1
|
Li Y, Yu Q, Lu Y, He H, Qi J, Tai Z, Chen Z, Zhu Q, Wu W. Enhanced transdermal delivery of insulin by choline-based ionic liquids. Int J Pharm 2024; 667:125006. [PMID: 39603435 DOI: 10.1016/j.ijpharm.2024.125006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ionic liquids (ILs) show promises as chemical penetration enhancers (CPEs) for transdermal delivery of macromolecular drugs. However, their high viscosity and strong drug-IL affinity may limit drug diffusion and release from the drug-loaded IL (one-step strategy). Herein, a two-step strategy was used by applying choline-based ILs as pretreatment agents followed by insulin solution to improve penetration. Insulin remained stable in the ILs and are released slowly from the IL matrices. In vitro and in vivo studies showed that two-step treatment enhanced insulin penetration compared to one-step treatment, with choline citrate ([Ch][Ci]) and choline geranate ([Ch][Ge]) performing the best. In a diabetic rat model, two-step treatment with [Ch][Ge] reduced blood glucose levels to below 80% within 8 h, while one-step treatment only maintained for 12 h. Trans-epidermal water loss and molecular dynamics simulations suggested that variations in release rates and skin condition accounted for the differences between the two strategies. Physical characterization confirmed that ILs enhanced transdermal delivery of insulin by permeabilizing stratum corneum and opening tight junctions. Preliminary safety assessment indicated mild irritation by [Ch][Ge], whereas [Ch][Ci] showed good biocompatibility. It is concluded that ILs hold potential in enhancing transdermal delivery of insulin.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Qin Yu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
2
|
Banerjee DS, Freedman SL, Murrell MP, Banerjee S. Growth-induced collective bending and kinetic trapping of cytoskeletal filaments. Cytoskeleton (Hoboken) 2024; 81:409-419. [PMID: 38775207 DOI: 10.1002/cm.21877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Growth and turnover of actin filaments play a crucial role in the construction and maintenance of actin networks within cells. Actin filament growth occurs within limited space and finite subunit resources in the actin cortex. To understand how filament growth shapes the emergent architecture of actin networks, we developed a minimal agent-based model coupling filament mechanics and growth in a limiting subunit pool. We find that rapid filament growth induces kinetic trapping of highly bent actin filaments. Such collective bending patterns are long-lived, organized around nematic defects, and arise from competition between filament polymerization and bending elasticity. The stability of nematic defects and the extent of kinetic trapping are amplified by an increase in the abundance of the actin pool and by crosslinking the network. These findings suggest that kinetic trapping is a robust consequence of growth in crowded environments, providing a route to program shape memory in actin networks.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Systems Biology Institute, West Haven, Connecticut, USA
- Department of Physics, Yale University, New Haven, Connecticut, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2024. [PMID: 39056295 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Venkatachalam T, Mannimala S, Pulijala Y, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that may target different GTPases. PLoS Genet 2024; 20:e1011330. [PMID: 39083711 PMCID: PMC11290852 DOI: 10.1371/journal.pgen.1011330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. We interfered with GEF function by interfering with CED-5's ability to bind Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies strongly support that the GAP function likely acts on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yeshaswi Pulijala
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
5
|
Homa KE, Hocky GM, Suarez C, Kovar DR. Arp2/3 complex- and formin-mediated actin cytoskeleton networks facilitate actin binding protein sorting in fission yeast. Eur J Cell Biol 2024; 103:151404. [PMID: 38493594 PMCID: PMC11211059 DOI: 10.1016/j.ejcb.2024.151404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
While it is well-established that F-actin networks with specific organizations and dynamics are tightly regulated by distinct sets of associated actin-binding proteins (ABPs), how ABPs self-sort to particular F-actin networks remains largely unclear. We report that actin assembly factors Arp2/3 complex and formin Cdc12 tune the association of ABPs fimbrin Fim1 and tropomyosin Cdc8 to different F-actin networks in fission yeast. Genetic and pharmacological disruption of F-actin networks revealed that Fim1 is preferentially directed to Arp2/3-complex mediated actin patches, whereas Cdc8 is preferentially targeted to formin Cdc12-mediated filaments in the contractile ring. To investigate the role of Arp2/3 complex- and formin Cdc12-mediated actin assembly, we used four-color TIRF microscopy to observe the in vitro reconstitution of ABP sorting with purified proteins. Fim1 or Cdc8 alone bind similarly well to filaments assembled by either assembly factor. However, in 'competition' reactions containing both actin assembly factors and both ABPs, ∼2.0-fold more Fim1 and ∼3.5-fold more Cdc8 accumulates on Arp2/3 complex branch points and formin Cdc12-assembled actin filaments, respectively. These findings indicate that F-actin assembly factors Arp2/3 complex and formin Cdc12 help facilitate the recruitment of specific ABPs, thereby tuning ABP sorting and subsequently establishing the identity of F-actin networks in fission yeast.
Collapse
Affiliation(s)
- Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY, United States
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
6
|
Gao X, Yang B, Zhang J, Wang C, Ren H, Fu Y, Yang Z. PLEIOTROPIC REGULATORY LOCUS1 maintains actin microfilament integrity to regulate pavement cell morphogenesis. PLANT PHYSIOLOGY 2024; 195:356-369. [PMID: 38227494 DOI: 10.1093/plphys/kiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Actin dynamics are critical for plant cell morphogenesis, but the underlying signaling mechanisms regulating these dynamics are not well understood. Here, we established that PLEIOTROPIC REGULATORY LOCUS1 (PRL1) modulates leaf pavement cell (PC) morphogenesis in Arabidopsis (Arabidopsis thaliana) by maintaining the dynamic homeostasis of actin microfilaments (MF). Our previous studies indicated that PC shape was determined by antagonistic RHO-RELATED GTPase FROM PLANTS 2 (ROP2) and RHO-RELATED GTPase FROM PLANTS 6 (ROP6) signaling pathways that promote cortical MF and microtubule organization, respectively. Our genetic screen for additional components in ROP6-mediated signaling identified prl1 alleles. Genetic analysis confirmed that PRL1 plays a key role in PC morphogenesis. Mutations in PRL1 caused cortical MF depolymerization, resulting in defective PC morphogenesis. Further genetic analysis revealed that PRL1 is epistatic to ROP2 and ROP6 in PC morphogenesis. Mutations in PRL1 enhanced the effects of ROP2 and ROP6 in PC morphogenesis, leading to a synergistic phenotype in the PCs of ROP2 prl1 and ROP6 prl1. Furthermore, the activities of ROP2 and ROP6 were differentially altered in prl1 mutants, suggesting that ROP2 and ROP6 function downstream of PRL1. Additionally, cortical MF depolymerization in prl1 mutants occurred independently of ROP2 and ROP6, implying that these proteins impact PC morphogenesis in the prl1 mutant through other cellular processes. Our research indicates that PRL1 preserves the structural integrity of actin and facilitates pavement cell morphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Xiaowei Gao
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Yang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Zhang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chi Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huibo Ren
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Fu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenbiao Yang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
8
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Inter-plane feedback coordinates cell morphogenesis and maintains 3D tissue organization in the Drosophila pupal retina. Development 2024; 151:dev201757. [PMID: 38533736 PMCID: PMC11006395 DOI: 10.1242/dev.201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/12/2024] [Indexed: 03/28/2024]
Abstract
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Decker
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Chou WH, Molaei M, Wu H, Oakes PW, Beach JR, Gardel ML. Limiting pool and actin architecture controls myosin cluster sizes in adherent cells. Biophys J 2024; 123:157-171. [PMID: 38062704 PMCID: PMC10808045 DOI: 10.1016/j.bpj.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.
