1
|
Phan NM, Nguyen TL, Min DK, Kim J. Mesoporous polydopamine nanoparticle-based tolerogenic vaccine induces antigen-specific immune tolerance to prevent and treat autoimmune multiple sclerosis. Biomaterials 2025; 316:122997. [PMID: 39662275 DOI: 10.1016/j.biomaterials.2024.122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurological disorder derived from autoreactive immune system attacking the protective myelin sheath that surrounds nerves in the central nervous system (CNS). Here, a tolerogenic nanovaccine for generating an antigen-specific immune tolerance for treating MS is proposed. It consisted of a mesoporous polydopamine (mPDA) nanoparticle, characterized by high reactive oxygen species (ROS)-scavenging property, loaded with MS-derived autoantigen. Intravenous vaccination of autoantigen-loaded mPDA could induce tolerogenic dendritic cells (DCs) with low expression of co-stimulatory molecules while presenting peptide epitopes. The tolerogenic DCs induced peripheral regulatory T-cells (Tregs), thereby reducing infiltration of autoreactive CD4+ T-cells and inflammatory antigen-presenting cells (APCs) into the CNS. In MS-mimicking mouse model, the tolerogenic nanovaccine prevented MS development in the early therapeutic setup and exhibited an enhanced recovery from complete paralysis in the late therapeutic model. The current platform could be exploited to treat other autoimmune diseases where disease-dependent autoantigen peptides are delivered.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong Kwang Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Sirinukunwattana K, Klein C, Clarke PFA, Marcou G, Meyer L, Collongues N, de Sèze J, Hellwig P, Patte-Mensah C, El Khoury Y, Mensah-Nyagan AG. Assessment of the concomitant action of XBD173 and interferon β in a mouse model of multiple sclerosis using infrared marker bands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125390. [PMID: 39515236 DOI: 10.1016/j.saa.2024.125390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Disease modifying therapies including interferon-β (IFNβ) effectively counteract the inflammatory component in relapsing-remitting multiple sclerosis (RRMS) but this action, generally associated with severe side effects, does not prevent axonal/neuronal damages. Hence, axonal neuroprotection, which is pivotal for MS effective treatment, remains a difficult clinical challenge. Growing evidence suggested as promising candidate for neuroprotection, Emapunil (AC-5216) or XBD173, a ligand of the mitochondrial translocator protein highly expressed in glial cells and neurons. Indeed, elegant studies previously showed that low and well tolerated doses of XBD173 efficiently improved clinical symptoms and neuropathological markers in MS mice. Here we combined clinical scoring in vivo with Fourier transform infrared spectroscopy of sera samples to investigate the hypothesis that the concomitant treatment of RRMS mice with low doses of IFNβ and XBD173 may increase their beneficial effects against MS symptoms and additionally decrease IFNβ-induced side effects. Our results show a significant alteration of the composition of serum protein and lipids in the spectra of the sera of RRMS mice. While the signature of proteins remains altered upon treatment, the signature of lipids is recovered comparatively well with 20 kIU IFNβ and upon concomitant treatment with a low dose of XBD173 (10 mg/kg) and IFNβ (10 kIU), but not with 10 kIU of IFNβ alone. The concomitant therapy with XBD173 (10 mg/kg) and IFNβ (10 kIU), devoid of side effects, exhibited at least equal or even better efficacy than IFNβ (20 kIU) treatment against RRMS symptoms.
Collapse
Affiliation(s)
- Krongkarn Sirinukunwattana
- Laboratoire de bioélectrochimie et spectroscopie UMR 7140, Chimie de la matière complexe University of Strasbourg - CNRS 4, Rue Blaise Pascal F - 67081 Strasbourg, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, UMR_S1119, Faculty of Medicine, University of Strasbourg, 1, Rue Eugène Boeckel, 67000 Strasbourg, France; Centre d'Investigation Clinique de Strasbourg (CIC), INSERM 1434, bâtiment CRBS, 1, Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Paul F A Clarke
- Laboratory of Chemoinformatics, UMR 7140 University of Strasbourg/CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Gilles Marcou
- Laboratory of Chemoinformatics, UMR 7140 University of Strasbourg/CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, UMR_S1119, Faculty of Medicine, University of Strasbourg, 1, Rue Eugène Boeckel, 67000 Strasbourg, France; Centre d'Investigation Clinique de Strasbourg (CIC), INSERM 1434, bâtiment CRBS, 1, Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, UMR_S1119, Faculty of Medicine, University of Strasbourg, 1, Rue Eugène Boeckel, 67000 Strasbourg, France; Centre d'Investigation Clinique de Strasbourg (CIC), INSERM 1434, bâtiment CRBS, 1, Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jérôme de Sèze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, UMR_S1119, Faculty of Medicine, University of Strasbourg, 1, Rue Eugène Boeckel, 67000 Strasbourg, France; Centre d'Investigation Clinique de Strasbourg (CIC), INSERM 1434, bâtiment CRBS, 1, Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie UMR 7140, Chimie de la matière complexe University of Strasbourg - CNRS 4, Rue Blaise Pascal F - 67081 Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, UMR_S1119, Faculty of Medicine, University of Strasbourg, 1, Rue Eugène Boeckel, 67000 Strasbourg, France; Centre d'Investigation Clinique de Strasbourg (CIC), INSERM 1434, bâtiment CRBS, 1, Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie UMR 7140, Chimie de la matière complexe University of Strasbourg - CNRS 4, Rue Blaise Pascal F - 67081 Strasbourg, France.
| | - Ayikoé-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, UMR_S1119, Faculty of Medicine, University of Strasbourg, 1, Rue Eugène Boeckel, 67000 Strasbourg, France; Centre d'Investigation Clinique de Strasbourg (CIC), INSERM 1434, bâtiment CRBS, 1, Rue Eugène Boeckel, 67000 Strasbourg, France.
| |
Collapse
|
4
|
Prado DS, Cattley RT, Sonego AB, Sutariya P, Wu S, Lee M, Boggess WC, Shlomchik MJ, Hawse WF. The phospholipid kinase PIKFYVE is essential for Th17 differentiation. J Exp Med 2025; 222:e20240625. [PMID: 39738812 DOI: 10.1084/jem.20240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
T helper 17 (Th17) cells are effector cells that mediate inflammatory responses to bacterial and fungal pathogens. While the cytokine signaling inputs required to generate Th17s are established, less is known about intracellular pathways that drive Th17 differentiation. Our previously published phosphoproteomic screen identifies that PIKFYVE, a lipid kinase that generates the phosphatidylinositol PtdIns(3,5)P2, is activated during Th17 differentiation. Herein, we discovered that PIKFYVE regulates kinase and transcription factor networks to promote Th17 differentiation. As a specific example, PtdIns(3,5)P2 directly stimulates mTORC1 kinase activity to promote cell division and differentiation pathways. Furthermore, PIKFYVE promotes STAT3 phosphorylation, which is required for Th17 differentiation. Chemical inhibition or CD4-specific deletion of PIKFYVE reduces Th17 differentiation and autoimmune pathology in the experimental autoimmune encephalomyelitis murine model of multiple sclerosis. Our findings identify molecular mechanisms by which PIKFYVE promotes Th17 differentiation and suggest that PIKFYVE is a potential therapeutic target in Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Douglas S Prado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Richard T Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Andreza B Sonego
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Parth Sutariya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Shuxian Wu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
5
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
6
|
Özkoşar A, Öktelik FB, Gelmez MY, Öztürk Erden S, Gündüz T, Kürtüncü M, Deniz G, Çınar S. Retinoic acid modulates peripheral blood helper innate lymphoid cell composition in vitro in patients with multiple sclerosis. J Neuroimmunol 2025; 398:578489. [PMID: 39580972 DOI: 10.1016/j.jneuroim.2024.578489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
This study investigates the frequency and numbers of circulating helper innate lymphoid cells (ILCs) in untreated relapsing-remitting multiple sclerosis (RRMS) patients, focusing on intracellular IL-10 and CCR6 expressions under IL-2, IL-33, and retinoic acid (RA) stimulation in vitro and their associations with clinical features in RRMS. In RRMS patients, ILC1 levels were notably higher upon IL-2 + IL-33 + RA stimulation, while ILC2 levels, particularly the c-Kit+ ILC2 and CCR6+ ILC2 subsets, were significantly lower compared to unstimulated conditions. Additionally, IL-10+ ILC1 levels were elevated. The ratios of IL-10+ ILC1/ILC1, c-Kit+ ILC2/c-Kit- ILC2, and CCR6+ ILC2/ILC2 were associated with the progression index (PI) in RRMS patients.
Collapse
Affiliation(s)
- Altuğ Özkoşar
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Fatma Betül Öktelik
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Sevda Öztürk Erden
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Tuncay Gündüz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Murat Kürtüncü
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Günnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Suzan Çınar
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
7
|
Szewczak L, Machcińska M, Kierasińska M, Zawadzka-Więch U, Maruszewska-Cheruiyot M, Majewski P, Karlińska A, Rola R, Donskow-Łysoniewska K. Expression of STAT- and T-cell-related genes in women with first-line treatment of relapsing-remitting multiple sclerosis. Scand J Immunol 2025; 101:e13424. [PMID: 39545481 DOI: 10.1111/sji.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Relapsing-remitting multiple sclerosis is associated with changes in Jak/STAT pathways in immune cells, but the influence of disease-modifying drugs on these pathways is poorly understood. The aim of this study was to evaluate the impact of first-line disease-modifying drugs used in treatment of RRMS on expression of the STAT pathway and T-cell-related genes in the blood and on serum concentrations of sgp130 and TGF-β1 in women, as well as on the level of phosphorylated STAT3 and STAT5 proteins in T cells of untreated patients and heathy controls. Expression of STAT1, STAT3, STAT5A, STAT5B, SOCS1, SOCS3, FOXP3, IKZF2, RORC and ICOS genes in the blood of untreated RRMS patients, in the blood of patients treated with interferon-β, glatiramer acetate, dimethyl fumarate or teriflunomide and in the blood of healthy controls was evaluated using droplet digital PCR. Serum concentrations of sgp130 and TGF-β1 were evaluated by ELISA. Phosphorylated STAT3 and STAT5 protein levels in T cells were evaluated by flow cytometry. STAT3 gene expression was significantly higher in untreated patients than in healthy control, but the level of phosphorylated STAT3 in T cells was significantly lower. Patients treated with interferon-β or dimethyl fumarate had significantly lower STAT3 gene expression. Patients treated with teriflunomide had higher STAT1 gene expression, than untreated patients. Patients treated with dimethyl fumarate also had significantly lower RORC gene expression than untreated patients. The study shows the impact of drugs used in first-line treatment of relapsing-remitting multiple sclerosis on expression of STAT and T-cell-related genes.
