1
|
Yao H, Wu R, Du D, Ai F, Yang F, Li Y, Qi S. Flavonoids from Polypodium hastatum as neuroprotective agents attenuate cerebral ischemia/reperfusion injury in vitro and in vivo via activating Nrf2. Redox Rep 2025; 30:2440204. [PMID: 39702961 DOI: 10.1080/13510002.2024.2440204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Cerebral ischemic stroke is a leading cause of death worldwide. Though timely reperfusion reduces the infarction size, it exacerbates neuronal apoptosis due to oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes. Activating Nrf2 gives a therapeutic approach to ischemic stroke. METHODS Herein we explored flavonoids identified from Polypodium hastatum as Nrf2 activators and their protective effects on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) as well as middle cerebral artery occlusion (MCAO) mice. RESULTS The results showed among these flavonoids, AAKR significantly improved the survival of PC12 cells induced by OGD/R and activated Nrf2 in a Keap1-dependent manner. Further investigations have disclosed AAKR attenuated oxidative stress, mitochondrial dysfunction and following apoptosis resulting from OGD/R. Meanwhile, activation of Nrf2 by AAKR was involved in the protective effects. Finally, it was found that AAKR could protect MCAO mice brains against ischemia/reperfusion injury via activating Nrf2. DISCUSSION This investigation could provide lead compounds for the discovery of novel Nrf2 activators targeting ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Huankai Yao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ruiqing Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Dan Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Fengwei Ai
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy & Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Suhua Qi
- School of Medical Technology & Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Bhati R, Zadeng H, Singh E, Kumar A, Jain M, Senthil Kumaran J, Singh AK, Muthukumaran J. Molecular dynamics simulations assisted investigation of phytochemicals as potential lead candidates against anti-apoptotic Bcl-B protein. J Biomol Struct Dyn 2025; 43:3049-3063. [PMID: 38111145 DOI: 10.1080/07391102.2023.2295385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Due to the multifarious nature of cancer, finding a single definitive cure for this dreadful disease remains an elusive challenge. The dysregulation of the apoptotic pathway or programmed cell death, governed by the Bcl-2 family of proteins plays a crucial role in cancer development and progression. Bcl-B stands out as a unique anti-apoptotic protein from the Bcl-2 family that selectively binds to Bax which inhibits its pro-apoptotic function. Although several inhibitors are reported for Bcl-2 family proteins, no specific inhibitors are available against the anti-apoptotic Bcl-B protein. This study aims to address this research gap by using virtual screening of an in-house library of phytochemicals from seven anti-cancer medicinal plants to identify lead molecules against Bcl-B protein. Through pharmacokinetic analysis and molecular docking studies, we identified three lead candidates (Enterolactone, Piperine, and Protopine) based on appreciable drug-likeliness, ADME properties, and binding affinity values. The identified molecules also exhibited specific interactions with critical amino acid residues of the binding cleft, highlighting their potential as lead candidates. Finally, molecular dynamics simulations and MM/PBSA based binding free energy analysis revealed that Enterolactone (CID_114739) and Piperine (CID_638024) molecules were on par with Obatoclax (CID_11404337), which is a known inhibitor of the Bcl-2 family proteins.
Collapse
Affiliation(s)
- Rittik Bhati
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Hazel Zadeng
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ekampreet Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Ankit Kumar
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - J Senthil Kumaran
- Department of Chemistry, DLR Arts and Science College, Arcot, India
- Department of Science and Humanities, Er. Perumal Manimekalai College of Engineering, Hosur, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| |
Collapse
|
4
|
Sun Q, Zhai W, Wang H, Gao Z, Liu H. A novel lncRNA MSTRG.59348.1 regulates muscle cells proliferation and innate immunity of Megalobrama amblycephala. Int J Biol Macromol 2025; 294:139445. [PMID: 39756731 DOI: 10.1016/j.ijbiomac.2024.139445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
In mammals, long non-coding RNAs (lncRNAs) play a regulatory role in gene expression, contribute to immune responses, and aid in pathogen elimination, primarily through interactions with RNA-binding proteins (RBPs). However, the role of lncRNAs in fish innate immunity and their interaction with RBPs remains uncertain. To investigate the immunomodulatory role of lncRNAs in Megalobrama amblycephala, we identified the novel lncRNA MSTRG.59348.1 and examined its function in the innate immune response to Aeromonas hydrophila infection. Localization studies in hepatocytes revealed that MSTRG.59348.1 is primarily located in the nucleus, suggesting its potential involvement in gene regulation, possibly through chromatin modification or other nuclear processes. The expression of MSTRG.59348.1 was significantly up-regulated after lipopolysaccharide (LPS) stimulation in liver cells. RNA-seq analysis of muscle cells revealed that genes differentially expressed following MSTRG.59348.1 overexpression were enriched in immune pathways. MSTRG.59348.1 overexpression significantly inhibited the expression of sting and ifn, and significantly up-regulated muscle cell viability and promoted cell proliferation by targeting sting, ifn, nf-κb1, and bcl2. Screening by RNA pull-down and mass spectrometry identified 57 RBPs interacting with MSTRG.59348.1, with functions enriched in immune pathways. Our results suggest that MSTRG.59348.1 plays a crucial regulatory role in fish antibacterial response, marking it as a significant subject for future research in innate immunity.
Collapse
Affiliation(s)
- Qianhui Sun
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Xiaogan Academy of Agricultural Sciences, Xiaogan 432100, China
| | - Wenya Zhai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
5
|
Amarasiri HADB, Arachchige D, Vince MJK, Holub JM. Inhibitory Potential and Binding Thermodynamics of Scyllatoxin-Based BH3 Domain Mimetics Targeting Repressor BCL2 Proteins. J Mol Recognit 2025; 38:e70001. [PMID: 39905677 DOI: 10.1002/jmr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The B-cell lymphoma 2 (BCL2) proteins are a class of apoptosis regulators that control the release of apoptogenic factors from mitochondria. Under normal physiological conditions, apoptosis is inhibited through the actions of anti-apoptotic (repressor) BCL2 proteins that bind semi-indiscriminately to the helical BH3 domains of pro-apoptotic (effector) BCL2 proteins. In this work, we developed a series of BH3 domain mimetics by grafting residues from the effector BCL2 protein Bax onto the α-helix of scyllatoxin (ScTx). These so-called "ScTx-Bax" constructs were then used to gain insight into the physicochemical nature of repressor/effector BCL2 interactions. Specifically, we utilized competitive binding and isothermal titration calorimetry (ITC) to investigate the inhibitory potential and binding thermodynamics of ScTx-Bax structural variants that target the repressor protein Bcl-2 (proper) in vitro. Our data show that ScTx-Bax mimetics compete with isolated Bax BH3 domain peptides for Bcl-2 with IC50 values in the mid-nanomolar range and that greater flexibility within the ScTx-Bax BH3 domain correlates with more effective inhibition. Furthermore, ITC experiments revealed that unstructured ScTx-Bax variants target Bcl-2 with greater entropic, but lower enthalpic, efficiencies than structured ScTx-Bax peptides. These results suggest that entropic contributions to binding Bcl-2 are more favorable for flexible BH3 domains; however, this enhancement is counterbalanced by a moderate enthalpic penalty. Overall, this study improves understanding of how structural properties of effector BH3 domains influence the promiscuous binding patterns of BCL2 proteins and expands the utility of ScTx-based BH3 domain mimetics as molecular tools to study discrete recognition elements that facilitate repressor/effector BCL2 interactions.
Collapse
Affiliation(s)
- H A D B Amarasiri
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
| | - Danushka Arachchige
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
| | - Matthew J K Vince
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
- Institut für Bioanalytische Chemie, Biotechnologisch-Biomedizinisches Zentrum, Fakultät für Chemie Und Mineralogie, Universität Leipzig, Leipzig, Germany
| | - Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
6
|
Dhillon D, Jain M, Singh AK, Muthukumaran J. Withania somnifera-derived phytochemicals as Bcl-B inhibitors in cancer therapy: A computational approach from byte to bench to bedside. Biochem Biophys Res Commun 2025; 750:151383. [PMID: 39884007 DOI: 10.1016/j.bbrc.2025.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Cancer is the second foremost cause of fatalities associated with non-communicable diseases across the globe, affecting multiple organs and often necessitating costly treatments with adverse side effects. Apoptosis, the body's natural cell death process, plays a crucial role in the prevention of cancer, but it's often disrupted in cancer cells, allowing uncontrolled proliferation. Restoring apoptosis in cancer cells is one of the promising therapeutic strategies to curb tumor growth and enhance clinical outcomes. Bcl-B, an anti-apoptotic protein within the Bcl-2 family, interacts with Bax to mitigate apoptosis, indicating it as a druggable target for cancer therapy. There's a critical need for natural, cost-effective alternatives with minimal adverse effects to reduce morbidity rates of cancer patients. Plant-based immunoprotective medications, particularly from sustainable sources like known medicinal plants, offer substantial potential for cancer treatment. This study involves comprehensive in silico approaches (byte) to evaluate the inhibition potential of the phytochemicals derived from Withania somnifera against the anti-apoptotic Bcl-B protein. Research into Bcl-B's binding affinity with 80 phytochemicals from this plant aims to identify interaction sites for promising anticancer agents. This study's focus on Bcl-B protein highlights its potential in modulating apoptotic pathways and exploring novel anti-cancer therapeutics. Through comprehensive screening based on drug-likeness and pharmacokinetic properties, combined with in-house virtual screening, molecular docking, molecular dynamics simulations, and MM/PBSA-based binding free energy analysis, three promising candidate inhibitors-Withanolide L (IMPHY009438), Withanolide M (IMPHY003143), and Withanolide A (IMPHY000090)-were identified and prioritized. These candidates showed favorable estimated binding free energy values, along with desirable drug-likeness and pharmacokinetic profiles. The results demonstrated that the selected and prioritized phytochemicals, Withanolide L, Withanolide M, and Withanolide A display comparable efficacy to Obatoclax (CID: 11404337) and other known synthetic, semi-synthetic, and natural inhibitors of Bcl-2 family proteins. These findings establish a strong bench foundation for further experimental validation and bedside application, potentially offering an alternative natural approach to cancer therapy.
