1
|
Ming R, Wu H, Wu Z. Causal relationships between three plasma proteins and non-alcoholic fatty liver disease, mediated by Epstein-Barr virus EA-D antibody levels: a mendelian randomization study. Sci Rep 2024; 14:25644. [PMID: 39463412 PMCID: PMC11514233 DOI: 10.1038/s41598-024-77105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major global health concern, with its prevalence increasing steadily. While plasma proteins have been implicated in NAFLD, establishing causal relationships has been challenging due to confounding factors in observational studies. This study aims to explore the causal relationships between plasma proteins and NAFLD using Mendelian randomization (MR) analysis. We utilized genome-wide association study (GWAS) data from multiple sources to conduct MR analyses. Plasma protein data were obtained from the deCODE open database, and NAFLD data were sourced from the Finnish genetic sample collection (FinnGen). We performed MR analysis to identify plasma proteins causally related to NAFLD and explored the potential mediation effect of antibody-immune responses. Our MR analysis identified three plasma proteins-KNG1, MICB, and PKD2-with significant causal relationships to NAFLD. Mediation analysis further revealed that KNG1 negatively mediated the risk of NAFLD through Epstein-Barr virus EA-D antibody levels, while MICB and PKD2 positively mediated NAFLD risk through the same antibody levels. This study provides novel genetic evidence of causal relationships between specific plasma proteins and NAFLD risk. Measuring the levels of KNG1, MICB, PKD2, and Epstein-Barr virus EA-D antibody levels in patients may help clinicians assess NAFLD risk more accurately. Further clinical research is warranted to validate these findings and explore their potential therapeutic implications.
Collapse
Affiliation(s)
- Ruijie Ming
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Huan Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing, 404000, China.
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Song M, Zhuge Y, Tu Y, Liu J, Liu W. The Multifunctional Role of KCNE2: From Cardiac Arrhythmia to Multisystem Disorders. Cells 2024; 13:1409. [PMID: 39272981 PMCID: PMC11393857 DOI: 10.3390/cells13171409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The KCNE2 protein is encoded by the kcne2 gene and is a member of the KCNE protein family, also known as the MinK-related protein 1 (MiRP1). It is mostly present in the epicardium of the heart and gastric mucosa, and it is also found in the thyroid, pancreatic islets, liver and lung, among other locations, to a lesser extent. It is involved in numerous physiological processes because of its ubiquitous expression and partnering promiscuity, including the modulation of voltage-dependent potassium and calcium channels involved in cardiac action potential repolarization, and regulation of secretory processes in multiple epithelia, such as gastric acid secretion, thyroid hormone synthesis, generation and secretion of cerebrospinal fluid. Mutations in the KCNE2 gene or aberrant expression of the protein may play a critical role in cardiovascular, neurological, metabolic and multisystem disorders. This article provides an overview of the advancements made in understanding the physiological functions in organismal homeostasis and the pathophysiological consequences of KCNE2 in multisystem diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| | - Wenjuan Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| |
Collapse
|
3
|
Liu YJ, Kimura M, Li X, Sulc J, Wang Q, Rodríguez-López S, Scantlebery AML, Strotjohann K, Gallart-Ayala H, Vijayakumar A, Myers RP, Ivanisevic J, Houtkooper RH, Subramanian GM, Takebe T, Auwerx J. ACMSD inhibition corrects fibrosis, inflammation, and DNA damage in MASLD/MASH. J Hepatol 2024:S0168-8278(24)02484-X. [PMID: 39181211 DOI: 10.1016/j.jhep.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Recent findings reveal the importance of tryptophan-initiated de novo nicotinamide adenine dinucleotide (NAD+) synthesis in the liver, a process previously considered secondary to biosynthesis from nicotinamide. The enzyme α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), primarily expressed in the liver and kidney, acts as a modulator of de novo NAD+ synthesis. Boosting NAD+ levels has previously demonstrated remarkable metabolic benefits in mouse models. In this study, we aimed to investigate the therapeutic implications of ACMSD inhibition in the treatment of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH). METHODS In vitro experiments were conducted in primary rodent hepatocytes, Huh7 human liver carcinoma cells and induced pluripotent stem cell-derived human liver organoids (HLOs). C57BL/6J male mice were fed a western-style diet and housed at thermoneutrality to recapitulate key aspects of MASLD/MASH. Pharmacological ACMSD inhibition was given therapeutically, following disease onset. HLO models of steatohepatitis were used to assess the DNA damage responses to ACMSD inhibition in human contexts. RESULTS Inhibiting ACMSD with a novel specific pharmacological inhibitor promotes de novo NAD+ synthesis and reduces DNA damage ex vivo, in vivo, and in HLO models. In mouse models of MASLD/MASH, de novo NAD+ biosynthesis is suppressed, and transcriptomic DNA damage signatures correlate with disease severity; in humans, Mendelian randomization-based genetic analysis suggests a notable impact of genomic stress on liver disease susceptibility. Therapeutic inhibition of ACMSD in mice increases liver NAD+ and reverses MASLD/MASH, mitigating fibrosis, inflammation, and DNA damage, as observed in HLO models of steatohepatitis. CONCLUSIONS Our findings highlight the benefits of ACMSD inhibition in enhancing hepatic NAD+ levels and enabling genomic protection, underscoring its therapeutic potential in MASLD/MASH. IMPACT AND IMPLICATIONS Enhancing NAD+ levels has been shown to induce remarkable health benefits in mouse models of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), yet liver-specific NAD+ boosting strategies remain underexplored. Here, we present a novel pharmacological approach to enhance de novo synthesis of NAD+ in the liver by inhibiting α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), an enzyme highly expressed in the liver. Inhibiting ACMSD increases NAD+ levels, enhances mitochondrial respiration, and maintains genomic stability in hepatocytes ex vivo and in vivo. These molecular benefits prevent disease progression in both mouse and human liver organoid models of steatohepatitis. Our preclinical study identifies ACMSD as a promising target for MASLD/MASH management and lays the groundwork for developing ACMSD inhibitors as a clinical treatment.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qi Wang
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Keno Strotjohann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism institute, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences institute, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Arvanitakis K, Chatzikalil E, Kalopitas G, Patoulias D, Popovic DS, Metallidis S, Kotsa K, Germanidis G, Koufakis T. Metabolic Dysfunction-Associated Steatotic Liver Disease and Polycystic Ovary Syndrome: A Complex Interplay. J Clin Med 2024; 13:4243. [PMID: 39064282 PMCID: PMC11278502 DOI: 10.3390/jcm13144243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) are prevalent conditions that have been correlated with infertility through overlapped pathophysiological mechanisms. MASLD is associated with metabolic syndrome and is considered among the major causes of chronic liver disease, while PCOS, which is characterized by ovulatory dysfunction and hyperandrogenism, is one of the leading causes of female infertility. The pathophysiological links between PCOS and MASLD have not yet been fully elucidated, with insulin resistance, hyperandrogenemia, obesity, and dyslipidemia being among the key pathways that contribute to liver lipid accumulation, inflammation, and fibrosis, aggravating liver dysfunction. On the other hand, MASLD exacerbates insulin resistance and metabolic dysregulation in women with PCOS, creating a vicious cycle of disease progression. Understanding the intricate relationship between MASLD and PCOS is crucial to improving clinical management, while collaborative efforts between different medical specialties are essential to optimize fertility and liver health outcomes in individuals with MASLD and PCOS. In this review, we summarize the complex interplay between MASLD and PCOS, highlighting the importance of increasing clinical attention to the prevention, diagnosis, and treatment of both entities.
Collapse
Affiliation(s)
- Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Elena Chatzikalil
- Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Patoulias
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Djordje S. Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia;
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Symeon Metallidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Division of Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
| | - Kalliopi Kotsa
- Division of Endocrinology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (S.M.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| |
Collapse
|
5
|
Govardhan B, Anand VK, Nagaraja Rao P, Balachandran Menon P, Mithun S, Sasikala M, Sowmya T, Anuradha S, Smita CP, Nageshwar Reddy D, Ravikanth V. 17-Beta-Hydroxysteroid Dehydrogenase 13 Loss of Function Does Not Confer Protection to Nonalcoholic Fatty Liver Disease in Indian Population. J Clin Exp Hepatol 2024; 14:101371. [PMID: 38523737 PMCID: PMC10956055 DOI: 10.1016/j.jceh.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Background A splice variant in HSD17B13 gene is demonstrated to protect against nonalcoholic fatty liver disease (NAFLD), and mitigate the effect of Patatin-like phospholipase domain-containing 3 (PNPLA3-I148M). It is being explored as a putative drug target and in polygenic risk scores. Based on whole exome sequencing (WES) in our cohort of biopsy proven NAFLD and limited data on the variant in our ethnicity, we sought to explore its role. Methods This is a cross-sectional study that recruited 1,020 individuals with ultrasound/biopsy-confirmed NAFLD and matched controls. Liver enzymes and lipid profiles were estimated (Beckman coulter LX750/DXH800); WES was performed in NAFLD patients and controls (Illumina; HiSeqX); HSD17B13-A-INS/I148M-PNPLA3 variants were genotyped (sequencing/qR T-PCR); HSD17B13 protein expression was estimated (immunohistochemistry); the Student's t-test/Mann-Whitney U/Chi-square test and odds ratio (95% confidence interval) were used. Results There was no significant difference (Odds ratio = 0.76; 95% CI -0.57 to 1.03; P = 0.76) in the frequency of the rs72613567-A-INS between controls and patients (17.8% vs. 14.4%). No difference in the ALT (Alanine transaminase; 72.24 ± 65.13 vs. 73.70 ± 60.06; P = 0.51) and AST levels (Aspartate aminotransferase; 60.72 ± 55.59 vs. 61.63 ± 60.33; P = 0.91) between HSD17B13-wild and variant carriers were noted. Significantly elevated liver enzymes were seen in PNPLA3-148-variant/HSD17B13-wild compared with PNPLA3-148-variant/HSD17B13-variant (90.44 ± 59.0 vs. 112.32 ± 61.78; P = 0.02). No difference in steatosis (P = 0.51) between HSD17B13-wild and variant carriers was noted. No other variants in the intron-exon boundaries were identified. Although, protein expression differences were noted between wild and variant carriers, no difference in the extent of steatosis was seen. Conclusion Our study reports lack of association of the splice variant with reduced risk of NAFLD, and mitigating the effect of PNPLA3 variant. Ethnicity-based validation must be carried out before including it in assessing protection against NAFLD.