Collapse
Affiliation(s)
- Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Maja Machcińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Kierasińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Zawadzka-Więch
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Paweł Majewski
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Karlińska
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Rafał Rola
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | | |
Collapse
|
8
|
Goor A, Altman E, Arman I, Erez S, Haus-Cohen M, Reiter Y. Antigen-specific modulation of chronic experimental autoimmune encephalomyelitis in humanized mice by TCR-like antibody targeting autoreactive T-cell epitope. Life Sci Alliance 2025; 8:e202402996. [PMID: 39496501 PMCID: PMC11536346 DOI: 10.26508/lsa.202402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
The development and application of human TCR-like (TCRL) antibodies recognizing disease-specific MHC-peptide complexes may prove as an important tool for basic research and therapeutic applications. Multiple sclerosis is characterized by aberrant CD4 T-cell response to self-antigens presented by MHC class II molecules. This led us to select a panel of TCRL Abs targeting the immunodominant autoantigenic epitope MOG35-55 derived from myelin oligodendrocyte glycoprotein (MOG) presented on HLA-DR2, which is associated with multiple sclerosis (MS). We demonstrate that these TCRL Abs bind with high specificity to human HLA-DR2/MOG35-55-derived MHC class II molecules and can detect APCs that naturally present the MS-associated autoantigen in the humanized EAE transgenic mouse model. The TCRL Abs can block ex vivo and in vivo CD4 T-cell proliferation in response to MOG35-55 stimulation in an antigen-specific manner. Most significantly, administration of TCRL Abs to MOG35-55-induced EAE model in HLA-DR2 transgenic mice both prevents and regresses established EAE. TCRL function was associated with a reduction in autoreactive pathogenic T-cell infiltration into the CNS, along with modulation of activated CD11b+ macrophages/microglial APCs. Collectively, these findings demonstrate the combined action of TCRL Abs in blocking TCR-MHC interactions and modulating APC presentation and activation, leading to a profound antigen-specific inhibitory effect on the neuroinflammatory process, resulting in regression of EAE. Our study constitutes an in vivo proof of concept for the utility of TCR-like antibodies as antigen-specific immunomodulators for CD4-mediated autoimmune diseases such as MS, validating the importance of the TCR-MHC axis as a therapeutic target for various autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Alona Goor
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Efrat Altman
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shir Erez
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Haus-Cohen
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Liu S, Yang X, Zhao H, Zhao X, Fan K, Liu G, Li X, Du C, Liu J, Ma J. Cathepsin C exacerbates EAE by promoting the expansion of Tfh cells and the formation of TLSs in the CNS. Brain Behav Immun 2025; 123:123-142. [PMID: 39243987 DOI: 10.1016/j.bbi.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) mediated by CD4+ T helper (Th) cells, and characterized by immune cell infiltration, demyelination and neurodegeneration, with no definitive cure available. Thus, it is pivotal and imperative to acquire more profound comprehension of the underlying mechanisms implicated in MS. Dysregulated immune responses are widely believed to play a primary role in the pathogenesis of MS. Recently, a plethora of studies have demonstrated the involvement of T follicular helper (Tfh) cells and tertiary lymphoid-like structures (TLSs) in the pathogenesis and progression of MS. Cathepsin C (CatC) is a cysteine exopeptidase which is crucial for the activation of immune-cell-associated serine proteinases in many inflammatory diseases in peripheral system, such as rheumatoid arthritis and septicemia. We have previously demonstrated that CatC is involved in neuroinflammation and exacerbates demyelination in both cuprizone-induced and experimental autoimmune encephalomyelitis (EAE) mouse models. However, the underlying immunopathological mechanism remains elusive. In the present study, we established a recombinant myelin oligodendrocyte glycoprotein 35-55 peptide-induced EAE model using conditional CatC overexpression mice to investigate the effects of CatC on the alteration of CD4+ Th subsets, including Th1, Th2, Th17, Tfh and T regulatory cells. Our findings demonstrated that CatC particularly enhanced the population of Tfh cell in the brain, resulting in the earlier onset and more severe chronic syndrome of EAE. Furthermore, CatC promoted the formation of TLSs in the brain, leading to persistent neuroinflammation and exacerbating the severity of EAE in the chronic phase. Conversely, treatment with AZD7986, a specific inhibitor of CatC, effectively attenuated the syndrome of EAE and its effects caused by CatC both in vivo and in vitro. These findings provide a novel insight into the critical role of CatC in innate and adaptive immunity in EAE, and specific inhibitor of CatC, AZD7986, may contribute to potential therapeutic strategies for MS.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaohan Yang
- Department of Morphology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Henan Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xinnan Zhao
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Gang Liu
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Cong Du
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
10
|
Rahimi Darehbagh R, Khanmohammadi S, Rezaei N. The role of mitochondrial DNA variants and dysfunction in the pathogenesis and progression of multiple sclerosis. Mitochondrion 2024; 81:102002. [PMID: 39732186 DOI: 10.1016/j.mito.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/10/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). The etiology of MS remains elusive, with a complex interplay of genetic and environmental factors contributing to its pathogenesis. Recent studies showed mitochondrial DNA (mtDNA) as a potential player in the development and progression of MS. These studies encompassed mtDNA variants, copy number variations, and haplogroups. This narrative review aims to synthesize the current understanding of the role of mtDNA's in MS. The findings of this review suggest that mtDNA may indeed play a role in the development and progression of MS. Several studies have reported an association between mtDNA variants and increased susceptibility to MS, while others have found a link between mtDNA copy number variations and disease severity. Furthermore, specific mtDNA haplogroups have been demonstrated to confer protection against MS. MtDNA alterations may make neurons and oligodendrocytes more susceptible to inflammatory and oxidative stress, causing demyelination and axonal degeneration in MS patients. In conclusion, this review underscores the potential significance of mtDNA in the pathogenesis of MS and highlights the need for further research to fully elucidate its role. A deeper understanding of mtDNA's involvement in MS may pave the way for the development of novel therapeutic strategies to combat this debilitating disease.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran; Nanoclub Elites Association, Tehran, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Zhang R, Yao X, Li Q, Li X, Ma Q, Huang W, Hu Y, Shi X, Yang Y, Liu H. Self-assembled nanoparticles of rapamycin prodrugs for the treatment of multiple sclerosis. J Colloid Interface Sci 2024; 683:448-459. [PMID: 39740562 DOI: 10.1016/j.jcis.2024.12.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Optimizing the design of nanoparticulate co-delivery systems of antigens and immunomodulators to induce antigen-specific immune tolerance effectively remains a challenge, constrained by low drug loading capacity and premature leakage of active ingredients. Here, we report a prodrug self-assembled nanoparticles (NPs) strategy to synergistically deliver antigen and rapamycin (RAPA) into antigen-presenting cells (APCs) by simply conjugating rapamycin with an aliphatic chain. These prodrug NPs can be efficiently taken up by APCs and then release rapamycin through cleavage of the linker by intracellular esterase. Compared to other nanocarriers, rapamycin prodrug NPs exhibit high drug loading capacity and high stability, providing more rational intracellular synchronous delivery of drugs. The prodrug NPs also demonstrate improved therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE) model mice compared with free antigen and rapamycin. Our findings provide new insights into the design of tolerogenic NPs for treating multiple sclerosis (MS). This delivery platform is also applicable for the alleviation of other autoimmune diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xiaoxuan Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ximu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qing Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Weijia Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yuxin Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China.
| | - Yang Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
12
|
Mi Y, Dong J, Liu C, Zhang Q, Zheng C, Wu H, Zhao W, Zhu J, Wang Z, Jin T. Amelioration of experimental autoimmune encephalomyelitis by exogenous soluble PD-L1 is associated with restraining dendritic cell maturation and CCR7-mediated migration. Int Immunopharmacol 2024; 143:113398. [PMID: 39423660 DOI: 10.1016/j.intimp.2024.113398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Dendritic cells (DCs) orchestrate both immune activation and immune tolerance in multiple sclerosis (MS). Manipulating the phenotypes and functions of DCs to boost their tolerogenic potential is an appealing strategy for treating MS and its animal model experimental autoimmune encephalomyelitis (EAE). Programmed cell death 1 (PD-1) delivers the immunoinhibitory signals by interacting with PD-1 ligand 1 (PD-L1), which plays a critical role in maintaining immune tolerance. So far, the effects of PD-1/PD-L1 signalling activation on DCs in EAE are poorly understood. Here, the administration of soluble PD-L1 (sPD-L1) protein significantly alleviated the clinical symptoms of myelin oligodendrocyte glycoprotein (MOG)-induced EAE, and inhibited the expression of cluster of differentiation (CD)86, C-C motif chemokine receptor 7 (CCR7) as well as CCR7-mediated trafficking of splenic DCs, accompanied by enhancing their phagocytosis. The impact of sPD-L1 on the surface morphology and mechanical properties of DCs was investigated at the nanoscale, using scanning electron microscope and atomic force microscope. The treatment of sPD-L1 was found to mitigate morphological maturation and biomechanical alterations, specifically in terms of adhesion and elasticity, in bone marrow-derived DCs from EAE. Taken together, our findings suggest that application of exogenous sPD-L1 has a marked suppressive effect on the maturation and migration of DCs in EAE. PD-L1 administration may be a promising therapy for EAE and for MS in the future.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Caiyun Liu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wenrong Zhao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China.
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2024. [PMID: 39719685 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M Kooistra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen and University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Kupjetz M, Wences Chirino TY, Joisten N, Zimmer P. Kynurenine pathway dysregulation as a mechanistic link between cognitive impairment and brain damage: Implications for multiple sclerosis. Brain Res 2024:149415. [PMID: 39710050 DOI: 10.1016/j.brainres.2024.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Cognitive impairment is a core symptom of multiple sclerosis (MS), resulting from inflammation-related brain damage and brain network dysfunction. Inflammation also causes dysregulation of the kynurenine pathway which is the primary route of tryptophan catabolism. Kynurenine pathway dysregulation is characterised by a shift in concentrations of tryptophan catabolites, also referred to as kynurenines. Some kynurenines have neurotoxic effects that partly resemble the molecular mechanisms of MS pathophysiology underpinning brain damage and network dysfunction. The kynurenine pathway may therefore qualify as a mechanistic link between systemic inflammation, brain damage, and cognitive impairment in MS. This perspective article (1) provides an overview of inflammation-related KP dysregulation and MS-relevant neuroimmune properties of kynurenines and (2) summarises the current evidence on associations between systemic kynurenines, imaging metrics of brain structure or related markers, and cognitive performance in populations that present with kynurenine pathway dysregulation and are prone to cognitive impairment. These findings (3) are used to set a research agenda for future studies aimed at clarifying the role of the kynurenine pathway in brain damage and cognitive impairment in MS.
