.m112.392118] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes.
Collapse
Affiliation(s)
- Anke Harsman
- Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Marashi SA, David L, Bockmayr A. On flux coupling analysis of metabolic subsystems. J Theor Biol 2012; 302:62-9. [DOI: 10.1016/j.jtbi.2012.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/23/2012] [Accepted: 02/21/2012] [Indexed: 01/04/2023]
|
38
|
Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis. Sci Rep 2012; 2:356. [PMID: 22493757 PMCID: PMC3322482 DOI: 10.1038/srep00356] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/28/2023] Open
Abstract
Two cases of primary plastid endosymbiosis are known. The first occurred ca. 1.6 billion years ago and putatively gave rise to the canonical plastid in algae and plants. The second is restricted to a genus of rhizarian amoebae that includes Paulinella chromatophora. Photosynthetic Paulinella species gained their plastid from an α-cyanobacterial source and are sister to plastid-lacking phagotrophs such as Paulinella ovalis that ingest cyanobacteria. To study the role of feeding behavior in plastid origin, we analyzed single-cell genome assemblies from six P. ovalis-like cells isolated from Chesapeake Bay, USA. Dozens of contigs in these cell assemblies were derived from prey DNA of α-cyanobacterial origin and associated cyanophages. We found two examples of horizontal gene transfer (HGT) in P. ovalis-like nuclear DNA from cyanobacterial sources. This work suggests the first evidence of a link between feeding behavior in wild-caught cells, HGT, and plastid primary endosymbiosis in the monophyletic Paulinella lineage.
Collapse
|
39
|
An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: Antisense antitermination tRNAs UAR insert serine. J Theor Biol 2012; 298:51-76. [DOI: 10.1016/j.jtbi.2011.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
|
40
|
Gross J, Bhattacharya D, Pelletreau KN, Rumpho ME, Reyes-Prieto A. Secondary and Tertiary Endosymbiosis and Kleptoplasty. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Liu Z, Li X, Zhao P, Gui J, Zheng W, Zhang Y. Tracing the evolution of the mitochondrial protein import machinery. Comput Biol Chem 2011; 35:336-40. [PMID: 22099629 DOI: 10.1016/j.compbiolchem.2011.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/01/2011] [Indexed: 10/16/2022]
Abstract
Mitochondria are eukaryotic organelles originated from a single bacterial endosymbiosis about 2 billion years ago. One of the earliest events in the evolution of mitochondria was the acquisition of a mechanism that facilitated the import of proteins from cytosol. The mitochondrial protein import machinery consists of dozens of subunits, and they are of modular design. However, to date, it is not clear when certain component was added to the machinery. Using extensive homology searches, the evolutionary history of the mitochondrial protein import machinery was reconstructed. The results indicated that 6 of the 35 subunits have homologs in prokaryote, suggesting that they were prokaryotic origin; the major subunit gains were occurred in the earliest stage of eukaryotic evolution; subsequent to the gain of these conserved set of subunits, the mitochondrial protein import machinery components diversified along the eukaryotic lineages and a number of lineage-specific subunits can be observed. Furthermore, protein import systems of mitochondria-like organelles (hydrogenosomes and mitosomes) have dramatically reduced their subunit contents, however, they share most of the prokaryotic origin components with mitochondrion.
Collapse
Affiliation(s)
- Zhen Liu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064 Chengdu, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Parasites like malaria and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of plants. The plastid (known as the apicoplast) is non-photosynthetic but retains many hallmarks of its ancestry including a circular genome that it synthesises proteins from and a suite of biosynthetic pathways of cyanobacterial origin. In this review, the discovery of the apicoplast and its integration, function and purpose are explored. New insights into the apicoplast fatty acid biosynthesis pathway and some novel roles of the apicoplast in vaccine development are reviewed.
