1
|
Liu W, Zhao Y, Liu Q, Wu D, Li W, Fu Z, Yang L, Liang Y. Systematic bioinformatics analysis reveals the role of shikonin in blocking colon cancer progression by identifying senescence-induced genes. Front Pharmacol 2024; 15:1360587. [PMID: 39188951 PMCID: PMC11345165 DOI: 10.3389/fphar.2024.1360587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Shikonin, a naturally occurring naphthoquinone compound extracted from comfrey plants, has antitumor, anti-inflammatory, and antimicrobial properties. Cell senescence plays a key role in preventing tumor progression. It is unclear whether shikonin has an effect on cell senescence in colon cancer. In the current study, we first determine the IC50 values of shikonin on colon cancer cell lines HT29 and HCT116. Then, we verified the inhibitory effects of shikonin on the proliferation and migration abilities of colon cancer cell lines HT29 and HCT116 using cell counting kit-8, colony formation, and wound healing assays. Next, we identified a series of potential targets using high-throughput mRNA sequencing and identified 210 upregulated and 296 downregulated genes. KEGG profiling revealed eight downregulated genes associated with cell senescence: CCNB3, IL-1α, CXCL8, CDKN2A, MYC, IGFBP3, SQSTM1, and GADD45G. Among them, CXCL8 and CDKN2A were associated with poor prognosis in patients with colon cancer, suggesting that their downregulation by shikonin could improve patient survival. Furthermore, SA-β-galactosidase staining revealed that the percentage of cellular senescence in colon cancer cells was significantly increased after shikonin treatment. Molecular docking revealed that shikonin suppressed colon cancer progression by blocking CXCL8 activity. Based on these findings, we deem that shikonin might induce senescence and exert antitumor activity in colon cancer cells by downregulating CDKN2A and CXCL8. This provides a new molecular mechanism and potential therapeutic target for shikonin to inhibit colon cancer progression.
Collapse
Affiliation(s)
- Wenna Liu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yujia Zhao
- Department of Oncology, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingqing Liu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Dan Wu
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Wenxuan Li
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenkai Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Le Yang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
3
|
Linders AN, Dias IB, López Fernández T, Tocchetti CG, Bomer N, Van der Meer P. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. NPJ AGING 2024; 10:9. [PMID: 38263284 PMCID: PMC10806194 DOI: 10.1038/s41514-024-00135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The population of cancer survivors is rapidly increasing due to improving healthcare. However, cancer therapies often have long-term side effects. One example is cancer therapy-related cardiac dysfunction (CTRCD) caused by doxorubicin: up to 9% of the cancer patients treated with this drug develop heart failure at a later stage. In recent years, doxorubicin-induced cardiotoxicity has been associated with an accelerated aging phenotype and cellular senescence in the heart. In this review we explain the evidence of an accelerated aging phenotype in the doxorubicin-treated heart by comparing it to healthy aged hearts, and shed light on treatment strategies that are proposed in pre-clinical settings. We will discuss the accelerated aging phenotype and the impact it could have in the clinic and future research.
Collapse
Affiliation(s)
- Annet Nicole Linders
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Itamar Braga Dias
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Teresa López Fernández
- Division of Cardiology, Cardiac Imaging and Cardio-Oncology Unit, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Federico II University, Naples, Italy
- Centre for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy
- Interdepartmental Centre of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
- Interdepartmental Hypertension Research Centre (CIRIAPA), Federico II University, Naples, Italy
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands
| | - Peter Van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, The Netherlands.
| |
Collapse
|
4
|
Hu C, Ye M, Bai J, Liu P, Lu F, Chen J, Yu P, Chen T, Shi X, Tang Q. Methylmalonic acid promotes colorectal cancer progression via activation of Wnt/β-catenin pathway mediated epithelial-mesenchymal transition. Cancer Cell Int 2023; 23:131. [PMID: 37403090 DOI: 10.1186/s12935-023-02973-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND It has been manifested in several studies that age-related metabolic reprogramming is associated with tumor progression, in particular, colorectal cancer (CRC). Here we investigated the role of upregulated metabolites of the aged serum, including methylmalonic acid (MMA), phosphoenolpyruvate (PEP), and quinolinate (QA), in CRC. METHODS Functional assays including CCK-8, EdU, colony formation and transwell experiments were used to ascertain which upregulated metabolite of elderly serum was related to tumor progression. RNA-seq analysis was conducted to explore the potential mechanisms of MMA-induced CRC progression. Subcutaneous tumorigenesis and metastatic tumor models were constructed to verify the function of MMA in vivo. RESULTS Among three consistently increased metabolites of the aged sera, MMA was responsible for tumorigenesis and metastasis in CRC, according to functional assays. The promotion of Epithelial-mesenchymal transition (EMT) was observed in CRC cells treated with MMA, on the basis of protein expression of EMT markers. Moreover, combined with transcriptome sequencing, Wnt/β-catenin signaling pathway was activated in CRC cells treated with MMA, which was verified by western blot and qPCR experiments. Furthermore, animal assays demonstrated the pro-proliferation and promotion of metastasis role of MMA in vivo. CONCLUSION We have identified that age-dependent upregulation of MMA in serum promoted the progression of CRC via Wnt/β-catenin signaling pathway mediated EMT. These collective findings provide valuable insights into the vital role of age-related metabolic reprogramming in CRC progression and propose a potential therapeutic target for elderly CRC.
Collapse
Affiliation(s)
- Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Tiaotiao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Xiaoting Shi
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
5
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Marongiu F, DeGregori J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol Oncol 2022; 16:3238-3258. [PMID: 35726685 PMCID: PMC9490148 DOI: 10.1002/1878-0261.13275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Aging represents the major risk factor for the development of cancer and many other diseases. Recent findings show that normal tissues become riddled with expanded clones that are frequently driven by cancer‐associated mutations in an aging‐dependent fashion. Additional studies show how aged tissue microenvironments promote the initiation and progression of malignancies, while young healthy tissues actively suppress the outgrowth of malignant clones. Here, we discuss conserved mechanisms that eliminate poorly functioning or potentially malignant cells from our tissues to maintain organismal health and fitness. Natural selection acts to preserve tissue function and prevent disease to maximize reproductive success but these mechanisms wane as reproduction becomes less likely. The ensuing age‐dependent tissue decline can impact the shape and direction of clonal somatic evolution, with lifestyle and exposures influencing its pace and intensity. We also consider how aging‐ and exposure‐dependent clonal expansions of “oncogenic” mutations might both increase cancer risk late in life and contribute to tissue decline and non‐malignant disease. Still, we can marvel at the ability of our bodies to avoid cancers and other diseases despite the accumulation of billions of cells with cancer‐associated mutations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biomedical Sciences, Section of Pathology, University of Cagliari, Italy
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
8
|
Leus AJG, Haisma MS, Terra JB, Diercks GFH, Van Kester MS, Halmos GB, Rácz E, Van Dijk BAC, Plaat BEC. Age-related Differences in Tumour Characteristics and Prognostic Factors for Disease Progression in Cutaneous Squamous Cell Carcinoma of the Head and Neck. Acta Derm Venereol 2022; 102:adv00652. [PMID: 34935990 PMCID: PMC9631266 DOI: 10.2340/actadv.v101.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Guidelines for cutaneous squamous cell carcinoma of the head and neck do not take the age of the patient into account, but instead assume equal tumour characteristics and prognostic factors for poor outcome in younger and elderly patients. The aim of this study was to compare tumour characteristics of younger (< 75 years) and elderly (≥ 75 years) patients and identify age-specific risk factors for progression of disease, comprising local recurrence, nodal metastasis and distant metastasis. Patient and tumour characteristics were compared using χ2 or Fisher's exact tests. Multivariable competing risk analyses were performed to compare risk factors for progression of disease, incorporating the risk of dying before developing progression of disease. A total of 672 patients with primary cutaneous squamous cell carcinoma of the head and neck were retrospectively included. Larger tumour diameter, worse differentiation grade and deeper invasion were observed in older patients. In elderly patients, but not in younger patients, tumour diameter ≥ 40 mm, moderate differentiation grade and an invasion depth ≥ 2 mm were independent risk factors for progression of disease.