Collapse
Affiliation(s)
- Bale Govardhan
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - V. Kulkarni Anand
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Padaki Nagaraja Rao
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - P. Balachandran Menon
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sharma Mithun
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Mitnala Sasikala
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - T.R. Sowmya
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sekaran Anuradha
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - C. Pawar Smita
- Department of Genetics, Osmania University, Hyderabad, Telangana 500032, India
| | - D. Nageshwar Reddy
- AIG Hospitals, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Vishnubhotla Ravikanth
- Asian Healthcare Foundation, Plot No 2/3/4/5, Survey No 136/1, Mindspace Road, Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
6
|
Golabi P, Owrangi S, Younossi ZM. Global perspective on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis - prevalence, clinical impact, economic implications and management strategies. Aliment Pharmacol Ther 2024; 59 Suppl 1:S1-S9. [PMID: 38813821 DOI: 10.1111/apt.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND The metabolically-based liver disease, nonalcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease currently affecting 38% of the world's adult population. NAFLD can be progressive leading to nonalcoholic steatohepatitis (NASH), liver transplantation, liver cancer, liver-related mortality and is associated with decreased quality of life from impaired physical functioning and increased healthcare resource utilisation. However, screening for NAFLD is cost-prohibitive but screening for high risk NAFLD (NAFLD with F2 fibrosis or greater) is imperative. AIM To review the global perspective on NAFLD and NASH METHODS: We retrieved articles from PubMed using search terms NAFLD, prevalence, clinical burden, economic burden and management strategies. RESULTS NAFLD/NASH shows geographical variation across the globe. Highest prevalence rates are in South America and the Middle East and North Africa; lowest prevalence is in Africa. NAFLD's economic impact is from direct and indirect medical costs and loss in worker productivity. It is projected that, over the next two decades, the total cost of NAFLD and diabetes will exceed $1.5 trillion (USD). Risk stratification algorithms identifying "high risk NAFLD" were made following non-invasive tests for NAFLD identification and fibrosis development. These algorithms should be used in primary care and endocrinology settings so timely and appropriate interventions (lifestyle and cardiometabolic risk factor management) can be initiated. CONCLUSIONS To reduce the burgeoning burden of NAFLD/NASH, management should include risk stratification algorithms for accurate identification of patients, linkage to appropriate settings, and initiation of effective treatment regimens.
Collapse
Affiliation(s)
- Pegah Golabi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| | - Soroor Owrangi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, DC, USA
- The Global NASH Council, Washington, DC, USA
| |
Collapse
|
7
|
Nunes JRC, O'Dwyer C, Ghorbani P, Smith TKT, Chauhan S, Robert-Gostlin V, Girouard MD, Viollet B, Foretz M, Fullerton MD. Myeloid AMPK signaling restricts fibrosis but is not required for metformin improvements during CDAHFD-induced NASH in mice. J Lipid Res 2024; 65:100564. [PMID: 38762124 PMCID: PMC11222943 DOI: 10.1016/j.jlr.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic programming underpins inflammation and liver macrophage activation in the setting of chronic liver disease. Here, we sought to identify the role of an important metabolic regulator, AMP-activated protein kinase (AMPK), specifically within myeloid cells during the progression of non-alcoholic steatohepatitis (NASH) and whether treatment with metformin, a firstline therapy for diabetes and activator of AMPK could stem disease progression. Male and female Prkaa1fl/fl/Prkaa2fl/fl (Flox) control and Flox-LysM-Cre+ (MacKO) mice were fed a low-fat control or a choline-deficient, amino acid defined 45% Kcal high-fat diet (CDAHFD) for 8 weeks, where metformin was introduced in the drinking water (50 or 250 mg/kg/day) for the last 4 weeks. Hepatic steatosis and fibrosis were dramatically increased in response to CDAHFD-feeding compared to low-fat control. While myeloid AMPK signaling had no effect on markers of hepatic steatosis or circulating markers, fibrosis as measured by total liver collagen was significantly elevated in livers from MacKO mice, independent of sex. Although treatment with 50 mg/kg/day metformin had no effect on any parameter, intervention with 250 mg/kg/day metformin completely ameliorated hepatic steatosis and fibrosis in both male and female mice. While the protective effect of metformin was associated with lower final body weight, and decreased expression of lipogenic and Col1a1 transcripts, it was independent of myeloid AMPK signaling. These results suggest that endogenous AMPK signaling in myeloid cells, both liver-resident and infiltrating, acts to restrict fibrogenesis during CDAHFD-induced NASH progression but is not the mechanism by which metformin improves markers of NASH.
Collapse
Affiliation(s)
- Julia R C Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tyler K T Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Samarth Chauhan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Victoria Robert-Gostlin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Madison D Girouard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Benoit Viollet
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Marc Foretz
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Maurotti S, Geirola N, Frosina M, Mirarchi A, Scionti F, Mare R, Montalcini T, Pujia A, Tirinato L. Exploring the impact of lipid droplets on the evolution and progress of hepatocarcinoma. Front Cell Dev Biol 2024; 12:1404006. [PMID: 38818407 PMCID: PMC11137176 DOI: 10.3389/fcell.2024.1404006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Over the past 10 years, the biological role of lipid droplets (LDs) has gained significant attention in the context of both physiological and pathological conditions. Considerable progress has been made in elucidating key aspects of these organelles, yet much remains to be accomplished to fully comprehend the myriad functions they serve in the progression of hepatic tumors. Our current perception is that LDs are complex and active structures managed by a distinct set of cellular processes. This understanding represents a significant paradigm shift from earlier perspectives. In this review, we aim to recapitulate the function of LDs within the liver, highlighting their pivotal role in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) (Hsu and Loomba, 2024) and their contribution to the progression towards more advanced pathological stages up to hepatocellular carcinoma (HC) (Farese and Walther, 2009). We are aware of the molecular complexity and changes occurring in the neoplastic evolution of the liver. Our attempt, however, is to summarize the most important and recent roles of LDs across both healthy and all pathological liver states, up to hepatocarcinoma. For more detailed insights, we direct readers to some of the many excellent reviews already available in the literature (Gluchowski et al., 2017; Hu et al., 2020; Seebacher et al., 2020; Paul et al., 2022).
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Nadia Geirola
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Frosina
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Angela Mirarchi
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
9
|
Xue J, Zhang L, Tao J, Xie X, Wang X, Wu L, Du S, Tan N, Jin Y, Ju J, Fan J, Wang J, Huan F, Gao R. A novel bellidifolin intervention mitigates nonalcoholic fatty liver disease-like changes induced by bisphenol F. J Biomed Res 2024; 38:1-14. [PMID: 38808572 PMCID: PMC11461535 DOI: 10.7555/jbr.37.20230169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/07/2024] [Accepted: 02/13/2024] [Indexed: 05/30/2024] Open
Abstract
As a potential endocrine-disrupting chemical, bisphenol F (BPF) may cause nonalcoholic fatty liver disease (NAFLD)-like changes, but the mechanisms underpinning its pathogenesis as well as the intervention strategies remain poorly understood. Using the electron microscopy technology, along with LipidTOX Deep Red neutral and Bodipy 493/503 staining assays, we observed that BPF treatment elicited a striking accumulation of lipid droplets in HepG2 cells, accompanied by an increased total level of triglycerides. At the molecular level, the lipogenesis-associated mRNAs and proteins, including acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase-1, peroxisome proliferator-activated receptor gamma, and CCAAT-enhancer-binding proteins, increased significantly via the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling regulation in both in vitro and in vivo studies. Furthermore, the immunofluorescence results also showed the robust lipogenesis induced by BPF, evident in its ability to promote the translocation of sterol regulatory element-binding protein-1c from the cytoplasm to the nuclei. To investigate the intervention strategies for BPF-induced NAFLD-like changes, we demonstrated that bellidifolin, isolated and purified from Swertia chirayita, significantly attenuated BPF-induced lipid droplet deposition in HepG2 cell and NAFLD-like changes in mice by blocking the expression of lipogenesis-associated proteins. Therefore, the present study elucidates the mechanisms underlying BPF-induced lipid accumulation in HepG2 cells, while also highlighting the potential of bellidifolin to mitigate BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Taizhou Center for Disease Control and Prevention, Taizhou, Jiangsu 225300, China
| | - Linwei Zhang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingxian Tao
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuexue Xie
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xi Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu 214023, China
| | - Shuhu Du
- School of Pharmacy, Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ninghua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yang Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianming Ju
- Laboratory of Quality and Metabolomics of Traditional Chinese Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Junting Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Huan
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Boncan DAT, Yu Y, Zhang M, Lian J, Vardhanabhuti V. Machine learning prediction of hepatic steatosis using body composition parameters: A UK Biobank Study. NPJ AGING 2024; 10:4. [PMID: 38195699 PMCID: PMC10776620 DOI: 10.1038/s41514-023-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/16/2023] [Indexed: 01/11/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease worldwide, yet detection has remained largely based on surrogate serum biomarkers, elastography or biopsy. In this study, we used a total of 2959 participants from the UK biobank cohort and established the association of dual-energy X-ray absorptiometry (DXA)-derived body composition parameters and leveraged machine learning models to predict NAFLD. Hepatic steatosis reference was based on MRI-PDFF which has been extensively validated previously. We found several significant associations with traditional measurements such as abdominal obesity, as defined by waist-to-hip ratio (OR = 2.50 (male), 3.35 (female)), android-gynoid ratio (OR = 3.35 (male), 6.39 (female)) and waist circumference (OR = 1.79 (male), 3.80 (female)) with hepatic steatosis. Similarly, A Body Shape Index (Quantile 4 OR = 1.89 (male), 5.81 (female)), and for fat mass index, both overweight (OR = 6.93 (male), 2.83 (female)) and obese (OR = 14.12 (male), 5.32 (female)) categories were likewise significantly associated with hepatic steatosis. DXA parameters were shown to be highly associated such as visceral adipose tissue mass (OR = 8.37 (male), 19.03 (female)), trunk fat mass (OR = 8.64 (male), 25.69 (female)) and android fat mass (OR = 7.93 (male), 21.77 (female)) with NAFLD. We trained machine learning classifiers with logistic regression and two histogram-based gradient boosting ensembles for the prediction of hepatic steatosis using traditional body composition indices and DXA parameters which achieved reasonable performance (AUC = 0.83-0.87). Based on SHapley Additive exPlanations (SHAP) analysis, DXA parameters that had the largest contribution to the classifiers were the features predicted with significant association with NAFLD. Overall, this study underscores the potential utility of DXA as a practical and potentially opportunistic method for the screening of hepatic steatosis.