Collapse
|
43
|
Andrade IDS, Vianez-Júnior JL, Goulart CL, Homblé F, Ruysschaert JM, Almeida von Krüger WM, Bisch PM, de Souza W, Mohana-Borges R, Motta MCM. Characterization of a porin channel in the endosymbiont of the trypanosomatid protozoan Crithidia deanei. MICROBIOLOGY-SGM 2011; 157:2818-2830. [PMID: 21757490 DOI: 10.1099/mic.0.049247-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crithidia deanei is a trypanosomatid protozoan that harbours a symbiotic bacterium. The partners maintain a mutualistic relationship, thus constituting an excellent model for studying metabolic exchanges between the host and the symbiont, the origin of organelles and cellular evolution. According to molecular analysis, symbionts of different trypanosomatid species share high identity and descend from a common ancestor, a β-proteobacterium of the genus Bordetella. The endosymbiont is surrounded by two membranes, like Gram-negative bacteria, but its envelope presents special features, since phosphatidylcholine is a major membrane component and the peptidoglycan layer is highly reduced, as described in other obligate intracellular bacteria. Like the process that generated mitochondria and plastids, the endosymbiosis in trypanosomatids depends on pathways that facilitate the intensive metabolic exchanges between the bacterium and the host protozoan. A search of the annotated symbiont genome database identified one sequence with identity to porin-encoding genes of the genus Bordetella. Considering that the symbiont outer membrane has a great accessibility to cytoplasm host factors, it was important to characterize this single porin-like protein using biochemical, molecular, computational and ultrastructural approaches. Antiserum against the recombinant porin-like molecule revealed that it is mainly located in the symbiont envelope. Secondary structure analysis and comparative modelling predicted the protein 3D structure as an 18-domain β-barrel, which is consistent with porin channels. Electrophysiological measurements showed that the porin displays a slight preference for cations over anions. Taken together, the data presented herein suggest that the C. deanei endosymbiont porin is phylogenetically and structurally similar to those described in Gram-negative bacteria, representing a diffusion channel that might contribute to the exchange of nutrients and metabolic precursors between the symbiont and its host cell.
Collapse
Affiliation(s)
- Iamara da Silva Andrade
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - João Lídio Vianez-Júnior
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Carolina Lage Goulart
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium.,Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Fabrice Homblé
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium
| | - Wanda Maria Almeida von Krüger
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS. The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 2011; 286:21427-39. [PMID: 21515685 PMCID: PMC3122202 DOI: 10.1074/jbc.m111.233734] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/11/2011] [Indexed: 11/06/2022] Open
Abstract
The plastid is a defining structure of photosynthetic eukaryotes and houses many plant-specific processes, including the light reactions, carbon fixation, pigment synthesis, and other primary metabolic processes. Identifying proteins associated with catalytic, structural, and regulatory functions that are unique to plastid-containing organisms is necessary to fully define the scope of plant biochemistry. Here, we performed phylogenomics on 20 genomes to compile a new inventory of 597 nucleus-encoded proteins conserved in plants and green algae but not in non-photosynthetic organisms. 286 of these proteins are of known function, whereas 311 are not characterized. This inventory was validated as applicable and relevant to diverse photosynthetic eukaryotes using an additional eight genomes from distantly related plants (including Micromonas, Selaginella, and soybean). Manual curation of the known proteins in the inventory established its importance to plastid biochemistry. To predict functions for the 52% of proteins of unknown function, we used sequence motifs, subcellular localization, co-expression analysis, and RNA abundance data. We demonstrate that 18% of the proteins in the inventory have functions outside the plastid and/or beyond green tissues. Although 32% of proteins in the inventory have homologs in all cyanobacteria, unexpectedly, 30% are eukaryote-specific. Finally, 8% of the proteins of unknown function share no similarity to any characterized protein and are plant lineage-specific. We present this annotated inventory of 597 proteins as a resource for functional analyses of plant-specific biochemistry.