Collapse
Affiliation(s)
- Marie Kupjetz
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Tiffany Y Wences Chirino
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Niklas Joisten
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany; Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Sprangerweg 2, Göttingen, Lower Saxony 37075, Germany.
| | - Philipp Zimmer
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| |
Collapse
|
16
|
Zainab SR, Khan JZ, Tipu MK, Jahan F, Irshad N. Decoding multiple sclerosis: Unravelling the complexities of pathogenesis, progression, mechanisms and therapeutic innovations. Neuroscience 2024:S0306-4522(24)00735-8. [PMID: 39709058 DOI: 10.1016/j.neuroscience.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.e. autoreactive T & B-Cells and macrophage infiltration into the CNS leads to inflammation, demyelination, and neurodegeneration. Disease progression of MS varies among individuals transitioning from one form of relapsing-remitting to secondary progressive MS. Research advances have unfolded various molecular targets involved in MS from oxidative stress to blood-brain barrier (BBB) disruption. Different pathways are being targeted so far such as inflammatory and cytokine signaling pathways to overcome disease progression. Therapeutic innovations have significantly transformed the management of MS, especially the use of disease-modifying therapies (DMTs) to reduce relapse rates and control disease progression. Advancements in research, neuroprotective strategies, and remyelination strategies hold promising results in reversing CNS damage. Various mice models are being adopted for testing new entities in MS research.
Collapse
Affiliation(s)
- Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Faryal Jahan
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad, Pakistan.
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
17
|
Darwish MH, El-Tamawy MS, Ismail ME, Moustafa EBS, Khalifa HA. Effect of vestibular training on cognitive functions in people with multiple sclerosis: A randomized controlled trial. Mult Scler Relat Disord 2024; 93:106239. [PMID: 39709700 DOI: 10.1016/j.msard.2024.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cognitive dysfunction is prevalent but inadequately treated in people with multiple sclerosis (PwMS). Central vestibular functions are associated with multiple cognitive domains in PwMS, even when controlling for disability status. To our knowledge, the effectiveness of vestibular training on cognition in PwMS has never been explored. The study's purpose was to determine the effect of vestibular training on PwMS's cognitive functions. METHODS Forty PwMS with relapsing-remitting MS, primarily fatigued, were randomly divided into two equal groups. The control group (GI) was treated with aerobic endurance exercises using stationary bicycle training. The study group (GII) was treated with aerobic endurance exercises as GI in addition to a designed vestibular training program. Outcome measures of cognition were assessed pre- and post-treatment using the Arabic version of Brief International Cognitive Assessment for MS (BICAMS-A) and serum Brain-derived neurotrophic factor (BDNF). RESULTS Post-treatment, there was a significant increase of oral Symbol Digit Modalities Test (SDMT), California Verbal Learning Test II (CVLT-II), revised Brief Visuospatial retention Test (BVRT-R) of BICAMS-A and serum BDNF in both study and control groups. There was a significant increase in CVLT-II, BVRT-R of BICAMS-A and serum BDNF in the study group compared to the control group (P < 0.05). CONCLUSION Vestibular training is an effective and innovative approach for improving cognitive functions in PwMS. TRIAL REGISTRATION PACTR202311670782148.
Collapse
Affiliation(s)
- Moshera H Darwish
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt
| | | | - Manar E Ismail
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt.
| | - Engy BadrEldin S Moustafa
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt
| | - Heba A Khalifa
- Department of Physical Therapy for Neurology and Neurosurgery, Faculty for Physical Therapy, Cairo University, 12612, Egypt; Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| |
Collapse
|
18
|
Proschinger S, Belen S, Adammek F, Schlagheck ML, Rademacher A, Schenk A, Warnke C, Bloch W, Zimmer P. Sportizumab - Multimodal progressive exercise over 10 weeks decreases Th17 frequency and CD49d expression on CD8 + T cells in relapsing-remitting multiple sclerosis: A randomized controlled trial. Brain Behav Immun 2024; 124:397-408. [PMID: 39675643 DOI: 10.1016/j.bbi.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) represents a neuroinflammatory autoimmune disease characterized by the predominance of circulating T cell subsets with proinflammatory characteristics and increased central nervous system (CNS)-homing potential. Substantial evidence confirms various beneficial effects of chronic exercise interventions in MS, but it is unknown how long-term multi-modal intense exercise affects MS-associated lymphocytes that are commonly targeted by medication in persons with relapsing remitting MS (pwRRMS). METHODS A total of 45 participants with defined RRMS were randomized to either the exercise (n = 22) or passive waitlist-control group (n = 23). A 10-week intervention consisting of progressive resistance and strength-endurance exercises was applied (3x/week à 60 min). Blood was drawn before (T1) and after (T2) the intervention period. Flow cytometry was used for phenotyping lymphocyte subsets. RESULTS Relative protein expression of CD49d within CD8+ T cells, quantified via mean fluorescence intensity (MFI), is significantly associated with the Expanded Disability Status Scale (p = 0.007, r = 0.440), decreased in the exercise group (p = 0.001) only, and was significantly lower in the exercise compared to the control group at T2 (p < 0.001). T helper (Th) 17 cell frequency decreased only in the exercise group (p < 0.001). CD8+CD20+ T cell frequency was significantly lower in the exercise compared to the control group at T2 (p = 0.003), without showing significant time effects. CONCLUSION The 10-week multimodal exercise intervention mainly affected circulating T cells harboring a pathophysiological phenotype in MS. The findings of a decreased frequency of pathogenic Th17 cells and the reduced CNS-homing potential of CD8+ T cells, indicated by reduced CD49d MFI, substantiate the positive effects of exercise on cellular biomarkers involved in disease activity and progression in MS. To confirm exercise-mediated beneficial effects on both disease domains, clinical endpoints (i.e., relapse rate, lesion formation, EDSS score) should be assessed together with these cellular and molecular markers in studies with a larger sample size and a duration of six to twelve months or longer.
Collapse
Affiliation(s)
- Sebastian Proschinger
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Sergen Belen
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany; Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Frederike Adammek
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Marit Lea Schlagheck
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | | | - Alexander Schenk
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), 44227 Dortmund, Germany.
| |
Collapse
|
19
|
Rosenstein I, Novakova L, Kvartsberg H, Nordin A, Rasch S, Rembeza E, Sandgren S, Malmeström C, Fruhwürth S, Axelsson M, Blennow K, Zetterberg H, Lycke J. Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis. J Neuroinflammation 2024; 21:320. [PMID: 39673059 PMCID: PMC11645787 DOI: 10.1186/s12974-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The Gas6/TAM (Tyro3, Axl, and Mer) receptor system has been implicated in demyelination and delayed remyelination in experimental animal models, but data in humans are scarce. We aimed to investigate the role of Gas6/TAM in neurodegenerative processes in multiple sclerosis (MS). METHODS From a prospective 5-year follow-up study, soluble Gas6/TAM biomarkers were analyzed in cerebrospinal fluid (CSF) by enzyme-linked immunosorbent assay (ELISA) at baseline in patients with relapsing-remitting MS (RRMS) (n = 40), progressive MS (PMS) (n = 20), and healthy controls (HC) (n = 25). Brain volumes, including myelin content (MyC) and white matter (WM) were measured by synthetic magnetic resonance imaging at baseline, 12 months, and 60-month follow-up. Associations with brain volume changes were investigated in multivariable linear regression models. Gas6/TAM concentrations were also determined at 12 months follow-up in RRMS to assess treatment response. RESULTS Baseline concentrations of Tyro3, Axl, and Gas6 were significantly higher in PMS vs. RRMS and HC. Mer was higher in PMS vs. HC. Tyro3 and Gas6 were associated with reduced WM (β = 25.5, 95% confidence interval [CI] [6.11-44.96, p = 0.012; β = 11.4, 95% CI [0.42-22.4], p = 0.042, respectively) and MyC (β = 7.95, 95%CI [1.84-14.07], p = 0.012; β = 4.4, 95%CI [1.04-7.75], p = 0.012 respectively) at 60 months. Patients with evidence of remyelination at last follow-up had lower baseline soluble Tyro3 (p = 0.033) and Gas6 (p = 0.014). Except Mer, Gas6/TAM concentrations did not change with treatment in RRMS. DISCUSSION Our data indicate a potential role for the Gas6/TAM receptor system in neurodegenerative processes influencing demyelination and ineffective remyelination.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hlin Kvartsberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elzbieta Rembeza
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sofia Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
20
|
Najafi P, Motl RW, Moghadasi M. Tele-exercise in multiple sclerosis: Systematic review and meta-analysis of effects on fatigue, depression, and overall health. Mult Scler Relat Disord 2024; 93:106225. [PMID: 39709696 DOI: 10.1016/j.msard.2024.106225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) profoundly influences fatigue, depression, various physical and mental symptoms, and quality of life (QoL). Rehabilitation, including exercise training, has improved outcomes of MS, yet is often undertaken in facilities with direct supervision which present substantial barriers for accessibility and scalability. The delivery of exercise remotely via technology (tele-exercise) might overcome those barriers and improve outcomes in MS. This systematic review and meta-analysis examined the effect of tele-exercise for improving fatigue, depression, and overall health outcomes in MS patients. METHOD We undertook a comprehensive literature search across 5 electronic databases (PubMed, Scopus, Web of Science, The Cochrane Library, clinicaltrials.gov, and EMBASE) from inception through February 2024. Three reviewers screened all randomized controlled trials (RCTs) and assessed quality, and two reviewers extracted data. The meta-analysis used standardized mean difference (SMD) with Hedges' g method, a random effects model adjusted by Hartung-Knapp, and assessed heterogeneity (I² statistic), weighted studies (inverse variance), and evaluated publication bias (Begg's funnel plot and linear regression test). RESULT We located 13 RCTs for inclusion in the meta-analysis. Tele-exercise interventions demonstrated significant improvements across all outcomes: depression (SMD=-0.51, p < 0.001), fatigue (SMD=-0.58, p = 0.01), physical health (SMD=0.62, p = 0.001), QoL (SMD=0.38, p = 0.02), and mental health (SMD=-0.48, p = 0.001). Mind-Body Training consistently had larger effects than Combination Training. CONCLUSION Tele-exercise can improve fatigue, depression, mental and physical health, and overall QoL in MS patients. Further research is necessary to optimize tele-exercise protocols, assess long-term effects, and explore potential synergies with other intervention modalities such as telemedicine.