Collapse
Affiliation(s)
- Alet J G Leus
- Department of Dermatology, University Medical Center Groningen, Hanzeplein 1, NL-9700 RB Groningen. The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhai L, Liang H, Du J, Sun M, Qiu W, Tang H, Luo H. PARP-1 via regulation of p53 and p16, is involved in the hydroquinone-induced malignant transformation of TK6 cells by decelerating the cell cycle. Toxicol In Vitro 2021; 74:105153. [PMID: 33771647 DOI: 10.1016/j.tiv.2021.105153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and could be viewed as both a tumor promoter and tumor-suppressor gene. However, the effects of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells remain to be further elucidated. The present research evaluated the potential mechanism of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells. The results indicated that high PARP-1 inhibited TK6 cells malignant transformation after chronic exposure to HQ. We further confirmed that PARP-1 overexpression blocked cell proliferation, and decelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that PARP-1 regulated cell cycle progression via p16/Rb and p53. Therefore, we conclude that PARP-1 is involved in HQ-induced malignant transformation associated with increasing p16/Rb and p53 which resulting in decelerating the cell cycle progression.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingwei Sun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
10
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
11
|
Gomes AP, Ilter D, Low V, Endress JE, Fernández-García J, Rosenzweig A, Schild T, Broekaert D, Ahmed A, Planque M, Elia I, Han J, Kinzig C, Mullarky E, Mutvei AP, Asara J, de Cabo R, Cantley LC, Dephoure N, Fendt SM, Blenis J. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature 2020; 585:283-287. [PMID: 32814897 PMCID: PMC7785256 DOI: 10.1038/s41586-020-2630-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
From age 65 onwards, the risk of cancer incidence and associated mortality is substantially higher1–6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the well-established role of diet, exercise and small molecules that target the pace of metabolic aging9–12. Here, we show that metabolic alterations that occur with age can render a systemic environment favorable to progression and aggressiveness of tumors. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is significantly up-regulated in the serum of older people, and functions as a mediator of tumor progression. We traced this to MMA’s ability to induce SOX4 and consequently eliciting a transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, accumulation of MMA represents a novel link between aging and cancer progression, implicating MMA as a novel therapeutic target for advanced carcinomas.
Collapse
Affiliation(s)
- Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. .,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA. .,Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.
| | - Didem Ilter
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer E Endress
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Adam Rosenzweig
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,The Biochemistry, Structural, Developmental, Cell and Molecular Biology Allied PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Adnan Ahmed
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Melanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ilaria Elia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Julie Han
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Charles Kinzig
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anders P Mutvei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - John Asara
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. .,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA. .,Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Liu S, Liu F, Zhang B, Yan P, Rowan BG, Abdel-Mageed AB, Steele C, Jazwinski SM, Moroz K, Norton EB, Wang A, Myers L, Sartor AO, Zhang Q. CD4 + T helper 17 cell response of aged mice promotes prostate cancer cell migration and invasion. Prostate 2020; 80:764-776. [PMID: 32356608 PMCID: PMC7310589 DOI: 10.1002/pros.23990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Aging is the most important risk factor for prostate cancer (PCa), but how age contributes to PCa is poorly understood. Aging is characterized by low-grade systemic inflammation (i.e., inflammaging) that is often attributed to the progressive activation of immune cells over time, which may play an important role in prostate carcinogenesis. Th17 response is elevated in aging humans and mice, but it remains unknown whether it is increased in prostate tissue or contributes to prostate carcinogenesis during aging. In this study, we aimed to determine the role of age-related Th17 response in PCa cell growth, migration, and invasion. METHODS C57BL/6J (B6) mouse was used as an aging animal model and the prostate histopathology during aging was analyzed. Splenic CD4+ T cells were isolated from young (16-20 weeks old) and aged (96-104 weeks old) mice, and cultured in the presence of plate-bound anti-CD3/anti-CD28, with or without Th17 differentiation conditions. The cells were collected and used for subsequent flow cytometry or quantitative reverse transcription polymerase chain reaction. The supernatant was collected and used to treat PCa cell lines. The treated PCa cells were analyzed for cell viability, migration, invasion, and nuclear factor kappa B (NF-κB) signaling. RESULTS Aged mice had enlarged prostate glands and increased morphological alterations, with not only increased inflammatory cell infiltration but also increased Th17 cytokines in prostate tissue, compared to young mice. Naïve CD4+ T cells from aged mice differentiated increased interleukin (IL)-17-expressing cells. CD4+ T cells from aged mice spleen had increased Th17 cells, Th17 cytokines and Th17/Treg ratio compared to young mice. Factors secreted from aged CD4+ T cells, especially from ex vivo differentiated Th17 cells, not only promoted PCa cell viability, migration, and invasion but also activated the NF-κB signaling in PCa cells compared to young mice. CONCLUSIONS These results indicate that age-related CD4+ T cells, especially Th17 cells-secreted factors have the potential to contribute to prostate carcinogenesis. Our work could prompt further research using autochthonous PCa mouse models at different ages to elucidate the functional role of Th17 response in prostate carcinogenesis during aging.
Collapse
Affiliation(s)
- Sen Liu
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Fengli Liu
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- The Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi 712046, China
| | - Bing Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Medical Laboratory of ShenZhen LuoHu People’s Hospital, Shenzhen 518001, China
| | - Peng Yan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Oncology, tongji hospital affiliated to tongji medical college, Huazhong University of Science and Technology, Hubei 430030, China
| | - Brian G. Rowan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Chad Steele
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Alun Wang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Leann Myers
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - A. Oliver Sartor
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Oncology, tongji hospital affiliated to tongji medical college, Huazhong University of Science and Technology, Hubei 430030, China
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, LA 70112
- Corresponding Author: Qiuyang Zhang, PhD; Department of Structural & Cellular Biology, Tulane University School of Medicine; 1430 Tulane Avenue, mailbox 8649, New Orleans, LA 70112, USA; Phone: 504-988-5527; FAX: 504-988-1687;
| |
Collapse
|
13
|
Fang W, Yang ZY, Chen TY, Shen XF, Zhang C. Ethnicity and survival in bladder cancer: a population-based study based on the SEER database. J Transl Med 2020; 18:145. [PMID: 32228610 PMCID: PMC7106682 DOI: 10.1186/s12967-020-02308-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Background Bladder cancer is the most common cancer in the urinary system and the fourth most common cancer in males. This study aimed to examine differences in the survival of bladder cancer patients of different ethnicities. Method We used the SEER database to obtain data pertaining to bladder cancer patients from 2010 to 2015. Univariate and multivariate Cox proportional hazards regression analyses were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between ethnicity and death. Kaplan–Meier survival and nomogram analyses were used to compare survival differences among patients with different ethnicities. Results Among 101,364 bladder cancer patients, 90,910 were white, 5893 were black, 337 were American Indian/Alaska Native (AIAN), and 4224 were Asian or Pacific Islander (API). Our multivariate analysis identified differences between different ethnicities. Compared to the API group, the AIAN (HR = 1.31, 95% CI = 1.09–1.57, P < 0.001), black (HR = 1.56, 95% CI = 1.46–1.67, P < 0.001), and white (HR = 1.18, 95% CI = 1.12–1.25, P < 0.001) groups showed lower survival probabilities. Based on data from all Kaplan–Meier survival curves, there was no significant difference in survival between the black and AIAN groups, but the survival of these two races was worse than that of the white and API groups. We also used a nomogram to estimate patient survival and validated its predictive value. Conclusion Our results suggest that ethnic differences exist in patients with bladder cancer, that the survival of black and AIAN bladder cancer patients is worse than that of other ethnicities and that the survival of API patients is the best. The significant prognostic factors of overall survival, which include age, sex, ethnicity, summary stage, American Joint Committee on Cancer stage, surgery type, and histologic type, should be applied to bladder cancer patient prognostication.
