1
|
Han Y, Diao J, Wang X, Zhang S, Yuan L, Ping Y, Zhang Y, Luo H. Single-Cell RNA Sequencing Reveals That C5AR1 in Follicle Monocyte Cells Could Predict the Development of POI. J Inflamm Res 2024; 17:11221-11234. [PMID: 39717665 PMCID: PMC11664250 DOI: 10.2147/jir.s490996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose To investigate the follicle microenvironments of women with premature ovarian insufficiency (POI), with normal ovarian reserve function, and who are older (age >40 years) and to identify potential therapeutic targets. Patients and Methods In total, 9 women who underwent in vitro fertilization(IVF) or intracytoplasmic sperm injection(ICSI) were included in this study. The first punctured follicle of each patient was used. Single-cell RNA sequencing was subsequently performed to explore the characteristics of the follicle microenvironments of women with POI, with a normal ovarian reserve and who were older. Results In total, 87,323 cells were isolated and grouped into six clusters: T cells, B cells, neutrophils, basophils, mononuclear phagocytes (MPs), and granulosa cells. The study demonstrated that the POI samples had a smaller component ratio of MPs than did the other samples. The correlation between MPs and granulosa cells may lead to the development of POI. We found that the gene that was simultaneously downregulated in the POI group compared with the normal and older age groups was HLA-DRB5. Moreover, we observed that HLA-DRB5 was expressed mainly in monocytes. The temporal differentiation trajectory revealed that different monocytes play important roles in the beginning and end stages of differentiation. The C5AR1 gene is highly expressed in monocytes. Conclusion Our findings revealed that the interaction between monocytes and granulocytes may contribute to the development of POI. We found that POI lacked HLA-DRB5 expression and had impaired antigen processing and presentation activities. To a certain extent, C5AR1 could be used to predict the development of POI.
Collapse
Affiliation(s)
- Ying Han
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Junrong Diao
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Xinyan Wang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Shuai Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Lina Yuan
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Yaqiong Ping
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Yunshan Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| | - Haining Luo
- Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, People’s Republic of China
| |
Collapse
|
2
|
Zhang H, Li C, Lu S, Wu H, Li J, Liu Q, Yan Y, Tang Y, Xu R, Zhao X, Pan M, Wei Q, Peng S, Ma B. The GPER is an important factor through which somatic cells regulate oocyte maternal mRNA translation and developmental competence. Int J Biol Macromol 2024; 290:138827. [PMID: 39694393 DOI: 10.1016/j.ijbiomac.2024.138827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The G protein-coupled estrogen receptor (GPER) plays a crucial role in various biological processes, but its regulation of oocyte meiosis remains unclear. In this study, we generated a Gper1 knockout in growing oocytes using Zp3-Cre, revealing that GPER is essential for oocyte maturation and embryo development. RNA-seq analysis indicated that GPER deficiency significantly altered the oocyte transcriptome and disrupted mRNA translation. Immunoprecipitation mass spectrometry revealed that GPER directly interacts with HSP90 and modulates the ERK1/2 and PI3K-AKT signaling pathways, which are vital for enhancing maternal mRNA translation and developmental potential. We also found that cumulus cell-derived GPER-positive vesicles and delivered to oocytes through a RAB11A-dependent pathway. RAB11A facilitates GPER recycling, preventing its degradation in late endosomes and promoting its plasma membrane localization. Moreover, epidermal growth factor (EGF) improves GPER expression in cumulus cells by upregulating RAB11A, thereby enhancing the exocytosis of recycling vesicles. Knockdown of Rab11a severely reduced GPER-positive vesicles in oocytes, impairing spindle morphogenesis and meiosis. Our findings highlight the critical role of somatic cell signals in regulating maternal mRNA translation and oocyte quality for embryonic development.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sihai Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yutong Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Yaju Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Li X, He Y, Yan Q, Kuai D, Zhang H, Wang Y, Wang K, Tian W. Dihydrotestosterone induces reactive oxygen species accumulation and mitochondrial fission leading to apoptosis of granulosa cells. Toxicology 2024; 509:153958. [PMID: 39332622 DOI: 10.1016/j.tox.2024.153958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Dihydrotestosterone (DHT), which has significant androgenic activity,is a major player in follicle development and ovary function in females. However, an excess of androgens may result in increased follicular apoptosis with adverse effects on female fertility. This study aimed to explore the mechanism by which DHT induces apoptosis in human ovarian granulosa cells (GCs). The association between DHT and GC apoptosis was explored by the construction of rat models of polycystic ovary syndrome (PCOS). It was found that serum DHT levels were negatively correlated with thickness of the GC layer in PCOS model rats (R2=0.8342, p<0.0001), compared with control rats, together with significant increases in cofactors (Fis1: p=0.008; MFF: p=0.044). The GC SVOG cell line was used to clarify the mechanism by which DHT influenced GC apoptosis in in vitro experiments. The results confirmed that apoptosis in SVOG cells was positively associated with the DHT dose. The expression of the autophagy-related proteins LC3A/B (p=0.027) and the proapoptotic protein Bax (p=0.0095) were increased, while that of the anti-apoptotic protein Bcl-2 (p=0.0005) was decreased in the high-dose DHT group. ROS levels were significantly increased (p=0.0237) and the mitochondrial membrane potential ΔΨm was decreased (p=0.0194). Moreover, ultrastructural analysis of the mitochondria indicated significant damage. The results of RT-qPCR and western blotting showed that two fission cofactor-Fis1(p=0.034) and MFF (p=0.039) were significantly increased after treatment with high doses of DHT. Even though the overall expression of Drp1 did not change significantly (p=0.5961), that of activated Phosphor-Drp1(Ser616) was significantly increased (p=0.046), while the expression of Phosphor-Drp1 (Ser637) was markedly reduced (p=0.007) following exposure to high concentrations of DHT. All these effects could be reversed by the Drp1 inhibitor Mdivi-1. These findings indicated the impact of DHT on ROS aggregation and mitochondrial fission, resulting in GC apoptosis. An imbalance in Drp1 phosphorylation may be the key link in DHT-induced excessive mitochondrial fission.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying He
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Wang L, Gao J, Ma J, Sun J, Wang Y, Luo J, Wang Z, Wang H, Li J, Yang D, Wang J, Hu R. Effects of hyperhomocysteinemia on follicular development and oocytes quality. iScience 2024; 27:111241. [PMID: 39563894 PMCID: PMC11574796 DOI: 10.1016/j.isci.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
In patients with polycystic ovary syndrome (PCOS), the concentration of homocysteine (Hcy) in follicular fluid is inversely correlated with oocyte and embryo quality. Nevertheless, other metabolic abnormalities associated with PCOS may also impact oocyte and early embryo quality. Therefore, it remains uncertain whether reproductive function is affected in patients without PCOS with hyperhomocysteinemia (HHcy). Here, we observed reduced fertility, increased ovarian atretic follicles, and reduced oocyte maturation rates in HHcy mice. Proteomic analyses revealed that HHcy causes mitochondrial dysfunction and reduced expression of zona pellucida proteins (ZP1, ZP2, and ZP3) in oocytes. Transmission electron microscopy confirmed abnormal formation of the zona pellucida and microvilli in oocytes from HHcy mice. Additionally, in vitro fertilization (IVF) demonstrated a reduction in the rate of 2-cell embryo formation in HHcy mice. These findings reveal that HHcy reduces female reproductive longevity by affecting follicular development and oocyte quality.
Collapse
Affiliation(s)
- Lu Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinmei Gao
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jie Ma
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Sun
- Ningxia Medical University, Ningxia, China
| | - Yajie Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jia Luo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia, China
| | | | - Hui Wang
- Reproductive Medicine Center, Yinchuan Women and Children Healthcare Hospital, Ningxia, China
| | - Jialing Li
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
| | - Danyu Yang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Ningxia, China
| | - Jinfang Wang
- Department of Obstetrician, General Hospital of Ningxia Medical University, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia, China
| |
Collapse
|
5
|
Carver JJ, Amato CM, Hung-Chang Yao H, Zhu Y. Adamts9 is required for the development of primary ovarian follicles and maintenance of female sex in zebrafish†. Biol Reprod 2024; 111:1107-1128. [PMID: 39180722 PMCID: PMC11565245 DOI: 10.1093/biolre/ioae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Previous studies have suggested that adamts9 (a disintegrin and metalloprotease with thrombospondin type-1 motifs, member 9), an extracellular matrix (ECM) metalloprotease, participates in primordial germ cell (PGC) migration and is necessary for female fertility. In this study, we found that adamts9 knockout (KO) led to reduced body size, and female-to-male sex conversion in late juvenile or adult zebrafish; however, primary sex determination was not affected in early juveniles of adamts9 KO. Overfeeding and lowering the rearing density rescued growth defects in female adamts9 KO fish but did not rescue defects in ovarian development in adamts9 KO. Delayed PGC proliferation, significantly reduced number and size of Stage IB follicles (equivalent to primary follicles) in early juveniles of adamts9 KO, and arrested development at Stage IB follicles in mid- or late-juveniles of adamts9 KO are likely causes of female infertility and sex conversion. Via RNAseq, we found significant enrichment of differentially expressed genes involved in ECM organization during sexual maturation in ovaries of wildtype fish; and significant dysregulation of these genes in adamts9 KO ovaries. RNAseq analysis also showed enrichment of inflammatory transcriptomic signatures in adult ovaries of these adamts9 KO. Taken together, our results indicate that adamts9 is critical for development of primary ovarian follicles and maintenance of female sex, and loss of adamts9 leads to defects in ovarian follicle development, female infertility, and sex conversion in late juveniles and mature adults. These results show that the ECM and extracellular metalloproteases play major roles in maintaining ovarian follicle development in zebrafish.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Ciro M Amato
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
6
|
Bahety D, Böke E, Rodríguez-Nuevo A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol Metab 2024; 35:902-917. [PMID: 38599901 DOI: 10.1016/j.tem.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.
