1
|
Xu W, Huang G, Yang Z, Deng Z, Zhou C, Li JA, Li MD, Hu T, Tang BZ, Phillips DL. Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications. Nat Commun 2024; 15:2561. [PMID: 38519517 PMCID: PMC10959985 DOI: 10.1038/s41467-024-46869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guanheng Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Zhan Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ziqi Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Chen Zhou
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou, 515031, Guangdong, China
| | - Jian-An Li
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 510000, Guangdong, China
| | - Ming-De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou, 515031, Guangdong, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
| |
Collapse
|
2
|
Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The Evolving Microbiome of Dental Caries. Microorganisms 2024; 12:121. [PMID: 38257948 PMCID: PMC10819217 DOI: 10.3390/microorganisms12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Dental caries is a significant oral and public health problem worldwide, especially in low-income populations. The risk of dental caries increases with frequent intake of dietary carbohydrates, including sugars, leading to increased acidity and disruption of the symbiotic diverse and complex microbial community of health. Excess acid production leads to a dysbiotic shift in the bacterial biofilm composition, demineralization of tooth structure, and cavities. Highly acidic and acid-tolerant species associated with caries include Streptococcus mutans, Lactobacillus, Actinomyces, Bifidobacterium, and Scardovia species. The differences in microbiotas depend on tooth site, extent of carious lesions, and rate of disease progression. Metagenomics and metatranscriptomics not only reveal the structure and genetic potential of the caries-associated microbiome, but, more importantly, capture the genetic makeup of the metabolically active microbiome in lesion sites. Due to its multifactorial nature, caries has been difficult to prevent. The use of topical fluoride has had a significant impact on reducing caries in clinical settings, but the approach is costly; the results are less sustainable for high-caries-risk individuals, especially children. Developing treatment regimens that specifically target S. mutans and other acidogenic bacteria, such as using nanoparticles, show promise in altering the cariogenic microbiome, thereby combatting the disease.
Collapse
Affiliation(s)
- Grace Spatafora
- Biology and Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Yihong Li
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA;
| | - Xuesong He
- ADA-Forsyth Institute, Cambridge, MA 02142, USA;
| | - Annie Cowan
- The Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | | |
Collapse
|
3
|
Ahirwar P, Kozlovskaya V, Nijampatnam B, Rojas EM, Pukkanasut P, Inman D, Dolmat M, Law AC, Schormann N, Deivanayagam C, Harber GJ, Michalek SM, Wu H, Kharlampieva E, Velu SE. Hydrogel-Encapsulated Biofilm Inhibitors Abrogate the Cariogenic Activity of Streptococcus mutans. J Med Chem 2023; 66:7909-7925. [PMID: 37285134 PMCID: PMC11188996 DOI: 10.1021/acs.jmedchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 μg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 μM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.
Collapse
Affiliation(s)
- Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Edwin M. Rojas
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Piyasuda Pukkanasut
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Inman
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna C. Law
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gregory J. Harber
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M. Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Microbiome Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
de Souza Pereira G, Batista MT, Dos Santos NFB, Passos HM, da Silva DA, Ferreira EL, de Souza Ferreira LC, de Cássia Café Ferreira R. Streptococcus mutans glutamate binding protein (GlnH) as antigen target for a mucosal anti-caries vaccine. Braz J Microbiol 2022; 53:1941-1949. [PMID: 36098933 PMCID: PMC9679091 DOI: 10.1007/s42770-022-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In recent years, several studies have demonstrated that bacterial ABC transporters present relevant antigen targets for the development of vaccines against bacteria such as Streptococcus pneumoniae and Enterococcus faecalis. In Streptococcus mutans, the glutamate transporter operon (glnH), encoding an ABC transporter, is associated with acid tolerance and represents an important virulence-associated factor for the development of dental caries. RESULTS In this study, we generated a recombinant form of the S. mutans GlnH protein (rGlnH) in Bacillus subtilis. Mice immunized with this protein antigen elicited strong antigen-specific antibody responses after sublingual administration of a vaccine formulation containing a mucosal adjuvant, a non-toxic derivative of the heat-labile toxin (LTK63) originally produced by enterotoxigenic Escherichia coli (ETEC) strains. Serum anti-rGlnH antibodies reduced adhesion of S. mutans to the oral cavity of naïve mice. Moreover, mice actively immunized with rGlnH were partially protected from oral colonization after exposure to the S. mutans NG8 strain. CONCLUSIONS Our results indicate that S. mutans rGlnH is a potential target antigen capable of inducing specific and protective antibody responses after immunization. Overall, these observations raise the prospect of the development of mucosal anti-caries vaccines.
Collapse
Affiliation(s)
- Gisela de Souza Pereira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Milene Tavares Batista
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | | | - Hélic Moreira Passos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Dalva Adelina da Silva
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Ewerton Lucena Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Rita de Cássia Café Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil.
| |
Collapse
|
5
|
Liu L, Li X, Bu W, Jin N, Meng Y, Wang Y, Wang D, Xu X, Zhou D, Sun H. Carbon dots enhance extracellular matrix secretion for dentin-pulp complex regeneration through PI3K/Akt/mTOR pathway-mediated activation of autophagy. Mater Today Bio 2022; 16:100344. [PMID: 35833197 PMCID: PMC9272035 DOI: 10.1016/j.mtbio.2022.100344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Pulp injury is one of the most common clinical diseases, and severe cases are usually associated with the functional loss of the tooth, while the current clinical treatment modality is only a cavity filling procedure without the regeneration of the dentin-pulp complex, thus leading to a devitalized and brittle tooth. In this study, carbon dots (CDots) with excellent biocompatibility are prepared from ascorbic acid and polyethyleneimine via a hydrothermal method. The as-prepared CDots can enhance extracellular matrix (ECM) secretion of human dental pulp stem cells (DPSCs), giving rise to increased cell adhesion on ECM and a stronger osteogenic/odontogenic differentiation capacity of DPSCs. Further, the mechanism underlying CDots-enhanced ECM secretion is revealed by the transcriptome analysis, Western blot assay and molecular dynamics simulation, identifying that the pharmacological activities of CDots are originated from a reasonable activation of the autophagy, which is mediated by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Based on the abundant CDots-induced ECM and thereby the reinforcement of the cell-ECM adhesion, an intact dental pulp stem cell sheet can be achieved, which in return promote in vivo the efficient regeneration of dentin-pulp complex as well as blood vessels.