Collapse
Affiliation(s)
- Wei Fang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Zhi-Yan Yang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Ting-Yu Chen
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China
| | - Xian-Feng Shen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China.
| |
Collapse
|
14
|
A population-based cohort study examining the association of documented bladder diverticulum and bladder cancer risk in urology patients. PLoS One 2019; 14:e0222875. [PMID: 31613877 PMCID: PMC6793858 DOI: 10.1371/journal.pone.0222875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/08/2019] [Indexed: 12/27/2022] Open
Abstract
Objectives Studies have shown a high risk of tumor development within a bladder diverticulum (BD). We were interested in the relationship between BD and the development of bladder cancer. Herein, we attempted to investigate whether there exists an association between documented BD and subsequent risk of bladder cancer. Methods We identified 10,662 hospitalized urology patients, including 2,134 documented BD patients (study cohort) and 8,528 non-BD subjects (comparison cohort) from Taiwan’s National Health Insurance database. Only urology patients were enrolled in the study to minimize selection bias. The two cohorts were frequency-matched 1:4 by age, sex and index-year. Patients with less than one year of follow-up were excluded to avoid inverting cause and effect. Risks of developing bladder cancer were estimated using the Cox proportional hazard regression model. Results There was an increased bladder cancer risk in the documented BD patients. The incidence of bladder cancer in documented BD patients was 2.60-fold higher than that in the comparison group, and the overall risk-factor-adjusted hazard ratio was 2.63 (95% CI, 1.74–3.97). Moreover, stratified analysis by sex also showed that documented BD patients were at higher risk of subsequent bladder cancer than the comparison cohort. The effect of BD on the risk of bladder cancer was higher in males than in females and was more profound in patients without comorbidities than in those with comorbidities. Conclusion In this population-based longitudinal study, urology patients with documented BD might have an elevated risk of subsequent bladder cancer. Based on the limitations of the retrospective study design, further studies are required.
Collapse
|
15
|
Reddy GP, Reddy LV, Kim S. CANCER BIOLOGY AND PATHOLOGY. Cancer 2019. [DOI: 10.1002/9781119645214.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Wu D, Xu H, Chen J, Zhang L. Effects of Astaxanthin Supplementation on Oxidative Stress. INT J VITAM NUTR RES 2019; 90:179-194. [PMID: 30982442 DOI: 10.1024/0300-9831/a000497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A systematic review and meta-analysis was conducted in six databases from 1948 to 2015 to assess the antioxidant activity of astaxanthin in humans. Nine randomized controlled trials were included in the systematic review. Results of meta-analysis revealed a borderline significant antioxidant effect of astaxanthin between the intervention and control groups, with a malondialdehyde-lowering effect for lipid peroxidation (p = 0.050). However, the data included here are insufficient. When compared with the baseline in intervention groups, the meta-analysis suggested that astaxanthin supplements significantly decreased plasma malondialdehyde {Standard mean difference (SMD) -1.32 μmol/L [95% CI -1.92, -0.72]; p < 0.0001} and isoprostane (SMD -3.10 ng/mL [95% CI -4.69, -1.51]; p < 0.0001). However, they increased superoxide dismutase (SMD 1.57 U/mL [95% CI 0.57, 2.56]; p = 0.002) and total antioxidant capacity (SMD 0.77 mmol 95% CI [0.12, 1.43]; p = 0.018). For dosage subgroup analysis, high dose (≥20 mg/day) of astaxanthin showed significant antioxidant effect (on total antioxidant capacity, isoprostane, and superoxide dismutase, p < 0.05). However, low dose (<20 mg/day) showed no significant effect (p > 0.05). Further duration subgroup analysis indicated that astaxanthin showed antioxidant effect after a 3-week intervention (p < 0.001), whereas this effect was not observed after a 12-week or 3-month intervention (on isoprostane and superoxide dismutase, p > 0.05). This review suggested that the antioxidant effect of astaxanthin on humans is unclear.
Collapse
Affiliation(s)
- Di Wu
- Department of Nutrition, Food Hygiene and Toxicology, Sichuan University, West China School of Public Health, Chengdu, Sichuan, China
| | - Hao Xu
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition, Food Hygiene and Toxicology, Sichuan University, West China School of Public Health, Chengdu, Sichuan, China
| | - Lishi Zhang
- Department of Nutrition, Food Hygiene and Toxicology, Sichuan University, West China School of Public Health, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 2019; 134:702-707. [PMID: 30654017 PMCID: PMC6588470 DOI: 10.1016/j.freeradbiomed.2019.01.016] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
NRF2, a transcription factor that has been deemed the master regulator of cellular redox homeostasis, declines with age. NRF2 transcriptionally upregulates genes that combat oxidative stress; therefore, loss of NRF2 allows oxidative stress to go unmitigated and drive the aging phenotype. Oxidative stress is a common theme among the key features associated with the aging process, collectively referred to as the "Hallmarks of Aging", as it disrupts proteostasis, alters genomic stability, and leads to cell death. In this review, we outline the role that oxidative stress and the reduction of NRF2 play in each of the Hallmarks of Aging, including how they contribute to the onset of neurodegenerative disorders, cancer, and other age-related pathologies.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew B Dodson
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, Tucson, AZ, USA; Evelyn F McKnight Brain institute and Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Singh PP, Demmitt BA, Nath RD, Brunet A. The Genetics of Aging: A Vertebrate Perspective. Cell 2019; 177:200-220. [PMID: 30901541 PMCID: PMC7592626 DOI: 10.1016/j.cell.2019.02.038] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Aging negatively impacts vitality and health. Many genetic pathways that regulate aging were discovered in invertebrates. However, the genetics of aging is more complex in vertebrates because of their specialized systems. This Review discusses advances in the genetic regulation of aging in vertebrates from work in mice, humans, and organisms with exceptional lifespans. We highlight challenges for the future, including sex-dependent differences in lifespan and the interplay between genes and environment. We also discuss how the identification of reliable biomarkers of age and development of new vertebrate models can be leveraged for personalized interventions to counter aging and age-related diseases.
Collapse
Affiliation(s)
- Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Ravi D Nath
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Alabdulkarim B, Hassanain M, Bokhari A, AlSaif A, Alkarji H. Age distribution and outcomes in patients undergoing breast cancer resection in Saudi Arabia. A single-institute study. Saudi Med J 2018; 39:464-469. [PMID: 29738005 PMCID: PMC6118188 DOI: 10.15537/smj.2018.5.21993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives In response to rising incidence and mortality we aimed to investigate the
demographic characteristics of patients with operative breast cancer in our
region. Methods We performed a retrospective study of 224 patients who underwent surgery for
breast cancer at King Saud University Medical City, Riyadh, Kingdom of Saudi
Arabia between 2005 and 2012. Results We identified a young population overall with a mean age of 48.8±12.2 years
(range: 26-93 years). Survival rate were however similar across all age groups
with a 10-year overall survival of 87%. Conclusion Patients in our study were generally younger than those with breast cancer in
Western nations. However, unlike Western countries, young age was not associated
with worse outcomes.
Collapse
|
20
|
Fang CW, Liao CH, Wu SC, Muo CH. Association of benign prostatic hyperplasia and subsequent risk of bladder cancer: an Asian population cohort study. World J Urol 2018; 36:931-938. [PMID: 29427001 DOI: 10.1007/s00345-018-2216-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Few studies discussed the link between benign prostatic hyperplasia (BPH) and bladder cancer. We performed this cohort study to investigate whether there is an association between BPH and subsequent risk of bladder cancer. METHODS We identified 35,092 study subjects including 17546 BPH patients and 17546 comparisons from the National Health Insurance database. The comparison cohort was frequency matched with age and index-year. We measured subsequent bladder cancer rates (per 1000 person-years) in two cohorts. Attributable risks (ARs) was calculated based on the bladder cancer rates in two cohorts. The hazard ratios (HRs) and 95% confidence intervals (CIs) for bladder cancer were estimated via Cox proportional hazard regression. RESULTS BPH patients had a higher bladder cancer rate than comparisons (AR = 0.81 per 1000 person-years) and exhibited 4.69- and 4.11-fold increases in bladder cancer risk in the crude and adjusted Cox models, respectively (95% CIs = 4.15-6.99 and 2.70-6.26). The AR was highest in patients aged 65-74 years old (AR = 1.33). BPH patients with chronic kidney disease were at an elevated bladder cancer risk. Regarding the association between bladder cancer and transurethral prostatectomy (TURP), BPH patients who underwent TURP were at a higher risk of bladder cancer (AR = 1.69; HR = 6.17, 95% CI = 3.68-10.3) than those who did not (AR = 0.69; HR = 3.73, 95% CI = 2.43-5.74). CONCLUSIONS In this study, BPH patients were found to have an increased risk of subsequent bladder cancer. Based on the limitations of retrospective nature, further studies are needed.