Collapse
Affiliation(s)
- Wen-Hung Chou
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, Illinois; Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Mehdi Molaei
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois
| | - Margaret L Gardel
- Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois; Department of Physics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Banerjee DS, Freedman SL, Murrell MP, Banerjee S. Growth-induced collective bending and kinetic trapping of cytoskeletal filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574885. [PMID: 38260433 PMCID: PMC10802417 DOI: 10.1101/2024.01.09.574885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Growth and turnover of actin filaments play a crucial role in the construction and maintenance of actin networks within cells. Actin filament growth occurs within limited space and finite subunit resources in the actin cortex. To understand how filament growth shapes the emergent architecture of actin networks, we developed a minimal agent-based model coupling filament mechanics and growth in a limiting subunit pool. We find that rapid filament growth induces kinetic trapping of highly bent actin filaments. Such collective bending patterns are long-lived, organized around nematic defects, and arises from competition between filament polymerization and bending elasticity. The stability of nematic defects and the extent of kinetic trapping are amplified by an increase in the abundance of the actin pool and by crosslinking the network. These findings suggest that kinetic trapping is a robust consequence of growth in crowded environments, providing a route to program shape memory in actin networks.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Henderson JM, Ljubojevic N, Belian S, Chaze T, Castaneda D, Battistella A, Giai Gianetto Q, Matondo M, Descroix S, Bassereau P, Zurzolo C. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization. EMBO J 2023; 42:e113761. [PMID: 38009333 PMCID: PMC10711657 DOI: 10.15252/embj.2023113761] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023] Open
Abstract
Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical tweezer-based approaches, we demonstrate that TNTs formed through the outward extension of actin achieve distances greater than the mean length of filopodia and that branched Arp2/3-dependent pathways attenuate the extent to which actin polymerizes in nanotubes, thus limiting their occurrence. Proteomic analysis using epidermal growth factor receptor kinase substrate 8 (Eps8) as a positive effector of TNTs showed that, upon Arp2/3 inhibition, proteins enhancing filament turnover and depolymerization were reduced and Eps8 instead exhibited heightened interactions with the inverted Bin/Amphiphysin/Rvs (I-BAR) domain protein IRSp53 that provides a direct connection with linear actin polymerases. Our data reveals how common protrusion players (Eps8 and IRSp53) form tunnelling nanotubes, and that when competing pathways overutilizing such proteins and monomeric actin in Arp2/3 networks are inhibited, processes promoting linear actin growth dominate to favour tunnelling nanotube formation.
Collapse
Affiliation(s)
- J Michael Henderson
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Present address:
Department of ChemistryBowdoin CollegeBrunswickMEUSA
| | - Nina Ljubojevic
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Sorbonne UniversitéParisFrance
| | - Sevan Belian
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Daryl Castaneda
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Keele UniversityKeeleUK
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
- Bioinformatics and Biostatistics Hub, Computational Biology DepartmentCNRS USR 3756, Institut PasteurParisFrance
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Institut Pierre‐Gilles de GennesParisFrance
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
12
|
Kandiyoth FB, Michelot A. Reconstitution of actin-based cellular processes: Why encapsulation changes the rules. Eur J Cell Biol 2023; 102:151368. [PMID: 37922812 DOI: 10.1016/j.ejcb.2023.151368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
While in vitro reconstitution of cellular processes is progressing rapidly, the encapsulation of biomimetic systems to reproduce the cellular environment is a major challenge. Here we review the difficulties, using reconstitution of processes dependent on actin polymerization as an example. Some of the problems are purely technical, due to the need for engineering strategies to encapsulate concentrated solutions in micrometer-sized compartments. However, other significant issues arise from the reduction of experimental volumes, which alters the chemical evolution of these non-equilibrium systems. Important parameters to consider for successful reconstitutions are the amount of each component, their consumption and renewal rates to guarantee their continuous availability.
Collapse
Affiliation(s)
| | - Alphée Michelot
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
13
|
Lopes Dos Santos R, Malo M, Campillo C. Spatial Control of Arp2/3-Induced Actin Polymerization on Phase-Separated Giant Unilamellar Vesicles. ACS Synth Biol 2023; 12:3267-3274. [PMID: 37909673 DOI: 10.1021/acssynbio.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Deciphering the physical mechanisms underlying cell shape changes, while avoiding the cellular interior's complexity, involves the development of controlled basic biomimetic systems that imitate cell functions. In particular, the reconstruction of cytoskeletal dynamics on cell-sized giant unilamellar vesicles (GUVs) has allowed for the reconstituting of some cell-like processes in vitro. In fact, such a bottom-up strategy could be the basis for forming protocells able to reorganize or even move autonomously. However, reconstituting the subtle and controlled dynamics of the cytoskeleton-membrane interface in vitro remains an experimental challenge. Taking advantage of the lipid-induced segregation of an actin polymerization activator, we present a system that targets actin polymerization in specific domains of phase-separated GUVs. We observe actin networks localized on Lo, Ld, or on both types of domains and the actin-induced deformation or reorganization of these domains. These results suggest that the system we have developed here could pave the way for future experiments further detailing the interplay between actin dynamics and membrane heterogeneities.
Collapse
Affiliation(s)
- Rogério Lopes Dos Santos
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry, Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
14
|
Venkatachalam T, Mannimala S, Soto MC. CED-5/CED-12 (DOCK/ELMO) can promote and inhibit F-actin formation via distinct motifs that target different GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560868. [PMID: 37873140 PMCID: PMC10592980 DOI: 10.1101/2023.10.04.560868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coordinated activation and inhibition of F-actin supports the movements of morphogenesis. Understanding the proteins that regulate F-actin is important, since these proteins are mis-regulated in diseases like cancer. Our studies of C. elegans embryonic epidermal morphogenesis identified the GTPase CED-10/Rac1 as an essential activator of F-actin. However, we need to identify the GEF, or Guanine-nucleotide Exchange Factor, that activates CED-10/Rac1 during embryonic cell migrations. The two-component GEF, CED-5/CED-12, is known to activate CED-10/Rac1 to promote cell movements that result in the engulfment of dying cells during embryogenesis, and a later cell migration of the larval Distal Tip Cell. It is believed that CED-5/CED-12 powers cellular movements of corpse engulfment and DTC migration by promoting F-actin formation. Therefore, we tested if CED-5/CED-12 was involved in embryonic migrations, and got a contradictory result. CED-5/CED-12 definitely support embryonic migrations, since their loss led to embryos that died due to failed epidermal cell migrations. However, CED-5/CED-12 inhibited F-actin in the migrating epidermis, the opposite of what was expected for a CED-10 GEF. To address how CED-12/CED-5 could have two opposing effects on F-actin, during corpse engulfment and cell migration, we investigated if CED-12 harbors GAP (GTPase Activating Protein) functions. A candidate GAP region in CED-12 faces away from the CED-5 GEF catalytic region. Mutating a candidate catalytic Arginine in the CED-12 GAP region (R537A) altered the epidermal cell migration function, and not the corpse engulfment function. A candidate GEF region on CED-5 faces towards Rac1/CED-10. Mutating Serine-Arginine in CED-5/DOCK predicted to bind and stabilize Rac1 for catalysis, resulted in loss of both ventral enclosure and corpse engulfment. Genetic and expression studies showed the GEF and GAP functions act on different GTPases. Thus, we propose CED-5/CED-12 support the cycling of multiple GTPases, by using distinct domains, to both promote and inhibit F-actin nucleation.