Collapse
Affiliation(s)
- Deepika Dhillon
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Monika Jain
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India.
| |
Collapse
|
7
|
Hou S, Zhang W, Pang W, Xia H, Tan J, Huang Q, Yang P. The role of BIM gene deletion in ALK-mutated Non-small cell lung cancer treated with alectinib. Clin Exp Med 2025; 25:54. [PMID: 39932597 DOI: 10.1007/s10238-025-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Alectinib, as a first-line therapeutic option for advanced ALK mutation-positive non-small-cell lung cancer (NSCLC), is now widely used in the clinic. However, the associated mechanisms of resistance are unknown. The first documented case of ALK-mutated NSCLC's resistance to alectinib is herein reported in relation to BIM gene deletion status. In particular, cell inhibition assay (CCK8 assay), cell transfection, fluorescence microscopy, RT-PCR, cell proliferation assay, cell migration assay and western blotting were undertaken for exploring the link between BIM status and alectinib resistance. Clinical cases showed that the BIM gene was absent in alectinib-resistant tumor tissues. Further experimental validation yielded that NSCLC with deleted BIM genes were less sensitive to aleitinib. BIM gene deletion can increase resistance to alectinib, and the potential efficacy of a combination of BIM sensitizer and alectinib to overcome alectinib resistance can be explored.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Radiation Oncology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Weijun Zhang
- Departments of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Pang
- Department of Radiation Oncology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Haiqun Xia
- Department of Radiation Oncology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Jinyun Tan
- Department of Radiation Oncology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Qingfang Huang
- Department of Radiation Oncology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Ping Yang
- Department of Radiation Oncology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China.
| |
Collapse
|
8
|
Bakr S, Dash HE, Youssef AAA, El-Hamid RGA. Differential Expression of BCL2 and IGFBP2 in Childhood Immune Thrombocytopenic Purpura Clinical Subtypes: Implications for Predicting Disease Progression and Apoptotic Regulation. Pediatr Blood Cancer 2025:e31586. [PMID: 39905592 DOI: 10.1002/pbc.31586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Immune thrombocytopenic purpura (ITP), which poses challenges in treatment response, is an autoimmune-mediated bleeding disorder with an extremely complex pathogenesis and unpredictable clinical progression. Dysregulation of apoptotic pathways may influence both the pathogenesis and prognosis of ITP. This study aimed to evaluate the expression patterns of the apoptotic protein insulin-like growth factor-binding protein 2 (IGFBP2) and the anti-apoptotic protein B-cell lymphoma 2 (BCL2) as potential predictive or prognostic biomarkers for disease progression in childhood ITP. PATIENTS AND METHODS The expression levels of BCL2 and IGFBP2 were assessed in peripheral blood samples from 40 pediatric ITP patients and 30 age- and sex-matched healthy controls using enzyme-linked immunosorbent assays. RESULTS Plasma levels of BCL2 and IGFBP2 were higher in ITP patients than in control subjects. Although the difference in IGFBP2 expression was not statistically significant (p = 0.910), BCL2 expression was significantly elevated (p < 0.001). Notably, chronic ITP patients had significantly lower levels of both IGFBP2 and BCL2 markers compared to patients who achieved spontaneous recovery (p < 0.001). CONCLUSION BCL2 and IGFBP2 appear to be promising noninvasive biomarkers for predicting disease outcomes in newly diagnosed ITP, emphasizing the need for validation in large-scale, multicenter longitudinal studies.
Collapse
Affiliation(s)
- Salwa Bakr
- Department of Clinical Pathology/Hematology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Hanaa El Dash
- Department of Pediatric, Fayoum University, Fayoum, Egypt
| | | | | |
Collapse
|
9
|
Niapour A, Mohebi Y, Ghalehnoei H. Neuroprotective effects of tranexamic acid against hydrogen peroxide-induced cytotoxicity on human neuroblastoma SH-SY5Y cells. Neurol Res 2025:1-9. [PMID: 39901118 DOI: 10.1080/01616412.2025.2462030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/25/2025] [Indexed: 02/05/2025]
Abstract
INTRODUCTION Tranexamic acid (TA) is an anticoagulant drug that is used worldwide. However, the adverse effects of TA may insult the nervous system. This study aimed to investigate the dual effects of TA on SH-SY5Y cells, including its detrimental and neuroprotective effects. METHODS SH-SY5Y cells were treated with various concentrations of TA and exposed to H2O2 for 24 hours. The neuroprotective effects of TA were evaluated in H2O2-challenged cells. To assess the neuroprotective effects of TA, SH-SY5Y cells were pretreated with TA for 12 hours and then exposed to H2O2 for 24 hours. Cell viability was assessed using the MTT assay. Flow cytometry was used to evaluate cellular apoptosis. The expression of Bax, Bcl-2, and Caspase-3 genes was analyzed by real-time PCR. Additionally, Akt phosphorylation was evaluated using western blotting. RESULTS At high concentrations, TA reduced cell viability and induced apoptosis by up-regulating BAX and Caspase-3 gene expression and down-regulating BCL-2 transcript. Furthermore, Akt phosphorylation was reduced following TA treatment. TA exhibited protective effects against H2O2-induced cell stress by down-regulating Bax and Caspase-3 gene expression, up-regulating Bcl-2 expression, and increasing the p-AKT/AKT ratio. CONCLUSION Our findings demonstrated that TA exerts its neuroprotective effect at lower concentrations, but induces apoptosis in SH-SY5Y cells at high concentrations.
Collapse
Affiliation(s)
- Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yavar Mohebi
- Department of Medical Biotechnology, Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Faculty of Advanced Technologist in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Faculty of Advanced Technologist in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Wang M, Zhang Y, Ni S, Sun M, Wu Q, Wu X, Chen Q, Wang S. The anti-cancer activity of Dioscin: an update and future perspective. Med Oncol 2025; 42:63. [PMID: 39899128 PMCID: PMC11790812 DOI: 10.1007/s12032-024-02572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 02/04/2025]
Abstract
Natural drugs have the advantages of multi-pathway, multi-target, low toxicity, and high efficiency, which make them widely used and effective in anti-tumor therapy. Dioscin is a steroidal saponin compound that can be extracted from Dioscaceae plants. In recent years, it has been found that Dioscin has potent anti-tumor effects, can inhibit tumor cell proliferation, induce apoptosis and autophagy, inhibits tumor cell metastasis, reverses multidrug resistance, and increases sensitivity to anticancer drugs, and thus inhibit tumor progression. Meanwhile, the construction of Dioscin nanocarriers can improve the efficiency of drug use, reduce drug toxicity, realize the precise delivery of drugs, and improve the bioavailability of Dioscin. In this paper, the anticancer mechanism and targets of Dioscin in recent years were reviewed, thereby providing new ideas and a theoretical basis for further research and promotion of Dioscin.
Collapse
Affiliation(s)
- MengYue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - YaNan Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - SongLin Ni
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Mo Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - QiaoLan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - XiaoLin Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Qian Chen
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
11
|
Kato A, Takahashi H, Asai H, Uehara S, Harata S, Fujii Y, Watanabe K, Yanagita T, Suzuki T, Ushigome H, Shiga K, Yamakawa Y, Ogawa R, Mitsui A, Matsuo Y, Takiguchi S. Bcl‑xL‑specific BH3 mimetic A‑1331852 suppresses proliferation of fluorouracil‑resistant colorectal cancer cells by inducing apoptosis. Oncol Rep 2025; 53:26. [PMID: 39717947 PMCID: PMC11718432 DOI: 10.3892/or.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells. A 5‑FU‑resistant colorectal cancer cell line was derived from HCT116 cells and compared with the parental line. Expression levels of the antiapoptotic Bcl‑2 proteins Bcl‑xL and myeloid cell leukemia 1 (Mcl‑1) were determined via western blotting, proliferation in the presence of 5‑FU and following small interfering (si)RNA‑mediated Bcl‑xL or Mcl‑1 knockdown was assessed by WST‑1 assay and sensitivity to A‑1331852‑induced apoptosis was assessed via western blotting and DNA fragmentation assay. In addition, a xenograft mouse model of 5‑FU‑resistant colorectal cancer was established via subcutaneous inoculation of 5‑FU‑resistant HCT116 cells to examine the in vivo antitumor efficacy of A‑1331852. Compared with the parental line, 5‑FU‑resistant cells overexpressed Bcl‑xL. Knockdown of Bcl‑xL by siRNA and treatment with A‑1331852 suppressed proliferation and induced the apoptosis of both 5‑FU‑resistant and parental HCT116 cells, but the potency of both effects was stronger in 5‑FU‑resistant than parental HCT116 cells. Furthermore, A‑1331852 suppressed the growth of xenograft tumors derived from 5‑FU‑resistant cells by inducing apoptosis. Overall, the present findings suggested that Bcl‑xL upregulation contributes to 5‑FU resistance of colorectal cancer and targeted inhibition by A‑1331852 may be an effective treatment strategy.
Collapse
Affiliation(s)
- Akira Kato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroyuki Asai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuhei Uehara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinnosuke Harata
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshiaki Fujii
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Toyokawa City Hospital, Toyokawa, Aichi 442-8561, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yushi Yamakawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
12
|
Vergès-Castillo A, Herrera-Pérez P, Pendón C, Martín-Robles ÁJ, Muñoz-Cueto JA. Photoperiod and Light Spectrum Modulate Daily Rhythms and Expression of Genes Involved in Cell Proliferation, DNA Repair, Apoptosis and Oxidative Stress in a Seabream Embryonic Stem Cell Line. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:37. [PMID: 39888503 PMCID: PMC11785696 DOI: 10.1007/s10126-025-10418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition. Under LDB, the mRNA levels of cell proliferation (pcna), DNA repair (cry5), anti-apoptotic (bcl2) and oxidative stress (prdx2) markers peaked at the day-night transition, whereas pro-apoptotic (bax) and cell stress (hsp70) markers showed their highest expression at the night-day transition, evidencing the strong synchronisation of the transcription of key genes involved in the cell cycle in this photoregime. The persistence of significant pcna, cry5, hsp70 and prdx2 rhythms after 3 days in constant darkness reveals the endogenous and circadian nature of these rhythms. Our results highlight the importance of implementing photoperiods with light-dark cycles of blue wavelengths when performing fish cell culture research. These results reinforce and extend our previous studies, confirming the importance of lighting conditions that mimic the natural environment for the proper development of fish embryos and larvae in aquaculture.