Collapse
Affiliation(s)
- Devesh Bahety
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
7
|
Leng D, Zeng B, Wang T, Chen BL, Li DY, Li ZJ. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool Res 2024; 45:1088-1107. [PMID: 39245652 PMCID: PMC11491784 DOI: 10.24272/j.issn.2095-8137.2024.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis represents a central neuroendocrine network essential for reproductive function. Despite its critical role, the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined. This study provides the first comprehensive, unbiased, cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens. Within the hypothalamus, pituitary, and ovary, seven, 12, and 13 distinct cell types were identified, respectively. Results indicated that the pituitary adenylate cyclase activating polypeptide (PACAP), follicle-stimulating hormone (FSH), and prolactin (PRL) signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone (GnRH), FSH, and luteinizing hormone (LH) within the hypothalamus and pituitary. In the ovary, interactions between granulosa cells and oocytes involved the KIT, CD99, LIFR, FN1, and ANGPTL signaling pathways, which collectively regulate follicular maturation. The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis. Additionally, gene expression analysis revealed that relaxin 3 (RLN3), gastrin-releasing peptide (GRP), and cocaine- and amphetamine regulated transcripts (CART, also known as CARTPT) may function as novel endocrine hormones, influencing the HPO axis through autocrine, paracrine, and endocrine pathways. Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP, RLN3, CARTPT, LHCGR, FSHR, and GRPR in the ovaries of Lohmann layers, potentially contributing to their superior reproductive performance. In conclusion, this study provides a detailed molecular characterization of the HPO axis, offering novel insights into the regulatory mechanisms underlying reproductive biology.
Collapse
Affiliation(s)
- Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Bin-Long Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China. E-mail:
| | - Di-Yan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China. E-mail:
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China. E-mail:
| |
Collapse
|
8
|
Zhao X, Zhao F, Yan L, Wu J, Fang Y, Wang C, Xin Z, Yang X. Long non-coding ribonucleic acid SNHG18 induced human granulosa cell apoptosis via disruption of glycolysis in ovarian aging. J Ovarian Res 2024; 17:185. [PMID: 39272131 PMCID: PMC11395969 DOI: 10.1186/s13048-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In-depth understanding of dynamic expression profiles of human granulosa cells (GCs) during follicular development will contribute to the diagnostic and targeted interventions for female infertility. However, genome-scale analysis of long non-coding ribonucleic acid (lncRNA) in GCs across diverse developmental stages is challenging. Meanwhile, further research is needed to determine how aberrant lncRNA expression participates in ovarian diseases. METHODS Granulosa cell-related lncRNAs data spanning five follicular development stages were retrieved and filtered from the NCBI dataset (GSE107746). Stage-specific lncRNA expression patterns and mRNA-lncRNA co-expression networks were identified with bioinformatic approaches. Subsequently, the expression pattern of SNHG18 was detected in GCs during ovarian aging. And SNHG18 siRNA or overexpression plasmids were transfected to SVOG cells in examining the regulatory roles of SNHG18 in GC proliferation and apoptosis. Moreover, whether PKCɛ/SNHG18 signaling take part in GC glycolysis via ENO1 were verified in SVOG cells. RESULTS We demonstrated that GC-related lncRNAs were specifically expressed across different developmental stages, and coordinated crucial biological functions like mitotic cell cycle and metabolic processes in the folliculogenesis. Thereafter, we noticed a strong correlation of PRKCE and SNHG18 expression in our analysis. With downregulated SNHG18 of GCs identified in the context of ovarian aging, SNHG18 knockdown could further induce cell apoptosis, retard cell proliferation and exacerbate DNA damage in SVOG cell. Moreover, downregulated PKCɛ/SNHG18 pathway interrupted the SVOG cell glycolysis by lowering the ENO1 expression. CONCLUSIONS Altogether, our results revealed that folliculogenesis-related lncRNA SNHG18 participated in the pathogenesis of ovarian aging, which may provide novel biomarkers for ovarian function and new insights for the infertility treatment.
Collapse
Affiliation(s)
- Xuehan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feiyan Zhao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jiaqi Wu
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Cong Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhimin Xin
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
9
|
Clark FE, Greenberg NL, Silva DMZA, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg-sabotaging mechanism drives non-Mendelian transmission in mice. Curr Biol 2024; 34:3845-3854.e4. [PMID: 39067449 PMCID: PMC11387149 DOI: 10.1016/j.cub.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Selfish genetic elements drive in meiosis to distort their transmission ratio and increase their representation in gametes, violating Mendel's law of segregation. The two established paradigms for meiotic drive, gamete killing and biased segregation, are fundamentally different. In gamete killing, typically observed with male meiosis, selfish elements sabotage gametes that do not contain them. By contrast, killing is predetermined in female meiosis, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here, we show that a selfish element on mouse chromosome 2, Responder to drive 2 (R2d2), drives using a hybrid mechanism in female meiosis, incorporating elements of both killing and biased segregation. We propose that if R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy, which is subsequently lethal in the embryo, ensuring that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to typical gamete killing of sisters produced as daughter cells in a single meiosis, R2d2 prevents production of any viable gametes from meiotic divisions in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Naomi L Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Duilio M Z A Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Leah F Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
10
|
Dhori X, Gioiosa S, Gonfloni S. An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. Sci Data 2024; 11:972. [PMID: 39242561 PMCID: PMC11379948 DOI: 10.1038/s41597-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Collapse
Affiliation(s)
- Xhulio Dhori
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy
| | - Silvia Gioiosa
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy.
| | - Stefania Gonfloni
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy.
| |
Collapse
|
11
|
Hatırnaz Ş, Hatırnaz E, Tan J, Çelik S, Çalışkan CS, Başbuğ A, Aydın G, Bahadırlı A, Bülbül M, Çelik H, Kaya AE, Güngör ND, Tan SL, Cao M, Dahan MH, Ürkmez SS. True empty follicle syndrome is a subtype of oocyte maturation abnormalities. Turk J Obstet Gynecol 2024; 21:142-152. [PMID: 39228180 PMCID: PMC11589317 DOI: 10.4274/tjod.galenos.2024.84031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Objective To review the outcomes of in vitro maturation (IVM) and in vitro fertilization (IVF) in women with empty follicle syndrome (EFS). The study evaluated the genetic underpinnings of EFS by analyzing mutations. Materials and Methods This retrospective case series involving 17 women with EFS over at least 2 IVF cycles was conducted. The study also employed whole-exome sequencing to analyze the genetic mutations. The treatment approaches included letrozole-primed IVM, follicle-stimulating hormone (FSH)-human chorionic gonadotrophin (hCG)-primed IVM, and conventional IVF. Results The average female age was 31.5±4.6 years, and the duration of infertility was 7.3±3.5 years. Four patients underwent IVF. IVM oocyte collections yielded oocytes in 12 of 13 subjects. Of these, 75% (9/12) yielded MII oocytes after 48 h of IVM media incubation. Six subjects had fertilized embryos, resulting in a 40.9% intracytoplasmic sperm injection (ICSI) fertilization rate (9 embryos/22 MII oocytes). Genetic analysis revealed mutations in seven patients. This study demonstrated the partial efficacy of letrozole-primed IVM plus growth hormone and FSH-hCG primed IVM protocols. No pregnancies or live births were recorded after IVM. One ongoing pregnancy post-IVF and one spontaneous live birth were observed. Conclusion Inter-cycle variabilities were observed in women with oocyte maturation abnormalities (OMAs). Almost all patients with EFS had oocytes collected during IVM following IVF. These oocytes have limited potential for maturation, fertilization, and live birth, as demonstrated by the low rates observed after IVM culture and ICSI. These conditions are observed in OMAs due to defects in the oocyte machinery. The proposed flowchart provides a comprehensive classification approach for various forms of EFS.
