1
|
Aguirre F, Justo ME, Cialdella L, Paz ML. AChR-blocking antibodies and complement system dynamics: evaluating their interplay and clinical implications in myasthenia gravis. Neurol Sci 2024:10.1007/s10072-024-07889-8. [PMID: 39676116 DOI: 10.1007/s10072-024-07889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disorder characterised by autoantibodies (abs) targeting proteins at the neuromuscular junction, primarily the acetylcholine receptor (AChR). While the role of AChR-binding abs is well-established, the pathogenicity and clinical relevance of AChR-blocking antibodies in MG, and their association with complement system, remain less understood. AIMS This study aims to provide comprehensive insights into the prevalence and interplay of AChR-blocking antibodies and the complement system in an Argentinian MG cohort, investigating their relationships with disease activity. METHODS We studied 75 MG patients with detectable AChR-binding abs, assessing the presence of AChR-blocking abs and complement components C3, C4, and C5a. We also examined clinical severity using the Activities of Daily Living and MG Composite scores. Correlation analyses were made to elucidate associations. RESULTS AChR-blocking abs were detected in 49.3% of the patients. An inverse correlation was found between AChR-blocking abs titres and disease severity, with a higher titre associated with milder symptoms. Complement analysis revealed higher C4 levels in the AChR-blocking abs positive group, indicating reduced complement activation. CONCLUSION Our study provides valuable insights into the prevalence of AChR-blocking antibodies. Higher AChR-blocking abs titres were associated with less severe MG and reduced complement system activation, indicating a potential protective mechanism for those abs. These findings suggest that AChR-blocking abs could serve as a potential biomarker for a milder disease course and highlight the need for further research to understand their role in MG pathology, which will improve strategies for clinical management and diagnosis.
Collapse
Affiliation(s)
- Florencia Aguirre
- Sección de Neuroinmunología y Electrofisiología, División Neurología, Hospital José María Ramos Mejía, Centro Argentino de Neuroinmunología (CADENI), Facultad de Medicina - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano E Justo
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Estudios de La Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Buenos Aires, Argentina
| | - Lucía Cialdella
- Sección de Neuroinmunología y Electrofisiología, División Neurología, Hospital José María Ramos Mejía, Centro Argentino de Neuroinmunología (CADENI), Facultad de Medicina - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela L Paz
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.
- CONICET - Universidad de Buenos Aires, Instituto de Estudios de La Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Mousavi A, Kumar P, Frykman H. The changing landscape of autoantibody testing in myasthenia gravis in the setting of novel drug treatments. Clin Biochem 2024; 133-134:110826. [PMID: 39357636 DOI: 10.1016/j.clinbiochem.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Acquired myasthenia gravis (MG) is an autoimmune disease targeting the specific proteins in the postsynaptic muscle membrane. 50% of ocular and 80% of generalized MG have acetylcholine receptor antibodies (AChR Abs). 1-10% of MG patients have antibodies against muscle-specific kinase (MuSK), and 2-50 % of seronegative MG cases have antibodies against lipoprotein-receptor-related protein4 antibodies (LRP4 Abs). Serological testing is crucial for diagnosing and determining the appropriate therapeutic approach for MG patients. The radioimmunoprecipitation assay (RIPA) method is a historical standard test for detecting the AChR Abs and MuSK Abs. While it has nearly 100% specificity in the AChR Abs detection, its sensitivity is between 50--92%. The sensitivity and specificity of RIPA for detecting MuSK Abs is much lower. The fixed and live Cell-Based assays (f-CBA and L- CBA) have higher sensitivity than RIPA. With advancements in the serological diagnosis and management of MG, we now recommend a complete reflex testing algorithm on the first pretreatment sample of a suspected MG patient, starting with the binding and blocking assays for AChR Abs by RIPA and/ or f-CBA. If AChR Ab is negative, then reflex to MuSK Abs by RIPA and/ or CBAs. If AChR and MuSK Abs are negative, then use clustered L-CBA by request.
Collapse
Affiliation(s)
- Ali Mousavi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Pankaj Kumar
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada
| | - Hans Frykman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Neuroimmunology Lab. Inc., Vancouver, British Columbia, Canada; Neurocode Lab. Inc. Bellingham, Washington, USA.
| |
Collapse
|
3
|
Bril V, Gilhus NE. Aging and infectious diseases in myasthenia gravis. J Neurol Sci 2024; 468:123314. [PMID: 39671879 DOI: 10.1016/j.jns.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 12/15/2024]
Abstract
Over the past 120 years, mortality associated with myasthenia gravis (MG) has steadily decreased while the incidence of MG has increased. While mortality due to MG has been ≤5 % for at least the past 25 years, the prevalence of MG has increased. This increase in prevalence of MG may be due, in part, to improvements in diagnostics but also to an aging global population and immunosenescence as the largest increases in MG prevalence have been in patients ≥65 years old. In fact, a "very late-onset" subtype of MG has been proposed for patients diagnosed at or after age 65 years. These patients are predominantly anti-AChR antibody positive and thymoma negative. Preferred therapeutic options differ based on age at MG onset. Immunosenescence may play a role not only in MG etiology but also in the increased susceptibility of MG patients to infection. Immunosuppressive effects of MG therapies can also increase vulnerability to infection. Despite the improvements in MG treatment, mortality in MG patients remains higher than in the non-MG population. This is partly due to increased vulnerability to infection but also due to infection acting as a precipitating factor for MG exacerbation or crisis. The increased infection risk inherent with MG and the increased risk resulting from some therapies calls for increased diligence in monitoring and treating infections in MG patients.
Collapse
Affiliation(s)
- Vera Bril
- Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Mariscal A, Martínez C, Goethals L, Cortés-Vicente E, Moltó E, Juárez C, Barneda-Zahonero B, Querol L, Le Panse R, Gallardo E. Modified radioimmunoassay versus ELISA to quantify anti-acetylcholine receptor antibodies in a mouse model of myasthenia gravis. J Immunol Methods 2024; 534:113748. [PMID: 39241980 DOI: 10.1016/j.jim.2024.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In mouse models of myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies can be quantified to monitor disease progression and treatment response. In mice, enzyme-linked immunosorbent assay (ELISA) is the gold standard to quantify these antibodies. However, this method requires antigen purification, which is both time-consuming and expensive. In humans, radioimmunoassay (RIA)-which is more sensitive than ELISA-is commonly used to quantify AChR antibodies. At present, however, no commercial RIA kits are available to quantify these antibodies in mice. The aim of this study was to compare a modified commercial human RIA kit to two ELISA methods to detect AChR antibodies in an experimental autoimmune mouse model of MG (EAMG). C57BL/6 J mice were immunized with purified AChR from Tetronarce californica (T-AChR). Serum samples were analyzed by RIA and two ELISAs (T-AChR and purified mouse AChR peptide [m-AChR]). The modified RIA showed excellent sensitivity (84.1 %) and specificity (100 %) for the detection of AChR antibodies. RIA showed a good agreement with T-AChR ELISA (κ = 0.69) but only moderate agreement with m-AChR ELISA (κ = 0.49). These results demonstrate the feasibility of modifying a commercially-available RIA kit to quantify AChR antibodies in EAMG. The advantage of this technique is that it eliminates the need to develop the entire methodology in-house and reduces inter and intra-laboratory variability.
Collapse
Affiliation(s)
- Anaís Mariscal
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
| | | | - Lea Goethals
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS 974, Paris, France
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Disorders Laboratory, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth Moltó
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Cándido Juárez
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | | | - Luis Querol
- Neuromuscular Diseases Unit, Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Disorders Laboratory, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS 974, Paris, France
| | - Eduard Gallardo
- Neuromuscular Disorders Laboratory, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Chen P, Chen J, Huang H, Liu W. Conventional dendritic cells are more activated in the hyperplastic Thymus of myasthenia gravis patients. J Neuroimmunol 2024; 395:578441. [PMID: 39216158 DOI: 10.1016/j.jneuroim.2024.578441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Dendritic cells (DCs) are crucial to form ectopic germinal centers (GCs) in the hyperplastic thymus (HT), which are typically found in anti-acetylcholine receptor autoantibody-positive myasthenia gravis (MG) patients. However, the characteristics of such DCs in the HT and their roles in thymic hyperplasia formation remain unclear. METHODS We collected thymic tissue from MG patients and patients who underwent cardiac surgery. The tissues were cut into sections for immunohistochemistry and immunofluorescence or digested into a single cell suspension for flow cytometry. RESULTS In addition to formation of ectopic GCs, we found that the proportion of the medulla in the thymic parenchyma was higher than that in the cortex (areacortex/areamedulla, 1.279 vs. 0.6576) in the HT of MG patients. The density of conventional dendritic cells (cDCs) in the HT was 131 ± 64.36 per mm2, whereas in normal thymic tissue, the density was 59.17 ± 22.54 per mm2. The more abundant cDCs expressed co-stimulatory molecules (CD80 and CD86) strongly. Moreover, the more abundant subset was mainly CD141+ DCs (cDC1s), accounting for an increase from 15% to 29%. However, these increased cDC1s appeared to be unrelated to Hassall's corpuscles and ectopic GCs. CONCLUSION Thymic hyperplasia in MG patients is manifested as an increase in the proportion of the thymic medulla accompanied by increases in the density and functional activation as well as changes in the subset composition of cDCs.