Collapse
Affiliation(s)
- Alba Vergès-Castillo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain
| | - Patricia Herrera-Pérez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain
| | - Carlos Pendón
- Área de Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
- Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Campus de ExcelenciaInternacionalAgroalimentario (ceiA3), Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain
| | - Águeda J Martín-Robles
- Área de Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain.
| | - José A Muñoz-Cueto
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), The European University of the Seas (SEA-EU), 11510, Puerto Real (Cádiz), Spain.
| |
Collapse
|
13
|
Man S, Ren H, Li Y, Li J, Zou C, Khan AJ, Huang J, Xia Y, Jia S, Wang J, Liu X, Guo Z, Zhang Y, Rahman FU, Li X. In Vitro and In Vivo Anticancer Activities of Water-Soluble Ru(II)(η6- p-cymene) Complexes via Activating Apoptosis Central Regulators and Possibilities of New Antitumor Strategies in Triple Negative Breast Cancers. J Med Chem 2025. [PMID: 39878058 DOI: 10.1021/acs.jmedchem.4c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this study, we synthesized 12 monofunctional tridentate ONS-donor salicylaldimine ligand (L)-based Ru(II) complexes with general formula [(Ru(L)(p-cymene)]+·Cl- (C1-C12), characterized by 1H NMR, 13C NMR, UV, FT-IR spectroscopy, HR-ESI mass spectrometry, and single-crystal X-ray analysis showing ligand's orientation around the Ru(II) center. All 12 of these 12 complexes were tested for their anticancer activities in multiple cancer cells. The superior antitumor efficacy of C2, C8, and C11 was demonstrated by reduced mitochondrial membrane potential, impaired proliferative capacity, and disrupted redox homeostasis, along with enhanced apoptosis through caspase-3 activation and downregulation of Bcl-2 expression. In the 4T1 breast cancer orthotopic mouse model, assessment of bioluminescence for metastatic spread, tumor burden, histopathological evaluation, immunohistochemistry (IHC), and hematological profiling and tissue Protein expression of caspase-3, cleaved caspase-3, TNF-α, and bcl-2 demonstrated that C8 treatment led to prolonged survival and suppressed tumor progression in triple negative breast cancer.
Collapse
Affiliation(s)
- Shad Man
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yimiao Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jiaqi Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinxia Huang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yan Xia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Shuang Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jie Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xing Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
- CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xinyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
14
|
Markouli M, Pagoni MN, Diamantopoulos P. BCL-2 inhibitors in hematological malignancies: biomarkers that predict response and management strategies. Front Oncol 2025; 14:1501950. [PMID: 39906657 PMCID: PMC11790632 DOI: 10.3389/fonc.2024.1501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Apoptosis is an essential characteristic of cancer and its dysregular promotes tumor growth, clonal evolution, and treatment resistance. B-cell lymphoma-2 (BCL-2) protein family members are key to the intrinsic, mitochondrial apoptotic pathway. The inhibition of the BCL-2 family pro-survival proteins, which are frequently overexpressed in B-cell malignancies and pose a fundamental carcinogenic mechanism has been proposed as a promising therapeutic option, with venetoclax (ABT-199) being the first FDA-approved BCL-2 inhibitor. Unfortunately, although BCL-2 inhibition has shown remarkable results in a range of B-cell lymphoid cancers as well as acute myeloid leukemia (AML), the development of resistance significantly reduces response rates in specific tumor subtypes. In this article, we explain the role of BCL-2 family proteins in apoptosis and their mechanism of action that justifies their inhibition as a potential treatment target in B-cell malignancies, including chronic lymphocytic leukemia, multiple myeloma, B-cell lymphomas, but also AML. We further analyze the tumor characteristics that result in the development of intrinsic or inherited resistance to BCL-2 inhibitors. Finally, we focus on the biomarkers that can be used to predict responses to treatment in the name of personalized medicine, with the goal of exploring alternative strategies to overcome resistance.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Maria N. Pagoni
- Department of Hematology-Lymphomas and BMT Unit, Evangelismos Hospital, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Bigham A, Serrano-Ruiz M, Caporali M, Fasolino I, Peruzzini M, Ambrosio L, Raucci MG. Black phosphorus-based nanoplatforms for cancer therapy: chemistry, design, biological and therapeutic behaviors. Chem Soc Rev 2025; 54:827-897. [PMID: 39618201 DOI: 10.1039/d4cs00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Cancer, a significant threat to human lives, has been the target of research for several decades. Although conventional therapies have drawbacks, such as side effects, low efficacy, and weak targeting, they have been applied extensively due to a lack of effective alternatives. The emergence of nanotechnology in medicine has opened up new possibilities and offered promising solutions for cancer therapy. In recent years, 2D nanomaterials have attracted enormous attention in nanomedicine due to their large surface-to-volume ratio, photo-responsivity, excellent electrical conductivity, etc. Among them, black phosphorus (BP) is a 2D nanomaterial consisting of multiple layers weakly bonded together through van der Waals forces. Its distinct structure makes BP suitable for biomedical applications, such as drug/gene carriers, PTT/PDT, and imaging agents. BP has demonstrated remarkable potential since its introduction in cancer therapy in 2015, particularly due to its selective anticancer activity even without the aid of near-infrared (NIR) or anticancer drugs. The present review makes efforts to cover and discuss studies published on the anticancer activity of BP. Based on the type of cancer, the subcategories are organized to shed light on the potential of BP nanosheets and BP quantum dots (BPQDs) against breast, brain, skin, prostate, and bone cancers, and a section is devoted to other cancer types. Since extensive attention has been paid to breast cancer cells and in vivo models, various subsections, including mono-, dual, and triple therapeutic approaches are established for this cancer type. Furthermore, the review outlines various synthesis approaches employed to produce BP nanomaterials, providing insights into key synthesis parameters. This review provides an up-to-date platform for the potential reader to understand what has been done about BP cancer therapy based on each disease, and the conclusions and outlook cover the directions in which this approach is going to proceed in the future.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Manuel Serrano-Ruiz
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maurizio Peruzzini
- Institute for Chemistry of OrganoMetallic Compounds, National Research Council of Italy (ICCOM-CNR), Via Madonna del Piano 10, 5019 Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy.
| |
Collapse
|
16
|
Zhang B, Zhang H, Qin Y. A Primer on the Role of TP53 Mutation and Targeted Therapy in Endometrial Cancer. FRONT BIOSCI-LANDMRK 2025; 30:25447. [PMID: 39862074 DOI: 10.31083/fbl25447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 01/27/2025]
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. TP53 mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME). The changes in the TME subsequently promote the development of tumors and assist in immune escape by tumor cells, making it more challenging to treat EC and resulting in a poor prognosis. Therefore, it is important to understand the effects of TP53 mutation in EC and to conduct further research in relation to the targeting of TP53 mutations. This article reviews current research progress on the role of TP53 mutations in regulating the TME and in the mechanism of EC tumorigenesis, as well as progress on drugs that target TP53 mutations.
Collapse
Affiliation(s)
- Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Haozhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| |
Collapse
|
17
|
Choi HJ, Jin S, Park J, Lee D, Jeong HJ, Kim OH, Ryu JH, Kim SJ. Assessing the Efficacy of Mitochondria-Accumulating Self-Assembly Peptides in Pancreatic Cancer: An Animal Study. Int J Mol Sci 2025; 26:784. [PMID: 39859498 PMCID: PMC11766353 DOI: 10.3390/ijms26020784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Although pancreatic cancer presents with one of the most unfavorable prognoses, its treatment options are very limited. Mitochondria-targeting moieties, considered a new and prominent treatment modality, are expected to demonstrate synergistic anticancer effects due to their distinct mechanism compared to conventional chemotherapeutic approaches. This study evaluated the therapeutic potential of mitochondria-accumulating self-assembly peptides, referred to as Mito-FFs, utilizing both in vitro and in vivo pancreatic cancer models. Cellular viability assays revealed a concentration-dependent decrease in the survival of MIA-PACA2 pancreatic cancer cells upon exposure to Mito-FF treatment (p < 0.05). Subsequent in vitro Mito-FF treatments prompted the use of several molecular analyses, including Real-time PCR, Western blot analysis, and MitoSOX staining, which collectively indicated an upsurge in apoptosis, a concurrent reduction in the antioxidant enzyme expression, and an elevation in mitochondrial ROS levels (p < 0.05). In a murine xenograft model of pancreatic cancer, the intravenous administration of Mito-FF yielded a notable reduction in the tumor volume. Moreover, it upregulated the expression of pro-apoptotic markers, such as cleaved PARP and c-caspase 3, while concurrently downregulating the expression of an anti-apoptotic marker, MCL-1, as evidenced by both Western blot analysis and immunohistochemical staining (p < 0.05). It also resulted in the reduced expression of antioxidant enzymes like HO-1, catalase, and SOD2 within excised tumor tissues, as confirmed using Western blot analysis (p < 0.05). Cumulatively, the findings underscore the significant anticancer efficacy of Mito-FF against pancreatic cancer cells, predominantly mediated through the induction of apoptosis, suppression of antioxidant enzyme expression, and enhancement of mitochondrial ROS levels within the tumor microenvironment.
Collapse
Affiliation(s)
- Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.J.C.); (D.L.)
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.P.); (H.J.J.); (O.-H.K.)
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (S.J.); (J.-H.R.)
| | - Junghyun Park
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.P.); (H.J.J.); (O.-H.K.)
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Dosang Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.J.C.); (D.L.)
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.P.); (H.J.J.); (O.-H.K.)
| | - Hee Jeong Jeong
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.P.); (H.J.J.); (O.-H.K.)
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.P.); (H.J.J.); (O.-H.K.)
- Translational Research Team, Surginex Co., Ltd., Seoul 06591, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (S.J.); (J.-H.R.)
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.J.C.); (D.L.)
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.P.); (H.J.J.); (O.-H.K.)
| |
Collapse
|
18
|
Intachat C, Chuammitri P, Sornpet B, Patchanee P, Manachai N, Piyarungsri K. Unraveling TGF-β1's Role in Mediating Fibrosis and Cell Death in Feline Kidney Cells. Animals (Basel) 2025; 15:257. [PMID: 39858257 PMCID: PMC11758325 DOI: 10.3390/ani15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic kidney disease (CKD) is prevalent among older cats. The transforming growth factor beta 1 (TGF-β1) pathway is associated with renal fibrosis. TGF-β1 signaling through the non-canonical/smad-independent pathway activates mitogen-activated protein kinase (MAPK) signaling, which is linked to fibrosis and apoptosis. The MAPK pathway regulates the Bcl-2 protein family, which is known for its anti-apoptosis properties. This study aimed to quantify the mRNA expression of the TGFβ, MAPK, and Bcl2 genes and the protein expression of TGF-β1 and MAPK in feline kidney cells and tissue. A gene expression analysis was conducted using qPCR to calculate the relative gene expression, while the protein expression was assessed through Western blot analysis. Immunohistochemistry staining of TGF-β1 and MAPK was performed on feline kidney tissue. The results revealed the significant upregulation of TGFβ (p = 0.001) and considerable downregulation of Bcl2 (p = 0.010) in doxorubicin-treated feline kidney cells. The immunostaining levels of TGF-β1 and MAPK were higher in the kidney tissue of cats with CKD than in non-CKD cats. However, there was no difference in TGFβ, MAPK, or Bcl2 gene expression in CKD vs. non-CKD cats. The findings suggest that TGF-β1 and Bcl-2 are associated with renal fibrosis and apoptosis in feline kidney cells. A deeper understanding of the TGF-β1 pathway could enable veterinarians to monitor disease progression and mitigate complications in feline CKD.