Collapse
Affiliation(s)
- Delbert Almerick T Boncan
- Snowhill Science Ltd, Units 801-803, Level 8, Core C, Hong Kong SAR, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yan Yu
- Snowhill Science Ltd, Units 801-803, Level 8, Core C, Hong Kong SAR, China
| | - Miaoru Zhang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Lian
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Varut Vardhanabhuti
- Snowhill Science Ltd, Units 801-803, Level 8, Core C, Hong Kong SAR, China.
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Albeshry AM, Abdulrahman Alasmari M, Alshahrani JA, Alshahrani AM, Saad Almusma A, Alfaya MA, Alfaifi AJ, Alshahrani MA, Alharbi HKD, Ali Etwdi AS, Aldawsari E, Zakir Hiyat Moazam SM, Alshaiban M, Al-Harthi SN. Prevalence of Non-alcoholic Fatty Liver Disease (NAFLD) Among Diabetic Mellitus Patients in Saudi Arabia: Systematic Review and Meta-Analysis. Cureus 2023; 15:e51092. [PMID: 38283461 PMCID: PMC10810724 DOI: 10.7759/cureus.51092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a burgeoning global health concern, closely associated with the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity. This systematic review and meta-analysis aim to comprehensively evaluate the prevalence of NAFLD in DM patients in Saudi Arabia, a country undergoing rapid socioeconomic changes. Our multifaceted search strategy identified four high-quality studies conducted between 2003 and 2022, covering hospital and community settings. The aggregate prevalence rate of NAFLD in DM patients was notably high, ranging from 47.8% to 72.8%. However, substantial heterogeneity (I² = 90.6%) was observed, indicating variability attributed to diverse study characteristics. The uniform application of ultrasound for diagnosis was noteworthy but raised concerns regarding sensitivity. This analysis underscores the urgency of public health measures for early detection and management of NAFLD in DM-prone populations in Saudi Arabia.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed A Alfaya
- Family Medicine, Armed Forces Hospital Southern Region, Khamis Mushit, SAU
| | - Ali J Alfaifi
- Family and Community Medicine, King Khalid University, Abha, SAU
| | - Mastoor A Alshahrani
- Family Medicine, Primary Health Care Corporation (PHCC) Khamis Mushait Sector, Ministry of Health, Khamis Mushit, SAU
| | | | - Ali S Ali Etwdi
- Laboratory, Armed Forces Hospital Southern Region, Khamis Mushit, SAU
| | - Eyad Aldawsari
- Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | | | | | | |
Collapse
|
12
|
Tian Y, Wang B. Unraveling the pathogenesis of non-alcoholic fatty liver diseases through genome-wide association studies. J Gastroenterol Hepatol 2023; 38:1877-1885. [PMID: 37592846 PMCID: PMC10693931 DOI: 10.1111/jgh.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden around the world, affecting approximately 25% of the population. Recent advances in human genetic databases have allowed for the identification of various single nucleotide polymorphisms associated with NAFLD-related traits. Investigating the functions of these genetic factors provides insight into the pathogenesis of NAFLD and potentially identifies novel therapeutic targets for NAFLD. In this review, we summarized current research on genes with NAFLD-associated mutations, highlighting phospholipid remodeling and spatially clustered loci as common pathological and genetic features of these mutations. These features suggest a complex yet intriguing mechanism of dissociated steatosis and insulin resistance, which is observed in a subset of patients and may lead to more precise therapy against NAFLD in the future.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Lee YK, Park JE, Lee M, Mifflin R, Xu Y, Novak R, Zhang Y, Hardwick JP. Deletion of hepatic small heterodimer partner ameliorates development of nonalcoholic steatohepatitis in mice. J Lipid Res 2023; 64:100454. [PMID: 37827334 PMCID: PMC10665942 DOI: 10.1016/j.jlr.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.
Collapse
Affiliation(s)
- Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Jung Eun Park
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ryan Mifflin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Robert Novak
- Department of Pathology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
14
|
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023; 11:2809. [PMID: 37893185 PMCID: PMC10604560 DOI: 10.3390/biomedicines11102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Gary Huang
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Metallogenomics Laboratory, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Elizabeth E. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Tony Rahman
- Department of Gastroenterology and Hepatology, Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Paul J. Clark
- Mater Adult Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - V. Nathan Subramaniam
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
15
|
Huang X, Lian YE, Qiu L, Yu X, Miao J, Zhang S, Zhang Z, Zhang X, Chen J, Bai Y, Li L. Quantitative Assessment of Hepatic Steatosis Using Label-Free Multiphoton Imaging and Customized Image Processing Program. J Transl Med 2023; 103:100223. [PMID: 37517702 DOI: 10.1016/j.labinv.2023.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Nonalcoholic fatty liver disease is rapidly becoming one of the most common causes of chronic liver disease worldwide and is the leading cause of liver-related morbidity and mortality. A quantitative assessment of the degree of steatosis would be more advantageous for diagnostic evaluation and exploring the patterns of disease progression. Here, multiphoton microscopy, based on the second harmonic generation and 2-photon excited fluorescence, was used to label-free image the samples of nonalcoholic fatty liver. Imaging results confirm that multiphoton microscopy is capable of directly visualizing important pathologic features such as normal hepatocytes, hepatic steatosis, Mallory bodies, necrosis, inflammation, collagen deposition, microvessel, and so on and is a reliable auxiliary tool for the diagnosis of nonalcoholic fatty liver disease. Furthermore, we developed an image segmentation algorithm to simultaneously assess hepatic steatosis and fibrotic changes, and quantitative results reveal that there is a correlation between the degree of steatosis and collagen content. We also developed a feature extraction program to precisely display the spatial distribution of hepatocyte steatosis in tissues. These studies may be beneficial for a better clinical understanding of the process of steatosis as well as for exploring possible therapeutic targets.
Collapse
Affiliation(s)
- Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Yuan-E Lian
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lida Qiu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, China
| | - XunBin Yu
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Jikui Miao
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Shichao Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Zheng Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Xiong Zhang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China
| | - Yannan Bai
- Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
16
|
Hehl L, Schneider CV, Rader DJ. Editorial: MTTP, hepatic steatosis, and plasma lipids-still more questions than answers. Authors' reply. Aliment Pharmacol Ther 2023; 58:370-371. [PMID: 37452595 DOI: 10.1111/apt.17624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Leonida Hehl
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Victoria Schneider
- Department of Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Kreimeyer H, Vogt K, Götze T, Best J, Götze O, Weigt J, Kahraman A, Özçürümez M, Kälsch J, Syn WK, Sydor S, Canbay A, Manka P. Influence of the Bile Acid Transporter Genes ABCB4, ABCB8, and ABCB11 and the Farnesoid X Receptor on the Response to Ursodeoxycholic Acid in Patients with Nonalcoholic Steatohepatitis. J Pers Med 2023; 13:1180. [PMID: 37511794 PMCID: PMC10381823 DOI: 10.3390/jpm13071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The prevalence of NAFLD and NASH is increasing worldwide, and there is no approved medical treatment until now. Evidence has emerged that interfering with bile acid metabolism may lead to improvement in NASH. In this study, 28 patients with elevated cholestatic liver function tests (especially GGT) were screened for bile acid gene polymorphisms and treated with UDCA. All patients had a bile acid gene polymorphism in ABCB4 or ABCB11. Treatment with UDCA for 12 months significantly reduced GGT in all patients and ALT in homozygous patients. No difference in fibrosis was observed using FIb-4, NFS, and transient elastography (TE). PNPLA3 and TM6SF2 were the most common NASH-associated polymorphisms, and patients with TM6SF2 showed a significant reduction in GGT and ALT with the administration of UDCA. In conclusion, NASH patients with elevated GGT should be screened for bile acid gene polymorphisms, as UDCA therapy may improve liver function tests. However, no difference in clinical outcomes, such as progression to cirrhosis, has been observed using non-invasive tests (NITs).