Collapse
Affiliation(s)
- Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| | - Jiaxin Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Hao Huang
- Department of Neurology, The First People's Hospital of Nanning, Nanning 530022, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
6
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Castro Silva B, Saianda Duarte M, Rodrigues Alves N, Vicente P, Araújo J. Seronegative Myasthenia Gravis: A Rare Disease Triggered by SARS-CoV-2 or a Coincidence? Cureus 2024; 16:e67511. [PMID: 39314596 PMCID: PMC11417286 DOI: 10.7759/cureus.67511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Myasthenia gravis (MG) results from the production of autoantibodies against the neuromuscular junction, leading to muscle weakness. Although the exact cause is not fully understood, it is known that the onset and exacerbations of MG can occur after viral infections. We present the case of a patient with no prior history of MG with new-onset proximal muscle weakness and ptosis, following SARS-CoV-2 infection, This case underscores the potential for autoimmune diseases to be triggered by SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Patricia Vicente
- Internal Medicine, Hospital CUF (Companhia União Fabril) Tejo, Lisboa, PRT
| | - José Araújo
- Internal Medicine, Hospital Beatriz Ângelo, Loures, PRT
| |
Collapse
|
8
|
Sun S, Shen Y, Zhang X, Ding N, Xu Z, Zhang Q, Li L. The MuSK agonist antibody protects the neuromuscular junction and extends the lifespan in C9orf72-ALS mice. Mol Ther 2024; 32:2176-2189. [PMID: 38734896 PMCID: PMC11286808 DOI: 10.1016/j.ymthe.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/06/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.
Collapse
Affiliation(s)
- Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ning Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhe Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qijie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
9
|
Martínez-Martínez L, Lacruz AC, Querol L, Cortés-Vicente E, Pascual E, Rojas-García R, Reyes-Leiva D, Álvaro Y, Moltó E, Ortiz E, Gallardo E, Juárez C, Mariscal A. Inter-laboratory comparison of routine autoantibody detection methods for autoimmune neuropathies and myasthenia gravis. J Neurol 2024; 271:4119-4130. [PMID: 38578496 DOI: 10.1007/s00415-024-12317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
Serological tests are important to detect autoantibodies (autoAbs) in patients with autoimmune neuropathies (AN) and myasthenia gravis (MG) as they are biomarkers for diagnosis, stratification, treatment selection, and monitoring. However, tests to detect autoAbs frequently lack proper standardization and results differ across diagnostic laboratories. We compared results for tests routinely performed in Spanish diagnostic laboratories to detect AN and MG autoAbs. In the Spanish Society of Immunology Autoimmunity Group national workshop, serum samples from 13 patients with AN or MG were tested for anti-ganglioside, anti-myelin-associated glycoprotein (MAG), anti-nicotinic acetylcholine receptor (AChR), and anti-muscle-specific kinase (MuSK) autoAbs using reference methods and were distributed for analysis to 27 participating laboratories using their routine methods. Overserved were inter-laboratory variability and worryingly low sensitivity, especially for anti-ganglioside immunoglobulin G and anti-MAG autoAb detection. This pilot study reflects autoAbs detection state of the art in AN and MG testing in leading diagnostic laboratories in Spain, highlighting the need for standardization prior to clinical use.
Collapse
Affiliation(s)
- Laura Martínez-Martínez
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Anna Calvet Lacruz
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Luis Querol
- Neurology Department, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Neuromuscular Diseases Unit, Centre for Networked Biomedical Research in Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Cortés-Vicente
- Neurology Department, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Neuromuscular Diseases Unit, Centre for Networked Biomedical Research in Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elba Pascual
- Neurology Department, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Neuromuscular Diseases Unit, Centre for Networked Biomedical Research in Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricard Rojas-García
- Neurology Department, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Neuromuscular Diseases Unit, Centre for Networked Biomedical Research in Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Reyes-Leiva
- Neurology Department, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Yolanda Álvaro
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Elisabeth Moltó
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Esther Ortiz
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Eduard Gallardo
- Neurology Department, Neuromuscular Diseases Unit, Hospital de La Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Neuromuscular Diseases Unit, Centre for Networked Biomedical Research in Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Cándido Juárez
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Anaís Mariscal
- Immunology Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain.
| |
Collapse
|
10
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
11
|
Preda OD, Bădeliță S, Ursuleac I, Irimia RM, Balanica S, Cojocaru M, Cotruta C, Dobrea C, Coriu D. Complications of Brentuximab Therapy in Patients with Hodgkin's Lymphoma and Concurrent Autoimmune Pathology-A Case Series. Hematol Rep 2024; 16:299-307. [PMID: 38804283 PMCID: PMC11130784 DOI: 10.3390/hematolrep16020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background: Brentuximab Vedotin (BV) has revolutionized the treatment landscape for Hodgkin's lymphoma, yet its effects on pre-existing autoimmune disorders remain elusive. Methods: Here, we present four cases of patients with concurrent autoimmune conditions-Crohn's disease, vitiligo, type I diabetes, and minimal change disease-undergoing BV therapy for Hodgkin's lymphoma. The patients were treated with A-AVD instead of ABVD due to advanced-stage disease with high IPI scores. Results: Our findings reveal the surprising and complex interplay between BV exposure and autoimmune manifestations, highlighting the need for multidisciplinary collaboration in patient management. Notably, the exacerbation of autoimmune symptoms was observed in the first three cases where T-cell-mediated autoimmunity predominated. Additionally, BV exposure precipitated autoimmune thrombocytopenia in the vitiligo patient, underscoring the profound disruptions in immune regulation. Conversely, in the minimal change disease case, a disease characterized by a blend of B- and T-cell-mediated immunity, the outcome was favorable. Conclusions: This paper underscores the critical importance of vigilance toward autoimmune flare-ups induced by BV in patients with concurrent autoimmune conditions, offering insights for tailored patient care.
Collapse
Affiliation(s)
- Oana Diana Preda
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sorina Bădeliță
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
| | - Iulia Ursuleac
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ruxandra Maria Irimia
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sonia Balanica
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Monica Cojocaru
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Cristina Cotruta
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
| | - Camelia Dobrea
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Daniel Coriu
- University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania; (S.B.); (R.M.I.)
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
12
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
14
|
Almodovar JL, Mehrabyan A. Disease-Based Prognostication: Myasthenia Gravis. Semin Neurol 2023; 43:799-806. [PMID: 37751854 DOI: 10.1055/s-0043-1775791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Myasthenia gravis (MG) is an acquired autoimmune neuromuscular junction transmission disorder that clinically presents as fluctuating or persistent weakness in various skeletal muscle groups. Neuroprognostication in MG begins with some basic observations on the natural history of the disease and known treatment outcomes. Our objective is to provide a framework that can assist a clinician who encounters the MG patient for the first time and attempts to prognosticate probable outcomes in individual patients. In this review article, we explore clinical type, age of onset, antibody status, severity of disease, thymus pathology, autoimmune, and other comorbidities as prognostic factors in MG.
Collapse
Affiliation(s)
- Jorge L Almodovar
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Anahit Mehrabyan
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Gracey C, Balladares R. Symptoms of Myasthenia Gravis Obscured by Old Age and Unilateral Presentation. Cureus 2023; 15:e44737. [PMID: 37809196 PMCID: PMC10555472 DOI: 10.7759/cureus.44737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/10/2023] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular junction disorder involving autoantibodies affecting the postsynaptic muscle membrane. We report an 81-year-old man who presented to the emergency department with three days of left facial droop, who later developed worsening bilateral ptosis, cervical weakness, dysphagia, and dysarthria following an assessment for Bell's palsy. Ultimately, he was diagnosed with MG. This patient's presentation was atypical and challenging. Specifically, the patient had droopy eyelids from a redundancy of skin and an anatomical neck droop, non-specific findings in older adults, which obscured the development of bilateral ptosis and cervical weakness, a classic sign of bulbar disease. The patient also presented with unilateral facial weakness, a rare finding in MG and concerning stroke in the elderly population. Our aim is to discuss the challenges of identifying MG in older populations and to discuss pharmacological challenges in assessing elderly patients with suspected bulbar palsies.