Collapse
Affiliation(s)
- Chanyanuch Intachat
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
| | - Phongsakorn Chuammitri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
- Research Center of Producing and Development of Products and Innovation for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Benjaporn Sornpet
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Prapas Patchanee
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
| | - Nawin Manachai
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
| | - Kakanang Piyarungsri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (C.I.); (P.C.); (P.P.); (N.M.)
- Research Center of Producing and Development of Products and Innovation for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
19
|
Koolivand Z, Bahreini F, Rayzan E, Rezaei N. Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations. Heliyon 2025; 11:e41355. [PMID: 39811307 PMCID: PMC11730532 DOI: 10.1016/j.heliyon.2024.e41355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Acute myeloid leukemia is the expansion of leukemic stem cells which might originate from a stem cell or a progenitor which has acquired self-renewal capacity. An aggregation of leukemic blasts in bone marrow, peripheral blood, and extramedullary tissue will result in acute myeloid leukemia. The main difficulty in treating acute myeloid leukemia is multidrug resistance, leading to treatment failure. This unfortunate phenomenon is practically elevated because of apoptosis inhibition in tumor cells. Two general apoptotic pathways are the Bcl-2 regulated pathway (the intrinsic pathway) and the death receptor pathway. Deficiencies in each of these apoptotic pathways can cause the usual resistance mechanism in this disease. This article reviews and highlights different antiapoptotic pathways, currently-used treatments, and new findings in this field, which may lead to the development of treatment methods for acute myeloid leukemia.
Collapse
Affiliation(s)
- Zahra Koolivand
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Khater Y, Barakat N, Shokeir A, Hamed M, Samy A, Karrouf G. Synergy of zinc oxide nanoparticles to losartan attenuates kidney injury induced by unilateral ureteral obstruction through modulation of the TNF-α/IL6 and BAX/BCL2 signaling pathways. Int Urol Nephrol 2025:10.1007/s11255-024-04331-y. [PMID: 39810058 DOI: 10.1007/s11255-024-04331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
AIM Although the relief of ureteral obstruction seems to be a radical treatment for obstructive uropathy (OU), progressive kidney damage is the result because of the associated increased apoptosis and fibrosis. Therefore, it is urgent to find a complementary renoprotective therapy against partially obstructed uropathy cascades. Thus, this study investigated the renoprotective effects of both losartan (LOS) and zinc oxide nanoparticles (ZnONPs) in partial unilateral ureteral obstruction (PUUO). MAIN METHODS In controlled (n = 16) and shamed (n = 16) study, 64 healthy male Sprague-Dawley rats, both PUUO and right nephrectomy (RNX) were induced. The rats were equally allocated into four groups according to treatment protocol: (1) PUUO group (no treatment), (2) ZnONPs group, (3) LOS group and (4) ZnONPs/LOS group. Antioxidant status and gene expression were assessed in renal tissues. Moreover, histologic and immunohistochemical examinations were performed. KEY FINDINGS LOS and ZnONPs significantly mitigated the PUUO-induced renal injury, by significant (P < 0.0001) suppressing of oxidative stress (MDA and TOS), upregulating of antioxidant gene (SOD) and antiapoptotic gene (BCL2), and downregulating the expression of inflammatory cytokines (TNF-α, and IL6), apoptotic gene (Bax) and fibrotic marker (β-Catenin). The combination of both agents offered a more powerful renoprotective effect with additional significant upregulation of the antioxidant marker (TAC, P < 0.0001). SIGNIFICANCE Both losartan and ZnONPs and specially their combination have synergistic action in protecting the kidney against PUUO-induced chronic renal cascades through improvement the renal function tests, amelioration of oxidative stress, inhibition of induced apoptosis and fibrosis with marked renal regeneration which highlights the possible application of these drugs as a complementary therapies for different chronic renal degenerative diseases.
Collapse
Affiliation(s)
- Yomna Khater
- Medical Experimental Research Centre, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Shokeir
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
- Centre of Excellence of Genome and Cancer Research, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Hamed
- Department of Pathology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Gamal Karrouf
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
21
|
Zheng Q, Jin X, Nguyen TTM, Yi EJ, Park SJ, Yi GS, Yang SJ, Yi TH. Autophagy-Enhancing Properties of Hedyotis diffusa Extracts in HaCaT Keratinocytes: Potential as an Anti-Photoaging Cosmetic Ingredient. Molecules 2025; 30:261. [PMID: 39860131 PMCID: PMC11767327 DOI: 10.3390/molecules30020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics. Hedyotis diffusa (HD), as a medicinal plant, is renowned for its anti-inflammatory and anticancer properties; however, its effects on skin photoaging remain unclear. This study investigates HD's potential to counteract skin photoaging by restoring mitochondrial autophagy in keratinocytes. We used HPLC to detect the main chemical components in HD and, using a UVB-induced photoaging model in HaCaT keratinocytes, examined the effects of HD on reactive oxygen species (ROS) levels, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, and the cell cycle. Cellular respiration was further evaluated with the Seahorse XFp Analyzer, and RT-PCR and Western blotting were used to analyze the impact of HD on mitochondrial autophagy-related gene expression and signaling pathways. Our findings indicate that HD promotes autophagy by modulating the PI3K/AKT/mTOR and PINK/PARK2 pathways, which stabilizes mitochondrial quality, maintains MMP and Ca2+ balance, and reduces cytochrome c release. These effects relieve cell cycle arrest and prevent apoptosis associated with an increased BAX/BCL-2 ratio. Thus, HD holds promise as an effective anti-photoaging ingredient with potential applications in the development of cosmetic products.
Collapse
Affiliation(s)
- Qiwen Zheng
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Xiangji Jin
- Department of Dermatology, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Trang Thi Minh Nguyen
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Eun-Ji Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Se-Jig Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Gyeong-Seon Yi
- Department of Biopharmaceutical Biotechnology, Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Su-Jin Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea; (Q.Z.); (T.T.M.N.); (E.-J.Y.); (S.-J.P.); (S.-J.Y.)
| |
Collapse
|
22
|
Yin X, Yang W, Xin M, Han Q, Guan S, He J. Unveiling the molecular mechanisms of recurrent miscarriage through endoplasmic reticulum stress related gene expression. Sci Rep 2025; 15:1452. [PMID: 39789034 PMCID: PMC11717954 DOI: 10.1038/s41598-024-77642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025] Open
Abstract
Recurrent miscarriage (RM) is a reproductive disorder affecting couples worldwide. The underlying molecular mechanisms remain elusive, even though emerging evidence has implicated endoplasmic reticulum stress (ERS). We investigated RM- and ERS-related genes to develop a diagnostic model that can enhance predictive ability. We utilized the R package GEO query to extract and process Gene Expression Omnibus data, applying batch correction, normalization, and differential gene expression analysis with limma. ERS-related differentially expressed genes (ERSRGs) were identified through Gene Ontology and Kyoto Encyclopedia of genes and genomes analyses, and their diagnostic potential was assessed. Diagnostic models were developed using logistic regression, support vector machines, and least absolute shrinkage and selection operators, complemented by immune infiltration analysis and regulatory network construction. Integrated analysis revealed 1395 differentially expressed genes (DEGs), including 626 upregulated and 769 downregulated genes. Seventeen ERSRGs were identified. KEAP1 and YIPF5 displayed high diagnostic accuracy (area under the curve [AUC] > 0.9). Gene Ontology and Kyoto Encyclopedia of genes and genomes analyses highlighted the role of ESRDEGs in cellular responses to ERS, protein processing, and apoptosis. Diagnostic models demonstrated robust predictive performance (AUC > 0.9). A molecular interaction was found between RM and the ERS response, and the identified ESRDEGs could serve as potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Xiaodan Yin
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wei Yang
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Mingwei Xin
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Qian Han
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Siqi Guan
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Junqin He
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
23
|
Elamin G, Zhang Z, Dwarka D, Kasumbwe K, Mellem J, Mkhwanazi NP, Madlala P, Soliman MES. Integrative genomic analyses combined with molecular dynamics simulations reveal the impact of deleterious mutations of Bcl-2 gene on the apoptotic machinery and implications in carcinogenesis. Front Genet 2025; 15:1502152. [PMID: 39840282 PMCID: PMC11747654 DOI: 10.3389/fgene.2024.1502152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery. Single nucleotide polymorphisms (SNPs) are considered viable diagnostic and therapeutic biomarkers for various cancers. Therefore, this study explores the association between SNPs in Bcl-2 and the structural, functional, protein-protein interactions (PPIs), drug binding and dynamic characteristics. Methods Comprehensive cross-validated bioinformatics tools and molecular dynamics (MD) simulations. Multiple sequence, genetic, structural and disease phenotype analyses were applied in this study. Results Analysis revealed that out of 130 mutations, approximately 8.5% of these mutations were classified as pathogenic. Furthermore, two particular variants, namely, Bcl-2G101V and Bcl-2F104L, were found to be the most deleterious across all analyses. Following 500 ns, MD simulations showed that these mutations caused a significant distortion in the protein conformational, protein-protein interactions (PPIs), and drug binding landscape compared to Bcl-2WT. Conclusion Despite being a predictive study, the findings presented in this report would offer a perspective insight for further experimental investigation, rational drug design, and cancer gene therapy.