Collapse
Affiliation(s)
- Lili Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, PR China
| | - Xianjing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, PR China
| | - Wenhuan Bu
- School and Hospital of Stomatology, China Medical University, Shenyang, 110122, PR China
| | - Nianqiang Jin
- School and Hospital of Stomatology, China Medical University, Shenyang, 110122, PR China
| | - Yuan Meng
- School and Hospital of Stomatology, China Medical University, Shenyang, 110122, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Duan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, PR China
| | - Xiaowei Xu
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ding Zhou
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
6
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
YURTAL Z, SERİNDERE G, AKTUNA BELGİN C, TAKCI L. Investigation of the Effect of Linoleic Acid on Vascularization in Experimentally Induce Zoledronic Acid-Related Osteonecrosis in Rats. MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2021. [DOI: 10.24880/maeuvfd.970180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
8
|
Liu Y, Huang Y, Fan C, Chi Z, Bai M, Sun L, Yang L, Yu C, Song Z, Yang X, Yi J, Wang S, Liu L, Wang G, Zheng L. Ursolic Acid Targets Glucosyltransferase and Inhibits Its Activity to Prevent Streptococcus mutans Biofilm Formation. Front Microbiol 2021; 12:743305. [PMID: 34646258 PMCID: PMC8503646 DOI: 10.3389/fmicb.2021.743305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans (S. mutans), the prime pathogen of dental caries, can secrete glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs), which are the virulence determinants of cariogenic biofilms. Ursolic acid, a type of pentacyclic triterpene natural compound, has shown potential antibiofilm effects on S. mutans. To investigate the mechanisms of ursolic acid-mediated inhibition of S. mutans biofilm formation, we first demonstrated that ursolic acid could decrease the viability and structural integrity of biofilms, as evidenced by XTT, crystal violet, and live/dead staining assays. Then, we further revealed that ursolic acid could compete with the inherent substrate to occupy the catalytic center of GTFs to inhibit EPS formation, and this was confirmed by GTF activity assays, computer simulations, site-directed mutagenesis, and capillary electrophoresis (CE). In conclusion, ursolic acid can decrease bacterial viability and prevent S. mutans biofilm formation by binding and inhibiting the activity of GTFs.
Collapse
Affiliation(s)
- Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanxin Huang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Zhongmei Chi
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Li Yang
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
9
|
Meyer F, Enax J, Epple M, Amaechi BT, Simader B. Cariogenic Biofilms: Development, Properties, and Biomimetic Preventive Agents. Dent J (Basel) 2021; 9:dj9080088. [PMID: 34436000 PMCID: PMC8394942 DOI: 10.3390/dj9080088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Oral biofilms will build up within minutes after cleaning of the dental hard tissues. While the application of remineralizing agents is a well-known approach to prevent dental caries, modern oral care products offer also additional active agents to maintain oral health. Human saliva contains many different organic and inorganic compounds that help to buffer organic acids produced by cariogenic microorganisms. However, most oral care products only contain remineralizing agents. To improve the benefit of those products, further active ingredients are needed. Books, review articles, and original research papers were included in this narrative review. Putting all these data together, we give an overview of oral biofilms and active compounds used in modern oral care products to interact with them. The special focus is on inorganic compounds and their interaction with oral biofilms. While organic compounds have several limitations (e.g., cell toxicity), inorganic compounds based on calcium and/or phosphate (e.g., sodium bicarbonate, hydroxyapatite, calcium carbonate) offer several advantages when used in oral care products. Calcium release can inhibit demineralization, and the release of hydroxide and phosphate ions might help in the buffering of acids. Therefore, the focus of this review is to summarize the scientific background of further active ingredients that can be used for oral care formulations.
Collapse
Affiliation(s)
- Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (B.S.)
- Correspondence: ; Tel.: +49-521-8808-6061
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (B.S.)
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany;
| | - Bennett T. Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA;
| | - Barbara Simader
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34-36, 33611 Bielefeld, Germany; (J.E.); (B.S.)
| |
Collapse
|
10
|
Geng S, Lei Y, Snead ML. Minimal amelogenin domain for enamel formation. JOM (WARRENDALE, PA. : 1989) 2021; 73:1696-1704. [PMID: 34456537 PMCID: PMC8386916 DOI: 10.1007/s11837-021-04687-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Amelogenin is the most abundant matrix protein guiding hydroxyapatite formation in enamel, the durable bioceramic tissue that covers vertebrate teeth. Here, we sought to refine structure-function for an amelogenin domain based on in vitro data showing a 42 amino acid amelogenin-derived peptide (ADP7) mimicked formation of hydroxyapatite similar to that observed for the full-length mouse 180 amino acid protein. In mice, we used CRISPR-Cas9 to express only ADP7 by the native amelogenin promoter. Analysis revealed ADP7 messenger RNA expression in developing mouse teeth with the formation of a thin layer of enamel. In vivo, ADP7 peptide partially replaced the function of the full-length amelogenin protein and its several protein isoforms. Protein structure-function relationships identified through in vitro assays can be deployed in whole model animals using CRISPR-Cas9 to validate function of a minimal protein domain to be translated for clinical use as an enamel biomimetic.
Collapse
Affiliation(s)
- Shuhui Geng
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Yaping Lei
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- Biology and Biologic Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Malcolm L Snead
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
| |
Collapse
|
11
|
Cherukuri G, Veeramachaneni C, Rao GV, Pacha VB, Balla SB. Insight into status of dental caries vaccination: A review. J Conserv Dent 2020; 23:544-549. [PMID: 34083906 PMCID: PMC8095695 DOI: 10.4103/jcd.jcd_402_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
Despite advances in the 21st century, dental caries still remains to be one of the most common infectious diseases. Its prevalence was confirmed by the World Health Organization and affirms dental caries as a major health problem in all over the world. Even though the process of tooth decay is multifactorial, the oral bacteria, mutans streptococci, such as Streptococcus mutans and Streptococcus sobrinus, are considered to be causative agents of dental caries in human. Numerous studies carried out on animals and various categories of vaccines were developed such as whole cell vaccine, subunit vaccine, and synthetic peptides. Irrespective of success from active and passive immunization based on animal trials, it is the phenomenon of human heart reactivity that limited the applicability of these trials in humans. Continuous efforts are being made to overcome these limitations and for further success in human trials. With the advent of various antibodies against antigens of mutans streptococci, local passive immunization has become the safer approach in humans against the colonization of bacteria and caries induction. This review provided insight into epidemiology, active and passive immunization in both animal and human trials, as well as the prospects of caries vaccination.
Collapse
Affiliation(s)
- Gayathri Cherukuri
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, Telangana, India
| | | | - G. V. Rao
- Department of Oral and Maxillofacial Pathology, Mamata Dental College, Khammam, Telangana, India
| | - Venkat Baghirath Pacha
- Department of Oral and Maxillofacial Pathology, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Sudheer B. Balla
- Department of Forensic Odontology, Panineeya Mahavidyalaya Institute of Dental Sciences, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Wang L, Liu Y, Peng X, Sun Y, Liu X, Liu H, Lin Q, Sun H, Yang B, Li X. Preparation and Characterization of CaO/ZnO Core-shell Structured Nanoparticles. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Abstract
Technological advancements have revolutionized our understanding of the complexity and importance of the human microbiome. This progress has also emphasized the need for precision therapeutics, as it has underscored the dilemmas, such as dysbiosis and increasing antibiotic resistance, associated with current, broad-spectrum treatment modalities. Dental caries remains the most common chronic disease worldwide, accompanied by a tremendous financial and social burden, despite widespread and efficacious fluoride and hygienic regimens. Over the past several decades, various precision approaches to combat dental caries, including vaccines, probiotics, and antimicrobial compounds, have been pursued. Despite the distinct overall conceptual strengths of each approach, for various reasons, there are currently no approved precision antibiotic therapeutics to prevent dental caries. Specifically targeted antimicrobial peptides (STAMPs) are synthetic molecules that combine the antibiotic moiety of a traditional antimicrobial peptide with a targeting domain to provide specificity against a particular organism. Conjoining the killing domain from the antimicrobial, novispirin G10, and a targeting domain derived from the Streptococcus mutans pheromone, CSP, the STAMP C16G2 was designed to provide targeted killing of S. mutans, widely considered the keystone species in dental caries pathogenesis. C16G2 was able to selectively eliminate S. mutans from complex ecosystems while leaving closely related, yet health-associated, oral species unharmed. This remodeling of the dental plaque community is expected to have significant advantages compared to conventional broad-spectrum mouthwashes, as the intact, surviving community is apt to prevent reinfection by pathogens. Following successful phase I clinical trials that evaluated the safety and basic microbiology of C16G2 treatments, the phase II trials of several C16G2 formulations are currently in progress. C16G2 represents an exciting advance in precision therapeutics, and the STAMP platform provides vast opportunities for both the development of additional therapeutics and the overall study of microbial ecology.