Collapse
Affiliation(s)
- Chu-Wen Fang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsi Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Urology, Taichung Armed Forces General Hospital, Taichung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Shih-Chi Wu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
- Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University and Hospital, No. 2, Yuh-Der Road, Taichung, 404, Taiwan
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Telomere attrition and dysfunction has become a well established pathway involved in organismal aging, not only because it imposes a limitation to cell division and therefore, tissue regeneration but also because telomere homeostasis influences other pathways involved in aging. However, the implication of telomere biology in ovarian aging and fertility is barely starting to be unveiled. RECENT FINDINGS During the last years, mounting evidence in favor of the relationship between the accumulation of short telomeres and ovarian senescence has emerged. Telomere attrition and the loss of telomerase activity in ovarian cell types is a common characteristic of female infertility. SUMMARY Recent findings regarding telomere attrition in the ovary open the possibility of both, finding new molecular biomarkers related to telomere homeostasis that make possible the early detection of ovarian dysfunction before the ovarian reserve has vanished, and the search of new therapies to preserve or set up ovarian cell types so that new and better quality oocytes can be generated in aged ovaries to improve IVF outcomes.
Collapse
|
22
|
Chen L, Yang R, Qiao W, Yuan X, Wang S, Goltzman D, Miao D. 1,25-Dihydroxy vitamin D prevents tumorigenesis by inhibiting oxidative stress and inducing tumor cellular senescence in mice. Int J Cancer 2018; 143:368-382. [PMID: 29441580 DOI: 10.1002/ijc.31317] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/30/2022]
Abstract
Human epidemiological studies suggest that 1,25(OH)2 D3 deficiency might increase cancer incidence, but no spontaneous tumors have been reported in mice lacking 1,25(OH)2 D3 or deficient in its receptor. In our study, we detected, for the first time, diverse types of spontaneous tumors in l,25(OH)2 D3 deficient mice more than 1 year of age. This was associated with increased oxidative stress, cellular senescence and senescence-associated secretory phenotype molecules, such as hepatocyte growth factor, mediated via its receptor c-Met. Furthermore, 1,25(OH)2 D3 prevented spontaneous tumor development. We also demonstrated that l,25(OH)2 D3 deficiency accelerates allograft tumor initiation and growth by increasing oxidative stress and DNA damage, activating oncogenes, inactivating tumor suppressor genes, stimulating malignant cell proliferation and inhibiting their senescence; in contrast, supplementation with exogenous l,25(OH)2 D3 or antioxidant, or knock-down of the Bmi1 or c-Met oncogene, largely rescued the phenotypes of allograft tumors. Results from our study suggest that 1,25(OH)2 D3 deficiency enhances tumorigenesis by increasing malignant cell oxidative stress and DNA damage, stimulating microenvironmental cell senescence and a senescence-associated secretory phenotype, and activating oncogenes and inactivating tumor suppressor genes, thus increasing malignant cell proliferation. Our study provides direct evidence supporting the role of vitamin D deficiency in increasing cancer incidence. Conversely, 1,25(OH)2 D3 prevented spontaneous tumor development, suggesting that this inhibitory effect prevents the initiation and progression of tumorigenesis, thus provides a mechanistic basis for 1,25(OH)2 D3 to prevent tumorigenesis in an aging organism.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Renlei Yang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Wanxin Qiao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Yuan
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Li T, Liu X, Jiang L, Manfredi J, Zha S, Gu W. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget 2017; 7:11838-49. [PMID: 26943586 PMCID: PMC4914251 DOI: 10.18632/oncotarget.7864] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Although p53-mediated cell cycle arrest, senescence and apoptosis are well accepted as major tumor suppression mechanisms, the loss of these functions does not directly lead to tumorigenesis, suggesting that the precise roles of these canonical activities of p53 need to be redefined. Here, we report that the cells derived from the mutant mice expressing p533KR, an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, exhibit high levels of aneuploidy upon DNA damage. Moreover, the embryonic lethality caused by the deficiency of XRCC4, a key DNA double strand break repair factor, can be fully rescued in the p533KR/3KR background. Notably, despite high levels of genomic instability, p533KR/3KRXRCC4−/− mice, unlike p53−/− XRCC4−/− mice, are not succumbed to pro-B-cell lymphomas. Nevertheless, p533KR/3KR XRCC4−/− mice display aging-like phenotypes including testicular atrophy, kyphosis, and premature death. Further analyses demonstrate that SLC7A11 is downregulated and that p53-mediated ferroptosis is significantly induced in spleens and testis of p533KR/3KRXRCC4−/− mice. These results demonstrate that the direct role of p53-mediated cell cycle arrest, senescence and apoptosis is to control genomic stability in vivo. Our study not only validates the importance of ferroptosis in p53-mediated tumor suppression in vivo but also reveals that the combination of genomic instability and activation of ferroptosis may promote aging-associated phenotypes.
Collapse
Affiliation(s)
- Tongyuan Li
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xiangyu Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Le Jiang
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - James Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Relevance of the p53-MDM2 axis to aging. Cell Death Differ 2017; 25:169-179. [PMID: 29192902 DOI: 10.1038/cdd.2017.187] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
In response to varying stress signals, the p53 tumor suppressor is able to promote repair, survival, or elimination of damaged cells - processes that have great relevance to organismal aging. Although the link between p53 and cancer is well established, the contribution of p53 to the aging process is less clear. Delineating how p53 regulates distinct aging hallmarks such as cellular senescence, genomic instability, mitochondrial dysfunction, and altered metabolic pathways will be critical. Mouse models have further revealed the centrality and complexity of the p53 network in aging processes. While naturally aged mice have linked longevity with declining p53 function, some accelerated aging mice present with chronic p53 activation, whose phenotypes can be rescued upon p53 deficiency. Further, direct modulation of the p53-MDM2 axis has correlated elevated p53 activity with either early aging or with delayed-onset aging. We speculate that p53-mediated aging phenotypes in these mice must have (1) stably active p53 due to MDM2 dysregulation or chronic stress or (2) shifted p53 outcomes. Pinpointing which p53 stressors, modifications, and outcomes drive aging processes will provide further insights into our understanding of the human aging process and could have implications for both cancer and aging therapeutics.
Collapse
|
25
|
Gil L, Federico C, Pinedo F, Bruno F, Rebolledo AB, Montoya JJ, Olazabal IM, Ferrer I, Saccone S. Aging dependent effect of nuclear tau. Brain Res 2017; 1677:129-137. [PMID: 28974363 DOI: 10.1016/j.brainres.2017.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/11/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Tau protein is characterized by a complex pattern of phosphorylation and is localized in the cytoplasm and nucleus in both neuronal and non-neuronal cells. Human AT100 nuclear tau, endowed by phosphorylation in Thr212/Ser214, was recently shown to decline in cornus ammonis 1 (CA1) and dentate gyrus (DG) in Alzheimer's disease (AD), but a defined function for this nuclear tau remains unclear. Here we show that AT100 progressively increases in the nuclei of neuronal and non-neuronal cells during aging, and decreases in the more severe AD stages, as recently shown, and in cancer cells (colorectal adenocarcinoma and breast cancer). AT100, in addition to a co-localization with the DAPI-positive heterochromatin, was detected in the nucleolus of pyramidal cells from the CA1 region, shown to be at its highest level in the more senescent cells and in the first stage of AD (ADI), and disappearing in the more severe AD cases (ADIV). Taking into account the nuclear distribution of AT100 during cell aging and its relation to the chromatin changes observed in degenerated neurons, as well as in cancerous cells, which are both cellular pathologies associated with age, we can consider the Thr212/Ser214 phosphorylated nuclear tau as a molecular marker of cell aging.
Collapse
Affiliation(s)
- Laura Gil
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Fernando Pinedo
- Hospital Universitario Fundación Alcorcón, Department of Pathology, Alcorcon, Spain
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Ana B Rebolledo
- Hospital Universitario Fundación Alcorcón, Department of Pathology, Alcorcon, Spain
| | - Juan J Montoya
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Isabel M Olazabal
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Isidre Ferrer
- Institut Neuropatologia - Hospital Universitari de Bellvitge, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy.
| |
Collapse
|
26
|
Informatics for Nutritional Genetics and Genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1005:143-166. [PMID: 28916932 DOI: 10.1007/978-981-10-5717-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While traditional nutrition science is focusing on nourishing population, modern nutrition is aiming at benefiting individual people. The goal of modern nutritional research is to promote health, prevent diseases, and improve performance. With the development of modern technologies like bioinformatics, metabolomics, and molecular genetics, this goal is becoming more attainable. In this chapter, we will discuss the new concepts and technologies especially in informatics and molecular genetics and genomics, and how they have been implemented to change the nutrition science and lead to the emergence of new branches like nutrigenomics, nutrigenetics, and nutritional metabolomics.