Collapse
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
- Department of Pharmaceutical Chemistry, College of Pharmacy, Karary University, Khartoum, Sudan
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Depika Dwarka
- Ezintsha, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kabange Kasumbwe
- Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - John Mellem
- Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Paradise Madlala
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
24
|
Jankowski M, Stefańska K, Suchodolski M, Dompe C, Wąsiatycz G, Kempisty B, Nowicki M, Roszak M. Differential regulation of apoptosis-related genes during long-term culture and differentiation of canine adipose-derived stem cells - a functional bioinformatical analysis. Front Genet 2025; 15:1515778. [PMID: 39834550 PMCID: PMC11743971 DOI: 10.3389/fgene.2024.1515778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Stem cells derived from adipose tissue are gaining popularity in the field of regenerative medicine due to their adaptability and clinical potential. Their rapid growth, ability to differentiate, and easy extraction with minimal complications make adipose-derived stem cells (ADSCs) a promising option for many treatments, particularly those targeting bone-related diseases. This study analyzed gene expression in canine ADSCs subjected to long-term culture and osteogenic differentiation. Methods ADSCs were isolated from discarded surgical waste and cultured for 14 days with and without differentiation media to assess osteogenic changes. RNA sequencing (RNA-seq) and bioinformatical analysis were performed to obtain comprehensive transcriptomic data. A total of 17793 genes were detected and GO enrichment analysis was performed on the differentially expressed genes to identify significantly up- and downregulated Biological Process (BP) GO terms across each comparison. Results The upregulation of apoptosis-regulating genes and genes related to circulatory system development suggest an induction of these processes, while the downregulation of neurogenesis and gliogenesis genes points to reciprocal regulation during osteogenic differentiation of canine ADSCs. Discussion These findings underscore the potential of ADSCs in bone regeneration and offer valuable insights for advancing tissue engineering, however further studies, including proteomic analyses, are needed to confirm these patterns and their biological significance.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
- Deparment of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Greater Poland Center of Digital Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Stefańska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Suchodolski
- Greater Poland Center of Digital Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Claudia Dompe
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Wąsiatycz
- Department of Human Morphology and Embryology, Division of Anatomy, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| | - Michał Nowicki
- Deparment of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Roszak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
25
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2025; 62:626-642. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
26
|
Yu L, Jin W, Deng D, Wang Y, Chen Q, Zhang Y, Wan H, Chen Y, Chen Y, He Y, Zhang L. Investigation of Anti-Apoptotic Effects and Mechanisms of Astragaloside IV in a Rat Model of Cerebral Ischemia-Reperfusion Injury. CNS Neurosci Ther 2025; 31:e70209. [PMID: 39764606 PMCID: PMC11705586 DOI: 10.1111/cns.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI). METHODS Network pharmacology was employed to identify key targets and pathways of AS-IV in CIRI therapy, combined with molecular docking to predict binding affinity. Male Sprague-Dawley rats were randomly assigned to sham, MCAO/R, AS-IV, SP600125 (JNK inhibitor), AS-IV + SP600125, and 3-n-Butylphthalide (NBP) groups. Neurobehavioral deficits were assessed, and brain tissue damage was visualized through 2,3,5-triphenyltetrazolium chloride, H&E, and TUNEL staining. Immunohistochemistry was employed to detect CytC- and caspase-3-positive cells, while Western blotting, qPCR, and ELISAs were used to analyze apoptosis-related markers. RESULTS A total of 48 key targets of AS-IV predicted to be involved in the treatment of CIRI were identified, enriched in 136 pathways. AS-IV was effectively bound to the top five targets from 48 targets, and those associated with the c-Jun N-terminal kinase (JNK)/Bid pathway, with binding energy values below -5.0 kJ·mol-1. JNK inhibition reduced infarcted brain areas, improved neurological function, reduced pathological brain tissue damage, and inhibited apoptosis, with AS-IV achieving similar neuroprotective effects. Both AS-IV and SP600125 reduced p-JNK, Bid, CytC, Apaf-1, caspase-3, and cleaved caspase-3 levels in rats while decreasing CytC, caspase-3, and caspase-9 levels in serum. CONCLUSION AS-IV may suppress apoptosis partly through the modulation of JNK/Bid signaling, exerting neuroprotective effects. These findings support the potential development of AS-IV-based therapies for stroke treatment.
Collapse
Affiliation(s)
- Li Yu
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Weifeng Jin
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Defang Deng
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yiru Wang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
- Faculty of Chinese MedicineMacau University of Science and TechnologyMacaoChina
| | - Qianqian Chen
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yangyang Zhang
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Haitong Wan
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxiang Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Ying Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yu He
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lijiang Zhang
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
27
|
Wang L, Qu Z, Xu Y, Yu G, Liu X, Wang M, An S, Yin X, Na R, Hao Y. Insecticide chlorfenapyr confers induced toxicity in human cells through mitochondria-dependent pathways of apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117502. [PMID: 39657379 DOI: 10.1016/j.ecoenv.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Pesticides are always used in the environment, the unexpected effects of pesticides on the environment and non-target organisms need to be continuously studied. Insecticide chlorfenapyr (Chl) is widely used in agriculture and also recommended for public health use (e.g., providing protection from malaria). Here we study toxic effects of Chl on human alveolar carcinoma cells (A549) and human normal liver cells (L02) in vitro. Chl's ability to induce DNA damage and apoptosis in human cells was confirmed through alkaline comet assay, immunofluorescence assay, and flow cytometric analysis. Further research showed that Chl induced mitochondrial damage (the collapse of mitochondrial membrane potential and the opening of mitochondrial permeability transition pore) with up-regulated expression of Bax/Bcl-2 leads to the release of cytochrome c from mitochondria which in turn activated the apoptotic pathway. Meanwhile, the key protein PARP is cleaved during apoptosis, resulting in the inhibition of DNA damage repair. In short, human A549 and L02 cells exposed to Chl were experiencing DNA damage and apoptosis linked to mitochondria. The results of this study supply theoretical understanding of Chl's toxicity on human cells, and can attract attention on the potential threat of insecticide Chl to human health.
Collapse
Affiliation(s)
- Longfei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifan Xu
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangyang Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Meizi Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Risong Na
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Youwu Hao
- National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
28
|
Yang L, Gao T, Huang Y, Wang PH, Han XH, Wu J, Huang L, Da QE, Ouyang KF, Han Z, Tian H, Sun L. Ultrasound-Targeted β-Catenin Gene Therapy Improves the Cardiac Function in Mice After Myocardial Infarction. Cardiovasc Toxicol 2025; 25:74-84. [PMID: 39656360 PMCID: PMC11739214 DOI: 10.1007/s12012-024-09946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025]
Abstract
Gene therapy has received great attention as a therapeutic approach to improve cardiac function post-myocardial infarction (MI), but its limitation lies in the lack of targeting. This study explored the use of ultrasound-targeted microbubble destruction (UTMD) technique to deliver β-catenin gene to the myocardium, aiming to evaluate its efficacy in preventing cardiac dysfunction post-MI. A cationic microbubble solution containing β-catenin gene pcDNA3.1 plasmid was injected through the tail vein at a rate of 0.6 mL/h, and ultrasound beams were delivered to the heart using GE Vivid 7 Medical Ultrasound System M3s Transducer. Bioluminescence imaging was used to analyze the efficiency of UTMD gene transfection into the myocardium. β-catenin levels were detected by real-time polymerase chain reaction and western blot. Additionally, MI was induced in mice by surgical ligation of the left coronary artery, and cardiac function was evaluated using echocardiography at 14 and 28 days post-surgery. Masson's trichrome staining was employed to determine infarct size. Blood vessel density was also measured. TUNEL assay was used to measure cardiomyocyte apoptosis. Furthermore, mouse cardiac stem cells were isolated using flow cytometry, and Giemsa stain was applied to evaluate the colony adhesion. UTMD delivered the gene to the heart with high efficiency and specificity in vivo. The β-catenin expression was significantly increased in the myocardium (P < 0.01). After MI, the β-catenin group exhibited a notable improvement in the gene therapy-induced neovascularization in the border zone (P < 0.01) and the number and function of cardiac stem cells (P < 0.01), and a significant decrease in cardiomyocyte apoptosis in the heart tissue (P < 0.01). β-catenin gene pre-treated with UTMD can reduce the impact of myocardial injury and promote cardiac self-repair after MI.
Collapse
Affiliation(s)
- Lei Yang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Tong Gao
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Pei-He Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xin-Hao Han
- Department of Biostatistics, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Jie Wu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
- Department of Medical Genetics, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Qing-En Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Kun-Fu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Hai Tian
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
29
|
Sampada MP, David M. Mercuric chloride induced reproductive toxicity associated with oxidative damage in male Wistar albino rat, Rattus norvegicus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03585-8. [PMID: 39738833 DOI: 10.1007/s00210-024-03585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 01/02/2025]
Abstract
In the field of toxicology, male reproductive hazards attributed to metal exposure is a fast-developing issue. Mercury has been identified as an environmental pollutant that causes potential adverse impacts on organisms. This study aimed to assess the reprotoxic consequences of mercuric chloride (HgCl2). Five groups of sexually mature albino rats were given oral mercuric chloride (HgCl2) treatment. (G1) control group received saline treatment; (G2) (5.25 mg/kg of HgCl2 for 30 days); (G3) (5.25 mg/kg of HgCl2 for 60 days); (G4) (10.5 mg/kg of HgCl2 for 30 days); (G5) (10.5 mg/kg of HgCl2 for 60 days). The hormonal levels, sperm count, sperm motility, sperm viability, and reproductive organ weight, including body weight, were substantially reduced, whereas the sperm abnormality rate was enhanced in rat groups treated with HgCl2. The analysis revealed that the effect size (Cohen's d) for sperm parameters, including sperm count, motility and viability, were extremely high across all groups, except for sperm abnormality in group 2 (d = 0.59) and group 3 (d = 0.18), where moderate and small effect sizes were observed respectively, and this suggests a significant impact of the intervention on sperm parameters. The administration of HgCl2 resulted in the induction of oxidative stress in testis that is manifested by substantially enhanced lipid peroxidation (MDA) with a substantial decrease in activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione peroxidase (GPx) in testes of mercury-treated groups. Concomitantly, there was downregulation in the mRNA levels of the genes involved in spermatogenesis, namely Hsp-70, insulin-like growth factor (IGF), glutathione-S-transferase, and p53 in the testis. The expression of antiapoptotic protein B cell lymphoma (Bcl-2) was decreased, and conversely, the expression of cell proliferative protein Ki-67 was increased in a dose- and duration-dependent manner. Histopathological studies showed degenerative changes in the testis, epididymis, prostate gland, and seminal vesicle, compared to the control group. All the evidence suggests that after mercury exposure, there may be an imbalance between the body's defenses against free radicals and antioxidants, making the testis more susceptible to oxidative damage. This imbalance could potentially have a detrimental effect on the function of the male reproductive system.
Collapse
Affiliation(s)
- M P Sampada
- Zoology, Karnataka University, Dharwad, Karnataka, 580003, India
| | - Muniswamy David
- Zoology, Karnataka University, Dharwad, Karnataka, 580003, India.
| |
Collapse
|
30
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
31
|
Clarke DM, Kirkham MN, Beck LB, Campbell C, Alcorn H, Bikman BT, Arroyo JA, Reynolds PR. Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling. Curr Issues Mol Biol 2024; 46:14453-14463. [PMID: 39727995 DOI: 10.3390/cimb46120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.5 to E18.5 led to a thickened alveolar parenchyma and reduced alveolar surface area, while RAGE overexpression from E0 to E18.5 caused a significant loss of tissue and decreased architecture. Mitochondrial dysfunction was a hallmark of RAGE-mediated disruption, with decreased levels of anti-apoptotic BCL-W and elevated pro-apoptotic BID, SMAC, and HTRA2, indicating compromised mitochondrial integrity and increased intrinsic apoptotic activity. Extrinsic apoptotic signaling was similarly dysregulated, as evidenced by the increased expression of TNFRSF21, Fas/FasL, and Trail R2 in E0-18.5 RAGE TG mice. Additionally, reductions in IGFBP-3 and IGFBP-4, coupled with elevated p53 and decreased p27 expression, highlighted disruptions in the cell survival and cycle regulatory pathways. Despite the compensatory upregulation of inhibitors of apoptosis proteins (cIAP-2, XIAP, and Survivin), tissue loss and structural damage persisted. These findings underscore RAGE's role as a pivotal modulator of lung development. Specifically, the timing of RAGE upregulation significantly impacts lung development by influencing pathways that cause distinct histological phenotypes. This research may foreshadow how RAGE signaling plausibly contributes to developmental lung diseases.