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Katharina Vogt
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Tobias Götze
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jan Best
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Oliver Götze
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Jochen Weigt
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Alisan Kahraman
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Mustafa Özçürümez
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Julia Kälsch
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| |
Collapse
|
18
|
Rodríguez-Lara A, Rueda-Robles A, Sáez-Lara MJ, Plaza-Diaz J, Álvarez-Mercado AI. From Non-Alcoholic Fatty Liver Disease to Liver Cancer: Microbiota and Inflammation as Key Players. Pathogens 2023; 12:940. [PMID: 37513787 PMCID: PMC10385788 DOI: 10.3390/pathogens12070940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
It is estimated that 25% of the world's population has non-alcoholic fatty liver disease. This disease can advance to a more severe form, non-alcoholic steatohepatitis (NASH), a disease with a greater probability of progression to cirrhosis and hepatocellular carcinoma (HCC). NASH could be characterized as a necro-inflammatory complication of chronic hepatic steatosis. The combination of factors that lead to NASH and its progression to HCC in the setting of inflammation is not clearly understood. The portal vein is the main route of communication between the intestine and the liver. This allows the transfer of products derived from the intestine to the liver and the hepatic response pathway of bile and antibody secretion to the intestine. The intestinal microbiota performs a fundamental role in the regulation of immune function, but it can undergo changes that alter its functionality. These changes can also contribute to cancer by disrupting the immune system and causing chronic inflammation and immune dysfunction, both of which are implicated in cancer development. In this article, we address the link between inflammation, microbiota and HCC. We also review the different in vitro models, as well as recent clinical trials addressing liver cancer and microbiota.
Collapse
Affiliation(s)
- Avilene Rodríguez-Lara
- Center of Biomedical Research, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada,18071 Granada, Spain
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Julio Plaza-Diaz
- Children's Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Ana I Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology "José Mataix", University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
19
|
Lee JH, Kim J, Kim JO, Kwon YJ. Association of non-high-density lipoprotein cholesterol trajectories with the development of non-alcoholic fatty liver disease: an epidemiological and genome-wide association study. J Transl Med 2023; 21:435. [PMID: 37403158 DOI: 10.1186/s12967-023-04291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) shares common risk factors with cardiovascular diseases. Effects of longitudinal trends in non-high-density lipoprotein (non-HDL) cholesterol on NAFLD development are not understood. This study aimed to assess the relationship between non-HDL cholesterol trajectories and the incidence of NAFLD and to identify genetic differences contributing to NAFLD development between non-HDL cholesterol trajectory groups. METHODS We analyzed data from 2203 adults (aged 40-69 years) who participated in the Korean Genome and Epidemiology Study. During the 6-year exposure periods, participants were classified into an increasing non-HDL cholesterol trajectory group (n = 934) or a stable group (n = 1269). NAFLD was defined using a NAFLD-liver fat score > -0.640. Multiple Cox proportional hazard regression analysis estimated the hazard ratio (HR) and the 95% confidence interval (CI) for the incidence of NAFLD in the increasing group compared with the stable group. RESULTS A genome-wide association study identified significant single-nucleotide polymorphisms (SNPs) associated with NAFLD. During the median 7.8-year of event accrual period, 666 (30.2%) newly developed NAFLD cases were collected. Compared with the stable non-HDL group, the adjusted HR (95% CI) for the incidence of NAFLD in the increasing non-HDL cholesterol group was 1.46 (1.25-1.71). Although there were no significant SNPs, the polygenic risk score was highest in the increasing group, followed by the stable and control groups. CONCLUSION Our study indicates that lifestyle or environmental factors have a greater effect size than genetic factors in NAFLD progression risk. Lifestyle modification could be an effective prevention strategy for NAFLD for people with elevated non-HDL cholesterol.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830, Republic of Korea
- Department of Medicine, Hanyang University Graduate School of Medicine, Seoul, 04763, Republic of Korea
| | - Jiyeon Kim
- Institute of Genetic Epidemiology, basgenbio Inc., 64, Keunumul-Ro, Mapo-Gu, Seoul, 04166, Republic of Korea
| | - Jung Oh Kim
- Institute of Genetic Epidemiology, basgenbio Inc., 64, Keunumul-Ro, Mapo-Gu, Seoul, 04166, Republic of Korea.
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
20
|
Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, Cai X, Xu J, Chen J, Duan H, Cai Y, Zheng G. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154836. [PMID: 37119760 DOI: 10.1016/j.phymed.2023.154836] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
21
|
Alonso-Peña M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, Iruzubieta P, Crespo J. Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key. Int J Mol Sci 2023; 24:10718. [PMID: 37445895 DOI: 10.3390/ijms241310718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Ana Peleteiro-Vigil
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Carolina Jimenez-Gonzalez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
22
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Tamasi V, Németh K, Csala M. Role of Extracellular Vesicles in Liver Diseases. Life (Basel) 2023; 13:life13051117. [PMID: 37240762 DOI: 10.3390/life13051117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures that are formed by budding from the plasma membrane or originate from the endosomal system. These microparticles (100 nm-100 µm) or nanoparticles (>100 nm) can transport complex cargos to other cells and, thus, provide communication and intercellular regulation. Various cells, such as hepatocytes, liver sinusoidal endothelial cells (LSECs) or hepatic stellate cells (HSCs), secrete and take up EVs in the healthy liver, and the amount, size and content of these vesicles are markedly altered under pathophysiological conditions. A comprehensive knowledge of the modified EV-related processes is very important, as they are of great value as biomarkers or therapeutic targets. In this review, we summarize the latest knowledge on hepatic EVs and the role they play in the homeostatic processes in the healthy liver. In addition, we discuss the characteristic changes of EVs and their potential exacerbating or ameliorating effects in certain liver diseases, such as non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), drug induced liver injury (DILI), autoimmune hepatitis (AIH), hepatocarcinoma (HCC) and viral hepatitis.
Collapse
Affiliation(s)
- Viola Tamasi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
24
|
Kalafati IP, Dimitriou M, Revenas K, Kokkinos A, Deloukas P, Dedoussis GV. TM6SF2-rs58542926 Genetic Variant Modifies the Protective Effect of a "Prudent" Dietary Pattern on Serum Triglyceride Levels. Nutrients 2023; 15:1112. [PMID: 36904112 PMCID: PMC10005630 DOI: 10.3390/nu15051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The epidemic prevalence of non-alcoholic fatty liver disease (NAFLD), despite extensive research in the field, underlines the importance of focusing on personalized therapeutic approaches. However, nutrigenetic effects on NAFLD are poorly investigated. To this end, we aimed to explore potential gene-dietary pattern interactions in a NAFLD case-control study. The disease was diagnosed with liver ultrasound and blood collection was performed after an overnight fast. Adherence to four a posteriori, data-driven, dietary patterns was used to investigate interactions with PNPLA3-rs738409, TM6SF2-rs58542926, MBOAT7-rs641738, and GCKR-rs738409 in disease and related traits. IBM SPSS Statistics/v21.0 and Plink/v1.07 were used for statistical analyses. The sample consisted of 351 Caucasian individuals. PNPLA3-rs738409 was positively associated with disease odds (OR = 1.575, p = 0.012) and GCKR-rs738409 with lnC-reactive protein (CRP) (beta = 0.098, p = 0.003) and Fatty Liver Index (FLI) levels (beta = 5.011, p = 0.007). The protective effect of a "Prudent" dietary pattern on serum triglyceride (TG) levels in this sample was significantly modified by TM6SF2-rs58542926 (pinteraction = 0.007). TM6SF2-rs58542926 carriers may not benefit from a diet rich in unsaturated fatty acids and carbohydrates in regard to TG levels, a commonly elevated feature in NAFLD patients.
Collapse
Affiliation(s)
- Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100 Trikala, Greece
| | - Maria Dimitriou
- Department of Nutrition and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | | | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece
| |
Collapse
|
25
|
Lu X, Song M, Gao N. Extracellular Vesicles and Fatty Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:129-141. [PMID: 37603277 DOI: 10.1007/978-981-99-1443-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Fatty liver is a complex pathological process caused by multiple etiologies. In recent years, the incidence of fatty liver has been increasing year by year, and it has developed into a common chronic disease that seriously affects people's health around the world. It is an important risk factor for liver cirrhosis, liver cancer, and a variety of extrahepatic chronic diseases. Therefore, the early diagnosis and early therapy of fatty liver are important. Except for invasive liver biopsy, there is still a lack of reliable diagnosis and staging methods. Extracellular vesicles are small double-layer lipid membrane vesicles derived from most types of cells. They play an important role in intercellular communication and participate in the occurrence and development of many diseases. Since extracellular vesicles can carry a variety of biologically active substances after they are released by cells, they have received widespread attention. The occurrence and development of fatty liver are also closely related to extracellular vesicles. In addition, extracellular vesicles are expected to provide a new direction for the diagnosis of fatty liver. This article reviews the relationship between extracellular vesicles and fatty liver, laying a theoretical foundation for the development of new strategies for the diagnosis and therapy of fatty liver.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Endoscopy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Na Gao
- Department of Endoscopy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
26
|
Yang D, Kim JW, Jeong H, Kim MS, Lim CW, Lee K, Kim B. Effects of maternal cigarette smoke exposure on the progression of nonalcoholic steatohepatitis in offspring mice. Toxicol Res 2023; 39:91-103. [PMID: 36726830 PMCID: PMC9839905 DOI: 10.1007/s43188-022-00153-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoke (CS) is a dominant carcinogenic agent in a variety of human cancers. CS exposure during pregnancy can adversely affect the fetus. Non-alcoholic fatty liver disease (NAFLD) is considered as a hepatic manifestation of a metabolic disorder, and ranges from simple steatosis to cirrhosis leading to hepatocellular carcinoma. Non-alcoholic steatohepatitis (NASH) is a more severe phase of NAFLD. Recently, there is increasing apprehension about the CS-related chronic liver diseases. Therefore, we examined whether maternal CS exposure could affect the pathogenesis of NASH in offspring. Mainstream CS (MSCS) was exposed to pregnant C57BL/6 mice via nose-only inhalation for 2 h/day, 5 days/week for 2 weeks from day 6 to 17 of gestation at 0, 300, or 600 μg/L. Three-week-old male offspring mice were fed methionine and choline-supplemented (MCS) diet or methionine and choline-deficient including high-fat (MCDHF) diet for 6 weeks to induce NASH. Maternal MSCS exposure increased the severity of NASH by increasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, hepatic total cholesterol (TC) and triglyceride (TG) levels, pro-inflammation, fibrosis, and steatosis in offspring mice. Especially, maternal MSCS exposure significantly downregulated the phosphorylation of AMP-activated protein kinase (AMPK) in MCDHF diet-fed offspring mice. Subsequently, the protein levels of sterol regulatory element-binding protein (SREBP)-1c and stearoyl-CoA desaturase-1 (SCD1) were upregulated by maternal MSCS exposure. In conclusion, maternal MSCS exposure exacerbates the progression of NASH by modulating lipogenesis on offspring mice. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00153-1.