Collapse
|
27
|
Liu J, Peng L, Huang W, Li Z, Pan J, Sang L, Lu S, Zhang J, Li W, Luo Y. Balancing Between Aging and Cancer: Molecular Genetics Meets Traditional Chinese Medicine. J Cell Biochem 2017; 118:2581-2586. [DOI: 10.1002/jcb.25898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Jing Liu
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
| | - Lei Peng
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
| | - Wenhui Huang
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
| | - Zhiming Li
- Institute of Medicinal Plants; Yunnan Academy of Agricultural Sciences; Kunming 650200 China
| | - Jun Pan
- Institute of Medicinal Plants; Yunnan Academy of Agricultural Sciences; Kunming 650200 China
| | - Lei Sang
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
| | - Siqian Lu
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
| | - Jihong Zhang
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
| | - Wanyi Li
- Institute of Medicinal Plants; Yunnan Academy of Agricultural Sciences; Kunming 650200 China
| | - Ying Luo
- Lab of Molecular Genetics of Aging and Tumor; Faculty of Medicine; Kunming University of Science and Technology; Chenggong County, Kunming Yunnan Province 650500 China
- Yunnan Provincial Institute of Digestive Disease; Kunming; Yunnan Province 650011 China
| |
Collapse
|
28
|
Song X, Narzt MS, Nagelreiter IM, Hohensinner P, Terlecki-Zaniewicz L, Tschachler E, Grillari J, Gruber F. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol 2017; 11:219-230. [PMID: 28012437 PMCID: PMC5192251 DOI: 10.1016/j.redox.2016.12.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
Autophagy allows cells fundamental adaptations to metabolic needs and to stress. Using autophagic bulk degradation cells can clear crosslinked macromolecules and damaged organelles that arise under redox stress. Accumulation of such debris results in cellular dysfunction and is observed in aged tissue and senescent cells. Conversely, promising anti-aging strategies aim at inhibiting the mTOR pathway and thereby activating autophagy, to counteract aging associated damage. We have inactivated autophagy related 7 (Atg7), an essential autophagy gene, in murine keratinocytes (KC) and have found in an earlier study that this resulted in increased baseline oxidative stress and reduced capacity to degrade crosslinked proteins after oxidative ultraviolet stress. To investigate whether autophagy deficiency would promote cellular aging, we studied how Atg7 deficient (KO) and Atg7 bearing cells (WT) would respond to stress induced by paraquat (PQ), an oxidant drug commonly used to induce cellular senescence. Atg7 deficient KC displayed increased prostanoid signaling and a pro- mitotic gene expression signature as compared to the WT. After exposure to PQ, both WT and KO cells showed an inflammatory and stress-related transcriptomic response. However, the Atg7 deficient cells additionally showed drastic DNA damage- and cell cycle arrest signaling. Indeed, DNA fragmentation and -oxidation were strongly increased in the stressed Atg7 deficient cells upon PQ stress but also after oxidizing ultraviolet A irradiation. Damage associated phosphorylated histone H2AX (γH2AX) foci were increased in the nuclei, whereas expression of the nuclear lamina protein lamin B1 was strongly decreased. Similarly, in both, PQ treated mouse tail skin explants and in UVA irradiated mouse tail skin, we found a strong increase in γH2AX positive nuclei within the basal layer of Atg7 deficient epidermis. Atg7 deficiency significantly affected expression of lipid metabolic genes. Therefore we performed lipid profiling of keratinocytes which demonstrated a major dysregulation of cellular lipid metabolism. We found accumulation of autophagy agonisitic free fatty acids, whereas triglyceride levels were strongly decreased. Together, our data show that in absence of Atg7/autophagy the resistance of keratinocytes to intrinsic and environmental oxidative stress was severely impaired and resulted in DNA damage, cell cycle arrest and a disturbed lipid phenotype, all typical for premature cell aging.
Collapse
Affiliation(s)
- Xiuzu Song
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria; Department of Dermatology, The Third Hospital of Hangzhou, 38 Xihu Road, Hangzhou, Zhejiang, 310009, PR China
| | - Marie Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Philipp Hohensinner
- Department of Internal Medicine II - Cardiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Muthgasse 18, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, Leitstelle 7J, A-1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
29
|
Kannappan R, Matsuda A, Ferreira-Martins J, Zhang E, Palano G, Czarna A, Cabral-Da-Silva MC, Bastos-Carvalho A, Sanada F, Ide N, Rota M, Blasco MA, Serrano M, Anversa P, Leri A. p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo. EBioMedicine 2017; 16:224-237. [PMID: 28163043 PMCID: PMC5474510 DOI: 10.1016/j.ebiom.2017.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/01/2022] Open
Abstract
p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart. p53 improves the ability of CPCs to sustain oxidative stress. p53 promotes the restoration of DNA integrity and cell division. p53 enhances the engraftment of CPCs in the diabetic heart.
Ongoing clinical trials with autologous cardiac stem cells (CSCs) are faced with a critical limitation which is related to the modest amount of retained cells within the damaged myocardium. We have developed a strategy that overcomes in part this problem enhancing the number of CSCs able to engraft within the pathologic organ. Additionally, these genetically modified CSCs can be generated in large number, raising the possibility that multiple temporally distinct deliveries of cells can be introduced to restore the structural and functional integrity of the decompensated heart.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Matsuda
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - João Ferreira-Martins
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Zhang
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giorgia Palano
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Czarna
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Mauricio Castro Cabral-Da-Silva
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adriana Bastos-Carvalho
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fumihiro Sanada
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noriko Ide
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcello Rota
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Blasco
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cardiocentro Ticino Foundation, Swiss Institute for Regenerative Medicine (SIRM), Via Tesserete 48, 6900 Lugano, Switzerland.
| |
Collapse
|
30
|
Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules 2017; 22:molecules22010105. [PMID: 28075340 PMCID: PMC6155887 DOI: 10.3390/molecules22010105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Collapse
|
31
|
Mechanical properties of anodic titanium films containing ions of Ca and P submitted to heat and hydrothermal treatment. J Mech Behav Biomed Mater 2016; 64:18-30. [PMID: 27479891 DOI: 10.1016/j.jmbbm.2016.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022]
Abstract
Anodic oxidation is a technique widely used to improve the bioactivity of Ti surface. In this study, micro-arc oxidation (MAO) was used to obtain an anodic film incorporating Ca and P ions to evaluate the effect of heat and hydrothermal treatment on the mechanical and in vitro bioactivity properties of these new layers. The MAO process was carried out using (CH3COO)2Ca·H2O and NaH2PO4·2H2O electrolytes under galvanostatic mode (150mA/cm(2)). The thermal treatments were made at 400°C and 600°C in air atmosphere while hydrothermal treatment was made in an alkaline water solution at 130°C. These surfaces presented desired mechanical properties for biomedical applications owing to the rutile and anatase phases in the anodic film that are more crystalline after thermal treatments; which provided an increase in hardness values and lower elastic modulus. The dry sliding wear resistance increased by performing thermal treatments on the surfaces with one condition still maintaining the film after the test. Bioactivity was investigated by immersion in simulated body fluid during 21 days and hydroxyapatite was formed on all samples. Finally, lower values of contact angle were obtained for heat treated samples.