Collapse
Affiliation(s)
- Celeste Gracey
- Internal Medicine, Campbell University School of Osteopathic Medicine, Lillington, USA
| | | |
Collapse
|
16
|
Weng S, Huang L, Cai B, He L, Wen S, Li J, Zhong Z, Zhang H, Huang C, Yang Y, Jiang Q, Liu F. Astragaloside IV ameliorates experimental autoimmune myasthenia gravis by regulating CD4 + T cells and altering gut microbiota. Chin Med 2023; 18:97. [PMID: 37542273 PMCID: PMC10403896 DOI: 10.1186/s13020-023-00798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an antibody-mediated autoimmune disease and its pathogenesis is closely related to CD4 + T cells. In recent years, gut microbiota is considered to play an important role in the pathogenesis of MG. Astragaloside IV (AS-IV) is one of the main active components extracted from Astragalus membranaceus and has immunomodulatory effects. To study the immunomodulatory effect of AS-IV and the changes of gut microbiota on experimental autoimmune myasthenia gravis (EAMG) mice, we explore the possible mechanism of AS-IV in improving MG. METHODS In this study, network pharmacology was utilized to screen the crucial targets of AS-IV in the treatment of MG. Subsequently, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify potential pathways through which AS-IV acts against MG. Furthermore, experimental investigations were conducted to validate the underlying mechanism of AS-IV in MG treatment. Before modeling, 5 mice were randomly selected as the control group (CFA group), and the other 10 were induced to EAMG model. These mice were randomly divided into EAMG group and EAMG + AS-IV group, n = 5/group. In EAMG + AS-IV group, AS-IV was administered by gavage. CFA and EAMG groups were given the same volume of PBS. Body weight, grip strength and clinical symptoms were assessed and recorded weekly. At the last administration, the feces were collected for 16S RNA microbiota analysis. The levels of Treg, Th1 and Th17 cells in spleen and Th1 and Th17 cells in thymus were detected by flow cytometry. The levels of IFN-γ, IL-17 and TGF-β in serum were measured by ELISA. Furthermore, fecal microbial transplantation (FMT) experiments were performed for exploring the influence of changed intestinal flora on EAMG. After EAMG model was induced, the mice were treated with antibiotics daily for 4 weeks to germ-free. Then germ-free EAMG mice were randomly divided into two groups: FMT EAMG group, FMT AS-IV group, n = 3/group. Fecal extractions from EAMG and EAMG + AS-IV groups as gathered above were used to administered daily to the respective groups for 4 weeks. Body weight, grip strength and clinical symptoms were assessed and recorded weekly. The levels of Treg, Th1 and Th17 cells in spleen and Th1 and Th17 cells in thymus were detected at the last administration. The levels of IFN-γ, IL-17 and TGF-β in serum were measured by ELISA. RESULTS The network pharmacology and KEGG pathway analysis revealed that AS-IV regulates T cell pathways, including T cell receptor signaling pathway and Th17 cell differentiation, suggesting its potential in improving MG. Further experimental verification demonstrated that AS-IV administration improved muscle strength and body weight, reduced the level of Th1 and Th17 cells, enhanced the level of Treg cells, and resulted in alterations of the gut microbiota, including changes in beta diversity, the Firmicutes/Bacteroidetes (F/B) ratio, and the abundance of Clostridia in EAMG mice. We further conducted FMT tests and demonstrated that the EAMG Abx-treated mice which were transplanted the feces of mice treated with AS-IV significantly alleviated myasthenia symptoms, reduced Th1 and Th17 cells levels, and increased Treg cell levels. CONCLUSION This study speculated that AS-IV ameliorates EAMG by regulating CD4 + T cells and altering the structure and species of gut microbiota of EAMG.
Collapse
Affiliation(s)
- Senhui Weng
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Linwen Huang
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Bingxing Cai
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Long He
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Shuting Wen
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Jinghao Li
- Department of Traditional Chinese Medicine of the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528000, China
| | - Zhuotai Zhong
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Haiyan Zhang
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Chongyang Huang
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Yunying Yang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Qilong Jiang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China.
| | - Fengbin Liu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China.
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2, Helongqi Road, Renhe Town, Baiyun District, Guangzhou, 510000, China.
| |
Collapse
|
17
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
18
|
Huang EJC, Wu MH, Wang TJ, Huang TJ, Li YR, Lee CY. Myasthenia Gravis: Novel Findings and Perspectives on Traditional to Regenerative Therapeutic Interventions. Aging Dis 2023; 14:1070-1092. [PMID: 37163445 PMCID: PMC10389825 DOI: 10.14336/ad.2022.1215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023] Open
Abstract
The prevalence of myasthenia gravis (MG), an autoimmune disorder, is increasing among all subsets of the population leading to an elevated economic and social burden. The pathogenesis of MG is characterized by the synthesis of autoantibodies against the acetylcholine receptor (AChR), low-density lipoprotein receptor-related protein 4 (LRP4), or muscle-specific kinase at the neuromuscular junction, thereby leading to muscular weakness and fatigue. Based on clinical and laboratory examinations, the research is focused on distinguishing MG from other autoimmune, genetic diseases of neuromuscular transmission. Technological advancements in machine learning, a subset of artificial intelligence (AI) have been assistive in accurate diagnosis and management. Besides, addressing the clinical needs of MG patients is critical to improving quality of life (QoL) and satisfaction. Lifestyle changes including physical exercise and traditional Chinese medicine/herbs have also been shown to exert an ameliorative impact on MG progression. To achieve enhanced therapeutic efficacy, cholinesterase inhibitors, immunosuppressive drugs, and steroids in addition to plasma exchange therapy are widely recommended. Under surgical intervention, thymectomy is the only feasible alternative to removing thymoma to overcome thymoma-associated MG. Although these conventional and current therapeutic approaches are effective, the associated adverse events and surgical complexity limit their wide application. Moreover, Restivo et al. also, to increase survival and QoL, further recent developments revealed that antibody, gene, and regenerative therapies (such as stem cells and exosomes) are currently being investigated as a safer and more efficacious alternative. Considering these above-mentioned points, we have comprehensively reviewed the recent advances in pathological etiologies of MG including COVID-19, and its therapeutic management.
Collapse
Affiliation(s)
- Evelyn Jou-Chen Huang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yan-Rong Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
19
|
Pechlivanidou M, Ninou E, Karagiorgou K, Tsantila A, Mantegazza R, Francesca A, Furlan R, Dudeck L, Steiner J, Tzartos J, Tzartos S. Autoimmunity to Neuronal Nicotinic Acetylcholine Receptors. Pharmacol Res 2023; 192:106790. [PMID: 37164280 DOI: 10.1016/j.phrs.2023.106790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in many and diverse cell types, participating in various functions of cells, tissues and systems. In this review, we focus on the autoimmunity against neuronal nAChRs, the specific autoantibodies and their mechanisms of pathological action in selected autoimmune diseases. We summarize the current relevant knowledge from human diseases as well as from experimental models of autoimmune neurological disorders related to antibodies against neuronal nAChR subunits. Despite the well-studied high immunogenicity of the muscle nAChRs where autoantibodies are the main pathogen of myasthenia gravis, autoimmunity to neuronal nAChRs seems infrequent, except for the autoantibodies to the ganglionic receptor, the α3 subunit containing nAChR (α3-nAChR), which are detected and are likely pathogenic in Autoimmune Autonomic Ganglionopathy (AAG). We describe the detection, presence and function of these antibodies and especially the recent development of a cell-based assay (CBA) which, contrary to until recently available assays, is highly specific for AAG. Rare reports of autoantibodies to the other neuronal nAChR subtypes include a few cases of antibodies to α7 and/or α4β2 nAChRs in Rasmussen encephalitis, schizophrenia, autoimmune meningoencephalomyelitis, and in some myasthenia gravis patients with concurrent CNS symptoms. Neuronal-type nAChRs are also present in several non-excitable tissues, however the presence and possible role of antibodies against them needs further verification. It is likely that the future development of more sensitive and disease-specific assays would reveal that neuronal nAChR autoantibodies are much more frequent and may explain the mechanisms of some seronegative autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Katerina Karagiorgou
- Tzartos NeuroDiagnostics, Athens, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andreetta Francesca
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Rozzano, Milan, Italy; Clinical and Research Center - IRCCS, Humanitas University, Rozzano, Milan, Italy
| | - Leon Dudeck
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany; German Center for Mental Health DZPG, Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health C-I-R-C, Halle-Jena-Magdeburg, Germany
| | - John Tzartos
- 2(nd) Department of Neurology, School of Medicine, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece.
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece; Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece; Department of Pharmacy, University of Patras, Patras, Greece.
| |
Collapse
|
20
|
Rituximab for myasthenia gravis. Cochrane Database Syst Rev 2023. [PMCID: PMC10075239 DOI: 10.1002/14651858.cd014574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess: the safety and efficacy, as assessed by the effect on disease severity or functional ability and the burden of alternative treatment, of rituximab (including biosimilar variants) for the treatment of myasthenia gravis in adults; and outcomes and adverse effects between different patient subgroups, and treatment strategies, in order to aid treatment choice for individuals, and to inform policymakers about those most likely to benefit.