Collapse
Affiliation(s)
- Daram Yang
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do 54596 Republic of Korea
| | - Jong Won Kim
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do 54596 Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do 54596 Republic of Korea
| | - Min Seok Kim
- Inhalation Toxicology Center, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30, Baekak 1-Gil, Jeongeup, 56212 Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do 54596 Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30, Baekak 1-Gil, Jeongeup, 56212 Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do 54596 Republic of Korea
| |
Collapse
|
27
|
Hayat U, Siddiqui AA, Farhan ML, Haris A, Hameed N. Genome Editing and Fatty Liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:191-206. [DOI: 10.1007/978-981-19-5642-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Selective disruption of NRF2-KEAP1 interaction leads to NASH resolution and reduction of liver fibrosis in mice. JHEP Rep 2022; 5:100651. [PMID: 36866391 PMCID: PMC9971056 DOI: 10.1016/j.jhepr.2022.100651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background & Aims Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH. Methods Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models. Results Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression. Conclusions These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis. Impact and implications We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- ARE, antioxidant response element
- DIO, diet-induced obesity
- GSEA, Gene Set Enrichment Analysis
- HEC, hydroxyethyl cellulose
- HSCs, Hepatic Stellate Cells
- KEAP1, Kelch-like ECH associated protein 1
- LPS, lipopolysaccharide
- MCDD, methionine- and choline-deficient diet
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- NRF2
- NRF2, nuclear factor erythroid 2–related factor 2
- PPI, Protein-protein interaction
- PSR, Picrosirius red
- ROS, reactive oxygen species
- fibrosis
- hPBMCs, human peripheral blood mononuclear cells
- oxidative stress
Collapse
|
29
|
Alsaif F, Al-hamoudi W, Alotaiby M, Alsadoon A, Almayouf M, Almadany H, Abuhaimed J, Ghufran N, Merajuddin A, Ali Khan I. Molecular Screening via Sanger Sequencing of the Genetic Variants in Non-Alcoholic Fatty Liver Disease Subjects in the Saudi Population: A Hospital-Based Study. Metabolites 2022; 12:metabo12121240. [PMID: 36557278 PMCID: PMC9784496 DOI: 10.3390/metabo12121240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, along with steatosis and non-alcoholic steatohepatitis (NASH), and is associated with cirrhosis and hepatocellular carcinoma. Candidate gene and genome-wide association studies have validated the relationships between NAFLD, NASH, PNPLA3, TM6SF2, and HFE. The present study utilized five polymorphisms in three genes: PNPLA3 (I148M and K434E) TM6SF2 (E167K), and HFE (H63D and C282Y), based on undocumented case−control studies in the Saudi Arabian population. A total of 95 patients with NAFLD and 78 non-NAFLD subjects were recruited. Genomic DNA was isolated, and polymerase chain reaction and Sanger sequencing were performed using specific primers for the I148M, K434E, E167K, H63D, and C282Y. NAFLD subjects were older when compared to controls and showed the significant association (p = 0.0001). Non-significant association was found between gender (p = 0.26). However, both weight and BMI were found to be associated. Hardy−Weinberg equilibrium analysis confirmed that H63D, I148M, and K434E polymorphisms were associated. Genotype analysis showed only K434E variant was associated with NAFLD and non-NAFLD (OR-2.16; 95% CI: 1.08−4.31; p = 0.02). However, other polymorphisms performed with NAFLD and NASH were not associated (p > 0.05), and similar analysis was found when ANOVA was performed (p > 0.05). In conclusion, we confirmed that K434E polymorphism showed a positive association in the Saudi population.
Collapse
Affiliation(s)
- Faisal Alsaif
- Surgery Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Waleed Al-hamoudi
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Medicine Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Maram Alotaiby
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Laboratories and Blood Bank Services Ministry of Health, Riyadh 12746, Saudi Arabia
- Correspondence: (M.A.); (I.A.K.)
| | - Amani Alsadoon
- Liver Disease Research Center, King Saud University Medical City, Riyadh 12746, Saudi Arabia
| | - Mohammed Almayouf
- Surgery Department, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh 11942, Saudi Arabia
| | - Hadeel Almadany
- Surgery Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawahir Abuhaimed
- College of Medicine, Al-Faisal University, Riyadh P.O. Box 400, Saudi Arabia
| | - Noman Ghufran
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Merajuddin
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Research and Development Unit, Adela Inc. 610, University of Avenue, Toronto, ON M5G 2R5, Canada
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence: (M.A.); (I.A.K.)
| |
Collapse
|
30
|
Comparison of Body Composition, Muscle Strength and Cardiometabolic Profile in Children with Prader-Willi Syndrome and Non-Alcoholic Fatty Liver Disease: A Pilot Study. Int J Mol Sci 2022; 23:ijms232315115. [PMID: 36499438 PMCID: PMC9739027 DOI: 10.3390/ijms232315115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Syndromic and non-syndromic obesity conditions in children, such as Prader-Willi syndrome (PWS) and non-alcoholic fatty liver disease (NAFLD), both lower quality of life and increase risk for chronic health complications, which further increase health service utilization and cost. In a pilot observational study, we compared body composition and muscle strength in children aged 7−18 years with either PWS (n = 9), NAFLD (n = 14), or healthy controls (n = 16). Anthropometric and body composition measures (e.g., body weight, circumferences, skinfolds, total/segmental composition, and somatotype), handgrip strength, six minute-walk-test (6MWT), physical activity, and markers of liver and cardiometabolic dysfunction (e.g., ALT, AST, blood pressure, glucose, insulin, and lipid profile) were measured using standard procedures and validated tools. Genotyping was determined for children with PWS. Children with PWS had reduced lean body mass (total/lower limb mass), lower handgrip strength, 6MWT and increased sedentary activity compared to healthy children or those with NAFLD (p < 0.05). Children with PWS, including those of normal body weight, had somatotypes consistent with relative increased adiposity (endomorphic) and reduced skeletal muscle robustness (mesomorphic) when compared to healthy children and those with NAFLD. Somatotype characterizations were independent of serum markers of cardiometabolic dysregulation but were associated with increased prevalence of abnormal systolic and diastolic blood pressure Z-scores (p < 0.05). Reduced lean body mass and endomorphic somatotypes were associated with lower muscle strength/functionality and sedentary lifestyles, particularly in children with PWS. These findings are relevant as early detection of deficits in muscle strength and functionality can ensure effective targeted treatments that optimize physical activity and prevent complications into adulthood.
Collapse
|
31
|
Pal SC, Eslam M, Mendez-Sanchez N. Detangling the interrelations between MAFLD, insulin resistance, and key hormones. Hormones (Athens) 2022; 21:573-589. [PMID: 35921046 DOI: 10.1007/s42000-022-00391-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has increasingly become a significant and highly prevalent cause of chronic liver disease, displaying a wide array of risk factors and pathophysiologic mechanisms of which only a few have so far been clearly elucidated. A bidirectional interaction between hormonal discrepancies and metabolic-related disorders, including obesity, type 2 diabetes mellitus (T2DM), and polycystic ovarian syndrome (PCOS) has been described. Since the change in nomenclature from non-alcoholic fatty liver disease (NAFLD) to MAFLD is based on the clear impact of metabolic elements on the disease, the reciprocal interactions of hormones such as insulin, adipokines (leptin and adiponectin), and estrogens have strongly pointed to the intrinsic links that lead to the heterogeneous epidemiology, clinical presentations, and risk factors involved in MAFLD in different populations. The objective of this work is twofold. Firstly, there is a brief discussion regarding the change in nomenclature as well as epidemiology, risk factors, and pathophysiologic mechanisms other than hormonal effects, which include nutrition and the gut microbiome, as well as genetic and epigenetic influences. Secondly, we review the basis of the most important hormonal factors involved in the development and progression of MAFLD that act both independently and in an interrelated manner.
Collapse
Affiliation(s)
- Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico.