Collapse
Affiliation(s)
- Parisa Najafi
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
| | - Mehrzad Moghadasi
- Department of physical education, Shiraz branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
21
|
Gobbo D, Rieder P, Fang LP, Buttigieg E, Schablowski M, Damo E, Bosche N, Dallorto E, May P, Bai X, Kirchhoff F, Scheller A. Genetic Downregulation of GABA B Receptors from Oligodendrocyte Precursor Cells Protects Against Demyelination in the Mouse Spinal Cord. Cells 2024; 13:2014. [PMID: 39682762 DOI: 10.3390/cells13232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
GABAergic signaling and GABAB receptors play crucial roles in regulating the physiology of oligodendrocyte-lineage cells, including their proliferation, differentiation, and myelination. Therefore, they are promising targets for studying how spinal oligodendrocyte precursor cells (OPCs) respond to injuries and neurodegenerative diseases like multiple sclerosis. Taking advantage of the temporally controlled and cell-specific genetic downregulation of GABAB receptors from OPCs, our investigation addresses their specific influence on OPC behavior in the gray and white matter of the mouse spinal cord. Our results show that, while GABAB receptors do not significantly alter spinal cord myelination under physiological conditions, they distinctly regulate the OPC differentiation and Ca2+ signaling. In addition, we investigate the impact of OPC-GABAB receptors in two models of toxic demyelination, namely, the cuprizone and the lysolecithin models. The genetic downregulation of OPC-GABAB receptors protects against demyelination and oligodendrocyte loss. Additionally, we observe the enhanced resilience to cuprizone-induced pathological alterations in OPC Ca2+ signaling. Our results provide valuable insights into the potential therapeutic implications of manipulating GABAB receptors in spinal cord OPCs and deepen our understanding of the interplay between GABAergic signaling and spinal cord OPCs, providing a basis for future research.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Li-Pao Fang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Emeline Buttigieg
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005 Marseille, France
| | - Moritz Schablowski
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Elisa Damo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Nathalie Bosche
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Eleonora Dallorto
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Pascal May
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
- Chengdu Center for Gender-Specific Biology and Medicine (CGBM Chengdu), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421 Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, 66421 Homburg, Germany
| |
Collapse
|
22
|
Monreal E, Fernández-Velasco JI, Álvarez-Lafuente R, Sainz de la Maza S, García-Sánchez MI, Llufriu S, Casanova B, Comabella M, Martínez-Yélamos S, Galimberti D, Ramió-Torrentà L, Martínez-Ginés ML, Aladro Y, Ayuso L, Martínez-Rodríguez JE, Brieva L, Villarrubia N, Eichau S, Zamora J, Rodero-Romero A, Espiño M, Blanco Y, Saiz A, Montalbán X, Tintoré M, Domínguez-Mozo MI, Cuello JP, Romero-Pinel L, Ghezzi L, Pilo de la Fuente B, Pérez-Miralles F, Quiroga-Varela A, Rubio L, Rodríguez-Jorge F, Chico-García JL, Sainz-Amo R, Masjuan J, Costa-Frossard L, Villar LM. Serum biomarkers at disease onset for personalized therapy in multiple sclerosis. Brain 2024; 147:4084-4093. [PMID: 39101570 DOI: 10.1093/brain/awae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 08/06/2024] Open
Abstract
The potential for combining serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels to predict worsening disability in multiple sclerosis remains underexplored. We aimed to investigate whether sNfL and sGFAP values identify distinct subgroups of patients according to the risk of disability worsening and their response to disease-modifying treatments (DMTs). This multicentre study, conducted across 13 European hospitals, spanned from 15 July 1994 to 18 August 2022, with follow-up until 26 September 2023. We enrolled patients with multiple sclerosis who had serum samples collected within 12 months from disease onset and before initiating DMTs. Multivariable regression models were used to estimate the risk of relapse-associated worsening (RAW), progression independent of relapse activity (PIRA) and Expanded Disability Status Scale (EDSS) score of 3. Of the 725 patients included, the median age was 34.2 (interquartile range, 27.6-42.4) years, and 509 patients (70.2%) were female. The median follow-up duration was 6.43 (interquartile range, 4.65-9.81) years. Higher sNfL values were associated with an elevated risk of RAW [hazard ratio (HR) of 1.45; 95% confidence interval (CI) 1.19-1.76; P < 0.001], PIRA (HR of 1.43; 95% CI 1.13-1.81; P = 0.003) and reaching an EDSS of 3 (HR of 1.55; 95% CI 1.29-1.85; P < 0.001). Moreover, higher sGFAP levels were linked to a higher risk of achieving an EDSS score of 3 (HR of 1.36; 95% CI 1.06-1.74; P = 0.02) and, in patients with low sNfL values, to PIRA (HR of 1.86; 95% CI 1.01-3.45; P = 0.04). We also examined the combined effect of sNfL and sGFAP levels. Patients with low sNfL and sGFAP values exhibited a low risk of all outcomes and served as a reference. Untreated patients with high sNfL levels showed a higher risk of RAW, PIRA and reaching an EDSS of 3. Injectable or oral DMTs reduced the risk of RAW in these patients but failed to mitigate the risk of PIRA and reaching an EDSS of 3. Conversely, high-efficacy DMTs counteracted the heightened risk of these outcomes, except for the risk of PIRA in patients with high sNfL and sGFAP levels. Patients with low sNfL and high sGFAP values showed an increased risk of PIRA and achieving an EDSS of 3, which remained unchanged with either high-efficacy or other DMTs. In conclusion, evaluating sNfL and sGFAP levels at disease onset in multiple sclerosis might identify distinct phenotypes associated with diverse immunological pathways of disability acquisition and therapeutic response.
Collapse
Affiliation(s)
- Enric Monreal
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - José Ignacio Fernández-Velasco
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo Investigación de factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Susana Sainz de la Maza
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - María Isabel García-Sánchez
- Nodo Biobanco Hospital Virgen Macarena (Biobanco del Sistema Sanitario Público de Andalucía), Hospital Universitario Virgen Macarena, 41013 Seville, Spain
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Bonaventura Casanova
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, 46026 Valencia, Spain
| | - Manuel Comabella
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Department of Neurology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20126 Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, 17001, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, 17001, Catalonia, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17001 Girona, Spain
| | | | - Yolanda Aladro
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Lucía Ayuso
- Department of Neurology, Hospital Universitario Príncipe de Asturias, 28805 Alcalá de Henares, Spain
| | | | - Luis Brieva
- Hospital Arnau de Vilanova de Lleida, UdL Medicine Department, IRBLLEIDA, 25198 Lleida, Spain
| | - Noelia Villarrubia
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Sara Eichau
- Multiple Sclerosis Unit, Hospital Virgen Macarena, 41013 Sevilla, Spain
| | - Javier Zamora
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Unidad de Bioestadística Clínica, Hospital Ramón y Cajal, 28034 Madrid, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28034 Madrid, Spain
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Alexander Rodero-Romero
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Mercedes Espiño
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Yolanda Blanco
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Albert Saiz
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, 08036 Barcelona, Spain
| | - Xavier Montalbán
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebrón (VHIR), Hospital Universitari Vall d'Hebrón, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - María Inmaculada Domínguez-Mozo
- Grupo Investigación de factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Juan Pablo Cuello
- Department of Neurology, Hospital Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Lucía Romero-Pinel
- Department of Neurology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Laura Ghezzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20126 Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Belén Pilo de la Fuente
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Francisco Pérez-Miralles
- Multiple Sclerosis and Neuroimmunology Research Group, Fundación para la Investigación La Fe, 46026 Valencia, Spain
| | - Ana Quiroga-Varela
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, 17001, Girona, Spain
| | - Lluïsa Rubio
- Department of Neurology, Hospital Universitario Getafe, Universidad Europea de Madrid, 28905 Madrid, Spain
| | - Fernando Rodríguez-Jorge
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Juan Luís Chico-García
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Raquel Sainz-Amo
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Department of Neurology, Hospital Universitario Ramón y Cajal, Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| | - Luisa M Villar
- Department of Immunology, Hospital Universitario Ramón y Cajal, REEM, REI, IRYCIS, Universidad de Alcalá, 28034 Madrid, Spain
| |
Collapse
|
23
|
Freeman C, A S MD, A S P. Unraveling the Intricacies of OPG/RANKL/RANK Biology and Its Implications in Neurological Disorders-A Comprehensive Literature Review. Mol Neurobiol 2024; 61:10656-10670. [PMID: 38777981 DOI: 10.1007/s12035-024-04227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The OPG/RANKL/RANK framework, along with its specific receptors, plays a crucial role in bone remodeling and the functioning of the central nervous system (CNS) and associated disorders. Recent research and investigations provide evidence that the components of osteoprotegerin (OPG), receptor activator of NF-kB ligand (RANKL), and receptor activator of NF-kB (RANK) are expressed in the CNS. The CNS structure encompasses cells involved in neuroinflammation, including local macrophages, inflammatory cells, and microglia that cross the blood-brain barrier. The OPG/RANKL/RANK trio modulates the neuroinflammatory response based on the molecular context. The levels of OPG/RANKL/RANK components can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectants following brain injuries and also participate in the regulation of body weight, internal body temperature, brain ischemia, autoimmune encephalopathy, and energy metabolism. Although the OPG/RANKL/RANK system is primarily known for its role in bone remodeling, further exploring deeper into its multifunctional nature can uncover new functions and novel drug targets for diseases not previously associated with OPG/RANKL/RANK signaling.
Collapse
Affiliation(s)
- Chrisanne Freeman
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India.
| | - Merlyn Diana A S
- Department of Biotechnology, Bishop Heber College, Tamil Nadu, Tiruchirappalli, 620017, India
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| | - Priscilla A S
- Department of Zoology and Research Centre, Lady Doak College, Tamil Nadu, Madurai, 625002, India
| |
Collapse
|
24
|
Braun B, Fischbach F, Pfeffer LK, Richter J, Janson D, Kröger NM, Mariottini A, Heesen C, Häußler V. Exploring the therapeutic potential of autologous hematopoietic stem cell transplantation in progressive multiple sclerosis-a systematic review. Eur J Neurol 2024; 31:e16427. [PMID: 39104136 PMCID: PMC11555148 DOI: 10.1111/ene.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND AND PURPOSE The aim was to determine the value of autologous haematopoietic stem cell transplantation (aHSCT) as a therapeutic intervention for progressive multiple sclerosis (PMS) based on a systematic review of the current literature. METHODS All studies from the databases PubMed and Google Scholar published in English before February 2024 which provided individual data for PMS patients were systematically reviewed. PICO was defined as population (P), primary progressive MS and secondary progressive MS patients; intervention (I), treatment with aHSCT; comparison (C), none, disease-modifying therapy treated/relapsing-remitting MS cohorts if available; outcome (O), transplant-related mortality, progression-free survival (PFS) and no evidence of disease activity. RESULTS A total of 15 studies met the criteria including 665 patients with PMS (74 primary progressive MS, 591 secondary progressive MS) and 801 patients with relapsing-remitting MS as controls. PFS data were available for 647 patients. PMS patients showed more severe disability at baseline than relapsing-remitting MS patients. The average transplant-related mortality for PMS in 10 studies was 1.9%, with 10 deaths in 528 patients. PFS ranged from 0% to 78% in PMS groups 5 years after treatment initiation, demonstrating a high variability. No evidence of disease activity scores at 5 years ranged from 0% to 75%. CONCLUSION Based on the available data, aHSCT does not halt progression in people with PMS. However, there appears to be evidence of improved outcome in selected patients. Due to the heterogeneity of the available data, more comprehensive clinical trials assessing the efficacy of aHSCT across different patient groups are urgently needed to reduce variability and improve patient stratification.