Collapse
|
21
|
Oculomotor fatigability with decrements of saccade and smooth pursuit for diagnosis of myasthenia gravis. J Neurol 2023; 270:2743-2755. [PMID: 36856847 PMCID: PMC10129983 DOI: 10.1007/s00415-023-11611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND AND OBJECTIVES As the efficacy of current diagnostic methods for myasthenia gravis (MG) remains suboptimal, there is ongoing interest in developing more effective diagnostic models. As oculomotor fatigability is one of the most common and diagnostic symptoms in MG, we aimed to investigate whether quantitative saccadic and smooth-pursuit fatigability analyses with video-oculography (VOG) are useful for diagnosis of MG. METHODS A convenience cohort of 46 MG patients was recruited prospectively, including 35 with ocular and 11 with generalized MG (mean age, 50.9 ± 14.5 years; 17 females); 24 healthy controls (HCs) (mean age, 50.6 ± 16.3 years; 13 females) also were enrolled. Seventy-five repetitive saccades and smooth pursuits were recorded in ranges of 20° (horizontal plane) and 15° (vertical plane) using a three-dimensional VOG system. Based on the oculomotor range of the second saccade and smooth pursuit and the mean ranges of the last five of each, the estimated decrements (%) reflecting oculomotor fatigability were calculated. RESULTS The baseline oculomotor ranges did not show significant difference between the MG and HCs groups. However, following repetitive saccades and pursuits, the oculomotor ranges were decreased substantially during the last five cycles compared to baseline in the MG group. No such decrements were observed in the HC group (p < 0.01, Mann-Whitney U test). Receiver operating characteristic (ROC) analysis revealed that repetitive vertical saccades yielded the best differentiation between the MG and HC groups, with a sensitivity of 78.3% and specificity of 95.8% when using a decrement with an amplitude of 6.4% as the cutoff. CONCLUSION This study presents an objective and reproducible method for measuring decrements of oculomotor ranges after repetitive saccadic and pursuit movements. Quantification of oculomotor fatigability using VOG could be a sensitive and specific diagnostic tool for MG and allows easy, cost-effective, accurate, and non-invasive measurements. CLASSIFICATION OF EVIDENCE This study provides class III evidence that VOG-based quantification of saccadic and pursuit fatigability accurately identifies patients with MG.
Collapse
|
22
|
Hoffmann S, Waters P, Jacobson L, Schuelke M, Stenzel W, Ruck T, Lehnerer S, Stascheit F, Preuße C, Meisel A. Autoantibody detection by a live cell-based assay in conventionally antibody-tested triple seronegative Myasthenia gravis. Neuromuscul Disord 2023; 33:139-144. [PMID: 36746691 DOI: 10.1016/j.nmd.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Autoantibody testing is the mainstay in confirming the diagnosis of autoimmune myasthenia gravis (MG). However, in approximately 15% of patients, antibody testing in clinical routine remains negative (seronegative MG). This study aimed at assessing the prevalence of "clustered" AChR- and MuSK- and LRP4- autoantibodies using a live cell-based assay in a large German cohort of seronegative myasthenia gravis (SNMG) patients. A total of 67 SNMG patients were included. Clustered AChR-ab were identified in 4.5% (n = 3) of patients. Two out of the three patients showed binding to the adult AchR as well as the fetal AchR. None of the patients was positive for MuSK- or LRP4-autoantibodies. There were no differences in clinical characteristics between the patients with and without clustered AChR-ab detection. Comparison of clinical data of our cohort with clinical data from the nationwide Myasthenia gravis registry showed broad similarities between seronegative MG patients of both cohorts.
Collapse
Affiliation(s)
- Sarah Hoffmann
- Department of Neurology and NeuroCure Clinical Research Center, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sophie Lehnerer
- Department of Neurology and NeuroCure Clinical Research Center, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Frauke Stascheit
- Department of Neurology and NeuroCure Clinical Research Center, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Meisel
- Department of Neurology and NeuroCure Clinical Research Center, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
23
|
Stascheit F, Aigner A, Mergenthaler P, Hotter B, Hoffmann S, Lehnerer S, Meisel C, Meisel A. Serum neurofilament light chain in myasthenia gravis subgroups: An exploratory cohort and case-Control study. Front Neurol 2023; 13:1056322. [PMID: 36712429 PMCID: PMC9875128 DOI: 10.3389/fneur.2022.1056322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background This study aimed to evaluate the association of neurofilament light chain (Nfl) with neuromuscular destruction and disease severity in the serum of patients with myasthenia gravis (MG). Materials and methods Sera from 134 patients with MG with varying degrees of disease severity and autoantibody (Abs) status were analyzed and compared to controls in a cross-sectional design. Prospectively, we additionally measured serum NfL (sNfl) levels in patients with MG longitudinally for up to 3 years. Based on linear regression, differences between patients and controls were assessed. With correlation coefficients and mixed linear regression, the association among sNfl levels, socio-demographics, disease activity (Quantitative Myasthenia Gravis (QMG) score and Myasthenia Gravis Activities of Daily Living (MG-ADL) scale), Abs-status (acetylcholine receptor antibody (AChR-Abs), muscle-specific receptor tyrosine kinase antibody (MuSK-Abs), lipoprotein-related protein 4 (LRP4), and seronegative), Abs titer, treatment regime (pyridostigmine, steroids, and immunosuppressive therapies), and thymectomy were investigated. Results sNfl levels were higher in patients with MG compared to controls (median: 11.2 vs. 7.88), where sNfl levels were highest in anti-AChR-Abs positive patients (median 12.6), followed by anti-MuSK-Abs positive, anti-LRP4-Abs positive, and seronegative patients. Adjusting for age and sex, sNfl levels of patients with MG were on average 35% higher compared to controls (35.1, 95% CI: 8.4;68.3) and highest for patients with seronegative MG (44.35; 95% CI 16.47; 78.90). We found no relevant relationship between individual changes in sNfl and changes in QMG and MG-ADL scores. Conclusion sNfl levels are higher in patients with MG than in controls but were not consistently associated with clinical severity. Thus, sNfl is not a suitable biomarker to monitor individual disease progression in patients with MG.
Collapse
Affiliation(s)
- Frauke Stascheit
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Frauke Stascheit ✉
| | - Annette Aigner
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Mergenthaler
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benjamin Hotter
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Hoffmann
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sophie Lehnerer
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Meisel
- Department of Immunology, Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany,Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Integrated Myasthenia Gravis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Fichtner ML, Hoehn KB, Ford EE, Mane-Damas M, Oh S, Waters P, Payne AS, Smith ML, Watson CT, Losen M, Martinez-Martinez P, Nowak RJ, Kleinstein SH, O'Connor KC. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol Commun 2022; 10:154. [PMID: 36307868 PMCID: PMC9617453 DOI: 10.1186/s40478-022-01454-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disorder of the neuromuscular junction. A small subset of patients (<10%) with MG, have autoantibodies targeting muscle-specific tyrosine kinase (MuSK). MuSK MG patients respond well to CD20-mediated B cell depletion therapy (BCDT); most achieve complete stable remission. However, relapse often occurs. To further understand the immunomechanisms underlying relapse, we studied autoantibody-producing B cells over the course of BCDT. We developed a fluorescently labeled antigen to enrich for MuSK-specific B cells, which was validated with a novel Nalm6 cell line engineered to express a human MuSK-specific B cell receptor. B cells (≅ 2.6 million) from 12 different samples collected from nine MuSK MG patients were screened for MuSK specificity. We successfully isolated two MuSK-specific IgG4 subclass-expressing plasmablasts from two of these patients, who were experiencing a relapse after a BCDT-induced remission. Human recombinant MuSK mAbs were then generated to validate binding specificity and characterize their molecular properties. Both mAbs were strong MuSK binders, they recognized the Ig1-like domain of MuSK, and showed pathogenic capacity when tested in an acetylcholine receptor (AChR) clustering assay. The presence of persistent clonal relatives of these MuSK-specific B cell clones was investigated through B cell receptor repertoire tracing of 63,977 unique clones derived from longitudinal samples collected from these two patients. Clonal variants were detected at multiple timepoints spanning more than five years and reemerged after BCDT-mediated remission, predating disease relapse by several months. These findings demonstrate that a reservoir of rare pathogenic MuSK autoantibody-expressing B cell clones survive BCDT and reemerge into circulation prior to manifestation of clinical relapse. Overall, this study provides both a mechanistic understanding of MuSK MG relapse and a valuable candidate biomarker for relapse prediction.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Easton E Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Marina Mane-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa L Smith
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
- Department of Immunobiology, Yale University School of Medicine, 300 George Street - Room 353J, New Haven, CT, 06511, USA.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
26
|
Lekova E, Zelek WM, Gower D, Spitzfaden C, Osuch IH, John-Morris E, Stach L, Gormley D, Sanderson A, Bridges A, Wear ER, Petit-Frere S, Burden MN, Priest R, Wattam T, Kitchen SJ, Feeney M, Davis S, Morgan BP, Nichols EM. Discovery of functionally distinct anti-C7 monoclonal antibodies and stratification of anti-nicotinic AChR positive Myasthenia Gravis patients. Front Immunol 2022; 13:968206. [PMID: 36148231 PMCID: PMC9486540 DOI: 10.3389/fimmu.2022.968206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Myasthenia Gravis (MG) is mediated by autoantibodies against acetylcholine receptors that cause loss of the receptors in the neuromuscular junction. Eculizumab, a C5-inhibitor, is the only approved treatment for MG that mechanistically addresses complement-mediated loss of nicotinic acetylcholine receptors. It is an expensive drug and was approved despite missing the primary efficacy endpoint in the Phase 3 REGAIN study. There are two observations to highlight. Firstly, further C5 inhibitors are in clinical development, but other terminal pathway proteins, such as C7, have been relatively understudied as therapeutic targets, despite the potential for lower and less frequent dosing. Secondly, given the known heterogenous mechanisms of action of autoantibodies in MG, effective patient stratification in the REGAIN trial may have provided more favorable efficacy readouts. We investigated C7 as a target and assessed the in vitro function, binding epitopes and mechanism of action of three mAbs against C7. We found the mAbs were human, cynomolgus monkey and/or rat cross-reactive and each had a distinct, novel mechanism of C7 inhibition. TPP1820 was effective in preventing experimental MG in rats in both prophylactic and therapeutic dosing regimens. To enable identification of MG patients that are likely to respond to C7 inhibition, we developed a patient stratification assay and showed in a small cohort of MG patients (n=19) that 63% had significant complement activation and C7-dependent loss of AChRs in this in vitro set up. This study provides validation of C7 as a target for treatment of MG and provides a means of identifying patients likely to respond to anti-C7 therapy based on complement-activating properties of patient autoantibodies.