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico.
| |
Collapse
|
32
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
33
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
34
|
Asaturyan HA, Basty N, Thanaj M, Whitcher B, Thomas EL, Bell JD. Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling. PLoS One 2022; 17:e0273171. [PMID: 36099244 PMCID: PMC9469950 DOI: 10.1371/journal.pone.0273171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background The fatty liver index (FLI) is frequently used as a non-invasive clinical marker for research, prognostic and diagnostic purposes. It is also used to stratify individuals with hepatic steatosis such as non-alcoholic fatty liver disease (NAFLD), and to detect the presence of type 2 diabetes or cardiovascular disease. The FLI is calculated using a combination of anthropometric and blood biochemical variables; however, it reportedly excludes 8.5-16.7% of individuals with NAFLD. Moreover, the FLI cannot quantitatively predict liver fat, which might otherwise render an improved diagnosis and assessment of fatty liver, particularly in longitudinal studies. We propose FLI+ using predictive regression modelling, an improved index reflecting liver fat content that integrates 12 routinely-measured variables, including the original FLI. Methods and findings We evaluated FLI+ on a dataset from the UK Biobank containing 28,796 individual estimates of proton density fat fraction derived from magnetic resonance imaging across normal to severe levels and interpolated to align with the original FLI range. The results obtained for FLI+ outperform the original FLI by delivering a lower mean absolute error by approximately 47%, a lower standard deviation by approximately 20%, and an increased adjusted R2 statistic by approximately 49%, reflecting a more accurate representation of liver fat content. Conclusions Our proposed model predicting FLI+ has the potential to improve diagnosis and provide a more accurate stratification than FLI between absent, mild, moderate and severe levels of hepatic steatosis.
Collapse
Affiliation(s)
- Hykoush A. Asaturyan
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | - Nicolas Basty
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | - Marjola Thanaj
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | - Brandon Whitcher
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | - E. Louise Thomas
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | - Jimmy D. Bell
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Zhang C, Lu Y, Song Y, Chen L, Hu J, Meng Y, Chen X, Li S, Zheng G, Qiu Z. Celecoxib attenuates hepatosteatosis by impairing de novo lipogenesis via Akt-dependent lipogenic pathway. J Cell Mol Med 2022; 26:3995-4006. [PMID: 35713152 PMCID: PMC9279593 DOI: 10.1111/jcmm.17435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Mounting evidence indicates that hepatic de novo lipogenesis is a common abnormality in non-alcoholic fatty liver disease (NAFLD) patients. We investigated whether a selective COX-2 inhibitor, celecoxib, alleviates hepatic steatosis by targeting an Akt-driven lipogenic pathway. We estimated the efficacy of celecoxib in a novel Akt-driven NAFLD mouse model established via hydrodynamic transfection of activated forms of AKT and in fructose-fed NAFLD mice that exhibited increased insulin-independent hepatic lipogenesis. AKT-transfected and insulin-stimulated human hepatoma cells were used for the in vitro experiments. Haematoxylin and eosin staining, immunohistochemistry and immunoblotting were performed for mechanistic studies. The results revealed that celecoxib ameliorated hepatic steatosis in the AKT-triggered NAFLD mice. Mechanistically, celecoxib effectively suppressed AKT/mTORC1 signalling and its downstream lipogenic cascade in the Akt-driven NAFLD mice and in vitro. Furthermore, celecoxib had limited efficacy in alleviating hepatic lipid accumulation and showed no influence on lipogenic proteins associated with hepatic lipogenesis in fructose-administered mice. This study suggests that celecoxib may be favourable for the treatment of NAFLD, especially in the subset with Akt-triggered hepatic lipogenesis.
Collapse
Affiliation(s)
- Cong Zhang
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Yuzhen Lu
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Yingying Song
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Liang Chen
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Junjie Hu
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Yan Meng
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Xin Chen
- Hubei Key Laboratory of Resources and Chemistry of Chinese MedicineHubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanPeople's Republic of China
| | - Guohua Zheng
- Department of BiochemistryInstitute of Basic Medical Sciences, Hubei University of MedicineShiyanPeople's Republic of China
- Key Laboratory of Chinese Medicine Resource and Compound PrescriptionMinistry of Education, Hubei University of Chinese MedicineWuhanPeople's Republic of China
| | - Zhenpeng Qiu
- College of PharmacyHubei University of Chinese MedicineWuhanPeople's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese MedicineHubei University of Chinese MedicineWuhanPeople's Republic of China
| |
Collapse
|
36
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
37
|
Genetic Factors Associated with Response to Vitamin E Treatment in NAFLD. Antioxidants (Basel) 2022; 11:antiox11071284. [PMID: 35883775 PMCID: PMC9311784 DOI: 10.3390/antiox11071284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/07/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the predominant liver disease worldwide, and vitamin E has been clinically shown to improve histological parameters in a subset of patients. In this narrative review, we investigate whether genetic factors may help to explain why some patients show histological improvements upon high-dose alpha-tocopherol (αT) treatment while others do not. In summary, we identified two factors that are associated with treatment response, including genetic variations in haptoglobin as well as fatty acid desaturase 1/2 (FADS1/FADS2). Other genetic variants such as in alpha-tocopherol transfer protein (αTTP), tocopherol associated protein (TAP), transmembrane 6 superfamily 2 (TM6SF2), cluster of differentiation 36 (CD36), and proteins involved in lipoprotein metabolism may also play a role, but have not yet been investigated in a clinical context. We propose to further validate these associations in larger populations, to then use them as a clinical tool to identify the subset of patients that will benefit the most from vitamin E supplementation.
Collapse
|
38
|
Mediterranean Diet: The Beneficial Effects of Lycopene in Non-Alcoholic Fatty Liver Disease. J Clin Med 2022; 11:jcm11123477. [PMID: 35743545 PMCID: PMC9225137 DOI: 10.3390/jcm11123477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents the most common chronic liver disease globally; it is estimated that 25.24% of the world’s population has NAFLD. NAFLD is a multi-factorial disease whose development involves various processes, such as insulin resistance, lipotoxicity, inflammation, cytokine imbalance, the activation of innate immunity, microbiota and environmental and genetic factors. Numerous clinical studies have shown that the Mediterranean diet produces beneficial effects in NAFLD patients. The aim of this review is to summarize the beneficial effects of lycopene, a soluble pigment found in fruit and vegetables, in NAFLD.
Collapse
|
39
|
Kurokawa S, Yoneda M, Ogawa Y, Honda Y, Kessoku T, Imajo K, Saito S, Nakajima A, Hotta K. Two differentially methylated region networks in nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma. BMC Gastroenterol 2022; 22:278. [PMID: 35655171 PMCID: PMC9164838 DOI: 10.1186/s12876-022-02360-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background We previously reported that two differentially methylated region (DMR) networks identified by DMR and co-methylation analyses are strongly correlated with the fibrosis stages of nonalcoholic fatty liver disease (NAFLD). In the current study, we examined these DMR networks in viral hepatitis and hepatocellular carcinoma (HCC). Methods We performed co-methylation analysis of DMRs using a normal dataset (GSE48325), two NAFLD datasets (JGAS000059 and GSE31803), and two HCC datasets (GSE89852 and GSE56588). The dataset GSE60753 was used for validation. Results One DMR network was clearly observed in viral hepatitis and two HCC populations. Methylation levels of genes in this network were higher in viral hepatitis and cirrhosis, and lower in HCC. Fatty acid binding protein 1 (FABP1), serum/glucocorticoid regulated kinase 2 (SGK2), and hepatocyte nuclear factor 4 α (HNF4A) were potential hub genes in this network. Increased methylation levels of the FABP1 gene may be correlated with reduced protection of hepatocytes from oxidative metabolites in NAFLD and viral hepatitis. The decreased methylation levels of SGK2 may facilitate the growth and proliferation of HCC cells. Decreased methylation levels of HNF4A in HCC may be associated with tumorigenesis. The other DMR network was observed in NAFLD, but not in viral hepatitis or HCC. This second network included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation, which are specifically related to fibrosis and/or tumorigenesis in NAFLD. Conclusions Our results suggest that one DMR network was associated with fibrosis and tumorigenesis in both NAFLD and viral hepatitis, while the other network was specifically associated with NAFLD progression. Furthermore, FABP1, SGK2, and HNF4A are potential candidate targets for the prevention and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02360-4.