Collapse
Affiliation(s)
- J L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - X He
- The Forsyth Institute, Cambridge, MA, USA
| | - W Shi
- The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
14
|
Yang Y, Mao M, Lei L, Li M, Yin J, Ma X, Tao X, Yang Y, Hu T. Regulation of water-soluble glucan synthesis by the Streptococcus mutans dexA gene effects biofilm aggregation and cariogenic pathogenicity. Mol Oral Microbiol 2019; 34:51-63. [PMID: 30659765 DOI: 10.1111/omi.12253] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023]
Abstract
The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharides (EPS), which act as a scaffold for its biofilm and thus contribute to its cariogenic pathogenicity. Dextranase (Dex), which is a type of glucanase, participates in the degradation of water-soluble glucan (WSG); however, the structural features of the EPS regulated by the dexAgene have received limited attention. Our recent studies reported novel protocols to fractionate and analyzed the structural characteristics of glucans from S mutans biofilms. In this study, we identify the role of the S mutans dexAgene in dextran-dependent aggregation in biofilm formation. Our results show that deletion of dexA (SmudexA) results in increased transcription of EPS synthesis-related genes, including gtfB, gtfD, and ftf. Interestingly, we reveal that inactivating the dexA gene may lead to elevated WSG synthesis in S mutans , which results in dysregulated cariogenicity in vivo. Furthermore, structural analysis provides new insights regarding the lack of mannose monosaccharides, especially in the WSG synthesis of the SmudexA mutants. The biofilm phenotypes that are associated with the reduced glucose monosaccharide composition in both WSG and water-insoluble glucan shift the dental biofilm to reduce the cariogenic incidence of the SmudexA mutants. Taken together, these data reveal that EPS synthesis fine-tuning by the dexA gene results in a densely packed EPS matrix that may impede the glucose metabolism of WSG, thereby leading to the lack of an energy source for the bacteria. These results highlight dexA targeting as a potentially effective tool in dental caries management.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Mengying Mao
- Shanghai Ninth People's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Baker JL, Edlund A. Exploiting the Oral Microbiome to Prevent Tooth Decay: Has Evolution Already Provided the Best Tools? Front Microbiol 2019; 9:3323. [PMID: 30687294 PMCID: PMC6338091 DOI: 10.3389/fmicb.2018.03323] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
To compete in the relatively exposed oral cavity, resident microbes must avoid being replaced by newcomers. This selective constraint, coupled with pressure on the host to cultivate a beneficial microbiome, has rendered a commensal oral microbiota that displays colonization resistance, protecting the human host from invasive species, including pathogens. Rapid increases in carbohydrate consumption have disrupted the evolved homeostasis between the oral microbiota and dental health, reflected by the high prevalence of dental caries. Development of novel modalities to prevent caries has been the subject of a breadth of research. This mini review provides highlights of these endeavors and discusses the rationale and pitfalls behind the major avenues of approach. Despite efficacy, fluoride and other broad-spectrum interventions are unlikely to further reduce the incidence of dental caries. The most promising methodologies in development are those that exploit the exclusive nature of the healthy oral microbiome. Probiotics derived from the dental plaque of healthy individuals sharply antagonize cariogenic species, such as Streptococcus mutans. Meanwhile, targeted antimicrobials allow for the killing of specific pathogens, allowing reestablishment of a healthy microbiome, presumably with its protective effects. The oral microbiota manufactures a massive array of small molecules, some of which are correlated with health and are likely to antagonize pathogens. The prohibitive cost associated with sufficiently rigorous clinical trials, and the status of dental caries as a non-life-threatening condition will likely continue to impede the advancement of new therapeutics to market. Nevertheless, there is room for optimism, as it appears evolution may have already provided the best tools.
Collapse
Affiliation(s)
| | - Anna Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States
| |
Collapse
|
16
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
17
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
18
|
Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans. Glycoconj J 2017; 35:53-64. [PMID: 28971282 DOI: 10.1007/s10719-017-9798-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
Dental caries remains a major health issue and the Gram-positive bacterium Streptococcus mutans is considered as the major pathogen causing caries. More recently, S. mutans has been recognised as a cause of endocarditis, ulcerative colitis and fatty acid liver disease along with the likelihood of increased cerebral hemorrhage following a stroke if S. mutans is present systemically. We initiated this study to examine the vaccine candidacy of the serotype specific polysaccharides elaborated by S. mutans. We have confirmed the carbohydrate structures for the serotype specific rhamnan containing polysaccharides from serotypes c, f and k. We have prepared glycoconjugate vaccines using the rhamnan containing polymers from serotypes f and k and immunised mice and rabbits. We consistently obtained a robust immune response to the glycoconjugates with cross-reactivity consistent with the structural similarities of the polymers from the different serotypes. We developed an opsonophagocytic assay which illustrated the ability of the post-immune sera to facilitate opsonophagocytic killing of the homologous and heterologous serotypes at titers consistent with the structural homologies. We conclude that glycoconjugates of the rhamnan polymers of S. mutans are a potential vaccine candidate to target dental caries and other sequelae following the escape of S. mutans from the oral cavity.
Collapse
|
19
|
Song IS, Han K, Park YM, Ryu JJ, Park JB. Type 2 diabetes as a risk indicator for dental caries in Korean adults: the 2011-2012 Korea national health and nutrition examination survey. COMMUNITY DENTAL HEALTH 2017; 34:169-175. [PMID: 28872812 DOI: 10.1922/cdh_4113song07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The associations between type 2 diabetes (T2D) and untreated dental caries was examined. This study hypothesized that there would be a positive association between T2D and the prevalence of decayed permanent teeth (DT) in representative Korean adults. METHODS The information was derived from the Korea National Health and Nutrition Examination Survey conducted in 2011-2012. Sociodemographic and lifestyle variables, anthropometric and biochemical status, metabolic health and glucose tolerance status, oral health behaviors, and dental caries index were evaluated. RESULTS The number of DT had a positive association with degree of fasting plasma glucose (FPG) level, and glycated hemoglobin (HbA1c) (p-value = 0.045 and 0.007, respectively). The levels of FPG and HbA1c increased with the number of DT (p for trend = 0.009 and 0.004, respectively). The prevalence of untreated caries uncontrolled T2D participants was about 26% higher than those with normal glucose tolerance levels after adjusting for potential confounders including diets and socioeconomic status (OR [95% CI] = 1.26 [1.02, 1.56]). CONCLUSIONS T2D is an independent risk indicator for untreated caries in Korean adults.