Collapse
Affiliation(s)
- Bente Braun
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Johanna Richter
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dietlinde Janson
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicolaus M. Kröger
- Department of Stem Cell TransplantationUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alice Mariottini
- Department of Neurosciences, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
- Department Neurology IICareggi University HospitalFlorenceItaly
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Vivien Häußler
- Institute of Neuroimmunology and Multiple SclerosisUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
- Department of NeurologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
25
|
Wu Z, Xu W, Wang X, Peng D, Jiang Z. Exploring the Causal Relationship Between Inflammatory Cytokines and MRI-Derived Brain Iron: A Mendelian Randomization Study. Brain Behav 2024; 14:e70181. [PMID: 39643932 PMCID: PMC11624122 DOI: 10.1002/brb3.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND The association between inflammation and brain iron deposition is widely acknowledged. However, the precise causal impact of peripheral inflammatory cytokines on changes in brain iron content remains uncertain. METHODS The study utilized an available genome-wide association study (GWAS) summary associated with inflammatory cytokines from The Cardiovascular Risk in Young Finns Study and the FINRISK surveys. The GWAS data for brain iron markers were obtained from the UK Biobank. We assessed the iron content of each brain region using susceptibility-weighted magnetic resonance imaging, utilizing both quantitative susceptibility mapping and T2* measurements. The primary outcomes were susceptibility (χ) and T2*, which serve as indices of iron deposition. To investigate the causal relationship between exposure and outcome, we primarily employed inverse variance weighting, MR Egger, weighted median, simple mode, and weighted mode methods, collectively enhancing the robustness of our results. RESULTS The results of MR analyses demonstrate that our study unveiled that nerve growth factor-β, hepatocyte growth factor, interleukin-1 (IL-1), IL-8, macrophage inflammatory protein 1α, and tumor necrosis factor-α were associated with elevated brain iron content in the regions of left hippocampus, putamen, left thalamus, right pallidum, right hippocampus, left amygdala, respectively. Furthermore, our investigation provides evidence for a negative relationship between IL-1, IL-17, monocyte chemotactic protein-3, tumor necrosis factor-β, and brain iron content in distinct regions. CONCLUSIONS Our findings suggest a causal association between circulating inflammatory cytokines and brain iron deposition across various brain regions. This provides new insights into the immunopathogenesis of neurodegenerative diseases and potential preventive strategies targeting iron metabolism.
Collapse
Affiliation(s)
- Zhounan Wu
- Department of Orthopaedic SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Wantong Xu
- Department of Orthopaedic SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xuemei Wang
- Department of Laboratory MedicineThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Dan Peng
- Department of Orthopaedic SurgeryThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhongbiao Jiang
- Department of RadiologyThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
26
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024; 54:e2451055. [PMID: 39240039 PMCID: PMC11628923 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| | - Julie C. Ribot
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de Lisboa Avenida Professor Egas MonizLisbon1649‐028Portugal
| |
Collapse
|
27
|
Xu Y, Zhang E, Wei L, Dai Z, Chen S, Zhou S, Huang Y. NINJ1: A new player in multiple sclerosis pathogenesis and potential therapeutic target. Int Immunopharmacol 2024; 141:113021. [PMID: 39197295 DOI: 10.1016/j.intimp.2024.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination. Current treatment options for MS focus on immunosuppression, but their efficacy can be limited. Recent studies suggest a potential role for nerve injury-induced protein 1 (NINJ1) in MS pathogenesis. NINJ1, a protein involved in cell death and inflammation, may contribute to the infiltration and activation of inflammatory cells in the CNS, potentially through enhanced blood-brain barrier crossing; enhancing plasma membrane rupture during cell death, leading to the release of inflammatory mediators and further tissue damage. This review explores the emerging evidence for NINJ1's involvement in MS. It discusses how NINJ1 might mediate the migration of immune cells across the blood-brain barrier, exacerbate neuroinflammation, and participate in plasma membrane rupture-related damage. Finally, the review examines potential therapeutic strategies targeting NINJ1 for improved MS management. Abbreviations: MS, Multiple sclerosis; CNS, Central nervous system; BBB, Blood-brain barrier; GSDMD, Gasdermin-D; EAE, Experimental autoimmune encephalitis; HMGB-1, High mobility group box-1 protein; LDH, Lactate dehydrogenase; PMR, Plasma membrane rupture; DMF, Dimethyl fumarate; DUSP1, Dual-specificity phosphatase 1; PAMPs, Pathogen-associated molecular patterns; DAMPs, Danger-associated molecular patterns; PRRs, Pattern recognition receptors; GM-CSF, Granulocyte-macrophage colony stimulating factor; IFN-γ, Interferon gamma; TNF, Tumor necrosis factor; APCs, Antigen-presenting cells; ECs, Endothelial cells; TGF-β, Transforming growth factor-β; PBMCs, Peripheral blood mononuclear cells; FACS, Fluorescence-activated cell sorting; MCP-1, Monocyte chemoattractant protein-1; NLRP3, Pyrin domain-containing 3; TCR, T cell receptor; ROS, Reactive oxygen species; AP-1, Activator protein-1; ANG1, Angiopoietin 1; BMDMs, Bone marrow-derived macrophages; Arp2/3, actin-related protein 2/3; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; LIMK1, LIM domain kinase 1; PAK1, p21-activated kinases 1; Rac1, Ras-related C3 botulinum toxin substrate 1; β-cat, β-caten; MyD88, myeloid differentiation primary response gene 88; TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; TLR4, Toll-like receptor 4; IRAKs, interleukin-1 receptor-associated kinases; TRAF6, TNF receptor associated factor 6; TAB2/3, TAK1 binding protein 2/3; TAK1, transforming growth factor-β-activated kinase 1; JNK, c-Jun N-terminal kinase; ERK1/2, Extracellular Signal Regulated Kinase 1/2; IKK, inhibitor of kappa B kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-B; AP-1, activator protein-1; ASC, Apoptosis-associated Speck-like protein containing a CARD; NEK7, NIMA-related kinase 7; NLRP3, Pyrin domain-containing 3; CREB, cAMP response element-binding protein.
Collapse
Affiliation(s)
- Yinbin Xu
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Enhao Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Liangzhe Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zifeng Dai
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Siqi Chen
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
28
|
Räuber S, Schulte-Mecklenbeck A, Willison A, Hagler R, Jonas M, Pul D, Masanneck L, Schroeter CB, Golombeck KS, Lichtenberg S, Strippel C, Gallus M, Dik A, Kerkhoff R, Barman S, Weber KJ, Kovac S, Korsen M, Pawlitzki M, Goebels N, Ruck T, Gross CC, Paulus W, Reifenberger G, Hanke M, Grauer O, Rapp M, Sabel M, Wiendl H, Meuth SG, Melzer N. Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies. J Neuroinflammation 2024; 21:286. [PMID: 39497174 PMCID: PMC11536547 DOI: 10.1186/s12974-024-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment. METHODS Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches. RESULTS We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment. CONCLUSIONS ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ramona Hagler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marius Jonas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina J Weber
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
29
|
Häusler D, Weber MS. Towards Treating Multiple Sclerosis Progression. Pharmaceuticals (Basel) 2024; 17:1474. [PMID: 39598386 PMCID: PMC11597358 DOI: 10.3390/ph17111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). In most patients, the disease starts with an acute onset followed by a remission phase, subsequent relapses and a later transition to steady chronic progression. In a minority of patients, this progressive phase develops from the beginning. MS relapses are characterized predominantly by the de novo formation of an inflammatory CNS lesion and the infiltration of immune cells, whereas the pathological features of MS progression include slowly expanding lesions, global brain atrophy and an inflammatory response predominantly mediated by macrophages/microglia. Importantly, this CNS-intrinsic pathophysiology appears to initiate early during the relapsing-remitting disease phase, while it turns into the key clinical MS feature in later stages. Currently approved disease-modifying treatments for MS are effective in modulating peripheral immunity by dampening immune cell activity or preventing the migration of immune cells into the CNS, resulting in the prevention of relapses; however, they show limited success in halting MS progression. In this manuscript, we first describe the pathological mechanisms of MS and summarize the approved therapeutics for MS progression. We also review the treatment options for progressive MS (PMS) that are currently under investigation. Finally, we discuss potential targets for novel treatment strategies in PMS.
Collapse
Affiliation(s)
- Darius Häusler
- Institute of Neuropathology, University Medical Centre, 37075 Goettingen, Germany;
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Goettingen, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Centre, 37075 Goettingen, Germany;
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Goettingen, Germany
- Department of Neurology, University Medical Centre, 37075 Goettingen, Germany
| |
Collapse
|
30
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
31
|
Mu F, Rusip G, Florenly F. Gut microbiota and autoimmune diseases: Insights from Mendelian randomization. FASEB Bioadv 2024; 6:467-476. [PMID: 39512840 PMCID: PMC11539032 DOI: 10.1096/fba.2024-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 11/15/2024] Open
Abstract
In recent years, the scientific community has shown interest in the role of gut microbiota in the development of autoimmune diseases (AID). Although observational studies have revealed significant associations between gut microbiota and AID like rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, these connections do not necessarily imply causality. Mendelian randomization (MR) approach has been extensively employed to investigate the causal relationship. Relevant MR study findings indicate that a reduction in beneficial microbial populations, particularly Bifidobacterium and Lactobacillus, and an increase in potential pathogenic microbes, is correlated with an elevated AID risk. Given the innovative potential of MR in unraveling the etiopathogenesis of AIDs, this article offers an overview of this methodological approach and its recent applications in AID research.
Collapse
Affiliation(s)
- Fangxiang Mu
- University Prima IndonesiaMedanSumatera UtaraIndonesia
| | | | | |
Collapse
|
32
|
Savastano MC, Nociti V, Giannuzzi F, Cestrone V, Carlà MM, Fossataro C, Biagini I, Rizzo C, Kilian R, Bisurgi M, Calabresi P, Mirabella M, Rizzo S. Optical Coherence Tomography Advanced Parameters in Patients With Multiple Sclerosis: Ophthalmological and Neurological Assessments. Am J Ophthalmol 2024; 267:41-49. [PMID: 38901720 DOI: 10.1016/j.ajo.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE To evaluate ophthalmological, neurological, radiological, and laboratory data in patients with multiple sclerosis (MS) and to identify new ophthalmological factors that could be helpful as biomarkers of the disease, potentially leading to an earlier prediction of disease course and disability progression. DESIGN Retrospective, cross-sectional-study. METHODS Best-corrected visual acuity (BCVA), ophthalmological biomicroscopy of the anterior segment and fundus, structural optical coherence tomography (OCT) with retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC), and OCT angiography (OCTA) with vascular density (VD) were performed. The following clinical and neuro-radiological features were assessed: MS phenotype, disease duration, clinical severity, type of treatment, and T2-weighted lesion and T1-weighted Gd+ enhancing lesion number on the brain and spinal cord MRI. RESULTS One hundred and six patients (212 eyes) were analyzed. Sixty-six of them (62.2%) had MS and 40 (37.8%) were matched healthy controls (HCs). patients with MS showed lower RNFL, GCC, and VD in the radial peripapillary capillary plexus than controls in both eyes (P < .05). By Performing a logistic regression with a distinct MS outcome for both eyes, we were able to demonstrate that the value that was most predictive of MS was the average GCC thickness (P = .009). Regression analysis demonstrated that patients with a higher T2-weighted lesions showed a lower RNFL thickness value and reduced GCC and VD values than those with a low lesion load (P < .01 and P < .05, respectively). Similarly, relapsing MS patients showed lower RNFL values (P < .05). CONCLUSIONS Several OCT and OCTA-optic nerve parameters could be useful prognostic biomarkers for the MS disease course in clinical practice. However, it is necessary to do additional research with larger sample sizes in order to validate these findings.