Collapse
Affiliation(s)
- Derek M Clarke
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Madison N Kirkham
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Logan B Beck
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Carrleigh Campbell
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Hayden Alcorn
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Benjamin T Bikman
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Juan A Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Paul R Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| |
Collapse
|
32
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
33
|
Weber AF, Scholl JN, Dias CK, Lima VP, Assmann TS, Anzolin E, Kus WP, Worm PV, Battastini AMO, Figueiró F. In silico, in vitro, and ex vivo analysis reveals miR-27a-3p and miR-155-5p as key microRNAs for glioblastoma progression: Insights into Th1 differentiation and apoptosis induction. FASEB J 2024; 38:e70255. [PMID: 39698937 DOI: 10.1096/fj.202401538r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
We explored key microRNAs (miRNAs) related to tumorigenesis and immune modulation in glioblastoma (GBM), employing in silico, in vitro, and ex vivo analysis along with an assessment of the cellular impacts resulting from miRNA inhibition. GBM and T cells miRNA expression profiles from public datasets were used to evaluate differentially expressed miRNAs (DEmiRNAs). Some DEmiRNAs were chosen for validation in GBM cell lines, primary cell cultures, and brain tumor patient samples, using RT-qPCR. Target genes and pathways were identified with bioinformatic analyses. In silico functional enrichment analysis revealed that miR-27a-3p and miR-155-5p modulate immune, metabolic, and GBM-related pathways. A172 cells were transfected with miRNA inhibitors and the effects on cellular processes and immunomodulation were analyzed by co-culture assays and flow cytometry. Upon validation, miR-27a-3p and miR-155-5p miRNAs expressions were consistently increased. Inhibiting these two miRNAs reduced cell viability, but only the inhibition of miR-27a-3p led to apoptosis. Co-culture assays showed an increase in Th1 cells along with elevated Th1/Treg and Th17/Treg ratios, and an increase in Th17 cells exclusively with miR-155-5p inhibition. Immune cells' gene expression modulation induced an antitumor profile, concomitant with an increase in the expression of apoptotic genes in cancer cells after co-culture. This study unveils potential targets for immune and tumor regulation, highlighting overexpressed miRNAs modulation as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Augusto Ferreira Weber
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliete Nathali Scholl
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Kehl Dias
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinícius Pierdoná Lima
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Taís Silveira Assmann
- Molecular and Cellular Biology Laboratory, Endocrinology Division-Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Department of Neurosurgery, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | - Paulo Valdeci Worm
- Department of Neurosurgery, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Ana Maria Oliveira Battastini
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
34
|
Dai C, Li D, Velkov T, Shen J, Hao Z. The Detoxification Effects of Melatonin on Aflatoxin-Caused Toxic Effects and Underlying Molecular Mechanisms. Antioxidants (Basel) 2024; 13:1528. [PMID: 39765856 PMCID: PMC11726890 DOI: 10.3390/antiox13121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Aflatoxins (AFTs) are a form of mycotoxins mainly produced by Aspergillus flavus and Aspergillus parasiticus, which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies. The detoxification of AFB1 is of great importance for safeguarding the health of animals and humans and has increasingly attracted global attention. Recent research has shown that melatonin supplementation can effectively mitigate AFB1-induced multiple toxic effects. The protection mechanisms of melatonin involve the inhibition of oxidative stress, the upregulation of antioxidant enzyme activity, the reduction of mitochondrial dysfunction, the inactivation of the mitochondrial apoptotic pathway, the blockade of inflammatory responses, and the attenuation of cytochrome P450 enzymes' expression and activities. In summary, this review sheds new light on the potential role of melatonin as a potential detoxifying agent against AFB1. Further exploration of the precise molecular mechanisms and clinical efficacy of this promising treatment is urgently needed.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Daowen Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Parkville, VIC 3052, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
35
|
Duan H, Shi Q, Yue X, Zhang Z, Liu L, Wang Y, Cao Y, Ou Z, Liang L, Hu J, Shi H. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs: A WEB prediction approach. PLoS One 2024; 19:e0303501. [PMID: 39642129 PMCID: PMC11623562 DOI: 10.1371/journal.pone.0303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
A new round of monkeypox virus has emerged in the United Kingdom since July 2022 and rapidly swept the world. Currently, despite numerous research groups are studying this virus and seeking effective treatments, the information on the open reading frame, inhibitors, and potential targets of monkeypox has not been updated in time, and the comprehension of monkeypox target ligand interactions remains a key challenge. Here, we first summarized and improved the open reading frame information of monkeypox, constructed the monkeypox inhibitor library and potential targets library by database research as well as literature search, combined with advanced protein modeling technologies (Sequence-based and AI algorithms-based homology modeling). In addition, we build monkeypox virus Docking Server, a web server to predict the binding mode between targets and substrate. The open reading frame information, monkeypox inhibitor library, and monkeypox potential targets library are used as the initial files for server docking, providing free interactive tools for predicting ligand interactions of monkeypox targets, potential drug screening, and potential targets search. In addition, the update of the three databases can also effectively promote the study of monkeypox drug inhibition mechanism and provide theoretical guidance for the development of drugs for monkeypox.
Collapse
Affiliation(s)
- Huaichuan Duan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yujie Cao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zuoxin Ou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
36
|
Wen C, Zhou T, Chang Y, Wei Y, Zhang H, Yang Z. Exposure to Gynura japonica (Thunb.) Juel plants induces hepatoxicity in rats and Buffalo rat liver cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118692. [PMID: 39151710 DOI: 10.1016/j.jep.2024.118692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura japonica (Thunb.) Juel is often confused with the non-pyrrolizidine alkaloid-producing herbs, Tu-San-Qi (Sedum aizoon L.) and San-Qi (Panax notoginseng L.), due to similarities in name, appearance, and medicinal use. It contains pyrrolizidine alkaloids, which cause over 50% of cases of hepatic sinus obstruction syndrome. However, the mechanisms underlying G. japonica-induced hepatotoxicity remain poorly understood. AIM OF THE STUDY In this study, we aimed to investigate the toxic effects of a G. japonica decoction on liver and Buffalo rat liver (BRL) cells and elucidate the associated mechanisms. MATERIALS AND METHODS This study employed G. japonica decoction and examined its effects on liver function and tissue damage in Sprague-Dawley rats. Bioinformatics analysis was employed to identify gene expression and enriched pathways related to hepatotoxicity. Laser scanning confocal microscopy and flow cytometric annexin V/PI labeling assays were utilized to observe apoptosis in BRL cells induced by G. japonica. Transmission electron microscopy and JC-1 staining were used to determine the effects of G. japonica on mitochondrial ultrastructure and membrane potential in BRL cells. The bicinchoninic acid method and enzyme-linked immunosorbent assays were used to detect the expression of apoptosis-related proteins and caspase-3 activity, respectively. RESULTS Comparisons of body weight, liver histopathology, and serum liver function-related indices in rats, t showed that exposure to G. japonica may cause liver damage. Bioinformatics analysis indicated that hepatotoxicity might be related to apoptotic signaling pathways, the positive regulation of programmed cell death, and responses to toxic substances. BRL cells exposed to the G. japonica decoction exhibited mid-to late-stage apoptosis and necrosis, along with alterations in mitochondrial morphology and membrane potential. Furthermore, expression of cytochrome C (Cyt C) and pro-apoptotic proteins was increased, anti-apoptotic proteins decreased, and caspase-3 activity elevated. CONCLUSIONS These findings indicate that G. japonica-induced hepatotoxicity involves the activation of mitochondria-mediated apoptosis. Our research enhances the scientific and theoretical foundation for clinical therapy and improves public awareness of the potential toxicity of herbal remedies.
Collapse
Affiliation(s)
- Chengli Wen
- Shandong Center for Disease Control and Prevention, Jinan, 250014, PR China.
| | - Tong Zhou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, PR China.
| | - Yuqian Chang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| | - Yuan Wei
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| | - Haidong Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| | - Zhifeng Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| |
Collapse
|
37
|
Li D, Lopez A, Shrivastava N, Chan W, Thomas C, Burk R, Segall J, Augustine S, Rosenblatt G, Mehta V, Schiff BA, Smith RV, Prystowsky MB, Schlecht NF, Guha C, Gavathiotis E, Ow TJ. Comprehensive functional evaluation of head and neck squamous cell carcinoma with BH3-profiling demonstrates apoptotic competency and therapeutic efficacy of BH3-mimetics. Oral Oncol 2024; 159:107069. [PMID: 39423550 DOI: 10.1016/j.oraloncology.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Evasion of apoptosis promotes tumor survival and contributes to resistance to cancer therapeutics in head and neck squamous cell carcinoma (HNSCC). Our recent work has demonstrated that HNSCC's highly express pro-survival anti-apoptotic proteins Bcl-xL and Mcl-1. Nevertheless, the mechanism of HNSCC to evade apoptosis is still not well understood. We used BH3 profiling, a functional assay which measures mitochondrial depolarization in response to the introduction of BH3 peptides, to evaluate apoptosis competency and dependency upon BCL-2 family anti-apoptotic proteins in a panel of immortalized and patient-derived HNSCC lines. We assessed response to BH3 mimetics including ABT-263 (navitoclax), an inhibitor of Bcl-2/Bcl-xL/Bcl-w, and S63845, an inhibitor of Mcl-1, both as single agents and in combination. We demonstrate that apoptosis signaling appears to be intact in the majority of HNSCC cells, and they are co-dependent upon Bcl-xL and Mcl-1 for survival. We found the combination to be highly synergistic in 2D culture and in 3D organoid models of HHNSCC. Given our findings that co-dependency on Bcl-xL and Mcl-1 is common, and co-inhibition of these molecules is synergistic for growth suppression in HNSCC cells, these results elucidate the therapeutic potential of BCL-xL and MCL-1 inhibition in HNSCC.