Collapse
|
32
|
Matsui Y, Ogawa O, Ishitsuka R, Miyazaki J, Inoue T, Kageyama S, Sugimoto M, Mitsuzuka K, Shiraishi Y, Kinoshita H, Wakeda H, Nomoto T, Kikuchi E, Fujie K, Keino N, Nishiyama H. Current status of systemic chemotherapy for octogenarians with advanced urothelial cancer in Japan: a Japanese multi-institutional study (CURE study). Int J Clin Oncol 2016; 21:1142-1149. [PMID: 27349431 DOI: 10.1007/s10147-016-1007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The standard regimen of systemic chemotherapy for patients with advanced urothelial cancer (UC) changed from methotrexate, vinblastine, adriamycin, and cisplatin (MVAC) to gemcitabine and cisplatin (GC) in 2008 when the use of gemcitabine for UC began to be reimbursed by public health insurance in Japan. We examined its influence on the chemotherapy trend in elderly patients aged ≥80 years. METHODS Among 345 patients included in our previous multicenter retrospective cohort study (chemotherapy for urothelial carcinoma: renal function and efficacy study; CURE study), the outcome of 30 patients aged ≥80 years was reviewed before and after 2008 and compared with 315 young patients. RESULTS There were only 7 (4.6 %) elderly individuals among all registered patients before 2008, whereas the number increased to 23 (12 %) after 2008. Before 2008, only one elderly patient received MVAC, while GC (whose rate was similar to the rate in young patients) was administered to 13 patients (56.5 %) after 2008. The chemotherapeutic effect and overall survival (OS) rate was not significantly different between young and elderly patients. In the elderly treated with the GC regimen, the renal impairment rate after the first cycle was significantly higher, and the presence of distant metastases and renal impairment were independent prognostic factors in a multivariate analysis. CONCLUSION Since GC was approved as the standard regimen for first-line chemotherapy in UC, selected elderly patients have been able to safely receive systemic chemotherapy like young patients. The clinical response rate and OS rate were similar to the young, but we need to monitor changes in renal function more closely in the elderly treated with GC.
Collapse
Affiliation(s)
- Yoshiyuki Matsui
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryutaro Ishitsuka
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Jun Miyazaki
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University Graduate School of Medicine, Akita, 010-8502, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Mikio Sugimoto
- Department of Urology, Kagawa University, Faculty of Medicine, Kagawa, 761-0701, Japan
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University, Graduate School of Medicine, Miyagi, 980-8575, Japan
| | - Yusuke Shiraishi
- Department of Urology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, 573-1191, Japan
| | - Hironobu Wakeda
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takeshi Nomoto
- Department of Urology, Tokai University School of Medicine, Kanagawa, 259-1193, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Fujie
- Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Tsukuba Clinical Research and Development Organization, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoto Keino
- Tsukuba Clinical Research and Development Organization, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
33
|
Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17:655-80. [PMID: 27259535 DOI: 10.1007/s10522-016-9655-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) and hypoxia-inducible factor (HIF) signaling pathways are evolutionarily-conserved survival mechanisms responding to two fundamental stresses, energy deficiency and/or oxygen deprivation. The AMPK and HIF pathways regulate the function of a survival network with several transcription factors, e.g. FOXO, NF-κB, NRF2, and p53, as well as with protein kinases and other factors, such as mTOR, ULK1, HDAC5, and SIRT1. Given that AMPK and HIF activation can enhance not only healthspan and lifespan but also cancer growth in a context-dependent manner; it seems that cancer cells can hijack certain survival factors to maintain their growth in harsh conditions. AMPK activation improves energy metabolism, stimulates autophagy, and inhibits inflammation, whereas HIF-1α increases angiogenesis and helps cells to adapt to severe conditions. First we will review how AMPK and HIF signaling mechanisms control the function of an integrated survival network which is able not only to improve the regulation of longevity but also support the progression of tumorigenesis. We will also describe distinct crossroads between the regulation of longevity and cancer, e.g. specific regulation through the AMPKα and HIF-α isoforms, the Warburg effect, mitochondrial dynamics, and cellular senescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
34
|
Marsh T, Wong I, Sceneay J, Barakat A, Qin Y, Sjödin A, Alspach E, Nilsson B, Stewart SA, McAllister SS. Hematopoietic Age at Onset of Triple-Negative Breast Cancer Dictates Disease Aggressiveness and Progression. Cancer Res 2016; 76:2932-43. [PMID: 27197230 DOI: 10.1158/0008-5472.can-15-3332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered an early onset subtype of breast cancer that carries with it a poorer prognosis in young rather than older women for reasons that remain poorly understood. Hematopoiesis in the bone marrow becomes altered with age and may therefore affect the composition of tumor-infiltrating hematopoietic cells and subsequent tumor progression. In this study, we investigated how age- and tumor-dependent changes to bone marrow-derived hematopoietic cells impact TNBC progression. Using multiple mouse models of TNBC tumorigenesis and metastasis, we found that a specific population of bone marrow cells (BMC) upregulated CSF-1R and secreted the growth factor granulin to support stromal activation and robust tumor growth in young mice. However, the same cell population in old mice expressed low levels of CSF1R and granulin and failed to promote tumor outgrowth, suggesting that age influences the tumorigenic capacity of BMCs in response to tumor-associated signals. Importantly, BMCs from young mice were sufficient to activate a tumor-supportive microenvironment and induce tumor progression in old mice. These results indicate that hematopoietic age is an important determinant of TNBC aggressiveness and provide rationale for investigating age-stratified therapies designed to prevent the protumorigenic effects of activated BMCs. Cancer Res; 76(10); 2932-43. ©2016 AACR.
Collapse
Affiliation(s)
- Timothy Marsh
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Irene Wong
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jaclyn Sceneay
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Amey Barakat
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yuanbo Qin
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Andreas Sjödin
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Elise Alspach
- Department of Cell Biology and Physiology; Department of Medicine; and ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sheila A Stewart
- Department of Cell Biology and Physiology; Department of Medicine; and ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra S McAllister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts.
| |
Collapse
|
35
|
Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 2016; 351:aad4395. [PMID: 26912707 DOI: 10.1126/science.aad4395] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Hair thinning and loss are prominent aging phenotypes but have an unknown mechanism. We show that hair follicle stem cell (HFSC) aging causes the stepwise miniaturization of hair follicles and eventual hair loss in wild-type mice and in humans. In vivo fate analysis of HFSCs revealed that the DNA damage response in HFSCs causes proteolysis of type XVII collagen (COL17A1/BP180), a critical molecule for HFSC maintenance, to trigger HFSC aging, characterized by the loss of stemness signatures and by epidermal commitment. Aged HFSCs are cyclically eliminated from the skin through terminal epidermal differentiation, thereby causing hair follicle miniaturization. The aging process can be recapitulated by Col17a1 deficiency and prevented by the forced maintenance of COL17A1 in HFSCs, demonstrating that COL17A1 in HFSCs orchestrates the stem cell-centric aging program of the epithelial mini-organ.
Collapse
Affiliation(s)
- Hiroyuki Matsumura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nguyen Thanh Binh
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. Department of Stem Cell Medicine, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Hironobu Morinaga
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Makoto Fukuda
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mayumi Ito
- Departments of Dermatology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sotaro Kurata
- Beppu Garden-Hill Clinic, Kurata Clinic, Beppu city, Oita 8740831, Japan
| | - Jan Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus MC, Room Ee 722, Dr. Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
36
|
[Tumorogenesis and skin tumours in the elderly]. Hautarzt 2016; 67:132-9. [PMID: 26787292 DOI: 10.1007/s00105-015-3759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
More than 1.5 million people were diagnosed with skin cancer in 2012 in Germany-of which 318,000 were malignant melanoma. The number of malignant skin tumours has increased by 60% since 2005. Epithelial skin cancers are even more common. Since 2012, 1.3 million diagnoses have been documented. This incidence represents an increase of 79% within 7 years. The number of skin cancer patients treated in German hospitals has also increased. In 2014, 99,613 patients were treated as inpatients with the diagnosis of skin cancer; in 2000 there were 57,147 patients. This was the largest growth rate among all cancer treatments in hospitalised patients. The continuously changing age pyramid leads to an expected further growth of the incidence of skin tumours. In parallel the development of molecular knowledge in tumorigenesis is also rapid. A series of cell-specific mutations have been described in recent years for various skin tumours. Mutations are found mainly in genes engaging their translation products at key positions in regulatory cell metabolism or cell division. These include oncogenes, which have greatly increased activity due to targeted mutations or tumor suppressor genes and act under physiological conditions as negative regulators that are inactivated by mutations. These findings have led to the development of a series of new promising compounds for the treatment of skin tumours.