Collapse
Affiliation(s)
- Thejasvi Venkatachalam
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Sushma Mannimala
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Martha C. Soto
- Department of Pathology and Laboratory Medicine, Rutgers – Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
15
|
Quiroga X, Walani N, Disanza A, Chavero A, Mittens A, Tebar F, Trepat X, Parton RG, Geli MI, Scita G, Arroyo M, Le Roux AL, Roca-Cusachs P. A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale. eLife 2023; 12:e72316. [PMID: 37747150 PMCID: PMC10569792 DOI: 10.7554/elife.72316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2023] [Indexed: 09/26/2023] Open
Abstract
As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.
Collapse
Affiliation(s)
- Xarxa Quiroga
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de BarcelonaBarcelonaSpain
| | - Nikhil Walani
- Department of Applied Mechanics, IIT DelhiNew DelhiIndia
| | - Andrea Disanza
- IFOM ETS - The AIRC Institute of Molecular OncologyMilanItaly
| | - Albert Chavero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de BarcelonaBarcelonaSpain
| | - Alexandra Mittens
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de BarcelonaBarcelonaSpain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of QueenslandBrisbaneAustralia
| | | | - Giorgio Scita
- IFOM ETS - The AIRC Institute of Molecular OncologyMilanItaly
- Department of Oncology and Haemato-Oncology, University of MilanMilanItaly
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Universitat Politècnica de Catalunya (UPC), Campus Nord, Carrer de Jordi GironaBarcelonaSpain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
16
|
Zhong W, Pathak JL, Liang Y, Zhytnik L, Pals G, Eekhoff EMW, Bravenboer N, Micha D. The intricate mechanism of PLS3 in bone homeostasis and disease. Front Endocrinol (Lausanne) 2023; 14:1168306. [PMID: 37484945 PMCID: PMC10361617 DOI: 10.3389/fendo.2023.1168306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Since our discovery in 2013 that genetic defects in PLS3 lead to bone fragility, the mechanistic details of this process have remained obscure. It has been established that PLS3 variants cause syndromic and nonsyndromic osteoporosis as well as osteoarthritis. PLS3 codes for an actin-bundling protein with a broad pattern of expression. As such, it is puzzling how PLS3 specifically leads to bone-related disease presentation. Our review aims to summarize the current state of knowledge regarding the function of PLS3 in the predominant cell types in the bone tissue, the osteocytes, osteoblasts and osteoclasts. This is related to the role of PLS3 in regulating mechanotransduction, calcium regulation, vesicle trafficking, cell differentiation and mineralization as part of the complex bone pathology presented by PLS3 defects. Considering the consequences of PLS3 defects on multiple aspects of bone tissue metabolism, our review motivates the study of its mechanism in bone diseases which can potentially help in the design of suitable therapy.
Collapse
Affiliation(s)
- Wenchao Zhong
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Janak L. Pathak
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Gerard Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department Internal Medicine Section Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Rare Bone Disease Center, AMS, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
17
|
Chou WH, Molaei M, Wu H, Oakes PW, Beach JR, Gardel ML. Limiting Pool and Actin Architecture Controls Myosin Cluster Sizes in Adherent Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544121. [PMID: 37333106 PMCID: PMC10274763 DOI: 10.1101/2023.06.07.544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The actomyosin cytoskeleton generates mechanical forces that power important cellular processes, such as cell migration, cell division, and mechanosensing. Actomyosin self-assembles into contractile networks and bundles that underlie force generation and transmission in cells. A central step is the assembly of the myosin II filament from myosin monomers, regulation of which has been extensively studied. However, myosin filaments are almost always found as clusters within the cell cortex. While recent studies characterized cluster nucleation dynamics at the cell periphery, how myosin clusters grow on stress fibers remains poorly characterized. Here, we utilize a U2OS osteosarcoma cell line with endogenously tagged myosin II to measure the myosin cluster size distribution in the lamella of adherent cells. We find that myosin clusters can grow with Rho-kinase (ROCK) activity alone in the absence of myosin motor activity. Time-lapse imaging reveals that myosin clusters grow via increased myosin association to existing clusters, which is potentiated by ROCK-dependent myosin filament assembly. Enabling myosin motor activity allows further myosin cluster growth through myosin association that is dependent on F-actin architecture. Using a toy model, we show that myosin self-affinity is sufficient to recapitulate the experimentally observed myosin cluster size distribution, and that myosin cluster sizes are determined by the pool of myosin available for cluster growth. Together, our findings provide new insights into the regulation of myosin cluster sizes within the lamellar actomyosin cytoskeleton.
Collapse
|
18
|
Shi S, Gu H, Xu J, Sun W, Liu C, Zhu T, Wang J, Gao F, Zhang J, Ou Q, Jin C, Xu J, Chen H, Li J, Xu G, Tian H, Lu L. Glia maturation factor beta deficiency protects against diabetic osteoporosis by suppressing osteoclast hyperactivity. Exp Mol Med 2023:10.1038/s12276-023-00980-8. [PMID: 37121966 DOI: 10.1038/s12276-023-00980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 05/02/2023] Open
Abstract
Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.
Collapse
Affiliation(s)
- Si Shi
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, PR China
| | - Jinyuan Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Wan Sun
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caiyin Liu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Tong Zhu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Juan Wang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Furong Gao
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jieping Zhang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Qingjian Ou
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caixia Jin
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jingying Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Hao Chen
- Department of Ophthalmology of Ten People Hospital Affiliated with Tongji University, School of Medicine, Shanghai, 200072, PR China
| | - Jiao Li
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Guotong Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, PR China.
| | - Haibin Tian
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Lixia Lu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
19
|
Parker SS, Ly KT, Grant AD, Sweetland J, Wang AM, Parker JD, Roman MR, Saboda K, Roe DJ, Padi M, Wolgemuth CW, Langlais P, Mouneimne G. EVL and MIM/MTSS1 regulate actin cytoskeletal remodeling to promote dendritic filopodia in neurons. J Cell Biol 2023; 222:e202106081. [PMID: 36828364 PMCID: PMC9998662 DOI: 10.1083/jcb.202106081] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/22/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Dendritic spines are the postsynaptic compartment of a neuronal synapse and are critical for synaptic connectivity and plasticity. A developmental precursor to dendritic spines, dendritic filopodia (DF), facilitate synapse formation by sampling the environment for suitable axon partners during neurodevelopment and learning. Despite the significance of the actin cytoskeleton in driving these dynamic protrusions, the actin elongation factors involved are not well characterized. We identified the Ena/VASP protein EVL as uniquely required for the morphogenesis and dynamics of DF. Using a combination of genetic and optogenetic manipulations, we demonstrated that EVL promotes protrusive motility through membrane-direct actin polymerization at DF tips. EVL forms a complex at nascent protrusions and DF tips with MIM/MTSS1, an I-BAR protein important for the initiation of DF. We proposed a model in which EVL cooperates with MIM to coalesce and elongate branched actin filaments, establishing the dynamic lamellipodia-like architecture of DF.