Collapse
Affiliation(s)
- Maria Cristina Savastano
- From the Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS (M.C.S., F.G., V.C., M.M.C., C.F., S.R.), Rome, Italy; Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy
| | - Viviana Nociti
- Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy; Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica (V.N., M.B., M.M.), Rome, Italy
| | - Federico Giannuzzi
- From the Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS (M.C.S., F.G., V.C., M.M.C., C.F., S.R.), Rome, Italy; Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy.
| | - Valentina Cestrone
- From the Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS (M.C.S., F.G., V.C., M.M.C., C.F., S.R.), Rome, Italy; Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy
| | - Matteo Mario Carlà
- From the Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS (M.C.S., F.G., V.C., M.M.C., C.F., S.R.), Rome, Italy; Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy
| | - Claudia Fossataro
- From the Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS (M.C.S., F.G., V.C., M.M.C., C.F., S.R.), Rome, Italy; Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy
| | - Ilaria Biagini
- Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy; Department NEUROFARBA, University of Florence (I.B.), Florence, Italy
| | - Clara Rizzo
- Ophthalmology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa (C.R.), Pisa, Italy; Ophthalmology Unit, University of Verona (C.R., R.K.), Verona, Italy
| | - Raphael Kilian
- Ophthalmology Unit, University of Verona (C.R., R.K.), Verona, Italy
| | - Marco Bisurgi
- Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica (V.N., M.B., M.M.), Rome, Italy; UOC Neurologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS (M.B., P.C., M.M.), Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS (M.B., P.C., M.M.), Rome, Italy
| | - Massimiliano Mirabella
- Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica (V.N., M.B., M.M.), Rome, Italy; UOC Neurologia, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS (M.B., P.C., M.M.), Rome, Italy
| | - Stanislao Rizzo
- From the Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS (M.C.S., F.G., V.C., M.M.C., C.F., S.R.), Rome, Italy; Catholic University of the Sacred Heart (M.C.S., V.N., F.G., V.C., M.M.C., C.F., I.B., S.R.), Rome, Italy; Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze (S.R.), Pisa, Italy
| |
Collapse
|
33
|
Kolahi S, Zarei D, Issaiy M, Shakiba M, Azizi N, Firouznia K. Choroid plexus volume changes in multiple sclerosis: insights from a systematic review and meta-analysis of magnetic resonance imaging studies. Neuroradiology 2024; 66:1869-1886. [PMID: 39105769 DOI: 10.1007/s00234-024-03439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Multiple sclerosis (MS) is a chronic autoimmune disease characterized by the destruction of the myelin sheath within the central nervous system. The etiology of MS involves a complex interplay of genetic, environmental, and immunological factors. Recent studies indicated the potential role of the choroid plexus (CP) in the pathogenesis and progression of MS. This systematic review aims to assess existing research on the volume alterations of the CP in MS patients compared to the normal population. METHODS A comprehensive search was conducted across databases including PubMed, Embase, Scopus, and Web of Science up to June 2024. Data from the included studies were synthesized using a meta-analytical approach with a random-effects model, assessing heterogeneity with the I2 and Tau-squared indices. RESULTS We included 17 studies in this systematic review. The meta-analysis, which included data from eight studies reporting CP volume relative to TIV, found a statistically significant increase in CP volume in MS patients compared to healthy controls (HCs). The SMD was 0.77 (95% CI: 0.61 to 0.93), indicating a large effect size. This analysis showed no heterogeneity (I² = 0%). A separate meta-analysis was conducted using five studies that reported CP volume as normalized volume, resulting in an SMD of 0.63 (95% CI: 0.2-1.06). CONCLUSION This study demonstrates an increase in CP volume among MS patients compared to HCs, implying the potential involvement of CP in MS pathogenesis and/or progression. These results show that CP might serve as a radiological indicator in the diagnosis and prognosis of MS.
Collapse
Affiliation(s)
- Shahriar Kolahi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Diana Zarei
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbod Issaiy
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Madjid Shakiba
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Azizi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Kavous Firouznia
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Mwema A, Gratpain V, Ucakar B, Vanvarenberg K, Perdaens O, van Pesch V, Muccioli GG, des Rieux A. Impact of calcitriol and PGD 2-G-loaded lipid nanocapsules on oligodendrocyte progenitor cell differentiation and remyelination. Drug Deliv Transl Res 2024; 14:3128-3146. [PMID: 38366115 DOI: 10.1007/s13346-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS) in need of a curative treatment. MS research has recently focused on the development of pro-remyelinating treatments and neuroprotective therapies. Here, we aimed at favoring remyelination and reducing neuro-inflammation in a cuprizone mouse model of brain demyelination using nanomedicines. We have selected lipid nanocapsules (LNC) coated with the cell-penetrating peptide transactivator of translation (TAT), loaded with either a pro-remyelinating compound, calcitriol (Cal-LNC TAT), or an anti-inflammatory bioactive lipid, prostaglandin D2-glycerol ester (PGD2-G) (PGD2-G-LNC TAT). Following the characterization of these formulations, we showed that Cal-LNC TAT in combination with PGD2-G-LNC TAT increased the mRNA expression of oligodendrocyte differentiation markers both in the CG-4 cell line and in primary mixed glial cell (MGC) cultures. However, while the combination of Cal-LNC TAT and PGD2-G-LNC TAT showed promising results in vitro, no significant impact, in terms of remyelination, astrogliosis, and microgliosis, was observed in vivo in the corpus callosum of cuprizone-treated mice following intranasal administration. Thus, although calcitriol's beneficial effects have been abundantly described in the literature in the context of MS, here, we show that the different doses of calcitriol tested had a negative impact on the mice well-being and showed no beneficial effect in the cuprizone model in terms of remyelination and neuro-inflammation, alone and when combined with PGD2-G-LNC TAT.
Collapse
Affiliation(s)
- Ariane Mwema
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Viridiane Gratpain
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Océane Perdaens
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| |
Collapse
|
35
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
36
|
Zhang Q, Zhang Y, Zou M, Wu H, Liu C, Mi Y, Zhu J, Wang Y, Jin T. The chemically stable analogue of resolvin D1 ameliorates experimental autoimmune encephalomyelitis by mediating the resolution of inflammation. Int Immunopharmacol 2024; 140:112740. [PMID: 39116500 DOI: 10.1016/j.intimp.2024.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
While Resolvin D1 (RvD1) shows promise in resolving inflammation in experimental autoimmune encephalomyelitis (EAE), its pro-resolving roles on dendritic cells (DCs) remain unknown, and the chemical instability of RvD1 poses significant challenges to its drug development. This study aims to investigate whether 4-(2'-methoxyphenyl)-1-[2'-[N-(2″-pyridinyl)-p-fluorobenzamido]ethyl]piperazine (p-MPPF), a novel chemically stable analogue of RvD1, can play a pro-resolving role in EAE, particularly on DCs, and if p-MPPF could serve as a potential substitute for RvD1. We showed that both RvD1 and p-MPPF mediated the resolution of inflammation in EAE, as evidenced by ameliorated EAE progression, attenuated pathological changes in the spinal cord, altered cytokine expression profile in serum, and reduced proportion of pro-inflammatory immune cells in the spleen. Utilizing DCs derived from both the spleen and bone marrow of EAE, our investigation showed that RvD1 and p-MPPF prevented DC maturation, decreased pro-inflammatory cytokine secretion, shifted DCs away from a pro-inflammatory phenotype, increased the phagocytosis capacity of DCs, and suppressed their ability to induce differentiation of CD4+ T cells into Th1 and Th17 subsets. For underlying intracellular mechanisms, we found that RvD1 and p-MPPF down-regulated the lactate dehydrogenase A signaling pathways. Comparisons between RvD1 and p-MPPF showed that they exerted overlapped pro-resolving effects to a large extent. This study demonstrates that both RvD1 and p-MPPF exert therapeutic effects on EAE by mediating inflammation resolution, which is closely associated with modulating DC immune function towards a tolerogenic phenotype. SPM mimetics may serve as a more promising therapeutic drug.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Caiyun Liu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yan Mi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ying Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
37
|
Yang Y, Zhao Y, Liu H, Wu X, Guo M, Xie L, Wang G, Shi J, Yu W, Dong G. Inflammation-Targeted Biomimetic Nano-Decoys via Inhibiting the Infiltration of Immune Cells and Effectively Delivering Glucocorticoids for Enhanced Multiple Sclerosis Treatment. Adv Healthc Mater 2024:e2402965. [PMID: 39440626 DOI: 10.1002/adhm.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Excessive infiltration of neutrophil and inflammatory cytokines accumulation as well as the inadequate delivery of drugs to the targeted site are key pathological cascades in multiple sclerosis (MS). Herein, inflammation-targeting biomimetic nano-decoys (TFMN) is developed that inhibit the infiltration of immune cells and effectively deliver glucocorticoids to lesions for enhanced MS treatment. Nano-decoys encapsulated with the glucocorticoid methylprednisolone (MPS) are prepared by coating neutrophil membrane (NM) on nanoparticles formed by the self-assembly of tannic acid and poloxamer188/pluronic68. Benefiting from the natural inflammation-targeting ability of activated neutrophil membranes, TFMN can target the lesion site and prevent neutrophils infiltration by adsorbing and neutralizing elevated neutrophil-related cytokines, subsequently modulating the inflammatory microenvironment in experimental autoimmune encephalomyelitis mice. TFMN exhibits a strong antioxidant capacity and scavenged excessive reactive oxygen species to enhance neuronal protection. Furthermore, at the inflammation site, perforin, discharged by cytotoxic T-lymphocytes, triggered the controlled release of MPS within the TFMN through perforin-formed pores in the NM. Simultaneously, this mechanism protected neurons from perforin-induced toxicity. The MPS liberated at the targeted site achieves optimal drug accumulation, thereby enhancing therapeutic efficacy. In conclusion, the innovative system shows potential for integrating various therapeutic agents, offering a novel strategy for CNS disorders.