Collapse
Affiliation(s)
- Eleonora Lekova
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Wioleta M. Zelek
- Division of Infection and Immunity and Dementia Research Institute, Systems Immunity Research Institute, School of Medicine, Cardiff University, Wales, United Kingdom
| | - David Gower
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Claus Spitzfaden
- Medicines, Science and Technology, Protein Cellular and Structural Sciences (PCSS) Structural and Biophysical Sciences, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Isabelle H. Osuch
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Elen John-Morris
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Lasse Stach
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Darren Gormley
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Andrew Sanderson
- Medicines, Science and Technology, Protein Cellular and Structural Sciences (PCSS) Protein and Cellular Sciences, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Angela Bridges
- Medicines, Science and Technology, Protein Cellular and Structural Sciences (PCSS) Protein and Cellular Sciences, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Elizabeth R. Wear
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Sebastien Petit-Frere
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Michael N. Burden
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Richard Priest
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Trevor Wattam
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Semra J. Kitchen
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Maria Feeney
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - Susannah Davis
- Medicinal Science and Technology, Biopharm Discovery, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
| | - B. Paul Morgan
- Division of Infection and Immunity and Dementia Research Institute, Systems Immunity Research Institute, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Eva-Maria Nichols
- Immunology Research Unit, GlaxoSmithKline Research & Development (GSK R&D), Stevenage, United Kingdom
- *Correspondence: Eva-Maria Nichols,
| |
Collapse
|
27
|
Qi Y, Zhang R, Lu Y, Zou X, Yang W. Aire and Fezf2, two regulators in medullary thymic epithelial cells, control autoimmune diseases by regulating TSAs: Partner or complementer? Front Immunol 2022; 13:948259. [PMID: 36110862 PMCID: PMC9468217 DOI: 10.3389/fimmu.2022.948259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The expression of tissue-specific antigens (TSAs) in medullary thymic epithelial cells (mTECs) is believed to be responsible for the elimination of autoreactive T cells, a critical process in the maintenance of central immune tolerance. The transcription factor autoimmune regulator (Aire) and FEZ family zinc finger 2(Fezf2) play an essential role in driving the expression of TSAs in mTECs, while their deficiency in humans and mice causes a range of autoimmune manifestations, such as type 1 diabetes, Sjögren's syndrome and rheumatoid arthritis. However, because of their regulatory mechanisms, the expression profile of TSAs and their relationship with special autoimmune diseases are still in dispute. In this review, we compare the roles of Aire and Fezf2 in regulating TSAs, with an emphasis on their molecular mechanisms in autoimmune diseases, which provides the foundation for devising improved diagnostic and therapeutic approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, School of Public Health, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
28
|
Cardiac troponin T and autoimmunity in skeletal muscle aging. GeroScience 2022; 44:2025-2045. [PMID: 35034279 PMCID: PMC9616986 DOI: 10.1007/s11357-022-00513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Age-related muscle mass and strength decline (sarcopenia) impairs the performance of daily living activities and can lead to mobility disability/limitation in older adults. Biological pathways in muscle that lead to mobility problems have not been fully elucidated. Immunoglobulin G (IgG) infiltration in muscle is a known marker of increased fiber membrane permeability and damage vulnerability, but whether this translates to impaired function is unknown. Here, we report that IgG1 and IgG4 are abundantly present in the skeletal muscle (vastus lateralis) of ~ 50% (11 out of 23) of older adults (> 65 years) examined. Skeletal muscle IgG1 was inversely correlated with physical performance (400 m walk time: r = 0.74, p = 0.005; SPPB score: r = - 0.73, p = 0.006) and muscle strength (r = - 0.6, p = 0.05). In a murine model, IgG was found to be higher in both muscle and blood of older, versus younger, C57BL/6 mice. Older mice with a higher level of muscle IgG had lower motor activity. IgG in mouse muscle co-localized with cardiac troponin T (cTnT) and markers of complement activation and apoptosis/necroptosis. Skeletal muscle-inducible cTnT knockin mice also showed elevated IgG in muscle and an accelerated muscle degeneration and motor activity decline with age. Most importantly, anti-cTnT autoantibodies were detected in the blood of cTnT knockin mice, old mice, and older humans. Our findings suggest a novel cTnT-mediated autoimmune response may be an indicator of sarcopenia.
Collapse
|
29
|
Devlin I, Williams KL, Shrubsole K. Fragmented care and missed opportunities: the experiences of adults with myasthenia gravis in accessing and receiving allied health care in Australia. Disabil Rehabil 2022:1-9. [PMID: 35786287 DOI: 10.1080/09638288.2022.2094481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Although allied health services are important adjuncts to medical care for people with myasthenia gravis (MG), the underutilisation of these services is not well understood within the Australian context. It is critical to explore patients' perceptions to develop services that meet consumer needs. This study, therefore, sought to obtain insight into MG patients' perspectives and experiences, in addition to the outcomes, of accessing allied health services. MATERIALS AND METHODS Thirteen Australian adults with MG participated in semi-structured interviews. Qualitative analysis was conducted inductively using thematic content analysis. RESULTS Four themes were identified: (1) missed opportunities and unmet care needs were common, due to frequent patient-provider communication breakdowns and a lack of referral protocols, (2) personal factors - patient self-advocacy influenced their perceived need, with some lacking confidence to seek help, (3) perceived benefit and health provider capacities - most valued allied health despite differing perceptions of health professionals' attitudes, skills, and willingness to learn, and (4) a resultant fragmentation of care between services was universal. CONCLUSIONS Findings highlighted a need for clear referral pathways, coordinated multidisciplinary care, improved access to community-based services and education for allied health professionals about MG.Implications for rehabilitationAdults with myasthenia gravis (MG) report a lack of referral pathways to allied health services, leading to unmet needs and fragmented care.Although there is a perceived benefit to allied health care, experiences are impacted by health provider capacity and attitudes.There needs to be an overall shift towards multidisciplinary care for people with MG, and the development of clear referral pathways.Specific education about MG should be available for allied health professionals to improve their knowledge and skills in treating this population.