Collapse
Affiliation(s)
- Sara S. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kenneth Tran Ly
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Adam D. Grant
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Jillian Sweetland
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley M. Wang
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - James D. Parker
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mackenzie R. Roman
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Kathylynn Saboda
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Denise J. Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Megha Padi
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Charles W. Wolgemuth
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
- Department of Physics, College of Science, University of Arizona, Tucson, AZ, USA
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Langlais
- Division of Endocrinology, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- Cancer Biology Program, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
20
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
21
|
Wang L, Zhou K, Wu Q, Zhu L, Hu Y, Yang X, Li D. Microanatomy of the metabolic associated fatty liver disease (MAFLD) by single-cell transcriptomics. J Drug Target 2023; 31:421-432. [PMID: 36847649 DOI: 10.1080/1061186x.2023.2185626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a major cause of liver disease worldwide and comprises non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Due to the high prevalence and poor prognosis of NASH, it is critical to identify and treat patients at risk. However, the aetiology and mechanisms remain largely unknown, warranting further analysis. METHODS We first identified differential genes in NASH by single-cell analysis of the GSE129516 dataset and conducted expression profiling data analysis of the GSE184019 dataset from the Gene Expression Omnibus (GEO) database. Then single-cell trajectory reconstruction and analysis, immune gene score, cellular communication, key gene screening, functional enrichment analysis, and immune microenvironment analysis were carried out. Finally, cell experiments were performed to verify the role of key genes in NASH. RESULTS We conducted transcriptome profiling of 30,038 single cells, including hepatocytes and non-hepatocytes from normal and steatosis adult mouse livers. Comparative analysis of hepatocytes and non-hepatocytes revealed pronounced heterogeneity as non-hepatocytes acted as major cell-communication hubs. The results showed that Hspa1b, Tfrc, Hmox1 and Map4k4 could effectively distinguish NASH tissues from normal samples. The results of scRNA-seq and qPCR indicated that the expression levels of hub genes in NASH were significantly higher than in normal cells or tissues. Further immune infiltration analysis showed significant differences in M2 macrophage distribution between healthy and metabolic-associated fatty liver samples. CONCLUSIONS Our results suggest that Hspa1b, Tfrc, Hmox1 and Map4k4 have huge prospects as diagnostic and prognostic biomarkers for NASH and may be potential therapeutic targets for NASH.
Collapse
Affiliation(s)
- Lijun Wang
- The Nanhua Affiliated Hospital, Department of Stomatology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kebing Zhou
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qing Wu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lingping Zhu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Hu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuefeng Yang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Duo Li
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Nanhua Affiliated Hospital, Department of General Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
22
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Orthogonal coupling of a 3D cytoskeletal scaffold coordinates cell morphogenesis and maintains tissue organization in the Drosophila pupal retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531386. [PMID: 36945525 PMCID: PMC10028844 DOI: 10.1101/2023.03.06.531386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
|
23
|
Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins. Cytoskeleton (Hoboken) 2023; 80:77-92. [PMID: 36692369 PMCID: PMC10121778 DOI: 10.1002/cm.21745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
It was proposed from cellular studies that S. pombe tropomyosin Cdc8 (Tpm) segregates into two populations due to the presence or absence of an amino-terminal acetylation that specifies which formin-mediated F-actin networks it binds, but with no supporting biochemistry. To address this mechanism in vitro, we developed methods for S. pombe actin expression in Sf9 cells. We then employed 3-color TIRF microscopy using all recombinant S. pombe proteins to probe in vitro multicomponent mechanisms involving actin, acetylated and unacetylated Tpm, formins, and myosins. Acetyl-Tpm exhibits tight binding to actin in contrast to weaker binding by unacetylated Tpm. In disagreement with the differential recruitment model, Tpm showed no preferential binding to filaments assembled by the FH1-FH2-domains of two S. pombe formins, nor did Tpm binding have any bias towards the growing formin-bound actin filament barbed end. Although our in vitro findings do not support a direct formin-tropomyosin interaction, it is possible that formins bias differential tropomyosin isoform recruitment through undiscovered mechanisms. Importantly, despite a 12% sequence divergence between skeletal and S. pombe actin, S. pombe myosins Myo2 and Myo51 exhibited similar motile behavior with these two actins, validating key prior findings with these myosins that used skeletal actin.
Collapse
Affiliation(s)
- Qing Tang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| | - Kaitlin E. Homa
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - David R. Kovar
- Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, the University of Chicago, Chicago, IL
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington VT
| |
Collapse
|
24
|
Litovka NI, Zhitnyak IY, Gloushankova NA. Epithelial–Mesenchymal Transition of Breast Cancer Cells Induced by Activation of the Transcription Factor Snail1. BIOCHEMISTRY (MOSCOW) 2023; 88:22-34. [PMID: 37068870 DOI: 10.1134/s0006297923010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Cancer cells use the program of epithelial-mesenchymal transition (EMT) for initiation of the invasion-metastasis cascade. Using confocal and video-microscopy, reorganization of the cytoskeleton was studied in the MCF-7 breast cancer cells undergoing Snail1-induced EMT. We used the line of MCF-7 cells stably expressing tetOff SNAI1 construct (MCF-7-SNAI1 cells). After tetracycline washout and Snail1 activation MCF-7-SNAI1 cells underwent EMT and acquired a migratory phenotype while retaining expression of E-cadherin. We identified five variants of the mesenchymal phenotype, differing in cell morphology and migration velocity. Migrating cells had high degree of plasticity, which allowed them to quickly change both the phenotype and migration velocity. The changes of the phenotype of MCF-7-SNAI1 cells are based on the Arp2/3-mediated branched actin network polymerization in lamellipodia, myosin-based contractility in the zone behind the nucleus, redistribution of adhesive proteins from cell-cell contacts to the leading edge, and reorganization of intermediate keratin filaments.