Collapse
|
40
|
Xia QS, Wu F, Wu WB, Dong H, Huang ZY, Xu L, Lu FE, Gong J. Berberine reduces hepatic ceramide levels to improve insulin resistance in HFD-fed mice by inhibiting HIF-2α. Biomed Pharmacother 2022; 150:112955. [PMID: 35429745 DOI: 10.1016/j.biopha.2022.112955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Several studies have documented the effects of hypoxia and ceramides on lipid and glucose metabolism, resulting in insulin resistance. However, the roles of ceramide in hepatic hypoxia and hepatic insulin resistance remain to be clarified. This study aimed to explore the relationship between hypoxia, ceramide synthesis, and hepatic insulin resistance in high-fat diet (HFD)-fed mice. Given the interaction of hypoxia-inducible factors 2α(HIF-2α) and berberine determined using molecular docking, this study also assessed the pharmacological effects of berberine on the HIF-2α-ceramide-insulin resistance pathway. In the preliminary phase of the study, gradually aggravated hepatic hypoxia and varying levels of ceramides were observed with the development of type 2 diabetes mellitus (T2DM) due to increasing HIF-2α accumulation. Lipidomic analyses of animal and cell models revealed that berberine reduced hypoxia-induced ceramide production and attenuated ceramide-induced insulin resistance. This research provides timely and necessary evidence for the role of ceramide in hypoxia and insulin resistance in the liver. It also contributes to a better understanding of the pharmacological effects of berberine on ameliorating hypoxia and insulin resistance in T2DM therapy.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wen-Bin Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao-Yi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
41
|
Cariou B. The metabolic triad of non-alcoholic fatty liver disease, visceral adiposity and type 2 diabetes: Implications for treatment. Diabetes Obes Metab 2022; 24 Suppl 2:15-27. [PMID: 35014161 DOI: 10.1111/dom.14651] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with visceral obesity, insulin resistance, type 2 diabetes (T2D) and has been often considered as the hepatic expression of the metabolic syndrome (MetS). Epidemiological studies highlight a bidirectional relationship of NAFLD with T2D in which NAFLD increases the risk of incident T2D and T2D increases the risk of severe non-alcoholic steatohepatitis (NASH) and liver fibrosis. Regarding the molecular determinants of NAFLD, we specifically focused in this review on adipocyte dysfunction as a key molecular link between visceral adipose tissue, MetS and NAFLD. Notably, the subcutaneous white adipose tissue expandability appears a critical adaptive buffering mechanism to prevent lipotoxicity and its related metabolic complications, such as NAFLD and T2D. There is a clinical challenge to consider therapeutic strategies targeting the metabolic dysfunction common to NASH and T2D pathogenesis. Strategies that promote significant and sustained weight loss (~10% of total body weight) such as metabolic and bariatric surgery or incretin-based therapies (GLP-1 receptor agonists or dual GLP-1/GIP or GLP-1/glucagon receptor co-agonists) are among the most efficient ones. In addition, insulin sensitizers such as PPARγ (pioglitazone) and pan-PPARs agonists (lanifibranor) have shown some beneficial effects on both NASH and liver fibrosis. Since NASH is a complex and multifactorial disease, it is conceivable that targeting different pathways, not only insulin resistance but also inflammation and fibrotic processes, is required to achieve NASH resolution.
Collapse
Affiliation(s)
- Bertrand Cariou
- Université de Nantes, Inserm, CNRS, CHU Nantes, l'institut du thorax, Nantes, France
| |
Collapse
|
42
|
Johnson K, Leary PJ, Govaere O, Barter MJ, Charlton SH, Cockell SJ, Tiniakos D, Zatorska M, Bedossa P, Brosnan MJ, Cobbold JF, Ekstedt M, Aithal GP, Clément K, Schattenberg JM, Boursier J, Ratziu V, Bugianesi E, Anstee QM, Daly AK. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Rep 2022; 4:100409. [PMID: 35072021 PMCID: PMC8762473 DOI: 10.1016/j.jhepr.2021.100409] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND & AIMS Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. METHODS We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR. RESULTS Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p. CONCLUSIONS Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD. LAY SUMMARY MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUROC, area under the receiver operating characteristic
- Biomarker
- CPM, counts per million
- Ct, cycle threshold
- ER, endoplasmic reticulum
- FC, fold change
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- GTEx, Genotype-Tissue Expression
- MicroRNA
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic fatty liver disease
- PCA, principal component analysis
- SAF, steatosis–activity–fibrosis
- Sequencing
- TGF-β, transforming growth factor-beta
- cDNA, complementary DNA
- logFC, log2 fold change
- miRNA, microRNA
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Katherine Johnson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter J. Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J. Barter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah H. Charlton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon J. Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michalina Zatorska
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre Bedossa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M. Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Jeremy F. Cobbold
- Oxford Liver Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, Pitié Salpêtrière Hospital, Paris, France
- Assistance Publique – Hopitaux de Paris, Paris, France
| | - Jörn M. Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center of Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jerome Boursier
- Hepatology Department, Angers University Hospital, Angers, France
| | - Vlad Ratziu
- Institute of Cardiometabolism and Nutrition, Pitié Salpêtrière Hospital, Paris, France
- Assistance Publique – Hopitaux de Paris, Paris, France
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Cinque F, Cespiati A, Lombardi R, Costantino A, Maffi G, Alletto F, Colavolpe L, Francione P, Oberti G, Fatta E, Bertelli C, Sigon G, Dongiovanni P, Vecchi M, Fargion S, Fracanzani AL. Interaction between Lifestyle Changes and PNPLA3 Genotype in NAFLD Patients during the COVID-19 Lockdown. Nutrients 2022; 14:nu14030556. [PMID: 35276911 PMCID: PMC8838646 DOI: 10.3390/nu14030556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) lockdown dramatically changed people’s lifestyles. Diet, physical activity, and the PNPLA3 gene are known risk factors for non-alcoholic fatty liver disease (NAFLD). Aim: To evaluate changes in metabolic and hepatic disease in NAFLD patients after the COVID-19 lockdown. Three hundred and fifty seven NAFLD patients were enrolled, all previously instructed to follow a Mediterranean diet (MD). Anthropometric, metabolic, and laboratory data were collected before the COVID-19 lockdown in Italy and 6 months apart, along with ultrasound (US) steatosis grading and information about adherence to MD and physical activity (PA). In 188 patients, PNPLA3 genotyping was performed. After the lockdown, 48% of patients gained weight, while 16% had a worsened steatosis grade. Weight gain was associated with poor adherence to MD (p = 0.005), reduced PA (p = 0.03), and increased prevalence of PNPLA3 GG (p = 0.04). At multivariate analysis (corrected for age, sex, MD, PA, and PNPLA3 GG), only PNPLA3 remained independently associated with weight gain (p = 0.04), which was also associated with worsened glycemia (p = 0.002) and transaminases (p = 0.02). During lockdown, due to a dramatic change in lifestyles, half of our cohort of NAFLD patients gained weight, with a worsening of metabolic and hepatologic features. Interestingly, the PNPLA3 GG genotype nullified the effect of lifestyle and emerged as an independent risk factor for weight gain, opening new perspectives in NAFLD patient care.
Collapse
Affiliation(s)
- Felice Cinque
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Annalisa Cespiati
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Rosa Lombardi
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
- Correspondence: ; Tel.: +39-025-503-3784
| | - Andrea Costantino
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
- Unit of Gastroenterology and Endoscopy, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gabriele Maffi
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Francesca Alletto
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Lucia Colavolpe
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Paolo Francione
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Giovanna Oberti
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Erika Fatta
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
| | - Cristina Bertelli
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
| | - Giordano Sigon
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Paola Dongiovanni
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
| | - Maurizio Vecchi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
- Unit of Gastroenterology and Endoscopy, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Fargion
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| | - Anna Ludovica Fracanzani
- Unit of Internal Medicine and Metabolic Disease, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.C.); (A.C.); (G.M.); (F.A.); (L.C.); (P.F.); (G.O.); (E.F.); (C.B.); (G.S.); (P.D.); (S.F.); (A.L.F.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (A.C.); (M.V.)
| |
Collapse
|
44
|
Duvivier V, Creusot S, Broux O, Helbert A, Lesage L, Moreau K, Lesueur N, Gerard L, Lemaitre K, Provost N, Hubert EL, Baltauss T, Brzustowski A, De Preville N, Geronimi J, Adoux L, Letourneur F, Hammoutene A, Valla D, Paradis V, Delerive P. Characterization and Pharmacological Validation of a Preclinical Model of NASH in Göttingen Minipigs. J Clin Exp Hepatol 2022; 12:293-305. [PMID: 35535064 PMCID: PMC9077241 DOI: 10.1016/j.jceh.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, which is associated with features of metabolic syndrome. NAFLD may progress in a subset of patients into nonalcoholic steatohepatitis (NASH) with liver injury resulting ultimately in cirrhosis and potentially hepatocellular carcinoma. Today, there is no approved treatment for NASH due to, at least in part, the lack of preclinical models recapitulating features of human disease. Here, we report the development of a dietary model of NASH in the Göttingen minipig. Methods First, we performed a longitudinal characterization of diet-induced NASH and fibrosis using biochemical, histological, and transcriptional analyses. We then evaluated the pharmacological response to Obeticholic acid (OCA) treatment for 8 weeks at 2.5mg/kg/d, a dose matching its active clinical exposure. Results Serial histological examinations revealed a rapid installation of NASH driven by massive steatosis and inflammation, including evidence of ballooning. Furthermore, we found the progressive development of both perisinusoidal and portal fibrosis reaching fibrotic septa after 6 months of diet. Histological changes were mechanistically supported by well-defined gene signatures identified by RNA Seq analysis. While treatment with OCA was well tolerated throughout the study, it did not improve liver dysfunction nor NASH progression. By contrast, OCA treatment resulted in a significant reduction in diet-induced fibrosis in this model. Conclusions These results, taken together, indicate that the diet-induced NASH in the Göttingen minipig recapitulates most of the features of human NASH and may be a model with improved translational value to prioritize drug candidates toward clinical development.