Collapse
Affiliation(s)
- Daniel Li
- Division of Otolaryngology, Department of Surgery, Yale Universty School of Medicine, New Haven CT, USA.
| | - Andrea Lopez
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nitisha Shrivastava
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wesley Chan
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carlos Thomas
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Burk
- Department of Pediatrics, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeff Segall
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stelby Augustine
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory Rosenblatt
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vikas Mehta
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bradley A Schiff
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard V Smith
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael B Prystowsky
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicolas F Schlecht
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA; Department of Radiation Oncology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas J Ow
- Department of Pathology, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Alshehri B. Cytochrome c and cancer cell metabolism: A new perspective. Saudi Pharm J 2024; 32:102194. [PMID: 39564377 PMCID: PMC11570848 DOI: 10.1016/j.jsps.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Cytochrome c is a vital electron carrier in the mitochondrial respiratory chain. When the outer membrane of mitochondria becomes permeable, cytochrome c is discharged into the cytoplasm, where it initiates the intrinsic apoptosis pathway. The complex interaction between cytochrome c and apoptosis protease-activating factor-1 (Apaf-1) leads to the formation of the apoptosome and activation of a cascade of caspases, highlighting the critical role of cytochrome c in controlling cell death mechanisms. Additionally, cytochrome c undergoes post-translational modifications, especially phosphorylation, which intricately regulate its roles in both respiration and apoptosis. These modifications add layers of complexity to how cytochrome c effectively controls cellular functions. cytochrome c becomes a lighthouse in the intricate web of cancer, its expression patterns providing hints about prognosis and paths toward treatment. Reduced levels of cytochrome c have been observed in cancer tissues, indicating a potential inhibition of apoptosis. For instance, in glioma tissues, cytochrome c levels were lower compared to healthy tissues, and this reduction became more pronounced in advanced stages of the disease. However, the role of cytochrome c in cancer becomes more intricate as it becomes intertwined with the metabolic reprogramming of cancer cells. This suggests that cytochrome c plays a crucial role in tumor progression and resistance to treatment. Viewing cytochrome c as a molecular mosaic reveals that it is not merely a protein, but also a central player in determining cellular fate. This realization opens up exciting avenues for potential advancements in cancer diagnosis and treatment strategies. Despite the advancements made, the narrative surrounding cytochrome c remains incomplete, urging further exploration into its complexities and the biological implications linked to cancer. cytochrome c stands as a beacon of hope and a promising target for therapy in the battle against cancer, particularly due to its significant involvement in tumor metabolism. It holds the potential for a future where innovative solutions can be developed to address the intricate challenges of cellular fate. In this review, we have endeavored to illuminate the multifaceted domain of cytochrome c drawing connections among apoptosis, metabolic reprogramming, and the Warburg effect in the context of cancer.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah-11952, Saudi Arabia
| |
Collapse
|
39
|
Das J, Singh TA, Lalruatsangi R, Sil PC. Synthesis of nanohybrid consisting of taurine derived carbon dots and nanoceria for anticancer applications. Toxicol Rep 2024; 13:101794. [PMID: 39554612 PMCID: PMC11568780 DOI: 10.1016/j.toxrep.2024.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Here, we first synthesized carbon dots (CDs) from taurine and then a nanohybrid with ceria (CeO2) nanoparticles using thermal decomposition method for checking their antineoplastic efficacy against human triple negative mammary carcinoma cells, MDA-MB-231. The in vitro study demonstrated significant dose-dependent antineoplastic activity of the nanohybrids within a range of concentration from 10 to 50 μg/mL after 48 h of treatment. The cellular morphology analysis clearly depicted substantial amount of cell death which seems to stem from increased intracellular reactive oxygen species (ROS) production. However, the maximum anticancer activity of the nanohybrid as compared to bare CDs and CeO2 is supposed to be due to the combined anticancer effect of both CDs and CeO2 (a well-established antitumor agent). Further we have performed molecular docking study to reveal the anticancer mechanism of CDs which exhibited high binding capacity towards several proapoptotic and antiapoptotic protein molecules. The binding affinity values were found to be - 8.7 kcal/mol, - 7.9 kcal/mol, - 9.6 kcal/mol, - 9.5 kcal/mol, - 12 kcal/mol and - 11.1 kcal/mol for BAD, BCl-2, p53, Caspase-8, Caspase-9 and Caspase-3 respectively. Taken together, our synthesized CDs-CeO2 nanohybrid could be thought as a potential anticarcinogenic option in the field of breast cancer therapeutics.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram 796004, India
| | - Th. Abhishek Singh
- Project Assistant ll, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - R. Lalruatsangi
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram 796004, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
40
|
Zheng M, Kong X, Jiang X, Yang Y, Fu S, Wen C, Zhang W, Di W. Qualitative analysis of Fasciola gigantica excretory and secretory products coimmunoprecipitated with buffalo secondary infection sera shows dissimilar components from primary infection sera. Acta Trop 2024; 260:107391. [PMID: 39278520 DOI: 10.1016/j.actatropica.2024.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Buffaloes cannot mount a robust adaptive immune response to secondary infection by Fasciola gigantica. Even if excretory and secretory products (ESPs) exhibit potent immunoregulatory effects during primary infection, research on ESPs in secondary infection is lacking, even though the ESP components that are excreted/secreted during secondary infection are unknown. Therefore, qualitative analysis of ESP during secondary infection was performed and compared with that of primary infection to deepen the recognition of secondary infection and facilitate immunoregulatory molecules screening. Buffaloes were divided into three groups: A (n = 3, noninfected), B (n = 3, primary infection) and C (n = 3, secondary infection). Buffaloes in the primary (0 weeks post infection; wpi) and secondary (-4 and 0 wpi) infection groups were infected with 250 metacercariae by oral administration. Then, sera were collected from groups at different wpi, and interacting proteins were precipitated by coimmunoprecipitation (Co-IP), qualitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to infer their potential functions. In group C, 324 proteins were identified, of which 76 proteins were consistently identified across 7 time points (1, 3, 6, 8, 10, 13, and 16 wpi). Compared with 87 proteins consistently identified in group B, 22 proteins were identified in group C. Meanwhile, 34 proteins were only identified in group C compared to 200 proteins identified in group B. Protein pathway analysis indicated that these proteins were mainly involved in the cellular processes and metabolism of F. gigantica. Among them, 14-3-3θ was consistently identified in group C and may be involved in various cellular processes and innate immune signalling pathways. Members of the HSP family were identified in both groups B and C and may function in both primary and secondary infection processes. The proteins discovered in the present study will help to deepen the understanding of the molecular interactions between F. gigantica and buffalo during secondary infection and facilitate the identification of new potential immunoregulatory molecules.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Yankun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Shishi Fu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Chongli Wen
- Guangxi Buffalo Research Institute, Chinese Academy Agricultural Sciences, Nanning, 530001, PR China.
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China.
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China.
| |
Collapse
|
41
|
Youssef OM, Lashine NH, El-Nablaway M, El-Yamany MI, Youssef MM, Arida DA. Ferulic acid mitigated rotenone toxicity -Evoked Parkinson in rat model by featuring apoptosis, oxidative stress, and neuroinflammation signaling. Tissue Cell 2024; 91:102614. [PMID: 39577325 DOI: 10.1016/j.tice.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Over time, Parkinson disease (PD) develops as a neurological illness. The goal of this study was to see whether ferulic acid has any neuroprotective benefits on the cerebellum of rats that have Parkinson's disease brought on by rotenone poisoning. A total of twenty-four male albino rats, in good condition, weighed between 200 and 250 g and nine to ten weeks old, were employed in the investigation. The control group received 1 ml of sunflower oil intraperitoneally (i.p.) each day. Rats' motor performance was considerably worse when given rotenone than it was in the control group. Rats given Ferulic Acid (FA) showed a substantial drop in the amount of glutathione (GSH) in the cerebellum. Moreover, the injection of FA resulted in a significant reduction in the optical density (OD) of the immune-positive reaction for α-synuclein, and the area percentage of BCL-2 and NF-kB immunological positive response. FA therapy, surprisingly, enhanced the OD of TH immunopositive response and apoptotic regulators (BCL2) in the cerebellum. Furthermore, FA boosted BCL2 expression, confirming the antiapoptotic effects of FA. Based on these results, FA is probably a good candidate to treat neurodegenerative diseases brought on by long-term exposure to rotenone.
Collapse
Affiliation(s)
- Ola Mohammed Youssef
- Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nermeen Hosney Lashine
- Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Mona Ibrahim El-Yamany
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Damietta University, New Damietta City, Egypt.
| | - Manar Monir Youssef
- Department of Molecular Biology, Faculty of Medicine, Cairo University, Egypt.
| | - Dina Abdalla Arida
- Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
42
|
Zhang X, Tao Y, Xu Z, Jiang B, Yang X, Huang T, Tan W. Sorafenib and SIAIS361034, a novel PROTAC degrader of BCL-x L, display synergistic antitumor effects on hepatocellular carcinoma with minimal hepatotoxicity. Biochem Pharmacol 2024; 230:116542. [PMID: 39284500 DOI: 10.1016/j.bcp.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The overexpression of BCL-xL is closely associated with poor prognosis in hepatocellular carcinoma (HCC). While the strategy of combination of BCL-xL and MCL-1 for treating solid tumors has been reported, it presents significant hepatotoxicity. SIAIS361034, a novel proteolysis targeting chimera (PROTAC) agent, selectively induces the ubiquitination and subsequent proteasomal degradation of BCL-xL through the CRBN-E3 ubiquitin ligase. When combined with sorafenib, SIAIS361034 showed a potent synergistic effect in inhibiting hepatocellular carcinoma development both in vitro and in vivo. Since SIAIS361034 exhibits a high degree of selectivity for degrading BCL-xL in hepatocellular carcinoma, the hepatotoxicity typically associated with the combined inhibition of BCL-xL and MCL-1 is significantly reduced, thereby greatly enhancing safety. Mechanistically, BCL-xL and MCL-1 sequester the BH3-only protein BIM on mitochondria at baseline. Treatment with SIAIS361034 and sorafenib destabilizes BIM/BCL-xL and BIM/MCL1 association, resulting in the liberation of more BIM proteins to trigger apoptosis. Additionally, we discovered a novel compensatory regulation mechanism in hepatocellular carcinoma cells. BIM can rapidly respond to changes in the balance between BCL-xL and MCL-1 through their co-transcription factor MEF2C to maintain apoptosis resistance. In summary, the combination therapy of SIAIS361034 and sorafenib represents an effective and safe approach for inhibiting hepatocellular carcinoma progression. The novel balancing mechanism may also provide insights for combination and precision therapies in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yachuan Tao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongli Xu
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., No. 99 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201210, China.