Collapse
Affiliation(s)
- Nikita I Litovka
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Irina Y Zhitnyak
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Natalya A Gloushankova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
25
|
Kumar G, Sudhagar A, Shivam S, Nilsen F, Bartholomew JL, El-Matbouli M. Identification of in vivo induced antigens of the malacosporean parasite Tetracapsuloides bryosalmonae (Cnidaria) using in vivo induced antigen technology. Front Cell Infect Microbiol 2022; 12:1032347. [PMID: 36389158 PMCID: PMC9644027 DOI: 10.3389/fcimb.2022.1032347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2024] Open
Abstract
Tetracapsuloides bryosalmonae is a malacosporean endoparasite that causes proliferative kidney disease (PKD) in wild and farmed salmonids in Europe and North America. The life cycle of T. bryosalmonae completes between invertebrate bryozoan and vertebrate fish hosts. Inside the fish, virulence factors of T. bryosalmonae are induced during infection or interactions with host cells. T. bryosalmonae genes expressed in vivo are likely to be important in fish pathogenesis. Herein, we identify in vivo induced antigens of T. bryosalmonae during infection in brown trout (Salmo trutta) using in vivo induced antigen technology (IVIAT). Brown trout were exposed to the spores of T. bryosalmonae and were sampled at different time points. The pooled sera were first pre-adsorbed with antigens to remove false positive results. Subsequently, adsorbed sera were used to screen a T. bryosalmonae cDNA phage expression library. Immunoscreening analysis revealed 136 immunogenic T. bryosalmonae proteins induced in brown trout during parasite development. They are involved in signal transduction, transport, metabolism, ion-protein binding, protein folding, and also include hypothetical proteins, of so far unknown functions. The identified in vivo induced antigens will be useful in the understanding of T. bryosalmonae pathogenesis during infection in susceptible hosts. Some of the antigens found may have significant implications for the discovery of candidate molecules for the development of potential therapies and preventive measures against T. bryosalmonae in salmonids.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- Peninsular and Marine Fish Genetic Resources Centre, Indian Council of Agricultural Research (ICAR) – National Bureau of Fish Genetic Resources, Kochi, India
| | - Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- Karwar Regional Station of Indian Council of Agricultural Research (ICAR)-Central Marine Fisheries Research Institute, Karwar, India
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| |
Collapse
|
26
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
27
|
Size regulation of multiple organelles competing for a limiting subunit pool. PLoS Comput Biol 2022; 18:e1010253. [PMID: 35714135 PMCID: PMC9246132 DOI: 10.1371/journal.pcbi.1010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/30/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
How cells regulate the size of intracellular structures and organelles is a longstanding question. Recent experiments suggest that size control of intracellular structures is achieved through the depletion of a limiting subunit pool in the cytoplasm. While the limiting pool model ensures organelle-to-cell size scaling, it does not provide a mechanism for robust size control of multiple co-existing structures. Here we develop a generalized theory for size-dependent growth of intracellular structures to demonstrate that robust size control of multiple intracellular structures, competing for a limiting subunit pool, is achieved via a negative feedback between the growth rate and the size of the individual structure. This design principle captures size maintenance of a wide variety of subcellular structures, from cytoskeletal filaments to three-dimensional organelles. We identify the feedback motifs for structure size regulation based on known molecular processes, and compare our theory to existing models of size regulation in biological assemblies. Furthermore, we show that positive feedback between structure size and growth rate can lead to bistable size distribution and spontaneous size selection. Organelle size control is essential for the proper physiological functioning of eukaryotic cells, but the underlying mechanisms of size regulation remain poorly understood. By developing a general theory for organelle size control, we show that robust size control of intracellular structures and organelles is achieved via a negative feedback between individual organelle size and their net growth rates. This design principle not only describes size maintenance of single organelles, but also ensures size stability of multiple co-existing organelles that are built from a limiting pool of subunits. Our results delineate the role of limiting pool as a size scaling mechanism rather than a size control mechanism, supporting the idea that negative feedback control of organelle size via depletion of a limiting subunit pool is not sufficient to maintain the size of multiple competing organelles. In the case of positive feedback between organelle size and growth rate, our model reproduces phenomena such as bistability in organelle size distribution and spontaneous emergence of cell polarity.
Collapse
|
28
|
Multiple roles for the cytoskeleton in ALS. Exp Neurol 2022; 355:114143. [PMID: 35714755 PMCID: PMC10163623 DOI: 10.1016/j.expneurol.2022.114143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by more than sixty genes identified through classic linkage analysis and new sequencing methods. Yet no clear mechanism of onset, cure, or effective treatment is known. Popular discourse classifies the proteins encoded from ALS-related genes into four disrupted processes: proteostasis, mitochondrial function and ROS, nucleic acid regulation, and cytoskeletal dynamics. Surprisingly, the mechanisms detailing the contribution of the neuronal cytoskeletal in ALS are the least explored, despite involvement in these cell processes. Eight genes directly regulate properties of cytoskeleton function and are essential for the health and survival of motor neurons, including: TUBA4A, SPAST, KIF5A, DCTN1, NF, PRPH, ALS2, and PFN1. Here we review the properties and studies exploring the contribution of each of these genes to ALS.
Collapse
|
29
|
Banerjee DS, Banerjee S. Emergence and maintenance of variable-length actin filaments in a limiting pool of building blocks. Biophys J 2022; 121:2436-2448. [PMID: 35598045 DOI: 10.1016/j.bpj.2022.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the mean length of individual actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth rate modulation by actin binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning F-actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths. SIGNIFICANCE: Actin filaments organize into different functional network architectures within eukaryotic cells. To maintain distinct actin network architectures, it is essential to regulate the lengths of actin filaments. While the mechanisms controlling the lengths of individual actin filaments have been extensively studied, the regulation of length heterogeneity in actin filament populations is not well understood. Here we show that the modulation of actin filament growth and nucleation rates by actin binding proteins can regulate actin length distribution and create distinct sub-populations with different lengths. In particular, by tuning concentrations of formin, profilin and capping proteins, various aspects of actin filament length distribution can be controlled. Insights gained from our results may have significant implications for the regulation of actin filament length heterogeneity and architecture within a cell.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA
| | - Shiladitya Banerjee
- Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Abstract
Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Sarkar P, Kumar GA, Shrivastava S, Chattopadhyay A. Chronic cholesterol depletion increases F-actin levels and induces cytoskeletal reorganization via a dual mechanism. J Lipid Res 2022; 63:100206. [PMID: 35390404 PMCID: PMC9096963 DOI: 10.1016/j.jlr.2022.100206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Previous work from us and others has suggested that cholesterol is an important lipid in the context of the organization of the actin cytoskeleton. However, reorganization of the actin cytoskeleton upon modulation of membrane cholesterol is rarely addressed in the literature. In this work, we explored the signaling crosstalk between cholesterol and the actin cytoskeleton by using a high-resolution confocal microscopic approach to quantitatively measure changes in F-actin content upon cholesterol depletion. Our results show that F-actin content significantly increases upon chronic cholesterol depletion, but not during acute cholesterol depletion. In addition, utilizing inhibitors targeting the cholesterol biosynthetic pathway at different steps, we show that reorganization of the actin cytoskeleton could occur due to the synergistic effect of multiple pathways, including prenylated Rho GTPases and availability of membrane phosphatidylinositol 4,5-bisphosphate. These results constitute one of the first comprehensive dissections of the mechanistic basis underlying the interplay between cellular actin levels and cholesterol biosynthesis. We envision these results will be relevant for future understating of the remodeling of the actin cytoskeleton in pathological conditions with altered cholesterol.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
32
|
Fong CHY, Lu L, Chen LL, Yeung ML, Zhang AJ, Zhao H, Yuen KY, To KKW. Interferon-gamma inhibits influenza A virus cellular attachment by reducing sialic acid cluster size. iScience 2022; 25:104037. [PMID: 35330686 PMCID: PMC8938289 DOI: 10.1016/j.isci.2022.104037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
The mucosal antiviral role of type I and III interferon in influenza virus infection is well established. However, much less is known about the antiviral mechanism of type II interferon (interferon-gamma). Here, we revealed an antiviral mechanism of interferon-gamma by inhibiting influenza A virus (IAV) attachment. By direct stochastic optical reconstruction microscopy, confocal microscopy, and flow cytometry, we have shown that interferon-gamma reduced the size of α-2,3 and α-2,6-linked sialic acid clusters, without changing the sialic acid or epidermal growth factor receptor expression levels, or the sialic acid density within cluster on the cell surface of A549 cells. Reversing the effect of interferon-gamma on sialic acid clustering by jasplakinolide reverted the cluster size, improved IAV attachment and replication. Our findings showed the importance of sialic acid clustering in IAV attachment and infection. We also demonstrated the interference of sialic acid clustering as an anti-IAV mechanism of IFN-gamma for IAV infection. IFN-γ inhibits IAV replication IFN-γ reduces IAV attachment and infection by reducing sialic acid cluster size Reduction of sialic acid cluster size partially depends on F-actin depolymerization Higher sialic acid expression level does not correlate with increase IAV attachment
Collapse
Affiliation(s)
- Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Corresponding author
| | - Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lin-Lei Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Man-Lung Yeung
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Island, People’s Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Island, People’s Republic of China
- Corresponding author
| |
Collapse
|
33
|
Boiero Sanders M, Toret CP, Guillotin A, Antkowiak A, Vannier T, Robinson RC, Michelot A. Specialization of actin isoforms derived from the loss of key interactions with regulatory factors. EMBO J 2022; 41:e107982. [PMID: 35178724 PMCID: PMC8886540 DOI: 10.15252/embj.2021107982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin‐binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.