Collapse
|
37
|
Santacatterina F, Sánchez-Cenizo L, Formentini L, Mobasher MA, Casas E, Rueda CB, Martínez-Reyes I, de Arenas CN, García-Bermúdez J, Zapata JM, Sánchez-Aragó M, Satrústegui J, Valverde ÁM, Cuezva JM. Down-regulation of oxidative phosphorylation in the liver by expression of the ATPase inhibitory factor 1 induces a tumor-promoter metabolic state. Oncotarget 2016; 7:490-508. [PMID: 26595676 PMCID: PMC4808013 DOI: 10.18632/oncotarget.6357] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023] Open
Abstract
The ATPase Inhibitory Factor 1 (IF1) is an inhibitor of the mitochondrial H+-ATP synthase that regulates the activity of both oxidative phosphorylation (OXPHOS) and cell death. Here, we have developed transgenic Tet-On and Tet-Off mice that express a mutant active form of hIF1 in the hepatocytes to restrain OXPHOS in the liver to investigate the relevance of mitochondrial activity in hepatocarcinogenesis. The expression of hIF1 promotes the inhibition of OXPHOS in both Tet-On and Tet-Off mouse models and induces a state of metabolic preconditioning guided by the activation of the stress kinases AMPK and p38 MAPK. Expression of the transgene significantly augmented proliferation and apoptotic resistance of carcinoma cells, which contributed to an enhanced diethylnitrosamine-induced liver carcinogenesis. Moreover, the expression of hIF1 also diminished acetaminophen-induced apoptosis, which is unrelated to differences in permeability transition pore opening. Mechanistically, cell survival in hIF1-preconditioned hepatocytes results from a nuclear factor-erythroid 2-related factor (Nrf2)-guided antioxidant response. The results emphasize in vivo that a metabolic phenotype with a restrained OXPHOS in the liver is prone to the development of cancer.
Collapse
Affiliation(s)
- Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Laura Sánchez-Cenizo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Maysa A. Mobasher
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Estela Casas
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Carlos B. Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Inmaculada Martínez-Reyes
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Cristina Núñez de Arenas
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Javier García-Bermúdez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Juan M. Zapata
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Centro de Investigación Hospital 12 de Octubre, ISCIII, Madrid, Spain
| |
Collapse
|
38
|
Serrano M. Unraveling the links between cancer and aging. Carcinogenesis 2015; 37:107. [PMID: 26717994 DOI: 10.1093/carcin/bgv100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 11/12/2022] Open
Abstract
Aging is, by far, the most important risk factor for cancer; however, only very recently the mechanistic links between these two processes are beginning to emerge. To approach the connection between aging and cancer, it is helpful to re-phrase the link as follows: the best protection against cancer is to be young. Therefore, longevity genes and longevity interventions should be cancer protecting.
Collapse
Affiliation(s)
- Manuel Serrano
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernandez Almagro Street, Madrid 28029, Spain
| |
Collapse
|
39
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
40
|
Rozhok AI, Salstrom JL, DeGregori J. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging (Albany NY) 2015; 6:1033-48. [PMID: 25564763 PMCID: PMC4298364 DOI: 10.18632/aging.100707] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer L Salstrom
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Medicine, Section of Hematology, University of Colorado School of Medicine, Aurora, CO 80045,USA
| |
Collapse
|
41
|
Abstract
Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.
Collapse
Affiliation(s)
- Peter D Adams
- University of Glasgow and Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - K Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
42
|
Chatterjee D, Kudlinzki D, Linhard V, Saxena K, Schieborr U, Gande SL, Wurm JP, Wöhnert J, Abele R, Rogov VV, Dötsch V, Osiewacz HD, Sreeramulu S, Schwalbe H. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina. J Biol Chem 2015; 290:16415-30. [PMID: 25979334 DOI: 10.1074/jbc.m115.660829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 11/06/2022] Open
Abstract
Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner.
Collapse
Affiliation(s)
- Deep Chatterjee
- From the Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Denis Kudlinzki
- From the Institute for Organic Chemistry and Chemical Biology, the German Cancer Consortium (DKTK), Heidelberg D-69210, Germany, and the German Cancer Research Center (DKFZ), Heidelberg D-69210, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Verena Linhard
- From the Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Krishna Saxena
- From the Institute for Organic Chemistry and Chemical Biology, the German Cancer Consortium (DKTK), Heidelberg D-69210, Germany, and the German Cancer Research Center (DKFZ), Heidelberg D-69210, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Ulrich Schieborr
- From the Institute for Organic Chemistry and Chemical Biology, the German Cancer Consortium (DKTK), Heidelberg D-69210, Germany, and the German Cancer Research Center (DKFZ), Heidelberg D-69210, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Santosh L Gande
- From the Institute for Organic Chemistry and Chemical Biology, the German Cancer Consortium (DKTK), Heidelberg D-69210, Germany, and the German Cancer Research Center (DKFZ), Heidelberg D-69210, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Jan Philip Wurm
- the Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Jens Wöhnert
- the Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | | | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | | | - Sridhar Sreeramulu
- From the Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany,
| | - Harald Schwalbe
- From the Institute for Organic Chemistry and Chemical Biology, the German Cancer Consortium (DKTK), Heidelberg D-69210, Germany, and the German Cancer Research Center (DKFZ), Heidelberg D-69210, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany,
| |
Collapse
|
43
|
Trochet D, Mergui X, Ivkovic I, Porreca RM, Gerbault-Seureau M, Sidibe A, Richard F, Londono-Vallejo A, Perret M, Aujard F, Riou JF. Telomere regulation during ageing and tumorigenesis of the grey mouse lemur. Biochimie 2015; 113:100-10. [PMID: 25882681 DOI: 10.1016/j.biochi.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Telomere erosion leading to replicative senescence has been well documented in human and anthropoid primates, and provides a clue against tumorigenesis. In contrast, other mammals, such as laboratory mice, with short lifespan and low body weight mass have different telomere biology without replicative senescence. We analyzed telomere biology in the grey mouse lemur, a small prosimian model with a relative long lifespan currently used in ageing research. We report an average telomere length by telomere restriction fragment (TRF) among the longest reported so far for a primate species (25-30 kb), but without detectable overall telomere shortening with ageing on blood samples. However, we demonstrate using universal STELA (Single Telomere Length Amplification) the existence of short telomeres, the increase of which, while correlating with ageing might be related to another mechanism than replicative senescence. We also found a low stringency of telomerase restriction in tissues and an ease to immortalize fibroblasts in vitro upon spontaneous telomerase activation. Finally, we describe the first grey mouse lemur cancer cell line showing a dramatic telomere shortening and high telomerase activity associated with polyploidy. Our overall results suggest that telomere biology in grey mouse lemur is an exception among primates, with at best a physiologically limited replicative telomere ageing and closest to that observed in small rodents.
Collapse
Affiliation(s)
- Delphine Trochet
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Xénia Mergui
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Ivana Ivkovic
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Rosa Maria Porreca
- Telomeres and Cancer Laboratory, CNRS UMR 3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Univ. Paris 06, 75005 Paris, France
| | - Michèle Gerbault-Seureau
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Universités, Muséum National d'Histoire Naturelle, UMR 7205 CNRS, UPMC Univ. Paris 06, EPHE, 57 rue Cuvier, 75005 Paris, France
| | - Assitan Sidibe
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France
| | - Florence Richard
- Institut de Systématique, Evolution, Biodiversité, Sorbonne Universités, Muséum National d'Histoire Naturelle, UMR 7205 CNRS, UPMC Univ. Paris 06, EPHE, 57 rue Cuvier, 75005 Paris, France
| | - Arturo Londono-Vallejo
- Telomeres and Cancer Laboratory, CNRS UMR 3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Univ. Paris 06, 75005 Paris, France
| | - Martine Perret
- Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, Sorbonne Universités, UMR 7179 CNRS, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, Sorbonne Universités, UMR 7179 CNRS, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Jean-François Riou
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, CP26, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
44
|
De Angulo A, Faris R, Daniel B, Jolly C, deGraffenried L. Age-related increase in IL-17 activates pro-inflammatory signaling in prostate cells. Prostate 2015; 75:449-62. [PMID: 25560177 DOI: 10.1002/pros.22931] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND A close relationship between aging, inflammation, and prostate cancer is widely accepted. Aging is accompanied by a progressive increase in pro-inflammatory cytokines, including interleukin 17 (IL-17), a key pro-inflammatory cytokine that becomes dysregulated with age. However, the contribution of IL-17 to age-related prostate tumorigenesis remains unclear. The aim of this study was to investigate the role of age-related IL-17 dysregulation in prostate tumorigenesis. METHODS Serum and splenic T-lymphocytes from young GPAT-1 knock-out aging-mimic T cell mice as well as young and aged wild-type mice were collected. shRNA was used to knock down the IL-17 receptor in LNCaP prostate cancer cells and RWPE-1 non-transformed prostate epithelial cells, which were then exposed to the mouse sera or conditioned media from stimulated T-lymphocytes. NF-κB activation, NF-κB target gene expression, and cell proliferation were all measured in these cells by luciferase assay, qPCR, Western blot analysis, and MTT assay, respectively. RESULTS T-lymphocyte-secreted IL-17 from aging-mimic mice induced NF-κB activity and target gene expression in LNCaP and RWPE-1 cells. It also promoted proliferation of these cells. CONCLUSION Aging-mimic T cell mice produce increased levels of IL-17, which stimulates the pro-inflammatory NF-κB pathway in prostate epithelial cells. NF-κB increases inflammation, carcinogenesis and metastatic potential in the prostate. These findings provide evidence that the dysregulation of cytokine production seen in aged T cells may directly contribute to the increased risk for prostate cancer in the elderly.