Collapse
Affiliation(s)
- I-S Song
- Department of Oral and Maxillofacial Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - K Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Y-M Park
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - J-J Ryu
- Department of Prosthodontics, Korea University Anam Hospital, Seoul, Republic of Korea
| | - J-B Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
20
|
Jiang H, Hu Y, Yang M, Liu H, Jiang G. Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium. Immunobiology 2017; 222:730-737. [PMID: 28187901 DOI: 10.1016/j.imbio.2017.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 01/30/2023]
Abstract
The strength of immune responses induced by DNA vaccine is closely associated with the expression level of cloned antigens available to the antigen presenting cells (APCs). To acquire a larger and more persistent amount of antigen, a dual-promoter, which could double the target antigen output through its expression both in prokaryotic and eukaryotic cells, was employed in the constructed anti-caries DNA vaccine with attenuated Salmonella as mucosal delivery vector in this study. Here, both CMV and nirB promoters were included in the plasmid that harbors the genes encoding the functional epitopes of two virulence factors of S. mutans, i.e. the saliva-binding region (SBR) of PAc and the glucan-binding region (GBR) of glucosyltransferase-I (GTF-I). Delivered by attenuated Salmonella Typhimurium strain SL3261, the anti-caries vaccine was administered intragastrointestinally to BALB/c mice for evaluation of the effectiveness of this immune regime. Specific anti-SBR and anti-GBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. These immune responses were further enhanced after a booster vaccination at week 16. However, in mice receiving Salmonella expressing SBR and GBR under the control of nirB alone these antibody responses were significantly (P<0.01) lower. The serum IgG subclass profiles suggested a Th1/Th2-mixed but Th2 biased immune response to the cloned antigens, which was further confirmed by a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-10) cytokines in splenocytes of immunized mice upon stimulation with SBR or GBR. To further determine the protective efficacy of these responses, a challenge test with S. mutans strain UA159 was performed in mice after the second immunization. Following challenge, mice immunized with Salmonella expressing SBR and GBR under the control of the CMV-nirB promoter showed a significant (P<0.01) reduction in the number of S. mutans in the dental plaque compared to the empty vector-immunized or unimmunized mice, and the reduction was also significant at weeks 3-8 (P<0.05) post-challenge when compared with those receiving Salmonella clones with nirB promoter alone. These results provide evidence for the effectiveness of a dual-promoter strategy in the anti-caries DNA vaccine when employing attenuated Salmonella as delivering vehicle for mucosal immunization.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory for Oral Biomedical Research of Shandong Province, School of Dentistry, Shandong University, Jinan, China
| | - Yijun Hu
- Key Laboratory for Oral Biomedical Research of Shandong Province, School of Dentistry, Shandong University, Jinan, China
| | - Mei Yang
- Key Laboratory for Oral Biomedical Research of Shandong Province, School of Dentistry, Shandong University, Jinan, China
| | - Hao Liu
- Yuhuangding Hospital, Yantai, China
| | - Guangshui Jiang
- Key Laboratory for Oral Biomedical Research of Shandong Province, School of Dentistry, Shandong University, Jinan, China.
| |
Collapse
|
21
|
Zancopé BR, Dainezi VB, Nobre-Dos-Santos M, Duarte S, Pardi V, Murata RM. Effects of CO 2 laser irradiation on matrix-rich biofilm development formation-an in vitro study. PeerJ 2016; 4:e2458. [PMID: 27833792 PMCID: PMC5101588 DOI: 10.7717/peerj.2458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/17/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A carbon dioxide (CO2) laser has been used to morphologically and chemically modify the dental enamel surface as well as to make it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of a CO2 laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO2 laser (λ = 10.6 µM). METHODS For this in vitro study, 96 specimens of bovine enamel were employed, which were divided into two groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by one, three and five days under intermittent cariogenic condition in the irradiated and non-irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and, in fifth day, were evaluated by polysaccharides analysis, quantitative real time Polymerase Chain Reaction (PCR) as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test. RESULTS The mean of log CFU/mL obtained for the one-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to the CO2 laser, CFU/mL and CFU/dry weight in three day was reduced significantly compared with control group. The difference in the genes expression (Glucosyltransferases (gtfB) and Glucan-binding protein (gbpB)) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with the CO2 laser. Similar morphology was also visible with both treatments; however, the irradiated group revealed evidence of melting and fusion in the specimens. CONCLUSION In conclusion, CO2 laser irradiation modifies the energy surface and disrupts the initial biofilm formation.
Collapse
Affiliation(s)
- Bruna Raquel Zancopé
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP , Piracicaba, São Paulo , Brazil
| | - Vanessa B Dainezi
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP , Piracicaba, São Paulo , Brazil
| | - Marinês Nobre-Dos-Santos
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP , Piracicaba, São Paulo , Brazil
| | - Sillas Duarte
- Division of Restorative Sciences, Ostrow School of Dentistry of University of Southern California , Los Angeles, California , USA
| | - Vanessa Pardi
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of University of Southern California , Los Angeles, California , USA
| | - Ramiro M Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University , Greenville, North Carolina , USA
| |
Collapse
|
22
|
Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system. Acta Biomater 2016; 35:57-67. [PMID: 26931056 DOI: 10.1016/j.actbio.2016.02.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 12/29/2022]
Abstract
While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. STATEMENT OF SIGNIFICANCE The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific impact and interest the broad and multidisciplinary readership in the dental biomaterials and craniofacial tissue engineering community.
Collapse
|
23
|
Li J, Huang Z, Mei L, Li G, Li H. Anti-Caries Effect of Arginine-Containing Formulations in vivo: A Systematic Review and Meta-Analysis. Caries Res 2015; 49:606-17. [DOI: 10.1159/000435894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Objective: To assess the anti-caries effect of arginine-containing formulations in vivo on caries lesions compared with fluorides or placebo. Methods: Randomized or quasi-randomized human clinical trials wherein arginine was delivered by any method were considered. The MEDLINE, Web of Science, EMBASE, Cochrane Library, and CBM databases were searched to identify relevant articles published up to December 2014. Grey literature was also searched. Two authors performed data extraction independently and in duplicate using data collection forms. Each included study was assessed using the Cochrane risk of bias assessment tool. Results: Of the 470 studies screened, 31 full articles were scrutinized and assessed for eligibility. Ten studies (n = 15,546 participants) were selected for final inclusion. The meta-analysis results (n = 7 studies) demonstrated a synergistic effect of arginine when used in conjunction with fluoride on early coronal and root caries compared with placebo or fluoride alone. No specific side effects related to arginine usage were identified. Conclusions: When used in combination with a calcium compound and fluoride, arginine potentially provides a superior anti-caries effect compared with matched formulations of fluoride alone. However, the level of evidence was downgraded because of risks of bias and potential publication bias. In the future, more high quality, non-industry-supported clinical studies in this research area are required before any definitive recommendations can be made.