Collapse
Affiliation(s)
| | - Christopher P Toret
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Audrey Guillotin
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Adrien Antkowiak
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Thomas Vannier
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Alphée Michelot
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| |
Collapse
|
34
|
Liu X, Pimm ML, Haarer B, Brawner AT, Henty-Ridilla JL. Biochemical characterization of actin assembly mechanisms with ALS-associated profilin variants. Eur J Cell Biol 2022; 101:151212. [PMID: 35248815 PMCID: PMC10163920 DOI: 10.1016/j.ejcb.2022.151212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Eight separate mutations in the actin-binding protein profilin-1 have been identified as a rare cause of amyotrophic lateral sclerosis (ALS). Profilin is essential for many neuronal cell processes through its regulation of lipids, nuclear signals, and cytoskeletal dynamics, including actin filament assembly. Direct interactions between profilin and actin monomers inhibit actin filament polymerization. In contrast, profilin can also stimulate polymerization by simultaneously binding actin monomers and proline-rich tracts found in other proteins. Whether the ALS-associated mutations in profilin compromise these actin assembly functions is unclear. We performed a quantitative biochemical comparison of the direct and formin mediated impact for the eight ALS-associated profilin variants on actin assembly using classic protein-binding and single-filament microscopy assays. We determined that the binding constant of each profilin for actin monomers generally correlates with the actin nucleation strength associated with each ALS-related profilin. In the presence of formin, the A20T, R136W, Q139L, and C71G variants failed to activate the elongation phase of actin assembly. This diverse range of formin-activities is not fully explained through profilin-poly-L-proline (PLP) interactions, as all ALS-associated variants bind a formin-derived PLP peptide with similar affinities. However, chemical denaturation experiments suggest that the folding stability of these profilins impact some of these effects on actin assembly. Thus, changes in profilin protein stability and alterations in actin filament polymerization may both contribute to the profilin-mediated actin disruptions in ALS.
Collapse
Affiliation(s)
- Xinbei Liu
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrew T Brawner
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
35
|
Kölln LS, Salem O, Valli J, Hansen CG, McConnell G. Label2label: training a neural network to selectively restore cellular structures in fluorescence microscopy. J Cell Sci 2022; 135:jcs258994. [PMID: 35022745 PMCID: PMC8918818 DOI: 10.1242/jcs.258994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in immunofluorescence microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in immunofluorescence images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multiscale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed immunofluorescence images of two targets.
Collapse
Affiliation(s)
- Lisa Sophie Kölln
- University of Strathclyde, Department of Physics, Glasgow G4 0NG, UK
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
- University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK
| | - Omar Salem
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
- University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Carsten Gram Hansen
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
- University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK
| | - Gail McConnell
- University of Strathclyde, Department of Physics, Glasgow G4 0NG, UK
| |
Collapse
|
36
|
Romani P, Nirchio N, Arboit M, Barbieri V, Tosi A, Michielin F, Shibuya S, Benoist T, Wu D, Hindmarch CCT, Giomo M, Urciuolo A, Giamogante F, Roveri A, Chakravarty P, Montagner M, Calì T, Elvassore N, Archer SL, De Coppi P, Rosato A, Martello G, Dupont S. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol 2022; 24:168-180. [PMID: 35165418 PMCID: PMC7615745 DOI: 10.1038/s41556-022-00843-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Nunzia Nirchio
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Mattia Arboit
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Anna Tosi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federica Michielin
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Soichi Shibuya
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Thomas Benoist
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Monica Giomo
- Department of Industrial Engineering (DII), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padua, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padua, Padua, Italy
| | - Antonella Roveri
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | | | - Marco Montagner
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padua, Padua, Italy
| | - Nicola Elvassore
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
- Department of Industrial Engineering (DII), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Paolo De Coppi
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.
| |
Collapse
|
37
|
Larbret F, Biber P, Dubois N, Ivanov S, Lafanechere L, Tartare-Deckert S, Deckert M. Deubiquitinase Inhibitors Impair Leukemic Cell Migration Through Cofilin Oxidation and Alteration of Actin Reorganization. Front Pharmacol 2022; 12:778216. [PMID: 35069199 PMCID: PMC8782157 DOI: 10.3389/fphar.2021.778216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Actin networks are dynamically regulated through constant depolymerization and polymerization cycles. Although the fundamental mechanisms that govern these processes have been identified, the nature and role of post-translational modifications (PTMs) of actin and actin regulatory proteins are not completely understood. Here, we employed Actin CytoFRET, a method that we developed for real time detection of fluorescence resonance energy transfer (FRET) signals generated by actin dynamics, to screen a small library of PTM-interfering compounds on a biosensor leukemic T cell line. This strategy led to the identification of small molecule inhibitors of deubiquitinating enzymes (DUBs) as potent inducers of actin polymerization and blockers of chemotactic cell migration. The examination of the underlying mechanism further revealed that the actin depolymerizing protein cofilin represents a major effector of DUB inhibitor (DUBi)-induced actin reorganization. We found that DUB blockade results in the accumulation of polyubiquitinated proteins and ROS production, associated with cofilin oxidation and dephosphorylation on serine 3, which provokes uncontrolled actin polymerization impairing cell migration. Together, our study highlights DUBs as novel regulators of actin dynamics through ROS-dependent cofilin modulation, and shows that DUBi represent attractive novel tools to impede leukemic cell migration.