Collapse
Affiliation(s)
| | | | - Justin Tan
- Toronto University Faculty of Medicine, Department of Obstetrics and Gynecology, Ontario, Canada
| | - Samettin Çelik
- Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Canan Soyer Çalışkan
- Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Alper Başbuğ
- Düzce University Faculty of Medicine, Department of Obstetrics and Gynecology, Düzce, Turkey
| | | | - Ali Bahadırlı
- Medicabil Hospital, Clinic of Obstetrics and Gynecology, Bursa, Turkey
| | - Mehmet Bülbül
- Karabük University Faculty of Medicine, Department of Obstetrics and Gynecology, Karabük, Turkey
| | - Handan Çelik
- Ondokuz Mayıs University Faculty of Medicine, Department of Obstetrics and Gynecology, Samsun, Turkey
| | | | - Nur Dokuzeylül Güngör
- Bahçeşehir University Medical Park Göztepe Hospital, Clinic of Obstetrics and Gynecology, İstanbul, Turkey
| | - Seang Lin Tan
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
- McGill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Mingju Cao
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
| | - Michael H. Dahan
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
- McGill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Sebati Sinan Ürkmez
- Ondokuz Mayıs University Faculty of Medicine, Department of Medical Biochemistry, Samsun, Turkey
| |
Collapse
|
12
|
Pan B, Qin J, Du K, Zhang L, Jia G, Ye J, Liang Q, Yang Q, Zhou G. Integrated ultrasensitive metabolomics and single-cell transcriptomics identify crucial regulators of sheep oocyte maturation and early embryo development in vitro. J Adv Res 2024:S2090-1232(24)00381-3. [PMID: 39233000 DOI: 10.1016/j.jare.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Developmental competence of oocytes matured in vitro is limited due to a lack of complete understanding of metabolism and metabolic gene expression during oocyte maturation and embryo development. Conventional metabolic analysis requires a large number of samples and is not efficiently applicable in oocytes and early embryos, thereby posing challenges in identifying key metabolites and regulating their in vitro culture system. OBJECTIVES To enhance the developmental competence of sheep oocytes, this study aimed to identify and supplement essential metabolites that were deficient in the culture systems. METHODS The metabolic characteristics of oocytes and embryos were determined using ultrasensitive metabolomics analysis on trace samples and single-cell RNA-seq. By conducting integrated analyses of metabolites in cells (oocytes and embryos) and their developmental microenvironment (follicular fluid, oviductal fluid, and in vitro culture systems), we identified key missing metabolites in the in vitro culture systems. In order to assess the impact of these key missing metabolites on oocyte development competence, we performed in vitro culture experiments. Furthermore, omics analyses were employed to elucidate the underlying mechanisms. RESULTS Our findings demonstrated that betaine, carnitine and creatine were the key missing metabolites in vitro culture systems and supplementation of betaine and L-carnitine significantly improved the blastocyst formation rate (67.48% and 48.61%). Through in vitro culture experiments and omics analyses, we have discovered that L-carnitine had the potential to promote fatty acid oxidation, reduce lipid content and lipid peroxidation level, and regulate spindle morphological grade through fatty acid degradation pathway. Additionally, betaine may participate in methylation modification and osmotic pressure regulation, thereby potentially improving oocyte maturation and early embryo development in sheep. CONCLUSION Together, these analyses identified key metabolites that promote ovine oocyte maturation and early embryo development, while also providing a new viewpoint to improve clinical applications such as oocyte maturation or embryo culture.
Collapse
Affiliation(s)
- Bo Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - JianPeng Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - KunLin Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - LuYao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - JiangFeng Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - QiuXia Liang
- College of Life Science, Sichuan Agricultural University, Sichuan, Ya'an 625014, PR China
| | - QiEn Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China.
| | - GuangBin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China.
| |
Collapse
|
13
|
Wang H, Huang Z, Shen X, Lee Y, Song X, Shu C, Wu LH, Pakkiri LS, Lim PL, Zhang X, Drum CL, Zhu J, Li R. Rejuvenation of aged oocyte through exposure to young follicular microenvironment. NATURE AGING 2024; 4:1194-1210. [PMID: 39251866 DOI: 10.1038/s43587-024-00697-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Reproductive aging is a major cause of fertility decline, attributed to decreased oocyte quantity and developmental potential. A possible cause is aging of the surrounding follicular somatic cells that support oocyte growth and development by providing nutrients and regulatory factors. Here, by creating chimeric follicles, whereby an oocyte from one follicle was transplanted into and cultured within another follicle whose native oocyte was removed, we show that young oocytes cultured in aged follicles exhibited impeded meiotic maturation and developmental potential, whereas aged oocytes cultured within young follicles were significantly improved in rates of maturation, blastocyst formation and live birth after in vitro fertilization and embryo implantation. This rejuvenation of aged oocytes was associated with enhanced interaction with somatic cells, transcriptomic and metabolomic remodeling, improved mitochondrial function and higher fidelity of meiotic chromosome segregation. These findings provide the basis for a future follicular somatic cell-based therapy to treat female infertility.
Collapse
Affiliation(s)
- HaiYang Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xingyu Shen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - XinJie Song
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chang Shu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Lik Hang Wu
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh Leong Lim
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chester Lee Drum
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Cao M, Yuan C, Chen X, He G, Chen T, Zong J, Shen C, Wang N, Zhao Y, Zhang B, Li C, Zhou X. METTL3 deficiency leads to ovarian insufficiency due to IL-1β overexpression in theca cells. Free Radic Biol Med 2024; 222:72-84. [PMID: 38825211 DOI: 10.1016/j.freeradbiomed.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Premature ovarian insufficiency (POI) is a clinical syndrome characterised by a decline in ovarian function in women before 40 years of age and is associated with oestradiol deficiency and a complex pathogenesis. However, the aetiology of POI is still unclear and effective preventative and treatment strategies are still lacking. Methyltransferase like 3 (METTL3) is an RNA methyltransferase that is involved in spermatogenesis, oocyte development and maturation, early embryonic development, and embryonic stem cell differentiation and formation, but its role in POI is unknown. In the present study, METTL3 deficiency in follicular theca cells was found to lead to reduced fertility in female mice, with a POI-like phenotype, and METTL3 knockout promoted ovarian inflammation. Further, a reduction in METTL3 in follicular theca cells led to a decrease in the m6A modification of pri-miR-21, which further reduced pri-miR-21 recognition and binding by DGCR8 proteins, leading to a decrease in the synthesis of mature miR-21-5p. Decrease of miR-21-5p promoted the secretion of interleukin-1β (IL-1β) from follicular theca cells. Acting in a paracrine manner, IL-1β inhibited the cAMP-PKA pathway and activated the NF-κB pathway in follicular granulosa cells. This activation increased the levels of reactive oxygen species in granulosa cells, causing disturbances in the intracellular Ca2+ balance and mitochondrial damage. These cellular events ultimately led to granulosa cell apoptosis and a decrease in oestradiol synthesis, resulting in POI development. Collectively, these findings reveal how METTL3 deficiency promotes the expression and secretion of IL-1β in theca cells, which regulates ovarian functions, and proposes a new theory for the development of POI disease.
Collapse
Affiliation(s)
- Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Guitian He
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
15
|
Ma X, Xu R, Chen J, Wang S, Hu P, Wu Y, Que Y, Du W, Cai X, Chen H, Guo J, Li TC, Ruan YC. The epithelial Na + channel (ENaC) in ovarian granulosa cells modulates Ca 2+ mobilization and gonadotrophin signaling for estrogen homeostasis and female fertility. Cell Commun Signal 2024; 22:398. [PMID: 39143495 PMCID: PMC11323461 DOI: 10.1186/s12964-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na+ channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na+ imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca2+ imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca2+ oscillations, lowered the capacity of intracellular Ca2+ stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.
Collapse
Affiliation(s)
- Xiyang Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ruiyao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Junjiang Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Jinan University, Guangzhou, China
| | - Shan Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Peijie Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yong Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yanting Que
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wanting Du
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaojun Cai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hui Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
16
|
Vitale F, Cacciottola L, Camboni A, Houeis L, Donnez J, Dolmans MM. Assessing the effect of adipose-tissue-derived stem cell conditioned medium on follicles and stromal cells in bovine ovarian tissue culture. Reprod Biomed Online 2024; 49:103938. [PMID: 38759499 DOI: 10.1016/j.rbmo.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 05/19/2024]
Abstract
RESEARCH QUESTION Does adipose-tissue-derived stem cell conditioned medium (ASC-CM) supplementation enhance follicle and stromal cell outcomes in vitro? DESIGN Bovine ovaries (n = 8) were sectioned and cultured in vitro for 8 days in two different groups: (i) standard culture (OT Ctrl D8); and (ii) culture with ASC-CM supplementation (OT + CM D8). Half of the culture medium was replaced every other day, and stored to measure the production of oestradiol. Follicle classification was established using haematoxylin and eosin staining. Follicle and stromal cell DNA fragmentation was assessed by TUNEL assays, while growth differentiation factor-9 (GDF-9) staining served as a marker of follicle quality. Additionally, three factors, namely vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and transforming growth factor beta 1 (TGF-β1), were evaluated in ASC-CM in order to appraise the potential underlying mechanisms of action of ASC. RESULTS The OT + CM D8 group showed a significantly higher proportion of secondary follicles (P = 0.02) compared with the OT Ctrl D8 group. The OT + CM D8 group also demonstrated significantly lower percentages of TUNEL-positive follicles (P = 0.014) and stromal cells (P = 0.001) compared with the OT Ctrl D8 group. Furthermore, follicles in the OT + CM D8 group exhibited a significant increase (P = 0.002) in expression of GDF-9 compared with those in the OT Ctrl D8 group, and oestradiol production was significantly higher (P = 0.04) in the OT + CM D8 group. All studied factors were found to be present in ASC-CM. VEGF and IL-6 were the most widely expressed factors, while TGF-β1 showed the lowest expression. CONCLUSIONS Addition of ASC-CM to culture medium enhances follicle survival, development and oestradiol production, and promotes the viability of stromal cells. VEGF, IL-6 and TGF-β1 could be paracrine mediators underlying the beneficial effects.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Pathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lara Houeis
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Professor Em, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynaecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
17
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC. Anim Reprod 2024; 21:e20230101. [PMID: 39021501 PMCID: PMC11253787 DOI: 10.1590/1984-3143-ar2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.