Collapse
|
24
|
Ferreira EL, Batista MT, Cavalcante RCM, Pegos VR, Passos HM, Silva DA, Balan A, Ferreira LCS, Ferreira RCC. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans. Mol Oral Microbiol 2015; 31:410-22. [PMID: 26462737 DOI: 10.1111/omi.12142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 11/29/2022]
Abstract
Bacterial ATP-binding cassette (ABC) transporters play a crucial role in the physiology and pathogenicity of different bacterial species. Components of ABC transporters have also been tested as target antigens for the development of vaccines against different bacterial species, such as those belonging to the Streptococcus genus. Streptococcus mutans is the etiological agent of dental caries, and previous studies have demonstrated that deletion of the gene encoding PstS, the substrate-binding component of the phosphate uptake system (Pst), reduced the adherence of the bacteria to abiotic surfaces. In the current study, we generated a recombinant form of the S. mutans PstS protein (rPstS) with preserved structural features, and we evaluated the induction of antibody responses in mice after sublingual mucosal immunization with a formulation containing the recombinant protein and an adjuvant derived from the heat-labile toxin from enterotoxigenic Escherichia coli strains. Mice immunized with rPstS exhibited systemic and secreted antibody responses, measured by the number of immunoglobulin A-secreting cells in draining lymph nodes. Serum antibodies raised in mice immunized with rPstS interfered with the adhesion of bacteria to the oral cavity of naive mice challenged with S. mutans. Similarly, mice actively immunized with rPstS were partially protected from oral colonization after challenge with the S. mutans NG8 strain. Therefore, our results indicate that S. mutans PstS is a potential target antigen capable of inducing specific and protective antibody responses after sublingual administration. Overall, these observations raise interesting perspectives for the development of vaccines to prevent dental caries.
Collapse
Affiliation(s)
- E L Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - M T Batista
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - R C M Cavalcante
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - V R Pegos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil.,Biosciences National Laboratory (LNBio), Materials and Energy Research Center, Campinas, SP, Brazil
| | - H M Passos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - D A Silva
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - A Balan
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil.,Biosciences National Laboratory (LNBio), Materials and Energy Research Center, Campinas, SP, Brazil
| | - L C S Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| | - R C C Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries. J Dent 2015; 41 Suppl 2:S1-11. [PMID: 23985433 DOI: 10.1016/j.jdent.2010.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE This paper briefly discusses caries prevalence, the multi-factorial nature of caries etiology, caries risk and the role and efficacy of fluoride. The paper also highlights research on bacterial metabolism which provided understanding of the mouth's natural defenses against caries and the basis for the development of a new technology for the everyday prevention and treatment of caries. Finally, evidence that the technology complements and enhances the anti-caries efficacy of fluoride toothpaste is summarized. CONCLUSIONS Global data show that dental caries is a prevalent disease, despite the successful introduction of fluoride. Caries experience depends on the balance between consumption of sugars and oral hygiene and the use of fluoride. Three scientific concepts are fundamental to new measures to detect, treat and monitor caries: (1) dental caries is a dynamic process, (2) dental caries is a continuum of stages from reversible, pre-clinical to irreversible, clinically detectable lesions, and (3) the caries process is a balance of pathological and protective factors that can be modulated to manage caries. Fluoride functions as a protective factor by arresting and reversing the caries process, but fluoride does not prevent pathological factors that initiate the process. A novel technology, based upon arginine and an insoluble calcium compound, has been identified which targets dental plaque to prevent initiation of the caries process by reducing pathological factors. As the mechanisms of action of arginine and fluoride are highly complementary, a new dentifrice, which combines arginine with fluoride, has been developed and clinically proven to provide superior caries prevention.
Collapse
|
26
|
Gordon LM, Cohen MJ, MacRenaris KW, Pasteris JD, Seda T, Joester D. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 2015; 347:746-50. [DOI: 10.1126/science.1258950] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Immunogenicity and in vitro and in vivo protective effects of antibodies targeting a recombinant form of the Streptococcus mutans P1 surface protein. Infect Immun 2014; 82:4978-88. [PMID: 25225243 DOI: 10.1128/iai.02074-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1.
Collapse
|
28
|
Malcolm J, Sherriff A, Lappin DF, Ramage G, Conway DI, Macpherson LMD, Culshaw S. Salivary antimicrobial proteins associate with age-related changes in streptococcal composition in dental plaque. Mol Oral Microbiol 2014; 29:284-93. [PMID: 24890264 DOI: 10.1111/omi.12058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 11/27/2022]
Abstract
Secretion of antimicrobial proteins (AMPs) and salivary antibodies can modify biofilm formation at host body surfaces. In adolescents, associations have been reported between dental caries and salivary AMPs. AMPs demonstrate direct antimicrobial effects at high concentrations, and at lower more physiological concentrations they mediate changes in host cell defenses, which may alter the local environment and indirectly shape local biofilm formation. The expression of salivary AMPs in preschool children, at an age when the oral bacteria are known to change, has not been investigated. We sought to investigate salivary AMP expression in the context of previously well-documented changes in the oral cavities of this age group including salivary immunoglobulin A (IgA), oral bacteria and dental caries. Dental plaque and saliva were collected from 57 children aged 12-24 months at baseline, of whom 23 children were followed-up at 3 years of age. At each time, saliva was assessed for LL37, human neutrophil peptides 1-3, calprotectin, lactoferrin, salivary IgA, total plaque bacteria and Streptococcus mutans. Over time, concentrations of AMPs, S. mutans and bacteria-specific salivary IgA increased. Caries experience was also recorded when children were 3 years old. Concentrations of AMPs were highest in the saliva of 3-year-old children with the greatest burden of S. mutans. These data suggest that salivary AMPs are variable over time and between individuals, and are linked with bacterial colonization. At follow up, the majority of children remained caries free. Larger longitudinal studies are required to confirm whether salivary AMP levels are predictive of caries and whether their modulation offers therapeutic benefit.
Collapse
Affiliation(s)
- J Malcolm
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
The development of drug-free therapy for prevention of dental caries. Pharm Res 2014; 31:3031-7. [PMID: 24831311 DOI: 10.1007/s11095-014-1396-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study was to develop a novel, drug-free therapy that can reduce the over-accumulation of cariogenic bacteria on dental surfaces. METHODS We designed and synthesized a polyethylene glycol (PEG)-based hydrophilic copolymer functionalized with a pyrophosphate (PPi) tooth-binding anchor using "click" chemistry. The polymer was then evaluated for hydroxyapatite (HA) binding kinetics and capability of reducing bacteria adhesion to artificial tooth surface. RESULTS The PPi-PEG copolymer can effectively inhibit salivary protein adsorption after rapid binding to an artificial tooth surface. As a result, the in vitro S. mutans adhesion study showed that the PPi-PEG copolymer can inhibit saliva protein-promoted S. mutans adhesion through the creation of a neutral, hydrophilic layer on the artificial tooth surface. CONCLUSIONS The results suggested the potential application of a PPi-PEG copolymer as a drug-free alternative to current antimicrobial therapy for caries prevention.
Collapse
|
30
|
Lee HJ, Kwon TY, Kim KH, Hong SH. Soybean extracts facilitate bacterial agglutination and prevent biofilm formation on orthodontic wire. J Med Food 2014; 17:135-41. [PMID: 24456364 DOI: 10.1089/jmf.2013.2961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soybean is an essential food ingredient that contains a class of organic compounds known as isoflavones. It is also well known that several plant agglutinins interfere with bacterial adherence to smooth surfaces. However, little is known about the effects of soybean extracts or genistein (a purified isoflavone from soybean) on bacterial biofilm formation. We evaluated the effects of soybean (Glycine max) extracts, including fermented soybean and genistein, on streptococcal agglutination and attachment onto stainless steel orthodontic wire. After cultivating streptococci in biofilm medium containing soybean extracts and orthodontic wire, the viable bacteria attached to the wire were counted. Phase-contrast microscopy and scanning electron microscopy (SEM) analyses were conducted to evaluate bacterial agglutination and attachment. Our study showed that soybean extracts induce agglutination between streptococci, which results in bacterial precipitation. Conversely, viable bacterial counting and SEM image analysis of Streptococcus mutans attached to the orthodontic wire show that bacterial attachment decreases significantly when soybean extracts were added. However, there was no significant change in pre-attached S. mutans biofilm in response to soybean. A possible explanation for these results is that increased agglutination of planktonic streptococci by soybean extracts results in inhibition of bacterial attachment onto the orthodontic wire.