Collapse
Affiliation(s)
- Isobel Devlin
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Katrina L Williams
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Kirstine Shrubsole
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Faculty of Health, Southern Cross University, Gold Coast, Australia.,Queensland Aphasia Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
30
|
Obaid AH, Zografou C, Vadysirisack DD, Munro-Sheldon B, Fichtner ML, Roy B, Philbrick WM, Bennett JL, Nowak RJ, O'Connor KC. Heterogeneity of Acetylcholine Receptor Autoantibody-Mediated Complement Activity in Patients With Myasthenia Gravis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1169. [PMID: 35473886 PMCID: PMC9128035 DOI: 10.1212/nxi.0000000000001169] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Autoantibodies targeting the acetylcholine receptor (AChR), found in patients with myasthenia gravis (MG), mediate pathology through 3 mechanisms: complement-directed tissue damage, blocking of the acetylcholine binding site, and internalization of the AChR. Clinical assays, used to diagnose and monitor patients, measure only autoantibody binding. Consequently, they are limited in providing association with disease burden, understanding of mechanistic heterogeneity, and monitoring therapeutic response. The objective of this study was to develop a cell-based assay that measures AChR autoantibody-mediated complement membrane attack complex (MAC) formation. METHODS An HEK293T cell line-modified using CRISPR/Cas9 genome editing to disrupt expression of the complement regulator genes (CD46, CD55, and CD59)-was used to measure AChR autoantibody-mediated MAC formation through flow cytometry. RESULTS Serum samples (n = 155) from 96 clinically confirmed AChR MG patients, representing a wide range of disease burden and autoantibody titer, were tested along with 32 healthy donor (HD) samples. AChR autoantibodies were detected in 139 of the 155 (89.7%) MG samples through a cell-based assay. Of the 139 AChR-positive samples, autoantibody-mediated MAC formation was detected in 83 (59.7%), whereas MAC formation was undetectable in the HD group or AChR-positive samples with low autoantibody levels. MAC formation was positively associated with autoantibody binding in most patient samples; ratios (mean fluorescence intensity) of MAC formation to AChR autoantibody binding ranged between 0.27 and 48, with a median of 0.79 and an interquartile range of 0.43 (0.58-1.1). However, the distribution of ratios was asymmetric and included extreme values; 16 samples were beyond the 10-90 percentile, with high MAC to low AChR autoantibody binding ratio or the reverse. Correlation between MAC formation and clinical disease scores suggested a modest positive association (rho = 0.34, p = 0.0023), which included a subset of outliers that did not follow this pattern. MAC formation did not associate with exposure to immunotherapy, thymectomy, or MG subtypes defined by age-of-onset. DISCUSSION A novel assay for evaluating AChR autoantibody-mediated complement activity was developed. A subset of patients that lacks association between MAC formation and autoantibody binding or disease burden was identified. The assay may provide a better understanding of the heterogeneous autoantibody molecular pathology and identify patients expected to benefit from complement inhibitor therapy.
Collapse
|
31
|
Jessop K. Intravenous magnesium sulfate inducing acute respiratory failure in a patient with myasthenia gravis. BMJ Case Rep 2022; 15:e250455. [PMID: 35738845 PMCID: PMC9226880 DOI: 10.1136/bcr-2022-250455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2022] [Indexed: 11/03/2022] Open
Abstract
A woman in her 90s with a background of myasthenia gravis and atrial fibrillation presented to hospital following a fall. While in the emergency department it was noted that she was in atrial fibrillation with a fast-ventricular response and as part of her management was given intravenous magnesium. Following this she developed acute respiratory failure and required intubation and ventilation. The patient recovered quickly and was extubated in the intensive care unit the next day. On subsequent days, the patient received two further doses of intravenous magnesium before the link was identified. On both of these occasions she again developed respiratory failure which were managed with non-invasive ventilation. This case highlights the importance of all members of the team being aware of the drugs that can induce a myasthenic crisis. It also stimulates further research into the development of a guide of how to safely treat symptomatic hypomagnesaemia in patients with myasthenia gravis.
Collapse
Affiliation(s)
- Kayleigh Jessop
- Anaesthetics, East Kent Hospitals University NHS Foundation Trust, Canterbury, UK
| |
Collapse
|
32
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Fichtner ML, Hoarty MD, Vadysirisack DD, Munro-Sheldon B, Nowak RJ, O’Connor KC. Myasthenia gravis complement activity is independent of autoantibody titer and disease severity. PLoS One 2022; 17:e0264489. [PMID: 35290370 PMCID: PMC8923450 DOI: 10.1371/journal.pone.0264489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/12/2022] [Indexed: 11/18/2022] Open
Abstract
Acetylcholine receptor (AChR) autoantibodies, found in patients with autoimmune myasthenia gravis (MG), can directly contribute to disease pathology through activation of the classical complement pathway. Activation of the complement pathway in autoimmune diseases can lead to a secondary complement deficiency resulting in reduced complement activity, due to consumption, during episodes of disease activity. It is not clear whether complement activity in MG patients associates with measurements of disease activity or the titer of circulating pathogenic AChR autoantibodies. To explore such associations, as a means to identify a candidate biomarker, we measured complement activity in AChR MG samples (N = 51) using a CH50 hemolysis assay, then tested associations between these values and both clinical status and AChR autoantibody titer. The majority of the study subjects (88.2%) had complement activity within the range defined by healthy controls, while six patients (11.8%) showed reduced activity. No significant association between complement activity and disease status or AChR autoantibody titer was observed.
Collapse
Affiliation(s)
- Miriam L. Fichtner
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | | | | | - Bailey Munro-Sheldon
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Richard J. Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
34
|
Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics Simulation, and In Vitro Enzyme Inhibition Kinetics Studies. Cells 2021; 10:cells10123533. [PMID: 34944045 PMCID: PMC8700130 DOI: 10.3390/cells10123533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic transmission and subsequently relieving major symptoms of several neurological and neuromuscular disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics results show that at increasing concentrations of geraniol and substrate, Vmax did not change significantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE with an IC50 value 98.06 ± 3.92 µM. All the parameters of the ADME study revealed that geraniol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol (−5.6 kcal mol−1) was lower than that of acetylcholine (−4.1 kcal mol−1) with AChE, which exhibited around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable limits throughout the simulation. The mean RMSF value of the complex ensures that the overall conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA of the complex were 3.16 Å, 204.78, 9.13, and 51.58 Å2, respectively. We found that the total SSE of AChE in the complex was 38.84% (α-helix: 26.57% and β-sheets: 12.27%) and remained consistent throughout the simulation. These findings suggest that geraniol remained inside the binding cavity of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based natural compound.
Collapse
|
35
|
Maizón HB, Barrantes FJ. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform 2021; 23:6409696. [PMID: 34695840 DOI: 10.1093/bib/bbab435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
Collapse
Affiliation(s)
- Héctor Buena Maizón
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
36
|
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. THE JOURNAL OF IMMUNOLOGY 2021; 207:2005-2014. [PMID: 34544801 DOI: 10.4049/jimmunol.2100225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.
Collapse
Affiliation(s)
- Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL.,Department of Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
37
|
Sindhu RK, Madaan P, Chandel P, Akter R, Adilakshmi G, Rahman MH. Therapeutic Approaches for the Management of Autoimmune Disorders via Gene Therapy: Prospects, Challenges, and Opportunities. Curr Gene Ther 2021; 22:245-261. [PMID: 34530709 DOI: 10.2174/1566523221666210916113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/05/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune diseases are the diseases that result due to the overactive immune response, and comprise systemic autoimmune diseases like rheumatoid arthritis (RA), sjӧgren's syndrome (SS), and organ-specific autoimmune diseases like type-1 diabetes mellitus (T1DM), myasthenia gravis (MG), and inflammatory bowel disease (IBD). Currently, there is no long-term cure; but, several treatments exist which retard the evolution of the disease, embracing gene therapy, which has been scrutinized to hold immense aptitude for the management of autoimmune diseases. OBJECTIVE The review highlights the pathogenic mechanisms and genes liable for the development of autoimmune diseases, namely T1DM, type-2 diabetes mellitus (T2DM), RA, SS, IBD, and MG. Furthermore, the review focuses on investigating the outcomes of delivering the corrective genes with their specific viral vectors in various animal models experiencing these diseases to determine the effectiveness of gene therapy. METHODS Numerous review and research articles emphasizing the tremendous potential of gene therapy in the management of autoimmune diseases were procured from PubMed, MEDLINE, Frontier, and other databases and thoroughly studied for writing this review article. RESULTS The various animal models that experienced treatment with gene therapy have displayed regulation in the levels of proinflammatory cytokines, infiltration of lymphocytes, manifestations associated with autoimmune diseases, and maintained equilibrium in the immune response, thereby hinder the progression of autoimmune diseases. CONCLUSION Gene therapy has revealed prodigious aptitude in the management of autoimmune diseases in various animal studies, but further investigation is essential to combat the limitations associated with it and before employing it on humans.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - G Adilakshmi
- Department of PhysicxVikramaSimahpuri University, P.G. Centre, kavil-524201, Andhra Pradesh. India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| |
Collapse
|
38
|
Xue ZX, Gao YS, Wu XL. Suppression of the CD28/B7 pathway reduces the occurrence and development of myasthenia gravis and cytokine levels. Int J Neurosci 2021; 131:854-863. [PMID: 32419569 DOI: 10.1080/00207454.2020.1759587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Myasthenia gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease. Reports have indicated that the CD28/B7 ligand interactions play a crucial role during primary immune responses. Hence, the aim of the present study was to investigate the possible effects of the CD28/B7 pathway on the occurrence and development of MG and its associated cytokine factors. METHODS An experimental autoimmune myasthenia gravis (EAMG) was initially established by immunization of Lewis rats with acetylcholine receptor (AChR) α97-116 peptide. Then the rats were treated with dexamethasone and CTLA4-Ig (used for inhibiting the CD28/B7 pathway). Serum levels of AChR IgG and AChR IgG2b were then detected using ELISA. The clinical features, muscle contraction function, AChR content, expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood and the secretion of cytokines (INF-γ, IL-2, IL-10 and IL-12) in serum of rats were measured. Finally, lymphocyte proliferation upon CTLA4 IgG treatment was examined in vitro. RESULTS Inhibition of the CD28/B7 pathway and dexamethasone were found to significantly improve clinical symptoms of EAMG rats, reduce serum levels of AChR IgG, AChR IgG2b, INF-γ, IL-2, IL-10 and IL-12, the expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood, and enhance muscle contraction function and AChR content in the muscle in vivo. Meanwhile, CTLA4 IgG could abolish the increased lymphocyte proliferation following AChR stimulation in vitro. CONCLUSION Overall, the suppression of the CD28/B7 pathway by CTLA4-Ig can have the potential to retard the occurrence and development of MG.