Collapse
Affiliation(s)
| | - Juliano Rodrigues Sangalli
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Luana Alves
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Flávio Vieira Meirelles
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Felipe Perecin
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
18
|
Cao M, Chen X, Wang Y, Chen L, Zhao Y, Li C, Zhou X. The reduction of the m 6A methyltransferase METTL3 in granulosa cells is related to the follicular cysts in pigs. J Cell Physiol 2024; 239:e31289. [PMID: 38685566 DOI: 10.1002/jcp.31289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Follicular cysts are a common reproductive disorder in domestic animals that cause considerable economic losses to the farming industry. Effective prevention and treatment methods are lacking because neither the pathogenesis nor formation mechanisms of follicular cysts are well-understood. In this study, we first investigated the granulosa cells (GCs) of cystic follicles isolated from pigs. We observed a significant reduction in the expression of methyltransferase-like 3 (METTL3). Subsequent experiments revealed that METTL3 downregulation in GCs caused a decrease in m6A modification of pri-miR-21. This reduction further inhibited DGCR8 recognition and binding to pri-miR-21, dampening the synthesis of mature miR-21-5p. Additionally, the decrease in miR-21-5p promotes IL-1β expression in GCs. Elevated IL-1β activates the NFκB pathway, in turn upregulating apoptotic genes TNFa and BAX/BCL2. The subsequent apoptosis of GCs and inhibition of autophagy causes downregulation of CYP19A1 expression. These processes lower oestrogen secretion and contribute to follicular cyst formation. In conclusion, our findings provide a foundation for understanding and further exploring the mechanisms of follicular-cyst development in farm animals. This work has important implications for treating ovarian disorders in livestock and could potentially be extended to humans.
Collapse
Affiliation(s)
- Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yueying Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
Lledó B, Piqueras JJ, Lozano FM, Hortal M, Morales R, Ortiz JA, Guerrero J, Benabeu A, Bernabeu R. Exome sequencing in genuine empty follicle syndrome: Novel candidate genes. Eur J Obstet Gynecol Reprod Biol 2024; 297:221-226. [PMID: 38691974 DOI: 10.1016/j.ejogrb.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/18/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE(S) Empty follicle syndrome (EFS) is a condition in which no oocytes are retrieved in an IVF cycle despite apparently normal follicular development and meticulous follicular aspiration following ovulation induction. The EFS is called genuine (gEFS) when the trigger administration is correct. The existence of gEFS is a subject of controversy, and it is quite rare with an undetermined etiology. Genetic defects in specific genes have been demonstrated to be responsible for this condition in some patients. Our objective was to identify novel genetic variants associated with gEFS. STUDY DESIGN We conducted a prospective observational study including 1,689 egg donors from July 2017 to February 2023. WES were performed in patients suffering gEFS. RESULTS Only 7 patients (0.41 %) exhibited gEFS after two ovarian stimulation cycles and we subsequently performed whole exome sequencing (WES) on these patients. Following stringent filtering, we identified 6 variants in 5 affected patients as pathogenic in new candidate genes which have not been previously associated with gEFS before, but which are involved in important biological processes related to folliculogenesis. These genetic variants included c.603_618del in HMMR, c.1025_1028del in LMNB1, c.1091-1G > A in TDG, c.607C > T in HABP2, c.100 + 2 T > C in HAPLN1 and c.3592_3593del in JAG2. CONCLUSION As a conclusion, we identified new candidate genes related to gEFS that expand the mutational spectrum of genes related to gEFS.This study show that WES might be an efficient tool to identify the genetic etiology of gEFS and provide further understanding of the pathogenic mechanism of gEFS.
Collapse
Affiliation(s)
- Belen Lledó
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain.
| | - Juan J Piqueras
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | | | - Mónica Hortal
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | - Ruth Morales
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | - José A Ortiz
- Molecular Biology Department, Instituto Bernabeu, Alicante, Spain
| | - Jaime Guerrero
- Reproductive Biology Department, Instituto Bernabeu, Alicante, Spain
| | - Andrea Benabeu
- Reproductive Medicine Department, Instituto Bernabeu, Alicante, Spain; Chair Community Medicine UMH and Health Reproductive, Miguel Hernández University, Alicante, Spain
| | - Rafael Bernabeu
- Reproductive Medicine Department, Instituto Bernabeu, Alicante, Spain; Chair Community Medicine UMH and Health Reproductive, Miguel Hernández University, Alicante, Spain
| |
Collapse
|
20
|
Granados-Aparici S, Yang Q, Clarke HJ. SMAD4 promotes somatic-germline contact during murine oocyte growth. eLife 2024; 13:RP91798. [PMID: 38819913 PMCID: PMC11142639 DOI: 10.7554/elife.91798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFβ) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFβ mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Research Institute, McGill University Health CentreMontrealCanada
- Present address: Cancer CIBER (CIBERONC)MadridSpain
- Present address: Pathology Department, Medical School, University of Valencia-INCLIVAValenciaSpain
| | - Qin Yang
- Research Institute, McGill University Health CentreMontrealCanada
| | - Hugh J Clarke
- Research Institute, McGill University Health CentreMontrealCanada
- Departments of Obstetrics and Gynecology and Biology, Division of Experimental Medicine, McGill UniversityMontréalCanada
| |
Collapse
|
21
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
22
|
Hu H, Li F, Zhu F, Li J, Wang S, He Z, Chen J, Cheng L, Zhong F. Indole-3-carbinol ameliorates ovarian damage in female old mice through Nrf2/HO-1 pathway activation. Biochem Pharmacol 2024; 223:116193. [PMID: 38582268 DOI: 10.1016/j.bcp.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Ovarian aging leads to infertility and birth defects. We aimed to clarify the role of Indole-3-carbinol (I3C) in resistance to oxidative stress, apoptosis, and fibrosis in ovarian aging. I3C was administered via intraperitoneal injection for 3 weeks in young or old mice. Immunohistochemistry; Masson, Sirius red, and TUNEL staining; follicle counting; estrous cycle analysis; and Western blotting were used for validating the protective effect of I3C against ovarian senescence. Human granulosa-like tumor cell line and primary granulosa cells were used for in vitro assay. The results indicated that I3C inhibited ovarian fibrosis and apoptosis while increasing the number of primordial follicles. Mechanistic studies have shown that I3C promoted the nuclear translocation of nuclear factor-erythroid 2-related factor (Nrf2) and upregulated the expression of heme oxygenase 1 (HO-1). Additionally, I3C increased cell viability and decreased lactate dehydrogenase, malondialdehyde, reactive oxygen species and JC-1 levels. Furthermore, the antioxidant effect of I3C was found to be dependent on the activation of Nrf2 and HO-1, as demonstrated by the disappearance of the effect upon inhibition of Nrf2 expression. In conclusion, I3C can alleviate the ovarian damage caused by aging and may be a protective agent to delay ovarian aging.
Collapse
Affiliation(s)
- Huiqing Hu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangfang Li
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fengyu Zhu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jun Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Siyuan Wang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Linghui Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Feng X, Li C, Zhang H, Zhang P, Shahzad M, Du W, Zhao X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. Int J Mol Sci 2024; 25:4808. [PMID: 38732033 PMCID: PMC11084174 DOI: 10.3390/ijms25094808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.
Collapse
Affiliation(s)
- Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
- College of Animal Science and Technology, Qingdao Agricultural University (QAU), Qingdao 266000, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.F.); (C.L.); (H.Z.); (P.Z.); (M.S.); (W.D.)
| |
Collapse
|
24
|
Yang L, Yang Y, Han X, Huang C, Wang Y, Jiang D, Chao L. GRIM19 deficiency aggravates metabolic disorder and ovarian dysfunction in PCOS. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167063. [PMID: 38360073 DOI: 10.1016/j.bbadis.2024.167063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. Retinoid-interferon-induced mortality 19 (GRIM19) is a functional component of mitochondrial complex I that plays a role in cellular energy metabolism. However, the role of GRIM19 in the pathogenesis of PCOS is still unclear. OBJECTIVE To investigate the role of GRIM19 in the pathogenesis of PCOS. DESIGN We first measured the expression of GRIM19 in human granulosa cells (hGCs) from patients with and without PCOS (n = 16 per group), and then established a PCOS mouse model with WT and Grim19+/- mice for in vivo experiments. Glucose uptake-related genes RAC1 and GLUT4 and energy metabolism levels in KGN cells were examined in vitro by knocking down GRIM19 in the cell lines. Additionally, ovulation-related genes such as p-ERK1/2, HAS2, and PTX3 were also studied to determine their expression levels. RESULTS GRIM19 expression was reduced in hGCs of PCOS patients, which was negatively correlated with BMI and serum testosterone level. Grim19+/- mice with PCOS exhibited a markedly anovulatory phenotype and disturbed glycolipid metabolism. In vitro experiments, GRIM19 deficiency inhibited the RAC1/GLUT4 pathway, reducing insulin-stimulated glucose uptake in KGN cells. Moreover, GRIM19 deficiency induced mitochondrial dysfunction, defective glucose metabolism, and apoptosis. In addition, GRIM19 deficiency suppressed the expression of ovulation-related genes in KGN cells, which was regulated by dihydrotestosterone mediated androgen receptor. CONCLUSIONS GRIM19 deficiency may mediate ovulation and glucose metabolism disorders in PCOS patients. Our results suggest that GRIM19 may be a new target for diagnosis and treatment.