Collapse
Affiliation(s)
- Heon-Jin Lee
- 1 Department of Oral Microbiology, School of Dentistry, Kyungpook National University , Daegu, Korea
| | | | | | | |
Collapse
|
31
|
Lessons Learned from Clinical Studies: Roles of Mutans Streptococci in the Pathogenesis of Dental Caries. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40496-013-0008-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Robinette RA, Heim KP, Oli MW, Crowley PJ, McArthur WP, Brady LJ. Alterations in immunodominance of Streptococcus mutans AgI/II: lessons learned from immunomodulatory antibodies. Vaccine 2013; 32:375-82. [PMID: 24252705 DOI: 10.1016/j.vaccine.2013.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 01/04/2023]
Abstract
Streptococcus mutans antigen I/II (AgI/II) has been widely studied as a candidate vaccine antigen against human dental caries. In this report we follow up on prior studies that indicated that anti-AgI/II immunomodulatory monoclonal antibodies (MAbs) exerted their effects by destabilizing the native protein structure and exposing cryptic epitopes. We show here that similar results can be obtained by immunizing mice with truncated polypeptides out of the context of an intra-molecular interaction that occurs within the full-length molecule and that appears to dampen the functional response against at least two important target epitopes. Putative T cell epitopes that influenced antibody specificity were identified immediately upstream of the alanine-rich repeat domain. Adherence inhibiting antibodies could be induced against two discrete domains of the protein, one corresponding to the central portion of the molecule and the other corresponding to the C-terminus.
Collapse
Affiliation(s)
- Rebekah A Robinette
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - Kyle P Heim
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - Monika W Oli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - Paula J Crowley
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - William P McArthur
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, United States.
| |
Collapse
|
33
|
Cummins D. Desarrollo y validación de una nueva tecnología, basada en arginina al 1.5%, un compuesto de calcio insoluble y fluoruro, para el uso diario en la prevención y tratamiento de la caries dental. J Dent 2013:S0300-5712(13)00275-3. [PMID: 24161717 DOI: 10.1016/j.jdent.2013.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/29/2022] Open
Abstract
OBJETIVO este artículo discute brevemente la prevalencia de caries, la naturaleza multifactorial de su etiología, el riesgo de caries y el papel y eficacia del fluoruro. Resalta también la investigación sobre el metabolismo bacteriano, que ha aportado conocimientos sobre la defensa natural oral contra la caries y la base para el desarrollo de una nueva tecnología para la prevención diaria y el tratamiento de la caries. Por último, se resume la evidencia que respalda que la tecnología complementa y mejora la eficacia anti-caries de la crema dental con fluoruro. CONCLUSIONES los datos globales muestran que a pesar de la exitosa introducción del fluoruro, la caries dental es una enfermedad prevalente. La experiencia de caries depende del balance entre el consumo de azúcares, la higiene oral y el uso del fluoruro. Hay tres conceptos científicos que son fundamentales en las nuevas mediciones para detectar, tratar y monitorear la caries: (1) la caries dental es un proceso dinámico, (2) la caries dental es un proceso continuo de etapas que van desde reversible (pre-clínica) hasta irreversible (lesiones clínicamente detectables), y (3) el proceso de la caries es un balance de factores patológicos y protectores que pueden modularse para el manejo de la caries. El fluoruro funciona como factor protector al detener y revertir el proceso de la caries, pero el fluoruro no previene los factores patológicos que inician el proceso. Se ha identificado una tecnología novedosa, basada en arginina y un compuesto insoluble de calcio, que está dirigida a la placa dental para prevenir la iniciación del proceso de caries al reducir los factores patológicos. Como los mecanismos de acción de la arginina y el fluoruro son altamente complementarios, se ha desarrollado un nuevo dentífrico que combina la arginina y el fluoruro, y se ha probado clínicamente que brinda una prevención superior contra la caries.
Collapse
Affiliation(s)
- D Cummins
- Centro Tecnológico Colgate - Palmolive, 909 River Road, Piscataway, NJ 08855-1343, EE.UU
| |
Collapse
|
34
|
McCarlie VW, Hartsfield JK, Blum JS, González-Cabezas C, Chin JR, Eckert GJ, Morford LA, Pescovitz MD, Rodriguez H, Fontana M, Gregory RL. Total IgA and IgA reactivity to antigen I/II epitopes in HLA-DRB1*04 positive subjects. OPEN JOURNAL OF IMMUNOLOGY 2013; 3:82-92. [PMID: 24386612 PMCID: PMC3875298 DOI: 10.4236/oji.2013.33012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial adherence to the acquired dental pellicle, important in dental caries (caries), is mediated by receptor-adhesins such as salivary agglutinin binding to Streptococcus mutans antigen I/II (I/II). Ten selected I/II epitopes were chosen to determine their reactivity to human salivary IgA. Previous studies suggested that a specific HLA biomarker group (HLA-DRB1*04) may have differential influence of immune responses to I/II. However, it was not known whether secretory IgA (SIgA) responses to the selected epitopes from HLA-DRB1*04 positive subjects were different compared to controls, or across other caries-related factors such as total IgA (TIgA). Thirty-two total subjects were matched according to HLA type, gender, ethnicity and age. HLA genotyping, oral bacterial, immunoglobulin and antibody analyses were performed. A large observed difference emerged with regard to the natural immune reservoir of TIgA in HLA-DRB1*04 positive subjects, specifically, a 27.6% reduction compared to controls. In contrast to all other epitopes studied, HLA-DRB1*04 positive subjects also exhibited reduced reactivity to I/II epitope 834-853. HLA-DRB1*04 positive subjects exhibited lower specific SIgA activity/TIgA to 834-853 and also a lower specific reactivity to 834-853/whole cell S. mutans UA159. Furthermore, HLA-DRB1*04 positive subjects exhibited lower responses to I/II in its entirety. The large observed difference in TIgA and the 834-853 reactivity pattern across multiple measures suggest potentially important connections pertaining to the link between HLA-DRB1*04 and caries.