Collapse
Affiliation(s)
- Zhan-Xia Xue
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacology, Hebei North University, Zhangjiakou, P. R. China
| | - Yong-Shan Gao
- Department of Thoracic-Cardiac Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, P. R. China
| | - Xue-Liang Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, P. R. China
| |
Collapse
|
39
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
40
|
Gastaldi M, Scaranzin S, Businaro P, Mobilia E, Benedetti L, Pesce G, Franciotta D. Improving laboratory diagnostics in myasthenia gravis. Expert Rev Mol Diagn 2021; 21:579-590. [PMID: 33970749 DOI: 10.1080/14737159.2021.1927715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Myasthenia gravis (MG) is a prototypical autoimmune disease, characterized by pathogenic autoantibodies targeting structures of the neuromuscular junction. Radioimmunoprecipitation assays (RIPAs) represent the gold standard for their detection. However, new methods are emerging to complement, or overcome RIPAs, also with the perspective of eliminating the use of radioactive reagents.Areas covered: We discuss advances in laboratory methods, prompted especially by cell-based assays (CBAs), for the detection of the autoantibodies of MG diagnostics, above all those to the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low molecular-weight receptor-related low-density lipoprotein-4 (LRP4).Expert opinion: CBA technology makes AChRs aggregate on cell membranes, thus allowing to detect autoantibodies to clustered AChRs, with reduction of seronegative MG cases. The diagnostic relevance of RIPA/CBA-measurable LRP4 antibodies is still unclear, in Caucasian patients at least. Live CBAs for the detection of AChR, MuSK, and LRP4 antibodies might represent an alternative to RIPAs, but first require full validation. CBAs could be used as screening tests, limiting RIPAs for antibody quantification. To this end, ELISAs might be an alternative.Fixation procedures preserving enough degree of antigen conformationality could yield AChR and MuSK CBAs suitable for a wide use in clinical-chemistry laboratories.
Collapse
Affiliation(s)
- Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Businaro
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Emanuela Mobilia
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Luana Benedetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giampaola Pesce
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine (Dimi), University of Genova, Genova, Italy
| | - Diego Franciotta
- Autoimmunity Laboratory, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
41
|
Hui T, Jing H, Lai X. Neuromuscular junction-specific genes screening by deep RNA-seq analysis. Cell Biosci 2021; 11:81. [PMID: 33933147 PMCID: PMC8088568 DOI: 10.1186/s13578-021-00590-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 01/17/2023] Open
Abstract
Background Neuromuscular junctions (NMJs) are chemical synapses formed between motor neurons and skeletal muscle fibers and are essential for controlling muscle contraction. NMJ dysfunction causes motor disorders, muscle wasting, and even breathing difficulties. Increasing evidence suggests that many NMJ disorders are closely related to alterations in specific gene products that are highly concentrated in the synaptic region of the muscle. However, many of these proteins are still undiscovered. Thus, screening for NMJ-specific proteins is essential for studying NMJ and the pathogenesis of NMJ diseases. Results In this study, synaptic regions (SRs) and nonsynaptic regions (NSRs) of diaphragm samples from newborn (P0) and adult (3-month-old) mice were used for RNA-seq. A total of 92 and 182 genes were identified as differentially expressed between the SR and NSR in newborn and adult mice, respectively. Meanwhile, a total of 1563 genes were identified as differentially expressed between the newborn SR and adult SR. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) of the DEGs were performed. Protein–protein interaction (PPI) networks were constructed using STRING and Cytoscape. Further analysis identified some novel proteins and pathways that may be important for NMJ development, maintenance and maturation. Specifically, Sv2b, Ptgir, Gabrb3, P2rx3, Dlgap1 and Rims1 may play roles in NMJ development. Hcn1 may localize to the muscle membrane to regulate NMJ maintenance. Trim63, Fbxo32 and several Asb family proteins may regulate muscle developmental-related processes. Conclusion Here, we present a complete dataset describing the spatiotemporal transcriptome changes in synaptic genes and important synaptic pathways. The neuronal projection-related pathway, ion channel activity and neuroactive ligand-receptor interaction pathway are important for NMJ development. The myelination and voltage-gated ion channel activity pathway may be important for NMJ maintenance. These data will facilitate the understanding of the molecular mechanisms underlying the development and maintenance of NMJ and the pathogenesis of NMJ disorders.
Collapse
Affiliation(s)
- Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China. .,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
42
|
Justo ME, Aldecoa M, Cela E, Leoni J, González Maglio DH, Villa AM, Aguirre F, Paz ML. Low Vitamin D Serum Levels in a Cohort of Myasthenia Gravis Patients in Argentina. Photochem Photobiol 2021; 97:1145-1149. [PMID: 33866582 DOI: 10.1111/php.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
There are limited and controversial studies that address the role of vitamin D (vitD), a vitamin with immunomodulatory effects, in myasthenia gravis (MG), a neuromuscular autoimmune disease. We aimed to assess 25-hydroxy vitamin D (25(OH)D) levels and to evaluate possible associations with the clinical severity and other biomarkers of the disease. Serum levels of 25(OH)D, anti-acetylcholine receptor antibodies and complement factor C5a were measured in MG patients (n = 66) and healthy volunteers (HV) (n = 25). Participants were evaluated through questionnaires to determine vitD intake and sunlight exposure. Severity scores were registered for MG patients. We found an 89.4% of MG individuals with nonsufficient levels of vitD, in comparison with 68.0% in the group of HV (OR = 3.96; P = 0.024). In addition, there was an inverse correlation between 25(OH)D levels and one of the scores (P = 0.037 r = -0.26, CI95 = -0.49 to -0.0087). However, when we compared 25(OH)D median serum levels between MG patients and HV, no statistically significant differences have been found. This is the first report of vitD status in a cohort of Argentinean MG patients, where we found that patients are more likely to have nonsufficient levels of vitD compared to healthy people and that patients with more severe disease have lower levels of vitD.
Collapse
Affiliation(s)
- Mariano E Justo
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mayra Aldecoa
- Sección de Neuroinmunología y Electrofisiología, División Neurología, Hospital José María Ramos Mejía, Centro Argentino de Neuroinmunología (CADENI), Facultad de Medicina - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eliana Cela
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juliana Leoni
- Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel H González Maglio
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés M Villa
- Sección de Neuroinmunología y Electrofisiología, División Neurología, Hospital José María Ramos Mejía, Centro Argentino de Neuroinmunología (CADENI), Facultad de Medicina - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Aguirre
- Sección de Neuroinmunología y Electrofisiología, División Neurología, Hospital José María Ramos Mejía, Centro Argentino de Neuroinmunología (CADENI), Facultad de Medicina - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela L Paz
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
44
|
Fichtner ML, Vieni C, Redler RL, Kolich L, Jiang R, Takata K, Stathopoulos P, Suarez PA, Nowak RJ, Burden SJ, Ekiert DC, O'Connor KC. Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis. J Exp Med 2021; 217:152036. [PMID: 32820331 PMCID: PMC7953735 DOI: 10.1084/jem.20200513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogenic muscle-specific tyrosine kinase (MuSK)–specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient–derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm–exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Casey Vieni
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY.,Medical Scientist Training Program, New York University School of Medicine, New York, NY
| | - Rachel L Redler
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ljuvica Kolich
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kazushiro Takata
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Panos Stathopoulos
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Pablo A Suarez
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven J Burden
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Damian C Ekiert
- Departments of Cell Biology and Microbiology, New York University School of Medicine, New York, NY
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
45
|
Paz ML, Barrantes FJ. Cholesterol in myasthenia gravis. Arch Biochem Biophys 2021; 701:108788. [PMID: 33548213 DOI: 10.1016/j.abb.2021.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
The cholinergic neuromuscular junction is the paradigm peripheral synapse between a motor neuron nerve ending and a skeletal muscle fiber. In vertebrates, acetylcholine is released from the presynaptic site and binds to the nicotinic acetylcholine receptor at the postsynaptic membrane. A variety of pathologies among which myasthenia gravis stands out can impact on this rapid and efficient signaling mechanism, including autoimmune diseases affecting the nicotinic receptor or other synaptic proteins. Cholesterol is an essential component of biomembranes and is particularly rich at the postsynaptic membrane, where it interacts with and modulates many properties of the nicotinic receptor. The profound changes inflicted by myasthenia gravis on the postsynaptic membrane necessarily involve cholesterol. This review analyzes some aspects of myasthenia gravis pathophysiology and associated postsynaptic membrane dysfunction, including dysregulation of cholesterol metabolism in the myocyte brought about by antibody-receptor interactions. In addition, given the extensive therapeutic use of statins as the typical cholesterol-lowering drugs, we discuss their effects on skeletal muscle and the possible implications for MG patients under chronic treatment with this type of compound.