Collapse
Affiliation(s)
- Lin Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Chengzi Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
25
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging. Reprod Sci 2024; 31:906-916. [PMID: 37917297 DOI: 10.1007/s43032-023-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Female fertility decreases during aging. The development of effective therapeutic strategies to address the age-related decline in oocyte quality and quantity and its accurate diagnosis remain major challenges. In this review, we summarize our current understanding of the study of aging and infertility, focusing primarily on the molecular basis of energy metabolism, mitochondrial function, and redox homeostasis in granulosa cells and oocytes, and discuss perspectives on future research directions. Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production, cellular redox homeostasis, aging, and senescence. Young granulosa cells favor glycolysis and actively produce pyruvate, NADPH, and other metabolites. Oocytes rely on oxidative phosphorylation fueled by nutrients, metabolites, and antioxidants provided by the adjacent granulosa cells. A reduced cellular energy metabolism phenotype, including both aerobic glycolysis and mitochondrial respiration, is characteristic of older female granulosa cells compared with younger female granulosa cells. Aged oocytes become more susceptible to oxidative damage to cells and mitochondria because of further depletion of antioxidant-dependent ROS scavenging systems. Molecular perturbations of gene expression caused by a subtle change in the follicular fluid microenvironment adversely affect energy metabolism and mitochondrial dynamics in granulosa cells and oocytes, further causing redox imbalance and accelerating aging and senescence. Furthermore, recent advances in technology are beginning to identify biofluid molecular markers that may influence follicular development and oocyte quality. Accumulating evidence suggests that redox imbalance caused by abnormal energy metabolism and/or mitochondrial dysfunction is closely linked to the pathophysiology of age-related subfertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichi-Jyonishi-Machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-Cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-Cho, Nara, 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
| |
Collapse
|
26
|
Nascimento BC, Ferreira CS, Oliveira SP, Pereira LAAC, Lopes GA, Nogueira JM, Paula RS, Jorge EC, Campos-Junior PHA. Naproxen administration affects murine late folliculogenesis, reduces granulosa cell proliferation and the number of ovulated oocytes. Reprod Toxicol 2024; 124:108527. [PMID: 38160782 DOI: 10.1016/j.reprotox.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Naproxen reduces the production of prostaglandins via inhibition of the cyclooxygenase. Studies have shown that its administration in women can be related to failed ovulation. Therefore, preclinical investigations must be performed in order to investigate its effects in experimental models. Thus, the aim of this study was to evaluate the effects of naproxen on murine folliculogenesis, ovulation, and female fertility. Female C57BL/6 mice (n = 128 - 6 weeks old) were divided into Control, low (10 mg/kg), and high naproxen (50 mg/kg) groups, who were treated for 8 days and directed to morphofunctional analyses. Follicular quantification showed a reduced percentage of antral follicles in naproxen-treated animals. These treated animals also showed smaller oocytes included in secondary and antral follicles, and the diameter of secondary and antral follicles was also reduced. A reduction in the percentage of Ki67-positive granulosa cells was observed in treated animals that also showed down-regulation of Igf1r compared to control. After an ovarian stimulation protocol, naproxen-treated animals showed a reduction in the percentage of secondary and antral follicles, a reduced number of ovulated oocytes and, corpora lutea, and an increased number of failed ovulations. Finally, naproxen-treated animals also showed a reduction in mating index and pregnancy rate. Our findings suggested that, in mice, naproxen administration (eight days treatment) negatively affects molecular and morphological aspects related to late folliculogenesis, ovulation, and fertility.
Collapse
Affiliation(s)
- Bernardo Camara Nascimento
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | - Camila Stefane Ferreira
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | - Stella Pollyanne Oliveira
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | | | - Guilherme Antonio Lopes
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil
| | - Júlia Meireles Nogueira
- Departament of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Rayan Silva Paula
- Departament of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Erika Cristina Jorge
- Departament of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Paulo Henrique Almeida Campos-Junior
- Laboratory for Reproductive Biology Research, Department of Natural Sciences, Federal University of São João del Rei, São João Del-Rei, MG, Brazil.
| |
Collapse
|
27
|
Clark FE, Greenberg NL, Silva DM, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg sabotaging mechanism drives non-Mendelian transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581453. [PMID: 38903120 PMCID: PMC11188085 DOI: 10.1101/2024.02.22.581453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
During meiosis, homologous chromosomes segregate so that alleles are transmitted equally to haploid gametes, following Mendel's Law of Segregation. However, some selfish genetic elements drive in meiosis to distort the transmission ratio and increase their representation in gametes. The established paradigms for drive are fundamentally different for female vs male meiosis. In male meiosis, selfish elements typically kill gametes that do not contain them. In female meiosis, killing is predetermined, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here we show that a selfish element on mouse chromosome 2, R2d2, drives using a hybrid mechanism in female meiosis, incorporating elements of both male and female drivers. If R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy that is subsequently lethal in the embryo, so that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to a male meiotic driver, which kills its sister gametes produced as daughter cells in the same meiosis, R2d2 eliminates "cousins" produced from meioses in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Naomi L. Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Duilio M.Z.A. Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894 USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
28
|
Wang X, Leung FS, Bush JO, Conti M. Alternative cleavage and polyadenylation of the Ccnb1 mRNA defines accumulation of cyclin protein during the meiotic cell cycle. Nucleic Acids Res 2024; 52:1258-1271. [PMID: 38048302 PMCID: PMC10853788 DOI: 10.1093/nar/gkad1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.
Collapse
Affiliation(s)
- Xiaotian Wang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Fang-Shiuan Leung
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
29
|
Mangini M, Limatola N, Ferrara MA, Coppola G, Chun JT, De Luca AC, Santella L. Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization. ZYGOTE 2024; 32:38-48. [PMID: 38050697 DOI: 10.1017/s0967199423000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca2+ signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca2+ release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', Second Unit, National Research Council, 80131Naples, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| | - Maria Antonietta Ferrara
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello', Unit of Naples, National Research Council, 80131Naples, Italy
| | - Giuseppe Coppola
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello', Unit of Naples, National Research Council, 80131Naples, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| | - Anna Chiara De Luca
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', Second Unit, National Research Council, 80131Naples, Italy
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| |
Collapse
|
30
|
Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med 2024; 56:319-328. [PMID: 38355825 PMCID: PMC10907590 DOI: 10.1038/s12276-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
DNA damage is a critical threat that poses significant challenges to all cells. To address this issue, cells have evolved a sophisticated molecular and cellular process known as the DNA damage response (DDR). Among the various cell types, mammalian oocytes, which remain dormant in the ovary for extended periods, are particularly susceptible to DNA damage. The occurrence of DNA damage in oocytes can result in genetic abnormalities, potentially leading to infertility, birth defects, and even abortion. Therefore, understanding how oocytes detect and repair DNA damage is of paramount importance in maintaining oocyte quality and preserving fertility. Although the fundamental concept of the DDR is conserved across various cell types, an emerging body of evidence reveals striking distinctions in the DDR between mammalian oocytes and somatic cells. In this review, we highlight the distinctive characteristics of the DDR in oocytes and discuss the clinical implications of DNA damage in oocytes.
Collapse
Affiliation(s)
- Jiyeon Leem
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Crystal Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Da Yi Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
31
|
Song Y, Zhang N, Zhang Y, Wang J, Lv Q, Zhang J. Single-Cell Transcriptome Analysis Reveals Development-Specific Networks at Distinct Synchronized Antral Follicle Sizes in Sheep Oocytes. Int J Mol Sci 2024; 25:910. [PMID: 38255985 PMCID: PMC10815039 DOI: 10.3390/ijms25020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.S.)