Collapse
Affiliation(s)
- V. Wallace McCarlie
- Department of Pediatric Dentistry and Orthodontics, School of Dental Medicine, East Carolina University, Greenville, USA
| | - James K. Hartsfield
- Center for Oral Health Research, Division of Orthodontics, Department of Oral Health Science, and Department of Microbiology, Immunology and Molecular Genetics, Colleges of Dentistry and Medicine, University of Kentucky, Lexington, USA
| | - Janice S. Blum
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, USA
| | - Carlos González-Cabezas
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Judith R. Chin
- Department of Pediatric Dentistry, School of Dentistry, Indiana University, Indianapolis, USA
| | - George J. Eckert
- Department of Biostatistics, Schools of Medicine and Public Health, Indiana University, Indianapolis, USA
| | - Lorri A. Morford
- Center for Oral Health Research, Division of Orthodontics, Department of Oral Health Science, College of Dentistry, University of Kentucky, Lexington, USA
| | - Mark D. Pescovitz
- Departments of Surgery and Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, USA
| | - Henry Rodriguez
- Department of Pediatrics, College of Medicine, University of South Florida, Tampa, USA
| | - Margherita Fontana
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Richard L. Gregory
- Departments of Oral Biology and Preventive and Community Dentistry, and Department of Pathology and Laboratory Medicine, Schools of Dentistry and Medicine, Indiana University, Indianapolis, USA
| |
Collapse
|
35
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
36
|
Robinette RA, Oli MW, McArthur WP, Brady LJ. A therapeutic anti-Streptococcus mutans monoclonal antibody used in human passive protection trials influences the adaptive immune response. Vaccine 2011; 29:6292-300. [PMID: 21704107 PMCID: PMC3156276 DOI: 10.1016/j.vaccine.2011.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
Abstract
The adhesin known as Antigen I/II, P1 or PAc of the cariogenic dental pathogen Streptococcus mutans is a target of protective immunity and candidate vaccine antigen. Previously we demonstrated that immunization of mice with S. mutans complexed with anti-AgI/II monoclonal antibodies (MAbs) resulted in changes in the specificity, isotype and functionality of elicited anti-AgI/II antibodies in the serum of immunized mice compared to administration of bacteria alone. In the current study, an anti-AgI/II MAb reported in the literature to confer unexplained long term protection against S. mutans re-colonization following passive immunization in human clinical trials (MAb Guy's 13), and expressed in tobacco plants (MAb Guy's 13 plantibody), was evaluated for its potential immunomodulatory properties. Immunization of BALB/c mice with immune complexes of Guy's 13 plantibody bound to S. mutans whole cells resulted in a similar change in specificity, isotype, and functionality of elicited anti-AgI/II antibodies as had been observed for other immunomodulatory MAbs. This new information, coupled with the recently solved crystal structure of the adhesin, now provides a rational explanation and plausible mechanism of action of passively administered Guy's 13/Guy's 13 plantibody in human clinical trials, and how long-term prevention of S. mutans carriage well past the application period of the therapeutic antibody could have been achieved.
Collapse
Affiliation(s)
- Rebekah A. Robinette
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| | - Monika W. Oli
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| | - William P. McArthur
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32611
| |
Collapse
|
37
|
Aghaloo TL, Kang B, Sung EC, Shoff M, Ronconi M, Gotcher JE, Bezouglaia O, Dry SM, Tetradis S. Periodontal disease and bisphosphonates induce osteonecrosis of the jaws in the rat. J Bone Miner Res 2011; 26:1871-82. [PMID: 21351151 PMCID: PMC3596511 DOI: 10.1002/jbmr.379] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bisphosphonates (BPs) are medications used commonly to treat primary and metastatic bone cancer, as well as osteoporosis. Although BPs improve bone mineral density, reduce fracture risk, and reduce hypercalcemia of malignancy, some patients develop BP-related osteonecrosis of the jaws (BRONJ). This devastating complication is defined as clinically exposed bone in the maxillofacial region for more than 8 weeks. Despite an increasing number of BRONJ cases since first reported, the disease pathophysiology remains largely unknown. Since published studies suggest a significant role for dental disease in the pathophysiology of BRONJ, we developed a BRONJ animal model where aggressive periodontal disease is induced by ligature placement around the crown of the right maxillary first molar in the presence of vehicle (veh) or zoledronic acid (ZA), a potent BP. Ligature placement induced significant alveolar bone loss, which was attenuated by ZA treatment. Osteonecrosis was observed associated with ligature-induced periodontitis in the ZA-treated group. This was seen as sequestration and extensive periosteal alveolar bone formation on micro-computed tomography (µCT) in the ligated site of BP-treated animals. Histologic examination confirmed these findings, seen as necrotic bone with diffuse loss of osteocytes and empty lacunae, rimming of the necrotic bone by squamous epithelium and inflammation, and exposure to the oral cavity. Importantly, the rat lesions were strikingly similar to those of BRONJ patients. Our data suggest that dental disease and potent BP therapy are sufficient for BRONJ development in the rat.
Collapse
Affiliation(s)
- Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Ben Kang
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Eric C Sung
- Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Michael Shoff
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Matthew Ronconi
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Jack E Gotcher
- Department of Oral and Maxillofacial Surgery, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
38
|
Butcher J, Malcolm J, Benson R, Deng D, Brewer J, Garside P, Culshaw S. Effects of Streptococcus mutans on Dendritic Cell Activation and Function. J Dent Res 2011; 90:1221-7. [DOI: 10.1177/0022034511412970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite existing preventive and therapeutic measures, caries remains a ubiquitous infectious disease. Vaccine studies suggest that an adaptive immune response, culminating in effective antibody production, may reduce an individual’s susceptibility to caries. However, the efficacy of the immune response elicited by mutans streptococci in the oral cavity remains controversial. A greater understanding of the early stages of the adaptive immune response to cariogenic bacteria may potentially assist therapeutic targeting and design. We therefore sought to characterize dendritic cell (DC) activation and antigen presentation following Streptococcus mutans exposure. We found that S. mutans up-regulated DC expression of co-stimulatory molecules and MHCII in vitro and that DCs effectively processed and presented exogenously administered antigen. These DCs effectively initiated T-cell proliferation, but this was abrogated by live bacteria. The in vitro DC activation effects were not mirrored in vivo, where DCs in draining lymph nodes did not mature following oral exposure to S. mutans. Analysis of these data provides a model for studying antigen uptake from the oral cavity and evidence that, in vitro, S. mutans activates dendritic cells, a critical event for initiating adaptive immunity.
Collapse
Affiliation(s)
- J.P. Butcher
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - J. Malcolm
- University of Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - R.A. Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - D.M. Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands
| | - J.M. Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - P. Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - S. Culshaw
- University of Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| |
Collapse
|
39
|
Lee HJ, Park HS, Kim KH, Kwon TY, Hong SH. Effect of garlic on bacterial biofilm formation on orthodontic wire. Angle Orthod 2011; 81:895-900. [PMID: 21446865 DOI: 10.2319/121010-713.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To examine the effect of garlic extract on the biofilm formation by Streptococcus mutans on orthodontic wire and on glucosyltransferase gene expression. MATERIALS AND METHODS Growth inhibition of oral bacteria was tested after 50 µL of garlic extract was placed on an agar plate. The minimum inhibitory concentration (MIC) of garlic extract on S mutans growth was first determined. After cultivating streptococci in biofilm medium (BM)-sucrose with garlic extract and orthodontic wire, adenosine triphosphate (ATP) measurement and viable cell counting was performed from the bacteria attached on the wire. Scanning electron microscopy (SEM) analysis of morphology was observed on bacterial cells attached to orthodontic wire. The effect of garlic extract on gene expression was evaluated using quantitative real-time polymerase chain reaction (PCR) of glucosyltransferase. RESULTS Though garlic extract had a clear antibacterial effect on all microorganisms, it also enhanced S mutans attachment on orthodontic wire. Low concentration of garlic extract also increased glucosyltransferase gene expression of S mutans. CONCLUSIONS Despite its antibacterial function, garlic extract increases biofilm formation by S mutans to orthodontic wire, likely through upregulation of glucosyltransferase expression. Garlic extract may thus play an important role in increased bacterial attachment to orthodontic wires.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Dental Microbiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | |
Collapse
|
40
|
Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45:69-86. [PMID: 21346355 PMCID: PMC3068567 DOI: 10.1159/000324598] [Citation(s) in RCA: 696] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 01/26/2011] [Indexed: 12/18/2022] Open
Abstract
The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.