Collapse
Affiliation(s)
- Alejandra De Angulo
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas
| | | | | | | | | |
Collapse
|
45
|
Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ 2015; 22:1764-74. [PMID: 26434982 DOI: 10.1038/cdd.2015.21] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Aging is the single biggest risk factor for malignant transformation. Among the most common age-associated malignancies are non-melanoma skin cancers, comprising the most common types of human cancer. Here we show that mutant H-Ras activation in mouse epidermis, a frequent event in cutaneous squamous cell carcinoma (SCC), elicits a differential outcome in aged versus young mice. Whereas H-Ras activation in the young skin results in hyperplasia that is mainly accompanied by rapid hair growth, H-Ras activation in the aged skin results in more dysplasia and gradual progression to in situ SCC. Progression is associated with increased inflammation, pronounced accumulation of immune cells including T cells, macrophages and mast cells as well as excessive cell senescence. We found not only an age-dependent increase in expression of several pro-inflammatory mediators, but also activation of a strong anti-inflammatory response involving enhanced IL4/IL10 expression and immune skewing toward a Th2 response. In addition, we observed an age-dependent increase in the expression of Pdl1, encoding an immune suppressive ligand that promotes cancer immune evasion. Moreover, upon switching off oncogenic H-Ras activity, young but not aged skin regenerates successfully, suggesting a failure of the aged epidermal stem cells to repair damaged tissue. Our findings support an age-dependent link between accumulation of senescent cells, immune infiltration and cancer progression, which may contribute to the increased cancer risk associated with old age.
Collapse
|
46
|
Piano A, Titorenko VI. The Intricate Interplay between Mechanisms Underlying Aging and Cancer. Aging Dis 2015; 6:56-75. [PMID: 25657853 PMCID: PMC4306474 DOI: 10.14336/ad.2014.0209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Accepted: 02/09/2014] [Indexed: 12/15/2022] Open
Abstract
Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a reciprocal relationship. This relationship progresses with organismal age, follows the history of cell proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms. We summarize our knowledge of these mechanisms, outline the most important unanswered questions and suggest directions for future research.
Collapse
Affiliation(s)
- Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
47
|
Zhang H, Chi Y, Gao K, Zhang X, Yao J. p53 protein-mediated up-regulation of MAP kinase phosphatase 3 (MKP-3) contributes to the establishment of the cellular senescent phenotype through dephosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). J Biol Chem 2014; 290:1129-40. [PMID: 25414256 DOI: 10.1074/jbc.m114.590943] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth arrest is one of the essential features of cellular senescence. At present, the precise mechanisms responsible for the establishment of the senescence-associated arrested phenotype are still incompletely understood. Given that ERK1/2 is one of the major kinases controlling cell growth and proliferation, we examined the possible implication of ERK1/2. Exposure of normal rat epithelial cells to etoposide caused cellular senescence, as manifested by enlarged cell size, a flattened cell body, reduced cell proliferation, enhanced β-galactosidase activity, and elevated p53 and p21. Senescent cells displayed a blunted response to growth factor-induced cell proliferation, which was preceded by impaired ERK1/2 activation. Further analysis revealed that senescent cells expressed a significantly higher level of mitogen-activated protein phosphatase 3 (MKP-3, a cytosolic ERK1/2-targeted phosphatase), which was suppressed by blocking the transcriptional activity of the tumor suppressor p53 with pifithrin-α. Inhibition of MKP-3 activity with a specific inhibitor or siRNA enhanced basal ERK1/2 phosphorylation and promoted cell proliferation. Apart from its role in growth arrest, impairment of ERK1/2 also contributed to the resistance of senescent cells to oxidant-elicited cell injury. These results therefore indicate that p53-mediated up-regulation of MKP-3 contributes to the establishment of the senescent cellular phenotype through dephosphorylating ERK1/2. Impairment of ERK1/2 activation could be an important mechanism by which p53 controls cellular senescence.
Collapse
Affiliation(s)
- Hui Zhang
- From the Department of Molecular Signaling, University of Yamanashi, Yamanashi 409-3898, Japan and the Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100037, China
| | - Yuan Chi
- From the Department of Molecular Signaling, University of Yamanashi, Yamanashi 409-3898, Japan and
| | - Kun Gao
- From the Department of Molecular Signaling, University of Yamanashi, Yamanashi 409-3898, Japan and
| | - Xiling Zhang
- From the Department of Molecular Signaling, University of Yamanashi, Yamanashi 409-3898, Japan and
| | - Jian Yao
- From the Department of Molecular Signaling, University of Yamanashi, Yamanashi 409-3898, Japan and
| |
Collapse
|
48
|
Rotblat B, Grunewald TGP, Leprivier G, Melino G, Knight RA. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget 2014; 4:2577-90. [PMID: 24342878 PMCID: PMC3926850 DOI: 10.18632/oncotarget.1658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.
Collapse
Affiliation(s)
- Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | | | |
Collapse
|
49
|
Rizzo C, Caruso C, Vasto S. Possible role of ABO system in age-related diseases and longevity: a narrative review. IMMUNITY & AGEING 2014; 11:16. [PMID: 25512760 PMCID: PMC4265994 DOI: 10.1186/1742-4933-11-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/18/2014] [Indexed: 01/17/2023]
Abstract
ABO blood group antigens are expressed either on the surface of red blood cells either on a variety of other cells. Based on the available knowledge of the genes involved in their biosynthesis and their tissue distribution, their polymorphism has been suggested to provide intraspecies diversity allowing to cope with diverse and rapidly evolving pathogens. Accordingly, the different prevalence of ABO group genotypes among the populations has been demonstrated to be driven by malaria selection. In the similar manner, a particular ABO blood group may contribute to favour life-extension via biological mechanisms important for surviving or eluding serious disease. In this review, we will suggest the possible association of ABO group with age-related diseases and longevity taking into account the biological role of the ABO glycosyltransferases on some inflammatory mediators as adhesion molecules.
Collapse
Affiliation(s)
- Claudia Rizzo
- Unit of Transfusion Medicine, University Hospital "Paolo Giaccone", Palermo, Italy ; Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Unit of Transfusion Medicine, University Hospital "Paolo Giaccone", Palermo, Italy ; Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Sonya Vasto
- National Center for Research, Institute of Biomedicine and Molecular Immunology, Palermo, Italy ; Department of Science and Biological, Chemical and Pharmaceutical Technologies, Institute of Biomedicine and Molecular Immunology, Palermo, Italy
| |
Collapse
|
50
|
Corella D, Ordovás JM. Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev 2014; 18:53-73. [PMID: 25159268 DOI: 10.1016/j.arr.2014.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
In the study of longevity, increasing importance is being placed on the concept of healthy aging rather than considering the total number of years lived. Although the concept of healthy lifespan needs to be defined better, we know that cardiovascular diseases (CVDs) are the main age-related diseases. Thus, controlling risk factors will contribute to reducing their incidence, leading to healthy lifespan. CVDs are complex diseases influenced by numerous genetic and environmental factors. Numerous gene variants that are associated with a greater or lesser risk of the different types of CVD and of intermediate phenotypes (i.e., hypercholesterolemia, hypertension, diabetes) have been successfully identified. However, despite the close link between aging and CVD, studies analyzing the genes related to human longevity have not obtained consistent results and there has been little coincidence in the genes identified in both fields. The APOE gene stands out as an exception, given that it has been identified as being relevant in CVD and longevity. This review analyzes the genomic and epigenomic factors that may contribute to this, ranging from identifying longevity genes in model organisms to the importance of gene-diet interactions (outstanding among which is the case of the TCF7L2 gene).
Collapse
|