| |
Collapse
|
32
|
Ducreux B, Patrat C, Trasler J, Fauque P. Transcriptomic integrity of human oocytes used in ARTs: technical and intrinsic factor effects. Hum Reprod Update 2024; 30:26-47. [PMID: 37697674 DOI: 10.1093/humupd/dmad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Millions of children have been born throughout the world thanks to ARTs, the harmlessness of which has not yet been fully demonstrated. For years, efforts to evaluate the specific effects of ART have focused on the embryo; however, it is the oocyte quality that mainly dictates first and foremost the developmental potential of the future embryo. Ovarian stimulation, cryopreservation, and IVM are sometimes necessary steps to obtain a mature oocyte, but they could alter the appropriate expression of the oocyte genome. Additionally, it is likely that female infertility, environmental factors, and lifestyle have a significant influence on oocyte transcriptomic quality, which may interfere with the outcome of an ART attempt. OBJECTIVE AND RATIONALE The objective of this review is to identify transcriptomic changes in the human oocyte caused by interventions specific to ART but also intrinsic factors such as age, reproductive health issues, and lifestyle. We also provide recommendations for future good practices to be conducted when attempting ART. SEARCH METHODS An in-depth literature search was performed on PubMed to identify studies assessing the human oocyte transcriptome following ART interventions, or in the context of maternal aging, suboptimal lifestyle, or reproductive health issues. OUTCOMES ART success is susceptible to external factors, maternal aging, lifestyle factors (smoking, BMI), and infertility due to endometriosis or polycystic ovary syndrome. Indeed, all of these are likely to increase oxidative stress and alter mitochondrial processes in the foreground. Concerning ART techniques themselves, there is evidence that different ovarian stimulation regimens shape the oocyte transcriptome. The perturbation of processes related to the mitochondrion, oxidative phosphorylation, and metabolism is observed with IVM. Cryopreservation might dysregulate genes belonging to transcriptional regulation, ubiquitination, cell cycle, and oocyte growth pathways. For other ART laboratory factors such as temperature, oxygen tension, air pollution, and light, the evidence remains scarce. Focusing on genes involved in chromatin-based processes such as DNA methylation, heterochromatin modulation, histone modification, and chromatin remodeling complexes, but also genomic imprinting, we observed systematic dysregulation of such genes either after ART intervention or lifestyle exposure, as well as due to internal factors such as maternal aging and reproductive diseases. Alteration in the expression of such epigenetic regulators may be a common mechanism linked to adverse oocyte environments, explaining global transcriptomic modifications. WIDER IMPLICATIONS Many IVF factors and additional external factors have the potential to impair oocyte transcriptomic integrity, which might not be innocuous for the developing embryo. Fortunately, it is likely that such dysregulations can be minimized by adapting ART protocols or reducing adverse exposure.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - Catherine Patrat
- Université de Paris Cité, Faculty of Medicine, Inserm 1016, Paris, France
- Department of Reproductive Biology-CECOS, aphp.centre-Université Paris Cité, Paris, France
| | - Jacquetta Trasler
- Department of Pediatrics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patricia Fauque
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
33
|
Zhu H, Wu Y, Zhuang Z, Xu J, Chen F, Wang Q, Tang Q. Ampelopsis japonica aqueous extract improves ovulatory dysfunction in PCOS by modulating lipid metabolism. Biomed Pharmacother 2024; 170:116093. [PMID: 38159378 DOI: 10.1016/j.biopha.2023.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine and metabolic disorder that is closely associated with the proliferation and apoptosis of ovarian granulosa cells (GCs). Ampelopsis japonica (AJ) is the dried tuberous root of Ampelopsis japonica (Thunb.) Makino (A. japonica), with anti-inflammatory, antioxidant, antibacterial, antiviral, wound-healing, and antitumor properties; however, it is unclear whether this herb has a therapeutic effect on PCOS. Therefore, this study aimed to investigate the pharmacological effect of AJ on PCOS and reveal its potential mechanism of action. A PCOS rat model was established using letrozole. After establishing the PCOS model, the rats received oral treatment of AJ and Diane-35 (Positive drug: ethinylestradiol + cyproterone tablets) for 2 weeks. Lipidomics was conducted using liquid-phase mass spectrometry and chromatography. AJ significantly regulated serum hormone levels and attenuated pathological variants in the ovaries of rats with PCOS. Furthermore, AJ significantly reduced the apoptotic rate of ovarian GCs. Lipidomic analysis revealed that AJ modulated glycerolipid and glycerophospholipid metabolic pathways mediated by lipoprotein lipase (Lpl), diacylglycerol choline phosphotransferase (Chpt1), and choline/ethanolamine phosphotransferase (Cept1). Therefore, we established that AJ may reduce ovarian GC apoptosis by modulating lipid metabolism, ultimately improving ovulatory dysfunction in PCOS. Therefore, AJ is a novel candidate for PCOS treatment.
Collapse
Affiliation(s)
- Huiqing Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Yuanyuan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Ziming Zhuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Jing Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Feilong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Qirui Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China.
| |
Collapse
|
34
|
Deng X, Ning Z, Li L, Cui Z, Du X, Amevor FK, Tian Y, Shu G, Du X, Han X, Zhao X. High expression of miR-22-3p in chicken hierarchical follicles promotes granulosa cell proliferation, steroidogenesis, and lipid metabolism via PTEN/PI3K/Akt/mTOR signaling pathway. Int J Biol Macromol 2023; 253:127415. [PMID: 37848113 DOI: 10.1016/j.ijbiomac.2023.127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
MicroRNAs (miRNAs) are a class of RNA macromolecules that play regulatory roles in follicle development by inhibiting protein translation through binding to the 3'UTR of its target genes. Granulosa cell (GC) proliferation, steroidogenesis, and lipid metabolism have indispensable effect during folliculogenesis. In this study, we found that miR-22-3p was highly expressed in the hierarchical follicles of the chickens, which indicated that it may be involved in follicle development. The results obtained suggested that miR-22-3p promoted proliferation, hormone secretion (progesterone and estrogen), and the content of lipid droplets (LDs) in the chicken primary GC. The results from the bioinformatics analysis, luciferase reporter assay, qRT-PCR, and Western blotting, confirmed that PTEN was directly targeted to miR-22-3p. Subsequently, it was revealed that PTEN inhibited proliferation, hormone secretion, and the content of LDs in GC. Therefore, this study showed that miR-22-3p could activate PI3K/Akt/mTOR pathway via targeting PTEN. Taken together, the findings from this study indicated that miR-22-3p was highly expressed in the hierarchical follicles of chickens, which promotes GC proliferation, steroidogenesis, and lipid metabolism by repressing PTEN to activate PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, PR China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, PR China; Guizhou Hongyu Animal Husbandry Technology Development Co., Ltd, Guiyang, PR China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China.
| |
Collapse
|
35
|
Tian X, Zheng L, Wang C, Han Y, Li Y, Cui T, Liu J, Liu C, Jia G, Yang L, Hsu Y, Zeng C, Ding L, Wang C, Cheng B, Wang M, Xie R. Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection. Nat Commun 2023; 14:8281. [PMID: 38092825 PMCID: PMC10719347 DOI: 10.1038/s41467-023-44118-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Metabolic oligosaccharide engineering (MOE) is a classical chemical approach to perturb, profile and perceive glycans in physiological systems, but probes upon bioorthogonal reaction require accessibility and the background signal readout makes it challenging to achieve glycan quantification. Here we develop SeMOE, a selenium-based metabolic oligosaccharide engineering strategy that concisely combines elemental analysis and MOE,enabling the mass spectrometric imaging of glycome. We also demonstrate that the new-to-nature SeMOE probes allow for detection, quantitative measurement and visualization of glycans in diverse biological contexts. We also show that chemical reporters on conventional MOE can be integrated into a bifunctional SeMOE probe to provide multimodality signal readouts. SeMOE thus provides a convenient and simplified method to explore the glyco-world.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Changjiang Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yida Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yujie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guogeng Jia
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yi Hsu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bo Cheng
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
36
|
Hu T, Li C, Qiao S, Liu W, Han W, Li W, Shi R, Xue X, Shi J, Huang G, Lin T. Novel variants in TUBB8 gene cause multiple phenotypic abnormalities in human oocytes and early embryos. J Ovarian Res 2023; 16:228. [PMID: 38007525 PMCID: PMC10675859 DOI: 10.1186/s13048-023-01274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/03/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The genotype-phenotype relationships between TUBB8 variants and female infertility are difficult to clearly define due to the complex inheritance patterns and the highly heterogeneous phenotypes. This study aims to identify novel TUBB8 variants and relevant phenotypes in more infertile females. METHODS A total of 35 females with primary infertility were recruited from two reproductive centers and investigated for identifying variants in TUBB8. Pedigree analysis, in-silico analysis and molecular remodeling were performed to assess their clinical significance. The effects of the variants on human oocytes and embryos as well as HeLa cells were analyzed by morphological observations, immunostaining and Western blot. RESULTS We totally identified five novel variants (p.G13R, p.Y50C, p.T136I, p.F265V and p.T366A) and five previously reported variants (p.I4L, p.L42V, p.Q134*, p.V255M and p.V349I) in TUBB8 from 9 unrelated females with primary infertility. These variants were rare and highly conserved among different species, and were inherited in autosomal dominant/recessive patterns, or occurred de novo. In vitro functional assays in HeLa cells revealed that exogenous expression of mutant TUBB8 proteins caused different degrees of microtubule structural disruption. The existence of these pathogenic TUBB8 variants finally induced oocyte maturation arrest or morphological abnormalities, fertilization failure, cleavage failure, embryonic development defects and implantation failure in the affected females. CONCLUSION These findings enriched the variant spectrum of TUBB8 gene and could contribute to optimize genetic counselling and clinical management of females with primary infertility.