Collapse
Affiliation(s)
- W H Bowen
- Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA.
| | | |
Collapse
|
41
|
Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 2011; 90:1271-8. [PMID: 21335541 DOI: 10.1177/0022034511399096] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on the adherence properties of oral bacteria have been a major focus in microbiology research for several decades. The ability of bacteria to adhere to the variety of surfaces present in the oral cavity, and to become integrated within the resident microbial communities, confers growth and survival properties. Molecular analyses have revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat, antigen I/II, and pilus families, that mediate adherence to a variety of salivary and oral bacterial receptors. In Gram-negative bacteria, pili, auto-transporters, and extracellular matrix-binding proteins provide components for host tissue recognition and building of complex microbial communities. Future studies will reveal in greater detail the binding pockets for these adhesin families and their receptors. This information will be crucial for the development of new inhibitors or vaccines that target the functional regions of bacterial proteins that are involved in colonization and pathogenesis.
Collapse
Affiliation(s)
- A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
42
|
Snead ML, Zhu DH, Lei Y, Luo W, Bringas PO, Sucov HM, Rauth RJ, Paine ML, White SN. A simplified genetic design for mammalian enamel. Biomaterials 2011; 32:3151-7. [PMID: 21295848 DOI: 10.1016/j.biomaterials.2011.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 01/30/2023]
Abstract
A biomimetic replacement for tooth enamel is urgently needed because dental caries is the most prevalent infectious disease to affect man. Here, design specifications for an enamel replacement material inspired by Nature are deployed for testing in an animal model. Using genetic engineering we created a simplified enamel protein matrix precursor where only one, rather than dozens of amelogenin isoforms, contributed to enamel formation. Enamel function and architecture were unaltered, but the balance between the competing materials properties of hardness and toughness was modulated. While the other amelogenin isoforms make a modest contribution to optimal biomechanical design, the enamel made with only one amelogenin isoform served as a functional substitute. Where enamel has been lost to caries or trauma a suitable biomimetic replacement material could be fabricated using only one amelogenin isoform, thereby simplifying the protein matrix parameters by one order of magnitude.
Collapse
Affiliation(s)
- Malcolm L Snead
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jakubovics NS, Kolenbrander PE. The road to ruin: the formation of disease-associated oral biofilms. Oral Dis 2011; 16:729-39. [PMID: 20646235 DOI: 10.1111/j.1601-0825.2010.01701.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The colonization of oral surfaces by micro-organisms occurs in a characteristic sequence of stages, each of which is potentially amenable to external intervention. The process begins with the adhesion of bacteria to host receptors on epithelial cells or in the salivary pellicle covering tooth surfaces. Interbacterial cell-cell binding interactions facilitate the attachment of new species and increase the diversity of the adherent microbial population. Microbial growth in oral biofilms is influenced by the exchange of chemical signals, metabolites and toxic products between neighbouring cells. Bacterial cells on tooth surfaces (dental plaque) produce extracellular polymers such as complex carbohydrates and nucleic acids. These large molecules form a protective matrix that contributes to the development of dental caries and, possibly, to periodontitis. The identification of key microbial factors underlying each step in the formation of oral biofilms will provide new opportunities for preventative or therapeutic measures aimed at controlling oral infectious diseases.
Collapse
Affiliation(s)
- N S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, UK.
| | | |
Collapse
|
44
|
|
45
|
Huang Z, Newcomb CJ, Bringas P, Stupp SI, Snead ML. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials 2010; 31:9202-11. [PMID: 20869764 DOI: 10.1016/j.biomaterials.2010.08.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 08/05/2010] [Indexed: 01/13/2023]
Abstract
The regenerative capability of enamel, the hardest tissue in the vertebrate body, is fundamentally limited due to cell apoptosis following maturation of the tissue. Synthetic strategies to promote enamel formation have the potential to repair damage, increase the longevity of teeth and improve the understanding of the events leading to tissue formation. Using a self-assembling bioactive matrix, we demonstrate the ability to induce ectopic formation of enamel at chosen sites adjacent to a mouse incisor cultured in vivo under the kidney capsule. The resulting material reveals the highly organized, hierarchical structure of hydroxyapatite crystallites similar to native enamel. This artificially triggered formation of organized mineral demonstrates a pathway for developing cell fabricated materials for treatment of dental caries, the most ubiquitous disease in man. Additionally, the artificial matrix provides a unique tool to probe cellular mechanisms involved in tissue formation further enabling the development of tooth organ replacements.
Collapse
Affiliation(s)
- Zhan Huang
- The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- D Beighton
- Department of Microbiology and Biomedical Research Centre, Guy's and St Thomas Hospital Foundation Trust, King's College London, Dental Institute, Guys Tower, SE1 9RT London, England.
| |
Collapse
|
47
|
Peterson-Sweeney K, Stevens J. Optimizing the health of infants and children: their oral health counts! J Pediatr Nurs 2010; 25:244-9. [PMID: 20620804 DOI: 10.1016/j.pedn.2009.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 03/22/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Tooth decay and poor oral health are the most common chronic health conditions in children in the United States today. This article discusses the significance of dental caries in children, the importance of oral health promotion, barriers to providing and obtaining oral health care, and current recommendations for practice. This article also recommends strategies for the promotion of optimal oral health in children and adolescents through screening, triaging, education, and tracking.
Collapse
|
48
|
Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 2010; 77:276-86. [PMID: 20497507 PMCID: PMC2909373 DOI: 10.1111/j.1365-2958.2010.07212.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal alpha-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by alpha-helical and proline-rich regions.
Collapse
Affiliation(s)
- L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville FL 32610, USA
| | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| | - Matthew R. Larson
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nina Forsgren
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Champion C. Deivanayagam
- Center for Biophysical Sciences and Engineering, and Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| |
Collapse
|
49
|
Chen F, Wang D. Novel technologies for the prevention and treatment of dental caries: a patent survey. Expert Opin Ther Pat 2010; 20:681-94. [PMID: 20230309 PMCID: PMC2857592 DOI: 10.1517/13543771003720491] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Dental caries is one of the most common preventable childhood diseases; people are susceptible to this ailment throughout their lifetime. In the US, 90% of late adolescents and young adults have dental caries, while 94% of all dentate adults had evidence of treated or untreated coronal caries. Dental caries is often not self-limiting and without proper care can progress until the tooth is destroyed. AREAS COVERED IN THIS REVIEW In this paper, the etiology of dental caries is briefly introduced. It is followed by a thorough review of patents and literatures on the recent development of various novel technologies for the prevention and treatment of dental caries. WHAT THE READER WILL GAIN Recent advances in anti-plaque agents, including chemoprophylactic agents, antimicrobial peptides, vaccines, probiotics/replacement therapy and sugar substitutes, and remineralization agents including fluorides and casein phosphopeptides are analyzed. TAKE HOME MASSAGE: Both the discovery of new anti-caries agents and the development of dentotropic delivery systems will be the future focus of this research field.
Collapse
Affiliation(s)
- Fu Chen
- University of Nebraska Medical Center, College of Pharmacy, Department of Pharmaceutical Sciences, COP 3026, Omaha, NE 68198-6025, USA
| | | |
Collapse
|
50
|
|