Collapse
Affiliation(s)
- Valérie Duvivier
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Stéphanie Creusot
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Olivier Broux
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Aurélie Helbert
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Ludovic Lesage
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Kevin Moreau
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Nicolas Lesueur
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Lindsay Gerard
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Karine Lemaitre
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Nicolas Provost
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Edwige-Ludiwyne Hubert
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Tania Baltauss
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | | | - Nathalie De Preville
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Julia Geronimi
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Lucie Adoux
- GenomIC Université de Paris, Institut Cochin, INSERM, CNRS, Paris, F-75014, France
| | - Franck Letourneur
- GenomIC Université de Paris, Institut Cochin, INSERM, CNRS, Paris, F-75014, France
| | - Adel Hammoutene
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
- Pathology Department, Hôpital Beaujon, Paris, France
| | - Dominique Valla
- Université de Paris, AP-HP, Hôpital Beaujon, Service D'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires Du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur L'inflammation, Inserm, UMR, Paris, 1149, France
| | | | - Philippe Delerive
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
- Address for correspondence. Philippe Delerive, Cardiovascular and Metabolic Diseases, Institut de Recherches Servier, 11 rue des Moulineaux, Suresnes, 92150, France.
| |
Collapse
|
45
|
Du X, DeForest N, Majithia AR. Human Genetics to Identify Therapeutic Targets for NAFLD: Challenges and Opportunities. Front Endocrinol (Lausanne) 2021; 12:777075. [PMID: 34950105 PMCID: PMC8688763 DOI: 10.3389/fendo.2021.777075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a continuous progression of pathophysiologic stages that is challenging to diagnose due to its inherent heterogeneity and poor standardization across a wide variety of diagnostic measures. NAFLD is heritable, and several loci have been robustly associated with various stages of disease. In the past few years, larger genetic association studies using new methodology have identified novel genes associated with NAFLD, some of which have shown therapeutic promise. This mini-review provides an overview of the heterogeneity in NAFLD phenotypes and diagnostic methods, discusses genetic associations in relation to the specific stages for which they were identified, and offers a perspective on the design of future genetic mapping studies to accelerate therapeutic target identification.
Collapse
Affiliation(s)
- Xiaomi Du
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, United States
| | - Natalie DeForest
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, United States
| | - Amit R. Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
46
|
Tilson SG, Morell CM, Lenaerts A, Park SB, Hu Z, Jenkins B, Koulman A, Liang TJ, Vallier L. Modeling PNPLA3-Associated NAFLD Using Human-Induced Pluripotent Stem Cells. Hepatology 2021; 74:2998-3017. [PMID: 34288010 PMCID: PMC11497257 DOI: 10.1002/hep.32063] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is a growing public health burden. However, the pathogenesis of NAFLD has not yet been fully elucidated, and the importance of genetic factors has only recently been appreciated. Genomic studies have revealed a strong association between NAFLD progression and the I148M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3). Nonetheless, very little is known about the mechanisms by which this gene and its variants can influence disease development. To investigate these mechanisms, we have developed an in vitro model that takes advantage of the unique properties of human-induced pluripotent stem cells (hiPSCs) and the CRISPR/CAS9 gene editing technology. APPROACH AND RESULTS We used isogenic hiPSC lines with either a knockout (PNPLA3KO ) of the PNPLA3 gene or with the I148M variant (PNPLA3I148M ) to model PNPLA3-associated NAFLD. The resulting hiPSCs were differentiated into hepatocytes, treated with either unsaturated or saturated free fatty acids to induce NAFLD-like phenotypes, and characterized by various functional, transcriptomic, and lipidomic assays. PNPLA3KO hepatocytes showed higher lipid accumulation as well as an altered pattern of response to lipid-induced stress. Interestingly, loss of PNPLA3 also caused a reduction in xenobiotic metabolism and predisposed PNPLA3KO cells to be more susceptible to ethanol-induced and methotrexate-induced toxicity. The PNPLA3I148M cells exhibited an intermediate phenotype between the wild-type and PNPLA3KO cells. CONCLUSIONS Together, these results indicate that the I148M variant induces a loss of function predisposing to steatosis and increased susceptibility to hepatotoxins.
Collapse
Affiliation(s)
- Samantha G. Tilson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Carola M. Morell
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - An‐Sofie Lenaerts
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Seung Bum Park
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Zongyi Hu
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Benjamin Jenkins
- Wellcome Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Albert Koulman
- Wellcome Medical Research Council Institute of Metabolic ScienceUniversity of CambridgeCambridgeUnited Kingdom
| | - T. Jake Liang
- Liver Diseases BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD
| | - Ludovic Vallier
- Wellcome Medical Research Council Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
47
|
Rios RS, Zheng KI, Zheng MH. Non-alcoholic steatohepatitis and risk of hepatocellular carcinoma. Chin Med J (Engl) 2021; 134:2911-2921. [PMID: 34855640 PMCID: PMC8710331 DOI: 10.1097/cm9.0000000000001888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT The emergence of non-alcoholic fatty liver disease (NAFLD) as the leading chronic liver disease worldwide raises some concerns. In particular, NAFLD is closely tied to sedentary lifestyle habits and associated with other metabolic diseases, such as obesity and diabetes. At the end of the disease spectrum, non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma (HCC), representing a serious health problem to modern society. Recently, an increasing number of HCC cases originating from this progressive disease spectrum have been identified, with different levels of severity and complications. Updating the current guidelines by placing a bigger focus on this emerging cause and highlighting some of its unique features is necessary. Since, the drivers of the disease are complex and multifactorial, in order to improve future outcomes, having a better understanding of NASH progression into HCC may be helpful. The risks that can promote disease progression and currently available management strategies employed to monitor and treat NASH-related HCC make up the bulk of this review.
Collapse
Affiliation(s)
- Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
48
|
Men H, Young JL, Zhou W, Zhang H, Wang X, Xu J, Lin Q, Tan Y, Zheng Y, Cai L. Early-Life Exposure to Low-Dose Cadmium Accelerates Diethylnitrosamine and Diet-Induced Liver Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1427787. [PMID: 34876963 PMCID: PMC8645401 DOI: 10.1155/2021/1427787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Maternal exposure to cadmium causes obesity and metabolic changes in the offspring, including nonalcoholic fatty liver disease-like pathology. However, whether maternal cadmium exposure accelerates liver cancer in the offspring is unknown. This study investigated the impact of early-life exposure to cadmium on the incidence and potential mechanisms of hepatocellular carcinoma (HCC) in offspring subjected to postweaning HCC induction. HCC in C57BL/6J mice was induced by diethylnitrosamine (DEN) injection at weaning, followed by a long-term high-fat choline-deficient (HFCD) diet. Before weaning, liver cadmium levels were significantly higher in mice with early-life cadmium exposure than in those without cadmium exposure. However, by 26 and 29 weeks of age, hepatic cadmium fell to control levels, while a significant decrease was observed in copper and iron in the liver. Both male and female cadmium-exposed mice showed increased body weight compared to non-cadmium-treated mice. For females, early-life cadmium exposure also worsened insulin intolerance but did not significantly promote DEN/HFCD diet-induced liver tumors. In contrast, in male mice, early-life cadmium exposure enhanced liver cancer induction by DEN/HFCD with high incidence and larger liver tumors. The liver peritumor tissue of early-life cadmium-exposed mice exhibited greater inflammation and disruption of fatty acid metabolism, accompanied by higher malondialdehyde and lower esterified triglyceride levels compared to mice without cadmium exposure. These findings suggest that early-life exposure to low-dose cadmium accelerates liver cancer development induced by a DEN/HFCD in male mice, probably due to chronic lipotoxicity and inflammation caused by increased uptake but decreased consumption of fatty acids.
Collapse
Affiliation(s)
- Hongbo Men
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jamie L. Young
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenqian Zhou
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Haina Zhang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Xiang Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qian Lin
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Wendy L. Novak Diabetes Care Center, Louisville, KY, USA
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Wendy L. Novak Diabetes Care Center, Louisville, KY, USA
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
49
|
Grgurevic I, Bozin T, Mikus M, Kukla M, O’Beirne J. Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers (Basel) 2021; 13:5844. [PMID: 34830997 PMCID: PMC8616369 DOI: 10.3390/cancers13225844] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of liver morbidity worldwide and, as such, represents the pathogenic background for the increasing incidence of hepatocellular carcinoma (HCC). The annual incidence of NAFLD-related HCC is expected to increase by 45-130% by 2030. Diabetes mellitus is the most important risk factor for HCC development in NAFLD, with the risk further increased when associated with other metabolic traits, such as obesity, arterial hypertension and dyslipidemia. The highest risk of HCC exists in patients with advanced fibrosis or cirrhosis, although 20-50% of HCC cases arise in NAFLD patients with an absence of cirrhosis. This calls for further investigation of the pathogenic mechanisms that are involved in hepatocarcinogenesis, including genetics, metabolomics, the influence of the gut microbiota and immunological responses. Early identification of patients with or at risk of NAFLD is of utmost importance to improve outcomes. As NAFLD is highly prevalent in the community, the identification of cases should rely upon simple demographic and clinical characteristics. Once identified, these patients should then be evaluated for the presence of advanced fibrosis or cirrhosis and subsequently enter HCC surveillance programs if appropriate. A significant problem is the early recognition of non-cirrhotic NAFLD patients who will develop HCC, where new biomarkers and scores are potential solutions to tackle this issue.
Collapse
Affiliation(s)
- Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Tonci Bozin
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
| | - Mislav Mikus
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Michal Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - James O’Beirne
- Department of Hepatology, University of the Sunshine Coast, Sunshine Coast 4556, Australia;
| |
Collapse
|
50
|
López-Sánchez GN, Dóminguez-Pérez M, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann Hepatol 2021; 21:100212. [PMID: 32533953 DOI: 10.1016/j.aohep.2020.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The obesity pandemic that affects the global population generates one of the most unfavorable microenvironmental conditions in the hepatocyte, which triggers the metabolic hepatopathy known as non-alcoholic fatty liver; its annual rates increase in its prevalence and does not seem to improve in the future. The international consortia, LITMUS by the European Union and NIMBLE by the United States of America, have started a race for the development of hepatic steatosis and steatohepatitis reliable biomarkers to have an adequate diagnosis. MicroRNAs have been proposed as diagnostic and prognostic biomarkers involved in adaptation to changes in the liver microenvironment, which could improve clinical intervention strategies in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Guillermo Nahúm López-Sánchez
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Mayra Dóminguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Z.C. 14610 Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico.
| |
Collapse
|