Collapse
Affiliation(s)
- Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Pierric Biber
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | | | | | - Laurence Lafanechere
- Université Grenoble Alpes, INSERM, Institut pour l'Avancée des Biosciences, La Tronche, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
38
|
Bourdais A, Dehapiot B, Halet G. Cofilin regulates actin network homeostasis and microvilli length in mouse oocytes. J Cell Sci 2021; 134:273797. [PMID: 34841429 DOI: 10.1242/jcs.259237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
How multiple actin networks coexist in a common cytoplasm while competing for a shared pool of monomers is still an ongoing question. This is exemplified by meiotic maturation in the mouse oocyte, which relies on the dynamic remodeling of distinct cortical and cytoplasmic F-actin networks. Here, we show that the conserved actin-depolymerizing factor cofilin is activated in a switch-like manner upon meiosis resumption from prophase arrest. Interfering with cofilin activation during maturation resulted in widespread elongation of microvilli, while cytoplasmic F-actin was depleted, leading to defects in spindle migration and polar body extrusion. In contrast, cofilin inactivation in metaphase II-arrested oocytes resulted in a shutdown of F-actin dynamics, along with a dramatic overgrowth of the polarized actin cap. However, inhibition of the Arp2/3 complex to promote actin cap disassembly elicited ectopic microvilli outgrowth in the polarized cortex. These data establish cofilin as a key player in actin network homeostasis in oocytes and reveal that microvilli can act as a sink for monomers upon disassembly of a competing network.
Collapse
Affiliation(s)
- Anne Bourdais
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Benoit Dehapiot
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Guillaume Halet
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| |
Collapse
|
39
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Saito N, Sawai S. Three-dimensional morphodynamic simulations of macropinocytic cups. iScience 2021; 24:103087. [PMID: 34755081 PMCID: PMC8560551 DOI: 10.1016/j.isci.2021.103087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
Macropinocytosis refers to the non-specific uptake of extracellular fluid, which plays ubiquitous roles in cell growth, immune surveillance, and virus entry. Despite its widespread occurrence, it remains unclear how its initial cup-shaped plasma membrane extensions form without any external solid support, as opposed to the process of particle uptake during phagocytosis. Here, by developing a computational framework that describes the coupling between the bistable reaction-diffusion processes of active signaling patches and membrane deformation, we demonstrated that the protrusive force localized to the edge of the patches can give rise to a self-enclosing cup structure, without further assumptions of local bending or contraction. Efficient uptake requires a balance among the patch size, magnitude of protrusive force, and cortical tension. Furthermore, our model exhibits cyclic cup formation, coexistence of multiple cups, and cup-splitting, indicating that these complex morphologies self-organize via a common mutually-dependent process of reaction-diffusion and membrane deformation.
Collapse
Affiliation(s)
- Nen Saito
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Satoshi Sawai
- Department of Basic Science, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells 2021; 10:2777. [PMID: 34685757 PMCID: PMC8534399 DOI: 10.3390/cells10102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
Collapse
Affiliation(s)
- Lukas Kilo
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
| | - Tomke Stürner
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
- LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna B. Ziegler
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
42
|
Wu X, Wen B, Lin L, Shi W, Li D, Cheng Y, Xu LY, Li EM, Dong G. New insights into the function of Fascin in actin bundling: A combined theoretical and experimental study. Int J Biochem Cell Biol 2021; 139:106056. [PMID: 34390855 DOI: 10.1016/j.biocel.2021.106056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/05/2023]
Abstract
Fascin, one of actin bundling proteins, plays an important role in the cross-linking of actin filaments (F-actin). Phosphorylation of Fascin is an important posttranslational modification to affect its structure and function. For example, a phosphomimetic mutation of Fascin-S39D decrease its bundling ability with F-actin significantly. In this paper, we studied the actin-bundling activity of Fascin by using molecular dynamics (MD) simulations and biochemical methods. All single-site mutations from serine/threonine to aspartic acid were mimicked by MD simulations. For five mutants (S146D, S156D, S218D, T239D and S259D), the mutated residues in domain 2 of Fascin were found to form salt-bridge interactions with an adjacent residue, indicating that mutations of these residues could potentially reduce actin-bundling activity. Further, F-actin-bundling assays and immunofluorescence technique showed S146D and T239D to have a strong effect on Fascin bundling with F-actin. Finally, we show that single-site mutations do not change the general shape of Fascin, but local structures near the mutated residues in Fascin-S146D and T239D become unstable, thereby affecting the ability of Fascin to bind with F-actin. These findings suggest that targeting domain 2 of Fascin would be very useful for the drug design. In addition, our study indicates that MD simulation is a useful method to screening which residues on Fascin are important.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China
| | - Lirui Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Wenqi Shi
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Dajia Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Yinwei Cheng
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China; Cancer Research Center, Shantou University Medical College, Shantou, 515041, PR China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, 515041, PR China.
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China; Medical Informatics Research Center, Shantou University Medical College, Shantou, 515041, PR China.
| |
Collapse
|
43
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Schieweck R, Schöneweiss EC, Harner M, Rieger D, Illig C, Saccà B, Popper B, Kiebler MA. Pumilio2 Promotes Growth of Mature Neurons. Int J Mol Sci 2021; 22:ijms22168998. [PMID: 34445704 PMCID: PMC8396670 DOI: 10.3390/ijms22168998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are essential regulators controlling both the cellular transcriptome and translatome. These processes enable cellular plasticity, an important prerequisite for growth. Cellular growth is a complex, tightly controlled process. Using cancer cells as model, we looked for RBPs displaying strong expression in published transcriptome datasets. Interestingly, we found the Pumilio (Pum) protein family to be highly expressed in all these cells. Moreover, we observed that Pum2 is regulated by basic fibroblast growth factor (bFGF). bFGF selectively enhances protein levels of Pum2 and the eukaryotic initiation factor 4E (eIF4E). Exploiting atomic force microscopy and in vitro pulldown assays, we show that Pum2 selects for eIF4E mRNA binding. Loss of Pum2 reduces eIF4E translation. Accordingly, depletion of Pum2 led to decreased soma size and dendritic branching of mature neurons, which was accompanied by a reduction in essential growth factors. In conclusion, we identify Pum2 as an important growth factor for mature neurons. Consequently, it is tempting to speculate that Pum2 may promote cancer growth.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Elisa-Charlott Schöneweiss
- Zentrum für Medizinische Biotechnologie (ZMB), University of Duisburg-Essen, 41541 Duisburg, Germany; (E.-C.S.); (B.S.)
| | - Max Harner
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Daniela Rieger
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Christin Illig
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Barbara Saccà
- Zentrum für Medizinische Biotechnologie (ZMB), University of Duisburg-Essen, 41541 Duisburg, Germany; (E.-C.S.); (B.S.)
| | - Bastian Popper
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
- Biomedical Center (BMC), Core Facility Animal Models, Ludwig-Maximilians-University, 82152 München, Germany
- Correspondence: ; Tel.: +49-89-2180-71996
| | - Michael A. Kiebler
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| |
Collapse
|
45
|
Imoto D, Saito N, Nakajima A, Honda G, Ishida M, Sugita T, Ishihara S, Katagiri K, Okimura C, Iwadate Y, Sawai S. Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space. PLoS Comput Biol 2021; 17:e1009237. [PMID: 34383753 PMCID: PMC8360578 DOI: 10.1371/journal.pcbi.1009237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by identifying key parameters critical for migratory morphologies both normal and aberrant under genetic and pharmacological perturbations. The results underscore the importance of deciphering self-organizing states and their interplay when characterizing morphological phenotypes. Migratory cells that move by crawling do so by extending and retracting their plasma membrane. When and where these events take place determine the cell shape, and this is directly linked to the movement patterns. Understanding how the highly plastic and interconvertible morphologies appear from their underlying dynamics remains a challenge partly because their inherent complexity makes quantitatively comparison against the outputs of mathematical models difficult. To this end, we employed machine-learning based classification to extract features that characterize the basic migrating morphologies. The obtained features were then used to compare real cell data with outputs of a conceptual model that we introduced which describes coupling via feedback between local protrusive dynamics and polarity. The feature mapping showed that the model successfully recapitulates the shape dynamics that were not covered by previous related models and also hints at the critical parameters underlying state transitions. The ability of the present approach to compare model outputs with real cell data systematically and objectively is important as it allows outputs of future mathematical models to be quantitatively tested in an accessible and common reference frame.