Collapse
Affiliation(s)
- Yiling Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huixian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyun Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
38
|
Warlo LS, El Bardai S, de Vries A, van Veelen ML, Moors S, Rings EH, Legerstee JS, Dierckx B. Game-Based eHealth Interventions for the Reduction of Fatigue in People With Chronic Diseases: Systematic Review and Meta-Analysis. JMIR Serious Games 2024; 12:e55034. [PMID: 39419502 PMCID: PMC11528177 DOI: 10.2196/55034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Fatigue is a common and debilitating side effect of chronic diseases, significantly impacting patients' quality of life. While physical exercise and psychological treatments have been shown to reduce fatigue, patients often struggle with adherence to these interventions in clinical practice. Game-based eHealth interventions are believed to address adherence issues by making the intervention more accessible and engaging. OBJECTIVE This study aims to compile empirical evidence on game-based eHealth interventions for fatigue in individuals with chronic diseases and to evaluate their effectiveness in alleviating fatigue. METHODS A comprehensive literature search was performed across Embase, MEDLINE ALL, PsycINFO, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar in August 2021. Study characteristics and outcomes from the included studies were extracted, and a random-effects meta-analysis was conducted. Sensitivity and subgroup analyses were performed to identify sources of heterogeneity. RESULTS Of 1742 studies identified, 17 were included in the meta-analysis. These studies covered 5 different chronic diseases: multiple sclerosis (n=10), cancer (n=3), renal disease (n=2), stroke (n=1), and Parkinson disease (n=1). All but 1 study used exergaming interventions. The meta-analysis revealed a significant moderate effect size in reducing fatigue favoring the experimental interventions (standardized mean difference [SMD] -0.65, 95% CI -1.09 to -0.21, P=.003) compared with control conditions consisting of conventional care and no care. However, heterogeneity was high (I2=85.87%). Subgroup analyses were conducted for the 2 most prevalent diseases. The effect size for the multiple sclerosis subgroup showed a trend in favor of eHealth interventions (SMD -0.47, 95% CI -0.95 to 0.01, P=.05, I2=63.10%), but was not significant for the cancer group (SMD 0.61, 95% CI -0.36 to 1.58, P=.22). Balance exercises appeared particularly effective in reducing fatigue (SMD -1.19, 95% CI -1.95 to -0.42, P=.002). CONCLUSIONS Game-based eHealth interventions appear effective in reducing fatigue in individuals with chronic diseases. Further research is needed to reinforce these findings and explore their impact on specific diseases. Additionally, there is a lack of investigation into interventions beyond exergaming within the field of game-based learning.
Collapse
Affiliation(s)
- Leonie S Warlo
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Souraya El Bardai
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Andrica de Vries
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marie-Lise van Veelen
- Department of Neurosurgery, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Suzan Moors
- Department of Physiotherapy, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Edmond Hhm Rings
- Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jeroen S Legerstee
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
- Levvel, Academic Center for Child and Adolescent Psychiatry and Specialized Youth Care, Amsterdam, Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| | - Bram Dierckx
- Department of Child and Adolescent Psychiatry/Psychology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
39
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Gurski F, Shirvanchi K, Rajendran V, Rajendran R, Megalofonou FF, Böttiger G, Stadelmann C, Bhushan S, Ergün S, Karnati S, Berghoff M. Anti-inflammatory and remyelinating effects of fexagratinib in experimental multiple sclerosis. Br J Pharmacol 2024. [PMID: 39367768 DOI: 10.1111/bph.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND AND PURPOSE FGF, VEGFR-2 and CSF1R signalling pathways play a key role in the pathogenesis of multiple sclerosis (MS). Selective inhibition of FGFR by infigratinib in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) prevented severe first clinical episodes by 40%; inflammation and neurodegeneration were reduced, and remyelination was enhanced. Multi-kinase inhibition of FGFR1-3, CSFR and VEGFR-2 by fexagratinib (formerly known as AZD4547) may be more efficient in reducing inflammation, neurodegeneration and regeneration in the disease model. EXPERIMENTAL APPROACH Female C57BL/6J mice were treated with fexagratinib (6.25 or 12.5 mg·kg-1) orally or placebo over 10 days either from time of EAE induction (prevention experiment) or onset of symptoms (suppression experiment). Effects on inflammation, neurodegeneration and remyelination were assessed at the peak of the disease (Day 18/20 post immunization) and the chronic phase of EAE (Day 41/42). KEY RESULTS In the prevention experiment, treatment with 6.25 or 12.5 mg·kg-1 fexagratinib prevented severe first clinical episodes by 66.7% or 84.6% respectively. Mice treated with 12.5 mg·kg-1 fexagratinib hardly showed any symptoms in the chronic phase of EAE. In the suppression experiment, fexagratinib resulted in a long-lasting reduction of severe symptoms by 91 or 100%. Inflammation and demyelination were reduced, and axonal density, numbers of oligodendrocytes and their precursor cells, and remyelinated axons were increased by both experimental approaches. CONCLUSION AND IMPLICATIONS Multi-kinase inhibition by fexagratinib in a well-tolerated dose of 1 mg·kg-1 in humans may be a promising approach to reduce inflammation and neurodegeneration, to slow down disease progression and support remyelination in patients.
Collapse
Affiliation(s)
- Fynn Gurski
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Kian Shirvanchi
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Ranjithkumar Rajendran
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | | | - Gregor Böttiger
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
41
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
42
|
Schild H, Bopp T. [Immunological foundations of neurological diseases]. DER NERVENARZT 2024; 95:894-908. [PMID: 38953921 DOI: 10.1007/s00115-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.
Collapse
Affiliation(s)
- Hansjörg Schild
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Tobias Bopp
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| |
Collapse
|
43
|
Nieto González N, Rassu G, Cossu M, Catenacci L, Sorrenti ML, Cama ES, Serri C, Giunchedi P, Gavini E. A thermosensitive chitosan hydrogel: An attempt for the nasal delivery of dimethyl fumarate. Int J Biol Macromol 2024; 278:134908. [PMID: 39181356 DOI: 10.1016/j.ijbiomac.2024.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Dimethyl fumarate (DMF) is a drug that is orally administered for the treatment of relapsing-remitting multiple sclerosis. However, DMF causes gastrointestinal side effects and flushing in 43 % of patients, which significantly contributes to treatment discontinuation. To reduce side effects and increase patient compliance, the aim of this study was to develop a thermosensitive chitosan/glycerophosphate hydrogel for the nasal administration of DMF. A binary system of DMF with hydroxypropyl-β-cyclodextrin (HP-β-CD) was made and included in the hydrogel precursor solution. The precursor solution (drug content, DMF stability, thermogelling properties, viscosity), and the resulting thermosensitive hydrogel (mucoadhesion, in vitro DMF permeation) were characterized. HP-β-CD was able to interact with DMF and improve its water solubility. The leader thermosensitive nasal solution, G1 solution, was loaded with approximately 92 % DMF, which remained stable for 21 days. The G1 solution formed a hydrogel in approximately 2-1 min; it had a pH of 6.8 ± 0.06 and caused no significant change in the osmolality of the simulated nasal medium. The G1 hydrogel showed good mucoadhesive properties and released DMF that permeated in vitro in a controlled manner. As a result, G1 is a potential new approach to exploit the intranasal administration of DMF for treating multiple sclerosis.
Collapse
Affiliation(s)
- Noelia Nieto González
- PhD Program in Chemical Science and Technology, Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy.
| | - Massimo Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Milena L Sorrenti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Sofia Cama
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, via Muroni 23a, 07100 Sassari, Italy
| |
Collapse
|
44
|
Waede M, Voss LF, Kingo C, Moeller JB, Elkjaer ML, Illes Z. Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy. Ann Clin Transl Neurol 2024; 11:2657-2672. [PMID: 39279291 PMCID: PMC11514931 DOI: 10.1002/acn3.52182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Anti-CD20 therapy is a highly effective treatment for multiple sclerosis (MS). In this study, we investigated MS-related changes in peripheral blood mononuclear cell (PBMC) subsets compared to healthy controls and longitudinal changes related to the treatment. METHODS Multicolor spectral flow cytometry analysis was performed on 78 samples to characterize disease- and treatment-related PBMC clusters. Blood samples from MS patients were collected at baseline and up to 8 months post-treatment, with three collection points after treatment initiation. Unsupervised clustering tools and manual gating were applied to identify subclusters of interest and quantify changes. RESULTS B cells were depleted from the periphery after anti-CD20 treatment as expected, and we observed an isolated acute, transitory drop in the proportion of natural killer (NK) and NKT cells among the main populations of PBMC (P = 0.03, P = 0.004). Major affected PBMC subpopulations were cytotoxic immune cells (NK, NKT, and CD8+ T cells), and we observed a higher proportion of cytotoxic cells with reduced brain-homing ability and a higher regulatory function as a long-term anti-CD20-related effect. Additionally, anti-CD20 therapy altered distributions of memory CD8+ T cells and reduced exhaustion markers in both CD4+ and CD8+ T cells. INTERPRETATION The findings of this study elucidate phenotypic clusters of NK and CD8+ T cells, which have previously been underexplored in the context of anti-CD20 therapy. Phenotypic modifications towards a more regulatory and controlled phenotype suggest that these subpopulations may play a critical and previously unrecognized role in mediating the therapeutic efficacy of anti-CD20 treatments.
Collapse
Affiliation(s)
- Mie Waede
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Lasse F. Voss
- Section for Experimental and Translational Immunology, Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Christina Kingo
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Jesper B. Moeller
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced Study, University of Southern DenmarkOdenseDenmark
| | - Maria L. Elkjaer
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Institute for Computational Systems Biology, University of HamburgHamburgGermany
| | - Zsolt Illes
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- BRIDGE – Brain Research Interdisciplinary Guided ExcellenceUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
45
|
Ding JQ, Zhang JQ, Zhao SJ, Jiang DB, Lu JR, Yang SY, Wang J, Sun YJ, Huang YN, Hu CC, Zhang XY, Zhang JX, Liu TY, Han CY, Qiao XP, Guo J, Zhao C, Yang K. Follicular CD8 + T cells promote immunoglobulin production and demyelination in multiple sclerosis and a murine model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167303. [PMID: 38878831 DOI: 10.1016/j.bbadis.2024.167303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.
Collapse
Affiliation(s)
- Jia-Qi Ding
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China; Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun-Qi Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Si-Jia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Dong-Bo Jiang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Rui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Shu-Ya Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yuan-Jie Sun
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Yi-Nan Huang
- Department of Emergency, the Second Affiliated Hospital (Xixian New District Central Hospital), Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Chen-Chen Hu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xi-Yang Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jia-Xing Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Tian-Yue Liu
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Chen-Ying Han
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Xu-Peng Qiao
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, China.