Collapse
Affiliation(s)
- Mariela L Paz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Buenos Aires, Argentina; CONICET, Universidad de Buenos Aires, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni" (IDEHU), Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA, CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Chen J, Shang W, Chen Y, Li Y, Huang X, Su C, Zhu K, Zhang J, Liu W, Feng H. Thymomatous myasthenia gravis: 10-year experience of a single center. Acta Neurol Scand 2021; 143:96-102. [PMID: 32762063 DOI: 10.1111/ane.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To summarize the clinical features of thymomatous myasthenia gravis (T-MG), examine the association between MG and thymoma, and identify the related factors or predictors for long-term prognosis of T-MG. METHODS A retrospective, observational study was conducted on 100 patients with T-MG and 96 patients with non-T-MG (NT-MG) between January 1, 2009 and December 31, 2019. The baseline characteristics were recorded for each patient. Logistic regression was used to measure the association between all clinical variables and T-MG prognosis. RESULTS Between the T-MG and NT-MG groups, age at onset (45.66 ± 11.53 years vs 39.06 ± 14.39 years); age >40 years (72.0% vs. 40.6%); AChR-Ab positive rate (100.0% vs. 83.3%); Myasthenia Gravis Foundation of America (MGFA) classification at the worst condition (≥grade III, 61.0% vs. 33.0%); thyroid dysfunction (7.0% vs. 20.8%); and outcome (complete stable remission + pharmacologic remission + improvement, 74.0% vs. 93.7%) were statistically significant (P < .05). Presence of thymoma (OR = 0.196, 95%CI = 0.076-0.511, P = .001) was a risk factor for MG. Male sex, post-operative complications, higher grade of MGFA classification, and thymoma Masaoka-Koga pathological stage were risk predictors for long-term prognosis of T-MG (P < .1). Use of preoperative anticholinesterase drugs (OR = 5.504, 95%CI = 1.424-21.284, P = .013) was identified as an independent predictor for T-MG. CONCLUSION T-MG is clinically different from NT-MG, and thymoma is considered a risk factor for MG. Preoperative anticholinesterase drug use is a protective factor for long-term prognosis of T-MG. A comprehensive understanding of the characteristics of T-MG will likely help improve its prognosis.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Wenjin Shang
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Yin Chen
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Yan Li
- Department of Neurosurgical Intensive Care Unit The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
| | - Xin Huang
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Chunhua Su
- Department of Thoracic Surgery The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
| | - Kai Zhu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Jieni Zhang
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Weibin Liu
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| | - Huiyu Feng
- Department of Neurology The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Disease Guangzhou China
| |
Collapse
|
47
|
Frykman H, Kumar P, Oger J. Immunopathology of Autoimmune Myasthenia Gravis: Implications for Improved Testing Algorithms and Treatment Strategies. Front Neurol 2020; 11:596621. [PMID: 33362698 PMCID: PMC7755715 DOI: 10.3389/fneur.2020.596621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a heterogeneous condition, characterized by autoantibodies (Abs) that target functionally important structures within neuromuscular junctions (NMJ), thus affecting nerve-to-muscle transmission. MG patients are more often now subgrouped based on the profile of serum autoantibodies, which segregate with clinical presentation, immunopathology, and their response to therapies. The serological testing plays an essential role in confirming MG diagnosis and guiding disease management, although a small percentage of MG patients remain negative for antibodies. With the advancements in new highly effective pathophysiologically-specific immunotherapeutic options, it has become increasingly important to identify the specific Abs responsible for the pathogenicity in individual MG patients. There are several new assays and protocols being developed for the improved detection of Abs in MG patients. This review focuses on the divergent immunopathological mechanisms in MG, and discusses their relevance to improved diagnostic and treatment. We propose a comprehensive "reflex testing," algorithm for the presence of MG autoantibodies, and foresee that in the near future, the convenience and specificity of novel assays will permit the clinicians to consider them into routine systematic testing, thus stimulating laboratories to make these tests available. Moreover, adopting treatment driven testing algorithms will be crucial to identify subgroups of patients potentially benefiting from novel immunotherapies for MG.
Collapse
Affiliation(s)
- Hans Frykman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Pankaj Kumar
- BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| | - Joel Oger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Neuroimmunology Lab, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Detection of Microbiota from Human Thymus of Myasthenia Gravis. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
Jiang R, Hoehn KB, Lee CS, Pham MC, Homer RJ, Detterbeck FC, Aban I, Jacobson L, Vincent A, Nowak RJ, Kaminski HJ, Kleinstein SH, O'Connor KC. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proc Natl Acad Sci U S A 2020; 117:30649-30660. [PMID: 33199596 PMCID: PMC7720237 DOI: 10.1073/pnas.2007206117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular, autoimmune disease caused by autoantibodies that target postsynaptic proteins, primarily the acetylcholine receptor (AChR) and inhibit signaling at the neuromuscular junction. The majority of patients under 50 y with AChR autoantibody MG have thymic lymphofollicular hyperplasia. The MG thymus is a reservoir of plasma cells that secrete disease-causing AChR autoantibodies and although thymectomy improves clinical scores, many patients fail to achieve complete stable remission without additional immunosuppressive treatments. We speculate that thymus-associated B cells and plasma cells persist in the circulation after thymectomy and that their persistence could explain incomplete responses to resection. We studied patients enrolled in a randomized clinical trial and used complementary modalities of B cell repertoire sequencing to characterize the thymus B cell repertoire and identify B cell clones that resided in the thymus and circulation before and 12 mo after thymectomy. Thymus-associated B cell clones were detected in the circulation by both mRNA-based and genomic DNA-based sequencing. These antigen-experienced B cells persisted in the circulation after thymectomy. Many circulating thymus-associated B cell clones were inferred to have originated and initially matured in the thymus before emigration from the thymus to the circulation. The persistence of thymus-associated B cells correlated with less favorable changes in clinical symptom measures, steroid dose required to manage symptoms, and marginal changes in AChR autoantibody titer. This investigation indicates that the diminished clinical response to thymectomy is related to persistent circulating thymus-associated B cell clones.
Collapse
Affiliation(s)
- Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
| | - Casey S Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Pathology & Laboratory Medicine Service, VA CT Health Care System, West Haven, CT 06516
| | - Frank C Detterbeck
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06511
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Henry J Kaminski
- Department of Neurology, The George Washington University, Washington, DC 20052
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
50
|
Deymeer F. History of Myasthenia Gravis Revisited. ACTA ACUST UNITED AC 2020; 58:154-162. [PMID: 34188599 DOI: 10.29399/npa.27315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
The first description of myasthenia gravis (MG) was given by Thomas Willis in 1672. MG was the focus of attention after mid-nineteenth century and a great amount of information has been accumulated in a span of 150 years. The aim of this review is to convey this information according to a particular systematic and to briefly relate the experience of Istanbul University. MG history was examined in four periods: 1868-1930, 1930-1960, 1960-1990, and 1990-2020. In the first period (1868-1930), all the clinical characteristics of MG were defined. Physiological/pharmacological studies on the transmission at the neuromuscular junction were initiated, and the concept of repetitive nerve stimulation emerged. A toxic agent was believed to be the cause of MG which appeared to resemble curare intoxication. Association of MG with thymus was noticed. No noteworthy progress was made in its treatment. In the second period (1930-1960), acetylcholine was discovered to be the transmitter at the neuromuscular junction. Repetitive nerve stimulation was used as a diagnostic test. The autoimmune nature of MG was suspected and experiments to this end started to give results. The hallmark of this period was the use of anticholinesterases and thymectomy in the treatment of MG. The third period (1960-1990) can probably be considered a revolutionary era for MG. Important immunological mechanisms (acetylcholine receptor isolation, discovery of anti-acetylcholine receptor antibodies) were clarified and the autoimmune nature of MG was demonstrated. Treatment modalities which completely changed the prognosis of MG, including positive pressure mechanic ventilation and corticosteroids as well as plasma exchange/IVIg and azathioprine, were put to use. In the fourth period (1990-2020), more immunological progress, including the discovery of anti-MuSK antibodies, was achieved. Videothoracoscopic thymectomy reduced the morbidity and mortality rate associated with surgery. New drugs emerged and clinical trials were performed. Valuable guidelines were published. In the last part of the review, the experience in MG of Istanbul University, a pioneer in Turkey, is related.
Collapse
Affiliation(s)
- Feza Deymeer
- İstanbul University Faculty of Medicine Retired Faculty Member, İstanbul, Turkey
| |
Collapse
|