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
43
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
44
|
Ahmed AS, Mathew LS, Khan AS, Rohn MM, Docmac OK, Sengupta P, Hantash EM, Elsisy RA. Potential of dehydroepiandrosterone and quercetin to ameliorate copper oxide nanoparticles induced hepatotoxicity in albino wistar rats. J Mol Histol 2024; 56:17. [PMID: 39614022 DOI: 10.1007/s10735-024-10311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/01/2024] [Indexed: 12/01/2024]
Abstract
The current investigation was designed as an experimental endeavor to explore the protective efficacy of dehydroepiandrosterone (DHEA) and quercetin against hepatotoxicity induced by copper oxide (CuO) nanoparticles. Rats were subjected to CuO nanoparticle intoxication through intraperitoneal injection of 150 mg/kg b.w. for three weeks, followed by the administration of the aforementioned antioxidants for an additional three weeks. This study systematically tracked alterations in liver enzymatic activity, antioxidant levels, apoptotic markers, and histopathological changes using the comet assay. CuO nanoparticle-intoxicated rats exhibited a significant increase in serum alanine transaminase aspartate aminotransferase (AST), and bilirubin levels, coupled with a noteworthy reduction in serum albumin. Moreover, there was a marked rise in serum tumor necrosis factor-alpha levels, concomitant with a significant decline in serum hepatocyte growth factor (HGF). Caspase-3 and Bax mRNA levels in the serum showed a substantial increase, while serum Bcl-2 mRNA levels witnessed a significant decrease. Liver tissue levels of malondialdehyde (MDA) and nitric oxide (NOx) experienced a significant elevation, and DNA damage was observed through the comet assay. Histopathological examination of the liver tissue substantiated these aforementioned findings. Administration of the antioxidants DHEA or quercetin, either individually or in combination, mitigated the parameters of hepatotoxicity to varying extents. In summary, the hepatic genotoxicity induced by CuO nanoparticles demonstrated improvement following the administration of either DHEA or quercetin. Additionally, their combined administration exhibited a more potent protective potential.
Collapse
Affiliation(s)
- Ahmed S Ahmed
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, UAE.
| | - Liju S Mathew
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Asim S Khan
- Department of Pharmacotherapeutics, College of Pharmacy, Immam Abdulrahman University, 8273, Dmmam, Saudi Arabia
| | - Mark M Rohn
- Biochemistry & Molecular Biology Department, Medical Research Institutes in Texas, Austin, Texas, 78712, USA
| | - Omaima K Docmac
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
| | - Pallav Sengupta
- Biomedical Sciences Department, College of Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Ehab M Hantash
- Anatomy and Embryology Department, College of Medicine, Tanta University, Tanta, 31511, Egypt
- Neonatal Intensive Care Unit, Dr. Suliman Al Habib Medical Group, 11635, Riyadh, Saudi Arabia
| | - Rasha A Elsisy
- Anatomy and Embryology Department, College of Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
45
|
Lin YY, Chuang DM, Chi CY, Hung SY. Intranasal administration of mesenchymal stem cells overexpressing FGF21 demonstrates therapeutic potential in experimental Parkinson's disease. Neurotherapeutics 2024:e00501. [PMID: 39609161 DOI: 10.1016/j.neurot.2024.e00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent movement disorder characterized by mitochondrial dysfunction and dopaminergic neuronal loss in the substantia nigra of the midbrain. Currently, there are no effective treatments to cure or slow the progression of PD, highlighting an urgent need for new therapeutic strategies. Emerging evidence suggests that mesenchymal stem cells (MSCs) and fibroblast growth factor 21 (FGF21) are potential candidates for PD treatment. This study investigates a therapeutic strategy involving FGF21 delivered via mouse MSCs in the PD model of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and dopaminergic SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). FGF21-overexpressing MSCs were administered intranasally, either before or after MPTP treatment in mice. Intranasally delivered FGF21-overexpressing MSCs efficiently migrated to the injured substantia nigra, ameliorated MPTP-induced PD-like motor deficits, reinstated dopaminergic neurons in the substantia nigra and nerve terminals in the striatum, as well as normalized brain-derived neurotrophic factor (BDNF) and FGF21 levels. In contrast, MSCs not overexpressing FGF21 showed limited or no impact on these parameters. In a PD cellular model of MPP+-treated SH-SY5Y cells, FGF21-overexpressing MSCs showed enhanced PD cell viability. Treatment with conditioned medium from FGF21-overexpressing MSCs or exogenous FGF21 prevented cell death, reduced mitochondrial reactive oxygen species (ROS), and restored neuroprotective proteins, including phospho-Akt, BDNF, and Bcl-2. These findings indicate that intranasal delivery of FGF21-overexpressing MSCs holds promise as a potential PD therapy, likely through activating the Akt-BDNF-Bcl-2 pathway, normalizing mitochondrial dysfunction, and mitigating dopaminergic neurodegeneration. Further clinical investigations are essential to validate these promising findings.
Collapse
Affiliation(s)
- You-Yen Lin
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Yu Chi
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
46
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
47
|
Kiflu AB. The Immune Escape Strategy of Rabies Virus and Its Pathogenicity Mechanisms. Viruses 2024; 16:1774. [PMID: 39599888 PMCID: PMC11598914 DOI: 10.3390/v16111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
In contrast to most other rhabdoviruses, which spread by insect vectors, the rabies virus (RABV) is a very unusual member of the Rhabdoviridae family, since it has evolved to be fully adapted to warm-blooded hosts and spread directly between them. There are differences in the immune responses to laboratory-attenuated RABV and wild-type rabies virus infections. Various investigations showed that whilst laboratory-attenuated RABV elicits an innate immune response, wild-type RABV evades detection. Pathogenic RABV infection bypasses immune response by antagonizing interferon induction, which prevents downstream signal activation and impairs antiviral proteins and inflammatory cytokines production that could eliminate the virus. On the contrary, non-pathogenic RABV infection leads to immune activation and suppresses the disease. Apart from that, through recruiting leukocytes into the central nervous system (CNS) and enhancing the blood-brain barrier (BBB) permeability, which are vital factors for viral clearance and protection, cytokines/chemokines released during RABV infection play a critical role in suppressing the disease. Furthermore, early apoptosis of neural cells limit replication and spread of avirulent RABV infection, but street RABV strains infection cause delayed apoptosis that help them spread further to healthy cells and circumvent early immune exposure. Similarly, a cellular regulation mechanism called autophagy eliminates unused or damaged cytoplasmic materials and destroy microbes by delivering them to the lysosomes as part of a nonspecific immune defense mechanism. Infection with laboratory fixed RABV strains lead to complete autophagy and the viruses are eliminated. But incomplete autophagy during pathogenic RABV infection failed to destroy the viruses and might aid the virus in dodging detection by antigen-presenting cells, which could otherwise elicit adaptive immune activation. Pathogenic RABV P and M proteins, as well as high concentration of nitric oxide, which is produced during rabies virus infection, inhibits activities of mitochondrial proteins, which triggers the generation of reactive oxygen species, resulting in oxidative stress, contributing to mitochondrial malfunction and, finally, neuron process degeneration.
Collapse
Affiliation(s)
- Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China;
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
48
|
McElhinney K, Irnaten M, O’Callaghan J, O’Brien C. p53 and the E3 Ubiquitin Ligase MDM2 in Glaucomatous Lamina Cribrosa Cells. Int J Mol Sci 2024; 25:12173. [PMID: 39596239 PMCID: PMC11595009 DOI: 10.3390/ijms252212173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Lamina cribrosa (LC) cells play an integral role in extracellular matrix remodeling and fibrosis in human glaucoma. LC cells bear similarities to myofibroblasts that adopt an apoptotic-resistant, proliferative phenotype, a process linked to dysregulation of tumor suppressor-gene p53 pathways, including ubiquitin-proteasomal degradation via murine-double-minute-2 (MDM2). Here, we investigate p53 and MDM2 in glaucomatous LC cells. Primary human LC cells were isolated from glaucomatous donor eyes (GLC) and age-matched normal controls (NLC) (n = 3 donors/group). LC cells were cultured under standard conditions ± 48-h treatment with p53-MDM2-interaction inhibitor RG-7112. Markers of p53-MDM2, fibrosis, and apoptosis were analyzed by real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Cellular proliferation and viability were assessed using colorimetric methyl-thiazolyl-tetrazolium salt assays (MTS/MTT). In GLC versus NLC cells, protein expression of p53 was significantly decreased (p < 0.05), MDM2 was significantly increased, and immunofluorescence showed reduced p53 and increased MDM2 expression in GLC nuclei. RG-7112 treatment significantly increased p53 and significantly decreased MDM2 gene and protein expression. GLC cells had significantly increased protein expression of αSMA, significantly decreased caspase-3 protein expression, and significantly increased proliferation after 96 h. RG-7112 treatment significantly decreased COL1A1 and αSMA, significantly increased BAX and caspase-3 gene expression, and significantly decreased proliferation in GLC cells. MTT-assay showed equivocal cellular viability in NLC/GLC cells with/without RG-7112 treatment. Our data suggests that proliferation and the ubiquitin-proteasomal pathway are dysregulated in GLC cells, with MDM2-led p53 protein degradation negatively impacting its protective role.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Jeffrey O’Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College, University of Dublin, D02 PN40 Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
- Department of Ophthalmology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
49
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
50
|
Becker JH, Metropulos AE, Spaulding C, Marinelarena AM, Shields MA, Principe DR, Pham TD, Munshi HG. Targeting BCL2 with Venetoclax Enhances the Efficacy of the KRASG12D Inhibitor MRTX1133 in Pancreatic Cancer. Cancer Res 2024; 84:3629-3639. [PMID: 39137400 PMCID: PMC11532783 DOI: 10.1158/0008-5472.can-23-3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
MRTX1133 is currently being evaluated in patients with pancreatic ductal adenocarcinoma (PDAC) tumors harboring a KRASG12D mutation. Combination strategies have the potential to enhance the efficacy of MRTX1133 to further promote cell death and tumor regression. In this study, we demonstrated that MRTX1133 increased the levels of the proapoptotic protein BIM in PDAC cells and conferred sensitivity to the FDA-approved BCL2 inhibitor venetoclax. Combined treatment with MRTX1133 and venetoclax resulted in cell death and growth suppression in 3D cultures. BIM was required for apoptosis induced by the combination treatment. Consistently, BIM was induced in tumors treated with MRTX1133, and venetoclax enhanced the efficacy of MRTX1133 in vivo. Venetoclax could also resensitize MRTX1133-resistant PDAC cells to MRTX1133 in 3D cultures, and tumors established from resistant cells responded to the combination of MRTX1133 and venetoclax. These results provide a rationale for the clinical testing of MRTX1133 and venetoclax in patients with PDAC. Significance: The combination of MRTX1133 and the FDA-approved drug venetoclax promotes cancer cell death and tumor regression in pancreatic ductal adenocarcinoma, providing rationale for testing venetoclax with KRASG12D inhibitors in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey H. Becker
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Anastasia E. Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | | | - Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Daniel R. Principe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thao D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|