1
|
Li D, Jin Y, He X, Deng J, Lu W, Yang Z, Zheng X, Hou K, Tang S, Bao B, Ren J, Zhang X, Wang J, Yan H, Qu X, Liu Y, Che X. Hypoxia-induced LAMB2-enriched extracellular vesicles promote peritoneal metastasis in gastric cancer via the ROCK1-CAV1-Rab11 axis. Oncogene 2024; 43:2768-2780. [PMID: 39138263 DOI: 10.1038/s41388-024-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Peritoneal metastasis is one of the most common risk factors contributing to the poor prognosis of gastric cancer. We previously reported that extracellular vesicles from gastric cancer cells could facilitate peritoneal metastasis. However, their impact on gastric cancer-induced peritoneal metastasis under hypoxic conditions remains unclear. This study aims to elucidate how hypoxia-resistant gastric cancer cell-derived extracellular vesicles affect the peritoneal metastasis of normoxic gastric cancer cells. Proteomic analysis revealed elevated levels of Caveolin1 and Laminin β2 in hypoxia-resistant gastric cancer cells and their corresponding extracellular vesicles. Importantly, Caveolin1 was found to play a central role in mediating Laminin β2 sorting into extracellular vesicles derived from hypoxia-resistant gastric cancer cells, and subsequently, extracellular vesicle-associated Laminin β2 promoted peritoneal metastasis in normoxic gastric cancer cells by activating the AKT pathway. Further investigation confirmed that Caveolin1 activation by Rho-related Coiled-coil kinase 1-mediated phosphorylation of Y14 residue is a key factor facilitating Laminin β2 sorting into extracellular vesicles. Moreover, Y14 phosphorylated- Caveolin1 enhanced Laminin β2 sorting by activating Rab11. Finally, our study demonstrated that a combined assessment of plasma extracellular vesicle-associated Caveolin1 and extracellular vesicle-associated Laminin β2 could provide an accurate predictive tool for peritoneal metastasis occurrence in gastric cancer.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xin He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jian Deng
- Third Department of Medical Oncology, The Fifth People Hospital of Shenyang, Shenyang, China
| | - Wenqing Lu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zichang Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xueying Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Shiying Tang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Bowen Bao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jie Ren
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiaojie Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Hongfei Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Clinical Cancer Research Center of Shenyang, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Clinical Cancer Research Center of Shenyang, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Clinical Cancer Research Center of Shenyang, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
| |
Collapse
|
2
|
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, Chakraborty K, Chowdhury R, Paul A, Jha S, Dey A, Dubey A, Gorai S, Das P, Hong CM, Krishnan A, Gangadaran P, Ahn BC. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int 2024; 24:278. [PMID: 39113040 PMCID: PMC11308730 DOI: 10.1186/s12935-024-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Atharva A Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Delhi, 110016, India
| | - Aishi Bera
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Aritra Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Shreya Jha
- Department of Biomedical Engineering, National Institute of Technology, Rourkela, Orissa, 769008, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, Office of the Dean, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, South Africa.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Grigoreva TA, Novikova DS, Melino G, Barlev NA, Tribulovich VG. Ubiquitin recruiting chimera: more than just a PROTAC. Biol Direct 2024; 19:55. [PMID: 38978100 PMCID: PMC11232244 DOI: 10.1186/s13062-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Nick A Barlev
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| |
Collapse
|
5
|
Kundu S, Rohokale R, Lin C, Chen S, Biswas S, Guo Z. Bifunctional glycosphingolipid (GSL) probes to investigate GSL-interacting proteins in cell membranes. J Lipid Res 2024; 65:100570. [PMID: 38795858 PMCID: PMC11261293 DOI: 10.1016/j.jlr.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/28/2024] Open
Abstract
Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-β-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and β-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA; Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Shayak Biswas
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Liu M, Liu Y, Song T, Yang L, Qi L, Zhang YZ, Wang Y, Shen QT. Three-dimensional architecture of ESCRT-III flat spirals on the membrane. Proc Natl Acad Sci U S A 2024; 121:e2319115121. [PMID: 38709931 PMCID: PMC11098116 DOI: 10.1073/pnas.2319115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.
Collapse
Affiliation(s)
- Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yunhui Liu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
8
|
Osei Saahene R, Barnes P, Yeboah FA, Agbo E, Asante DB, Arhin SK. Expression of RAS and RAB interactor 1 (RIN1) in head and neck tumors at selected hospital in Ghana. PLoS One 2024; 19:e0301295. [PMID: 38635569 PMCID: PMC11025731 DOI: 10.1371/journal.pone.0301295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Head and neck tumors (HNT) are tumors of the paranasal sinuses, the salivary glands and the upper aerodigestive tract. RIN1 is a Ras effector protein regulating epithelial cell properties and has been implicated in a number of cancers. METHOD The aim of this study was to investigate the expression of RIN1 in head and neck tumors. RIN1 expression was assessed using quantitative real-time PCR (qRT-PCR) and immunohistochemical staining on archival head and neck tissue samples between 2014 and 2020. RESULTS RIN1 expression was low in tissue samples as compared with the normal head and neck tissues. High and low RIN1 levels were compared with ages ≤40, >40 in the head and neck tumors of p-value 0.02. There was a significant difference with p-values of 0.001 when poor and well-moderate malignant tumors were compared. CONCLUSION Our data suggests that RIN1may play an important role in head and neck tumor progression and that its expression may provide baseline data to facilitate identification of new molecular targeted therapeutics.