Collapse
Affiliation(s)
- Daisuke Imoto
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Nen Saito
- Universal Biological Institute, University of Tokyo, Tokyo, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Gen Honda
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Motohiko Ishida
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Toyoko Sugita
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Chika Okimura
- Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | | | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Universal Biological Institute, University of Tokyo, Tokyo, Japan
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- Department of Biology, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Kadzik RS, Homa KE, Kovar DR. F-Actin Cytoskeleton Network Self-Organization Through Competition and Cooperation. Annu Rev Cell Dev Biol 2021; 36:35-60. [PMID: 33021819 DOI: 10.1146/annurev-cellbio-032320-094706] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.
Collapse
Affiliation(s)
- Rachel S Kadzik
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Molecular BioSciences, Northwestern University, Evanston, Illinois 60208, USA;
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; ,
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA; , .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
47
|
Vedula P, Kurosaka S, MacTaggart B, Ni Q, Papoian G, Jiang Y, Dong DW, Kashina A. Different translation dynamics of β- and γ-actin regulates cell migration. eLife 2021; 10:68712. [PMID: 34165080 PMCID: PMC8328520 DOI: 10.7554/elife.68712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
β- and γ-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequences; however, it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in β- and γ-cytoplasmic actins’ intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their ‘codon-switched’ variants. When targeted to the cell periphery using β-actin 3′UTR; β-actin and γ-actin have differential effects on cell migration. These effects directly depend on the coding sequence. Single-molecule measurements of actin isoform translation, combined with fluorescence recovery after photobleaching, demonstrate a pronounced difference in β- and γ-actins’ translation elongation rates in cells, leading to changes in their dynamics at focal adhesions, impairments in actin bundle formation, and reduced cell anchoring to the substrate during migration. Our results demonstrate that coding sequence-mediated differences in actin translation play a key role in cell migration. Most mammalian cells make both β- and γ-actin, two proteins which shape the cell’s internal skeleton and its ability to migrate. The molecules share over 99% of their sequence, yet they play distinct roles. In fact, deleting the β-actin gene in mice causes death in the womb, while the animals can survive with comparatively milder issues without their γ-actin gene. How two similar proteins can have such different biological roles is a long-standing mystery. A closer look could hold some clues: β- and γ-actin may contain the same blocks (or amino acids), but the genetic sequences that encode these proteins differ by about 13%. This is because different units of genetic information – known as synonymous codons – can encode the same amino acid. These ‘silent substitutions’ have no effect on the sequence of the proteins, yet a cell reads synonymous codons (and therefore produces proteins) at different speeds. To find out the impact of silent substitutions, Vedula et al. swapped the codons for the two proteins, forcing mouse cells to produce β-actin using γ-actin codons, and vice versa. Cells with non-manipulated γ-actin and those with β-actin made using γ-actin codons could move much faster than cells with β-actin. This suggested that silent substitutions were indeed affecting the role of the protein. Vedula et al. found that cells read γ-codons – and therefore made γ-actin – much more slowly than β-codons: this also affected how quickly the protein could be dispatched where it was needed in the cell. Slower production meant that bundles of γ-actin were shorter, which allowed cells to move faster by providing a weaker anchoring system. Overall, this work provides new links between silent substitutions and protein behavior, a relatively new research area which is likely to shed light on other protein families.
Collapse
Affiliation(s)
- Pavan Vedula
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Satoshi Kurosaka
- Institute of Advanced Technology, Kindai University, Kainan, Wakayama, Japan
| | - Brittany MacTaggart
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Qin Ni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, United States
| | - Garegin Papoian
- Department of Chemistry, University of Maryland, College Park, United States
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, United States
| | - Dawei W Dong
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
48
|
Pocaterra A, Scattolin G, Romani P, Ament C, Ribback S, Chen X, Evert M, Calvisi DF, Dupont S. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol 2021; 4:763. [PMID: 34155338 PMCID: PMC8217270 DOI: 10.1038/s42003-021-02286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mechanical forces control cell behavior, including cancer progression. Cells sense forces through actomyosin to activate YAP. However, the regulators of F-actin dynamics playing relevant roles during mechanostransduction in vitro and in vivo remain poorly characterized. Here we identify the Fascin1 F-actin bundling protein as a factor that sustains YAP activation in response to ECM mechanical cues. This is conserved in the mouse liver, where Fascin1 regulates YAP-dependent phenotypes, and in human cholangiocarcinoma cell lines. Moreover, this is relevant for liver tumorigenesis, because Fascin1 is required in the AKT/NICD cholangiocarcinogenesis model and it is sufficient, together with AKT, to induce cholangiocellular lesions in mice, recapitulating genetic YAP requirements. In support of these findings, Fascin1 expression in human intrahepatic cholangiocarcinomas strongly correlates with poor patient prognosis. We propose that Fascin1 represents a pro-oncogenic mechanism that can be exploited during intrahepatic cholangiocarcinoma development to overcome a mechanical tumor-suppressive environment.
Collapse
Affiliation(s)
- Arianna Pocaterra
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Gloria Scattolin
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Matthias Evert
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
49
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
50
|
Walpole GFW, Plumb JD, Chung D, Tang B, Boulay B, Osborne DG, Piotrowski JT, Catz SD, Billadeau DD, Grinstein S, Jaumouillé V. Inactivation of Rho GTPases by Burkholderia cenocepacia Induces a WASH-Mediated Actin Polymerization that Delays Phagosome Maturation. Cell Rep 2021; 31:107721. [PMID: 32492429 PMCID: PMC7315377 DOI: 10.1016/j.celrep.2020.107721] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 02/02/2023] Open
Abstract
Burkholderia cenocepacia is an opportunistic bacterial pathogen that causes severe pulmonary infections in cystic fibrosis and chronic granulomatous disease patients. B. cenocepacia can survive inside infected macrophages within the B. cenocepacia-containing vacuole (BcCV) and to elicit a severe inflammatory response. By inactivating the host macrophage Rho GTPases, the bacterial effector TecA causes depolymerization of the cortical actin cytoskeleton. In this study, we find that B. cenocepacia induces the formation of large cytosolic F-actin clusters in infected macrophages. Cluster formation requires the nucleation-promoting factor WASH, the Arp2/3 complex, and TecA. Inactivation of Rho GTPases by bacterial toxins is necessary and sufficient to induce the formation of the cytosolic actin clusters. By hijacking WASH and Arp2/3 activity, B. cenocepacia disrupts interactions with the endolysosomal system, thereby delaying the maturation of the BcCV.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Daniel Chung
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Brandon Tang
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Benoit Boulay
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Douglas G Osborne
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Joshua T Piotrowski
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MB-215, La Jolla, CA 92037, USA
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|