Collapse
Affiliation(s)
- Tingwenyi Hu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Sen Qiao
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Wei Li
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Rong Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Xia Xue
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Juanzi Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
37
|
Ikeda H, Miyao S, Nagaoka S, Takashima T, Law SM, Yamamoto T, Kurimoto K. High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis. Life Sci Alliance 2023; 6:e202301929. [PMID: 37722727 PMCID: PMC10507249 DOI: 10.26508/lsa.202301929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon-exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size-transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ-soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Shintaro Miyao
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - So Nagaoka
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Takashima
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Sze-Ming Law
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
- Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
38
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
39
|
Yao X, Wang C, Yu W, Sun L, Lv Z, Xie X, Tian S, Yan L, Zhang H, Liu J. SRSF1 is essential for primary follicle development by regulating granulosa cell survival via mRNA alternative splicing. Cell Mol Life Sci 2023; 80:343. [PMID: 37907803 PMCID: PMC11072053 DOI: 10.1007/s00018-023-04979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023]
Abstract
Granulosa cell abnormalities are characteristics of premature ovarian insufficiency (POI). Abnormal expression of serine/arginine-rich splicing factor 1 (SRSF1) can cause various diseases, but the role of SRSF1 in mouse granulosa cells remains largely unclear. In this study, we found that SRSF1 was expressed in the nuclei of both mouse oocytes and granulosa cells. The specific knockout of Srsf1 in granulosa cells led to follicular development inhibition, decreased granulosa cell proliferation, and increased apoptosis. Gene Ontology (GO) analysis of RNA-seq results revealed abnormal expression of genes involved in DNA repair, cell killing and other signalling pathways. Alternative splicing (AS) analysis showed that SRSF1 affected DNA damage in granulosa cells by regulating genes related to DNA repair. In summary, SRSF1 in granulosa cells controls follicular development by regulating AS of genes associated with DNA repair, thereby affecting female reproduction.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiran Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Liu SL, Zuo HY, Zhao BW, Guo JN, Liu WB, Lei WL, Li YY, Ouyang YC, Hou Y, Han ZM, Wang WZ, Sun QY, Wang ZB. A heterozygous ZP2 mutation causes zona pellucida defects and female infertility in mouse and human. iScience 2023; 26:107828. [PMID: 37736051 PMCID: PMC10509300 DOI: 10.1016/j.isci.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.
Collapse
Affiliation(s)
- Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hai-Yang Zuo
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei-Zhou Wang
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
41
|
Amin R, Bukulmez O, Woodruff JB. Visualization of Balbiani Body disassembly during human primordial follicle activation. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000989. [PMID: 37920272 PMCID: PMC10618801 DOI: 10.17912/micropub.biology.000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Dormant human oocytes contain a perinuclear super-organelle, called the Balbiani Body, which is not present in mature oocytes. Here, we use confocal imaging to visualize two Balbiani Body markers-mitochondria and the DEAD-box helicase DDX4-in preantral follicles isolated from a 20-year-old female patient. In primordial follicles, mitochondria were concentrated in a ring near the oocyte nucleus, while DDX4 formed adjacent micron-scale spherical condensates. In primary and secondary follicles, the mitochondria were dispersed throughout the oocyte cytoplasm, and large DDX4 condensates were not visible. Our data suggest that the Balbiani Body breaks down during the primordial to primary follicle transition, thus releasing mitochondria and soluble DDX4 protein into the oocyte cytoplasm.
Collapse
Affiliation(s)
- Ruchi Amin
- Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Orhan Bukulmez
- Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jeffrey B. Woodruff
- Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
42
|
Liu D, Guan X, Liu W, Jia Y, Zhou H, Xi C, Zhao M, Fang Y, Wu L, Li K. Identification of transcriptome characteristics of granulosa cells and the possible role of UBE2C in the pathogenesis of premature ovarian insufficiency. J Ovarian Res 2023; 16:203. [PMID: 37848988 PMCID: PMC10580542 DOI: 10.1186/s13048-023-01266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/17/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is an important cause of infertility characterized by the functional decline of the ovary. Granulosa cells (GCs) around oocytes are critical for folliculogenesis, and GC dysfunction is one of the important etiologies of POI. The aim of this study was to explore the potential biomarkers of POI by identifying hub genes and analyze the correlation of biomarkers with immune infiltration in POI using RNA profiling and bioinformatics analysis. METHODS RNA sequencing was performed on GCs from biochemical POI (bPOI) patients and controls. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to explore the candidate genes. qRT‒PCR was performed to verify the expression of hub genes. Western blot, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU) assays, TUNEL (TdT-mediated dUTP Nick-End Labeling) and flow cytometry analysis were used to validate the possible role of ubiquitin-conjugating enzyme 2C (UBE2C) in POI. CIBERSORT was adopted to explore immune cell infiltration and the correlation between UBE2C and immune cells in bPOI. RESULTS Through analysis of differentially expressed genes (DEGs) and WGCNA, we obtained 143 candidate genes. After construction of the protein‒protein interaction (PPI) network and analysis with Cytoscape, 10 hub genes, including UBE2C, PBK, BUB1, CDC20, NUSAP1, CENPA, CCNB2, TOP2A, AURKB, and FOXM1, were identified and verified by qRT‒PCR. Subsequently, UBE2C was chosen as a possible biomarker of POI because knockdown of UBE2C could inhibit the proliferation and promote the apoptosis of GCs. Immune infiltration analysis indicated that monocytes and M1 macrophages may be associated with the pathogenesis of POI. In addition, UBE2C was negatively correlated with monocytes and M1 macrophages in POI. CONCLUSIONS This study identified a hub gene in GCs that might be important in the pathogenesis of POI and revealed the key role of UBE2C in driving POI. Immune infiltration may be highly related with the onset and etiology of POI.
Collapse
Affiliation(s)
- Dan Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Xiaohong Guan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanping Jia
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Hong Zhou
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Chenxiang Xi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mei Zhao
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Kunming Li
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| |
Collapse
|
43
|
Boroujeni PB, Rooney K, Alikhani M, Rahmati S, Feli G, Haratian K, Movaghar B, Meybodi AM. Evaluation of TUBB8 gene alterations in infertile women with oocyte maturation and cleavage arrest referred to Royan Institute. Reprod Biomed Online 2023; 47:103226. [PMID: 37597348 DOI: 10.1016/j.rbmo.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 08/21/2023]
Abstract
RESEARCH QUESTION Are TUBB8 gene variations present in Iranian infertile women with oocyte maturation arrest or embryo cleavage arrest? DESIGN TUBB8 gene variations were investigated by polymerase chain reaction sequencing on blood samples from 16 women with oocyte maturation arrest and 12 women with cleavage arrest, collectively referred to as the experimental cohort, as well as 56 fertile women as the control group. The Exome Sequencing Project and dbSNP databases and the Genome Aggregation Database were used to search the frequency of corresponding variants. PolyPhen and SIFT were used to conduct in-silico analysis of gene variations and Align-GVGD was used to predict the effect of missense variants on proteins. The homology modelling and structure evaluation of variations was also checked. RESULTS Two likely pathogenic variants [c.713C>T (p.Thr238Met), c.1054G>T (p.Ala352Ser)] were identified in patients with oocyte maturation arrest and one likely pathogenic variant [c.G763A, (p.Val255Met)] was identified in a patient with cleavage arrest. These changes were absent in controls. CONCLUSIONS Three deleterious variants in TUBB8 related to oocyte maturation arrest or cleavage arrest and infertility were identified. TUBB8 variant screening for patients with oocyte maturation and cleavage arrest is recommended.
Collapse
Affiliation(s)
- Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kathleen Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Mehdi Alikhani
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghazaleh Feli
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kaveh Haratian
- Department of Microbiology and Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
44
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Wu L, Liu D, Fang X, Zhang Y, Guo N, Lu F, Kwak-Kim J, Wang Y. Increased serum IL-12 levels are associated with adverse IVF outcomes. J Reprod Immunol 2023; 159:103990. [PMID: 37451158 DOI: 10.1016/j.jri.2023.103990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Interleukin-12 (IL-12) is involved in the occurrence and development of many diseases, such as preeclampsia, intrauterine growth restriction, preterm labor, and recurrent pregnancy losses. This study aimed to determine whether a high serum level of IL-12 was associated with adverse in vitro fertilization (IVF) outcomes. Included infertile women with high serum IL-12 levels who underwent IVF cycles and infertile controls with pure tubal etiology. The impact of serum IL-12 on baseline and clinical characteristics, immune-related indicators, IVF laboratory, and pregnancy outcomes were compared. In addition, the correlation of follicular fluid IL-12 and serum IL-12 level and the role of IL-12 in apoptosis of granulosa cells (GCs) was investigated. Women with high serum IL-12 levels had lower numbers of retrieved oocytes, embryos, perfect and available embryos, lower rates of perfect and available embryos, and blastocyst formation. Additionally, significantly higher levels of serum Th1, Th2, and Th17-related cytokines were observed in women with high serum IL-12 levels than in the controls. Meanwhile, the follicular fluid IL-12 levels were positively correlated with serum IL-12 levels, and IL-12 promoted apoptosis of GCs in vitro. We concluded that women with serum high IL-12 levels may have adverse IVF outcomes, partly by promoting apoptosis of GCs. Therefore, early screening for cytokines, especially IL-12, and appropriate consultation for couples receiving IVF-ET should be considered. In addition, specific immune and inflammatory mechanisms associated with high serum IL-12 levels should be further explored.