Collapse
Affiliation(s)
| | - Simon E. Prochnik
- the United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598, and
| | - Arthur R. Grossman
- the Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sabeeha S. Merchant
- From the Department of Chemistry and Biochemistry and
- Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
45
|
Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 2011; 1:13. [PMID: 22355532 PMCID: PMC3216501 DOI: 10.1038/srep00013] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022] Open
Abstract
Mitochondria share a common ancestor with the Alphaproteobacteria, but determining their precise origins is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. Nonetheless, phylogenetic accuracy improves with more refined tools and expanded taxon sampling. We investigated mitochondrial origins with the benefit of new, deeply branching genome sequences from the ancient and prolific SAR11 clade of Alphaproteobacteria and publicly available alphaproteobacterial and mitochondrial genome sequences. Using the automated phylogenomic pipeline Hal, we systematically studied the effect of taxon sampling and missing data to accommodate small mitochondrial genomes. The evidence supports a common origin of mitochondria and SAR11 as a sister group to the Rickettsiales. The simplest explanation of these data is that mitochondria evolved from a planktonic marine alphaproteobacterial lineage that participated in multiple inter-specific cell colonization events, in some cases yielding parasitic relationships, but in at least one case producing a symbiosis that characterizes modern eukaryotic life.
Collapse
|
46
|
Chan CX, Gross J, Yoon HS, Bhattacharya D. Plastid origin and evolution: new models provide insights into old problems. PLANT PHYSIOLOGY 2011; 155:1552-60. [PMID: 21343425 PMCID: PMC3091110 DOI: 10.1104/pp.111.173500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
|
47
|
Gross J, Bhattacharya D. Endosymbiont or host: who drove mitochondrial and plastid evolution? Biol Direct 2011; 6:12. [PMID: 21333023 PMCID: PMC3050876 DOI: 10.1186/1745-6150-6-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 02/19/2011] [Indexed: 12/18/2022] Open
Abstract
The recognition that mitochondria and plastids are derived from alphaproteobacterial and cyanobacterial endosymbionts, respectively, was one of the greatest advances in modern evolutionary biology. Researchers have yet however to provide detailed cell biological descriptions of how these once free-living prokaryotes were transformed into intracellular organelles. A key area of study in this realm is elucidating the evolution of the molecular machines that control organelle protein topogenesis. Alcock et al. (Science 2010, 327 [5966]:649-650) suggest that evolutionary innovations that established the mitochondrial protein sorting system were driven by the alphaproteobacterial endosymbiont (an "insiders' perspective"). In contrast, here we argue that evolution of mitochondrial and plastid topogenesis may better be understood as an outcome of selective pressures acting on host cell chromosomes (the "outsiders' view").
Collapse
Affiliation(s)
- Jeferson Gross
- Department of Ecology, Evolution and Natural Resources, and Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, Foran Hall 102, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
48
|
Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D. Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes. Curr Biol 2011; 21:328-33. [DOI: 10.1016/j.cub.2011.01.037] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/17/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022]
|
49
|
Pallen MJ. Time to recognise that mitochondria are bacteria? Trends Microbiol 2010; 19:58-64. [PMID: 21123072 DOI: 10.1016/j.tim.2010.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/19/2010] [Accepted: 11/02/2010] [Indexed: 01/16/2023]
Abstract
The scientific community is comfortable with recognising mitochondria as organelles that happen to be descendants of bacteria. Here, I playfully explore the arguments for and against a phylogenetic fundamentalism that states that mitochondria are bacteria and should be given their own taxonomic family, the Mitochondriaceae. I also explore the consequences of recognizing mitochondria as bacteria for our understanding of the systemic response to trauma and for the prospects of creating transgenic mitochondria.
Collapse
Affiliation(s)
- Mark J Pallen
- Centre for Systems Biology, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
50
|
Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 2010; 28:1581-91. [PMID: 21081480 DOI: 10.1093/molbev/msq305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Collapse
Affiliation(s)
- Janette Tong
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|