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University (the Fourth Military Medical University), Shaanxi, China.
| |
Collapse
|
46
|
Geraldes R, Arrambide G, Banwell B, Rovira À, Cortese R, Lassmann H, Messina S, Rocca MA, Waters P, Chard D, Gasperini C, Hacohen Y, Mariano R, Paul F, DeLuca GC, Enzinger C, Kappos L, Leite MI, Sastre-Garriga J, Yousry T, Ciccarelli O, Filippi M, Barkhof F, Palace J. The influence of MOGAD on diagnosis of multiple sclerosis using MRI. Nat Rev Neurol 2024; 20:620-635. [PMID: 39227463 DOI: 10.1038/s41582-024-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an immune-mediated demyelinating disease that is challenging to differentiate from multiple sclerosis (MS), as the clinical phenotypes overlap, and people with MOGAD can fulfil the current MRI-based diagnostic criteria for MS. In addition, the MOG antibody assays that are an essential component of MOGAD diagnosis are not standardized. Accurate diagnosis of MOGAD is crucial because the treatments and long-term prognosis differ from those for MS. This Expert Recommendation summarizes the outcomes from a Magnetic Resonance Imaging in MS workshop held in Oxford, UK in May 2022, in which MS and MOGAD experts reflected on the pathology and clinical features of these disorders, the contributions of MRI to their diagnosis and the clinical use of the MOG antibody assay. We also critically reviewed the literature to assess the validity of distinctive imaging features in the current MS and MOGAD criteria. We conclude that dedicated orbital and spinal cord imaging (with axial slices) can inform MOGAD diagnosis and also illuminate differential diagnoses. We provide practical guidance to neurologists and neuroradiologists on how to navigate the current MOGAD and MS criteria. We suggest a strategy that includes useful imaging discriminators on standard clinical MRI and discuss imaging features detected by non-conventional MRI sequences that demonstrate promise in differentiating these two disorders.
Collapse
Affiliation(s)
- Ruth Geraldes
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
- Wexham Park Hospital, Frimley Health Foundation Trust, Slough, UK.
| | - Georgina Arrambide
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Silvia Messina
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Wexham Park Hospital, Frimley Health Foundation Trust, Slough, UK
| | - Mara Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals (CLH) Biomedical Research Centre, London, UK
| | - Claudio Gasperini
- Multiple Sclerosis Centre, Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Romina Mariano
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience, University Hospital and University, Basel, Switzerland
| | - M Isabel Leite
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jaume Sastre-Garriga
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tarek Yousry
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, UK
- University College London Hospitals (UCLH) National Institute for Health and Research (NIHR) Biomedical Research Centre (BRC), London, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Jacqueline Palace
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
| |
Collapse
|
47
|
Sun D, Wang R, Du Q, Chen H, Shi Z, Zhang Y, Zhang N, Wang X, Zhou H. Integrating genetic and proteomic data to elucidate the association between immune system and blood-brain barrier dysfunction with multiple sclerosis risk and severity. J Affect Disord 2024; 362:652-660. [PMID: 39029667 DOI: 10.1016/j.jad.2024.07.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Immune system dysfunction and blood-brain barrier (BBB) impairment are implicated in multiple sclerosis (MS) risk and severity. However, the causal relationships and potential therapeutic targets remain unclear. METHODS Leveraging the MRC IEU OpenGWAS data infrastructure, we extracted 1254 peripheral immune systems and 792 BBB biomarkers as genetic instruments for exposure. MS risk data from the International Multiple Sclerosis Genetics Consortium (IMSGC) (47,429 MS cases, 68,374 controls) served as one outcome, replicated in FinnGen (1048 cases, 217,141 controls) and the UK Biobank (1679 cases, 461,254 controls). Genetic associations with MS severity derived from IMSGC and MultipleMS Consortium GWAS data (12,584 cases). Two-sample, bidirectional, and protein drug-target MR analyses were conducted, along with interaction analysis of identified proteins and druggability assessment. RESULTS Causal relationships between 45 immunological markers, 15 BBB markers, and MS risk were strongly supported. In peripheral immunity, the causal associations with MS are predominantly concentrated in CD4+ T cells and CD8+ T cells. Notably, anti-Epstein-Barr virus nuclear antigen (EBNA) IgG levels exhibited the most significant causal effect on MS risk (OR = 225.62, P = 5.63E-208), replicated in the MS severity (OR = 1.11, P = 0.04). Weak causal evidence was found between 62 immunological markers, 35 BBB markers, and MS severity. Reverse MR analysis suggested potential causal effects of MS risk on 8 markers. Drug-targeted MR analysis indicated potential therapeutic benefits in reducing MS risk for CD40 (OR = 0.71, P = 7.24E-13, PPH4 = 97.6 %), AHSG (OR = 0.88, P = 2.91E-05, PPH4 = 94.4 %), and FCRL3 (Sun BB et al.: OR = 0.83, P = 8.93E-09, PPH4 = 94.2 %, Suhre K et al.: OR = 0.88, P = 5.20E-08, PPH4 = 99.2 %). CONCLUSIONS This study provides evidence supporting the causal effects of immune system and BBB dysfunction on MS risk and severity. It emphasizes the significant role of anti-EBNA IgG levels, CD4+ T cells, and CD8+ T cells in MS, and delineates the potential therapeutic benefits of targeting three proteins associated with MS risk: CD40, AHSG, and FCRL3.
Collapse
Affiliation(s)
- Dongren Sun
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Yangyang Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Nana Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China.
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Guo Xuexiang No. 37, Chengdu 610041, China.
| |
Collapse
|
48
|
Salamatullah HK, Alkhiri A, Ezzi S, Alghamdi G, Alharbi G, Alzahrani WS, Alghaythee HK, Almaghrabi AA, Alturki F, Alamri AF, Makkawi S. The interaction between exercise and neurofilament light chain in multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord 2024; 90:105809. [PMID: 39151239 DOI: 10.1016/j.msard.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Exercise in patients with multiple sclerosis (pwMS) found to improve symptom management and regain function. Whether exercise lowers neurofilament light chain (NfL), neuroaxonal injury biomarker, in MS remains unknown with conflicting findings. In this study, we aimed to assess the interaction between exercise and NfL levels in pwMS. METHODS Systematic search of Medline, CENTRAL, Embase, and Web of Science was conducted until March 2024 to identify relevant reports. We included studies that investigated the mean change in NfL levels pre- and post-training programs and compared them to different exercise programs or no exercise activity control groups. A standardized mean difference (SMD) with a 95 % confidence interval were applied using a random-effects model. RESULTS Of 222 articles, 7 studies met the inclusion criteria. Patients who underwent structured exercise programs had a significant decrease in blood NfL levels post-training (SMD -0.55; 95 % CI -1.00, -0.09). Specifically, outdoor Pilates and home-based trainings were significantly associated with blood NfL reduction (SMD -2.08; 95 % CI -2.99, -1.17) and (SMD -1.46; 95 % CI -2.28, -0.64), respectively. Patients in the control group did not show significant differences in blood NfL levels between the baseline and at the end of the study (SMD 0.04; 95 % CI -0.17, 0.24). Subgroup analysis based on duration revealed that 8 weeks of exercise significantly reduced blood NfL levels (SMD -0.73; 95 % CI -1.35, -0.11). CONCLUSION Our study provides preliminary evidence for the potential role of training in reducing blood NfL levels in pwMS. However, more rigorous, and well-designed studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Hassan K Salamatullah
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ahmed Alkhiri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Suzana Ezzi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Ghidaa Alghamdi
- College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghadi Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Waleed S Alzahrani
- Department of Neuroscience, Ministry of The National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Himyan Kamel Alghaythee
- Department of Neuroscience, Ministry of The National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Ahmed A Almaghrabi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Fahad Alturki
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Aser F Alamri
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Seraj Makkawi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia; Department of Neuroscience, Ministry of The National Guard Health Affairs, Jeddah, Saudi Arabia.
| |
Collapse
|
49
|
Cordeiro B, Ahn JJ, Gawde S, Ucciferri C, Alvarez-Sanchez N, Revelo XS, Stickle N, Massey K, Brooks DG, Guthridge JM, Pardo G, Winer DA, Axtell RC, Dunn SE. Obesity intensifies sex-specific interferon signaling to selectively worsen central nervous system autoimmunity in females. Cell Metab 2024; 36:2298-2314.e11. [PMID: 39168127 PMCID: PMC11463735 DOI: 10.1016/j.cmet.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Obesity has been implicated in the rise of autoimmunity in women. We report that obesity induces a serum protein signature that is associated with T helper 1 (Th1), interleukin (IL)-17, and multiple sclerosis (MS) signaling pathways selectively in human females. Females, but not male mice, subjected to diet-induced overweightness/obesity (DIO) exhibited upregulated Th1/IL-17 inflammation in the central nervous system during experimental autoimmune encephalomyelitis, a model of MS. This was associated with worsened disability and a heightened expansion of myelin-specific Th1 cells in the peripheral lymphoid organs. Moreover, at steady state, DIO increased serum levels of interferon (IFN)-α and potentiated STAT1 expression and IFN-γ production by naive CD4+ T cells uniquely in female mice. This T cell phenotype was driven by increased adiposity and was prevented by the removal of ovaries or knockdown of the type I IFN receptor in T cells. Our findings offer a mechanistic explanation of how obesity enhances autoimmunity.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | | | - Saurabh Gawde
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA
| | - Carmen Ucciferri
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalie Stickle
- Bioinformatics and High Performance Computing Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kaylea Massey
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gabriel Pardo
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Multiple Sclerosis Center of Excellence, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel A Winer
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Robert C Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK 73104, USA.
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Women's College Research Institute, Women's College Hospital, Toronto, ON M5G 1N8, Canada; Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, ON M4M 3M5, Canada.
| |
Collapse
|
50
|
Helminen J, Jehkonen M. Relationship between neuropsychiatric symptoms and cognition in multiple sclerosis: A systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-16. [PMID: 39325074 DOI: 10.1080/23279095.2024.2403764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The results of previous research on the relationship between neuropsychiatric symptoms and cognition in multiple sclerosis (MS) have been mixed. The aim of this systematic review was to examine the evidence on the relationship between neuropsychiatric symptoms and different cognitive domains in adult (≥18 years) MS patients. A literature search was conducted in the Ovid Medline, PsycInfo, Scopus, and Web of Science databases. A total of 4,216 nonduplicate records were identified, and after screening, 37 studies met the inclusion criteria and were included in the systematic review. Higher levels of depressive symptoms were related to deficits in processing speed, verbal memory, executive functions, visuospatial functions, and attention in MS patients. Symptoms of anxiety were not consistently related to any of the cognitive functions, but the relationship to deficits in visual memory received a minimal amount of support. Higher levels of apathy were most clearly associated with impairment in executive functions, but the association with deficits in visuospatial functions, visual memory, working memory, and processing speed was also supported. The results indicate that more neuropsychiatric symptoms, especially depressive symptoms and apathy, are associated with cognitive dysfunction in MS patients. These results can be utilized in the clinical examination and treatment planning of MS patients.
Collapse
Affiliation(s)
- Johanna Helminen
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Mervi Jehkonen
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tays Research Services, Tampere University Hospital, Tampere, Finland
| |
Collapse
|