Collapse
Affiliation(s)
- Li Wu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyan Liu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuhui Fang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Zhang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nan Guo
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangting Lu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Yanshi Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
46
|
Cruz-Cano N, Sánchez-Rivera U, Álvarez-Rodríguez C, Loya-Zurita R, Castro-Camacho Y, Martínez-Torres M. Immunolocalization of activin and inhibin at different stages of follicular development in the lizard Sceloporus torquatus. Heliyon 2023; 9:e19333. [PMID: 37681184 PMCID: PMC10481300 DOI: 10.1016/j.heliyon.2023.e19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The activins and inhibins are glycoproteins with a role in the follicular development of vertebrates, that are found in follicular fluid and somatic follicular cells, with a different pattern among taxa. The principal function of activin (Act) is to modulate the follicle-stimulating hormone (FSH) synthesis and secretion, whereas inhibin (Inh) downregulates it. Both factors are modulators of intraovarian follicular recruitment, oocyte maturation, cell proliferation, and steroidogenic activity. Our aim was to characterize the immunolocalization of Act and Inh in the ovarian follicles during the reproductive cycle of the lizard Sceloporus torquatus. Act was detected in the granulosa cells and oocyte cortex in the different stages of follicular development. On the other hand, we identified Inh in the oocyte cortex and the cytoplasm of pyriform and small cells of previtellogenic follicles. Also, we found immunoreactivity in the oocyte cortex, theca, and small cells of vitellogenic and preovulatory follicles. Our data provide evidence that Act and Inh have changes related to the stage of follicular development. This dynamic appears to be conserved among vertebrates and is fundamental to ensure an adequate follicular development in this specie.
Collapse
Affiliation(s)
- N.B. Cruz-Cano
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - U.Á. Sánchez-Rivera
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - C. Álvarez-Rodríguez
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - R.E. Loya-Zurita
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - Y.J. Castro-Camacho
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - M. Martínez-Torres
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| |
Collapse
|
47
|
Liao Z, Li Y, Li C, Bian X, Sun Q. Nuclear transfer improves the developmental potential of embryos derived from cytoplasmic deficient oocytes. iScience 2023; 26:107299. [PMID: 37520712 PMCID: PMC10372837 DOI: 10.1016/j.isci.2023.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Embryo development after fertilization is largely determined by the oocyte quality, which is in turn dependent on the competence of both the cytoplasm and nucleus. Here, to improve the efficiency of embryo development from developmentally incompetent oocytes, we performed spindle-chromosome complex transfer (ST) between in vitro matured (IVM) and in vivo matured (IVO) oocytes of the non-human primate rhesus monkey. We observed that the blastocyst rate of embryos derived from transferring the spindle-chromosome complex (SCC) of IVM oocytes into enucleated IVO oocytes was comparable with that of embryos derived from IVO oocytes. After transferring the reconstructed embryos into the uterus of surrogate mothers, two live rhesus monkeys were obtained, indicating that the nuclei of IVM oocytes support both the pre-and post-implantation embryo development of non-human primates.
Collapse
Affiliation(s)
- Zhaodi Liao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhuo Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Chunyang Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Xinyan Bian
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Qiang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| |
Collapse
|
48
|
Li Q, Sang Y, Chen Q, Ye B, Zhou X, Zhu Y. Integrated bioinformatics analysis elucidates granulosa cell whole-transcriptome landscape of PCOS in China. J Ovarian Res 2023; 16:154. [PMID: 37537636 PMCID: PMC10398987 DOI: 10.1186/s13048-023-01223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common reproductive, neuroendocrine, and metabolic disorder in women of reproductive age that affects up to 5-10% of women of reproductive age. The aetiology of follicle development arrest and critical issues regarding the abnormal follicular development in PCOS remain unclear. The present study aims to systematically evaluate granulosa cell whole-transcriptome sequencing data to gain more insights into the transcriptomic landscape and molecular mechanism of PCOS in China. METHODS In the present study, the microarray datasets GSE138518, GSE168404, GSE193123, GSE138572, GSE95728, and GSE145296 were downloaded from the Gene Expression Omnibus (GEO) database. Subsequently, differential expression analysis was performed on the PCOS and control groups, followed by functional interaction prediction analysis to investigate gene-regulatory circuits in PCOS. Finally, hub genes and their associated ncRNAs were validated by qPCR in human-luteinized granulosa (hGL) cells and were correlated with the clinical characteristics of the patients. RESULTS A total of 200 differentially expressed mRNAs, 3 differentially expressed miRNAs, 52 differentially expressed lncRNAs, and 66 differentially expressed circRNAs were found in PCOS samples compared with controls. GO and KEGG enrichment analyses indicated that the DEGs were mostly enriched in phospholipid metabolic processes, steroid biosynthesis and inflammation related pathways. In addition, the upregulated miRNA hsa-miR-205-5p was significantly enriched in the ceRNA network, and two hub genes, MVD and PNPLA3, were regulated by hsa-miR-205-5p, which means that hsa-miR-205-5p may play a fundamental role in the pathogenesis of PCOS. We also found that MVD and PNPLA3 were related to metabolic processes and ovarian steroidogenesis, which may be the cause of the follicle development arrest in PCOS patients. CONCLUSIONS In summary, we systematically constructed a ceRNA network depicting the interactions between the ncRNAs and the hub genes in PCOS and control subjects and correlated the hub genes with the clinical characteristics of the patients, which provides valuable insights into the granulosa cell whole-transcriptome landscape of PCOS in China.
Collapse
Affiliation(s)
- Qingfang Li
- School of Medicine, Women’s Hospital, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou, 310006 China
- Key Laboratory of Reproductive Genetics, Ministry of Education Zhejiang University, Hangzhou, 310006 China
| | - Yimiao Sang
- School of Medicine, Women’s Hospital, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou, 310006 China
- Key Laboratory of Reproductive Genetics, Ministry of Education Zhejiang University, Hangzhou, 310006 China
| | - Qingqing Chen
- School of Medicine, Women’s Hospital, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou, 310006 China
- Key Laboratory of Reproductive Genetics, Ministry of Education Zhejiang University, Hangzhou, 310006 China
| | - Bingru Ye
- School of Medicine, Women’s Hospital, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou, 310006 China
- Key Laboratory of Reproductive Genetics, Ministry of Education Zhejiang University, Hangzhou, 310006 China
| | - Xiaoqian Zhou
- School of Medicine, Women’s Hospital, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou, 310006 China
- Key Laboratory of Reproductive Genetics, Ministry of Education Zhejiang University, Hangzhou, 310006 China
| | - Yimin Zhu
- School of Medicine, Women’s Hospital, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou, 310006 China
- Key Laboratory of Reproductive Genetics, Ministry of Education Zhejiang University, Hangzhou, 310006 China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| |
Collapse
|
49
|
Silva DM, Akera T. Meiotic drive of noncentromeric loci in mammalian meiosis II eggs. Curr Opin Genet Dev 2023; 81:102082. [PMID: 37406428 PMCID: PMC10527070 DOI: 10.1016/j.gde.2023.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
The germline produces haploid gametes through a specialized cell division called meiosis. In general, homologous chromosomes from each parent segregate randomly to the daughter cells during meiosis, providing parental alleles with an equal chance of transmission. Meiotic drivers are selfish elements who cheat this process to increase their transmission rate. In female meiosis, selfish centromeres and noncentromeric drivers cheat by preferentially segregating to the egg cell. Selfish centromeres cheat in meiosis I (MI), while noncentromeric drivers can cheat in both meiosis I and meiosis II (MII). Here, we highlight recent advances on our understanding of the molecular mechanisms underlying these genetic cheating strategies, especially focusing on mammalian systems, and discuss new models of how noncentromeric selfish drivers can cheat in MII eggs.
Collapse
Affiliation(s)
- Duilio Mza Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Dohnalkova M, Krasnykov K, Mendel M, Li L, Panasenko O, Fleury-Olela F, Vågbø CB, Homolka D, Pillai RS. Essential roles of RNA cap-proximal ribose methylation in mammalian embryonic development and fertility. Cell Rep 2023; 42:112786. [PMID: 37436893 DOI: 10.1016/j.celrep.2023.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Eukaryotic RNA pol II transcripts are capped at the 5' end by the methylated guanosine (m7G) moiety. In higher eukaryotes, CMTR1 and CMTR2 catalyze cap-proximal ribose methylations on the first (cap1) and second (cap2) nucleotides, respectively. These modifications mark RNAs as "self," blocking the activation of the innate immune response pathway. Here, we show that loss of mouse Cmtr1 or Cmtr2 leads to embryonic lethality, with non-overlapping sets of transcripts being misregulated, but without activation of the interferon pathway. In contrast, Cmtr1 mutant adult mouse livers exhibit chronic activation of the interferon pathway, with multiple interferon-stimulated genes being expressed. Conditional deletion of Cmtr1 in the germline leads to infertility, while global translation is unaffected in the Cmtr1 mutant mouse liver and human cells. Thus, mammalian cap1 and cap2 modifications have essential roles in gene regulation beyond their role in helping cellular transcripts to evade the innate immune system.
Collapse
Affiliation(s)
- Michaela Dohnalkova
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kyrylo Krasnykov
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Mateusz Mendel
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Lingyun Li
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Olesya Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Fabienne Fleury-Olela
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Cathrine Broberg Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU) and St. Olavs Hospital Central Staff, Trondheim, Norway
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|