Collapse
Affiliation(s)
- Roland Osei Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Precious Barnes
- Department of Physician Assistant Studies, College of Health and Allied Sciences School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - F. A. Yeboah
- Department of Molecular Medicine, School of Medicine and Dentistry Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji’an City, China
| | - Du-Bois Asante
- Department of Forensic Sciences, School of Biological Sciences, College of Agricultural and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kofi Arhin
- Department of Physician Assistant Studies, College of Health and Allied Sciences School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
11
|
Huang L, Thiex NW, Lou J, Ahmad G, An W, Low-Nam ST, Kerkvliet JG, Band H, Hoppe AD. The ubiquitin ligases Cbl and Cbl-b regulate macrophage growth by controlling CSF-1R import into macropinosomes. Mol Biol Cell 2024; 35:ar38. [PMID: 38170572 PMCID: PMC10916879 DOI: 10.1091/mbc.e23-09-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.
Collapse
Affiliation(s)
- Lu Huang
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Natalie W. Thiex
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Jieqiong Lou
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Gulzar Ahmad
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wei An
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Shalini T. Low-Nam
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
| | - Jason G. Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| | - Hamid Band
- Eppley Institute for Research in Cancer and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Adam D. Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007
- BioSNTR, Brookings, SD 57007
| |
Collapse
|
12
|
Han W, Zhang H, Feng L, Dang R, Wang J, Cui C, Jiang P. The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm (Beijing) 2023; 4:e410. [PMID: 37916034 PMCID: PMC10616655 DOI: 10.1002/mco2.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Exosomes, membrane-enclosed vesicles, are secreted by all types of cells. Exosomes can transport various molecules, including proteins, lipids, functional mRNAs, and microRNAs, and can be circulated to various recipient cells, leading to the production of local paracrine or distal systemic effects. Numerous studies have proved that exosomes can pass through the blood-brain barrier, thus, enabling the transfer of peripheral substances into the central nervous system (CNS). Consequently, exosomes may be a vital factor in the exchange of information between the periphery and CNS. This review will discuss the structure, biogenesis, and functional characterization of exosomes and summarize the role of peripheral exosomes deriving from tissues like the lung, gut, skeletal muscle, and various stem cell types in communicating with the CNS and influencing the brain's function. Then, we further discuss the potential therapeutic effects of exosomes in brain diseases and the clinical opportunities and challenges. Gaining a clearer insight into the communication between the CNS and the external areas of the body will help us to ascertain the role of the peripheral elements in the maintenance of brain health and illness and will facilitate the design of minimally invasive techniques for diagnosing and treating brain diseases.
Collapse
Affiliation(s)
- Wenxiu Han
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Hailiang Zhang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Lei Feng
- Department of NeurosurgeryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
| | - Ruili Dang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Jing Wang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| | - Changmeng Cui
- Department of NeurosurgeryAffiliated Hospital of Jining Medical UniversityJiningP. R. China
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningP. R. China
- Institute of Translational PharmacyJining Medical Research AcademyJiningP. R. China
| |
Collapse
|
13
|
Campos Y, Rodriguez-Enriquez R, Palacios G, Van de Vlekkert D, Qiu X, Weesner J, Gomero E, Demmers J, Bertorini T, Opferman JT, Grosveld GC, d'Azzo A. Mitochondrial proteostasis mediated by CRL5 Ozz and Alix maintains skeletal muscle function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548601. [PMID: 37503076 PMCID: PMC10369959 DOI: 10.1101/2023.07.11.548601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
High energy-demanding tissues, such as skeletal muscle, require mitochondrial proteostasis to function properly. Two quality-control mechanisms, the ubiquitin proteasome system (UPS) and the release of mitochondria-derived vesicles, safeguard mitochondrial proteostasis. However, whether these processes interact is unknown. Here we show that the E3 ligase CRL5 Ozz , a member of the UPS, and its substrate Alix control the mitochondrial concentration of Slc25A4, a solute carrier that is essential for ATP production. The mitochondria in Ozz -/- or Alix -/- skeletal muscle share overt morphologic alterations (they are supernumerary, swollen, and dysmorphic) and have abnormal metabolomic profiles. We found that CRL5 Ozz ubiquitinates Slc25A4 and promotes its proteasomal degradation, while Alix facilitates SLC25A4 loading into exosomes destined for lysosomal destruction. The loss of Ozz or Alix offsets steady-state levels of Slc25A4, which disturbs mitochondrial metabolism and alters muscle fiber composition. These findings reveal hitherto unknown regulatory functions of Ozz and Alix in mitochondrial proteostasis.
Collapse
|
14
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Guzewska MM, Szuszkiewicz J, Kaczmarek MM. Extracellular vesicles: Focus on peri-implantation period of pregnancy in pigs. Mol Reprod Dev 2023; 90:634-645. [PMID: 36645872 DOI: 10.1002/mrd.23664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023]
Abstract
The establishment of cell-to-cell communication between the endometrium and the developing embryo is the most important step in successful mammalian pregnancy. Close interaction between the uterine luminal epithelium and trophoblast cells requires triggering timely molecular dialog for successful maternal recognition of pregnancy, embryo implantation, and placenta development. Quite recently, extracellular vesicles (EVs) carrying unique molecular cargo emerged as evolutionarily conserved mediators of cell-to-cell communication during early pregnancy. To date, the presence of EVs at the embryo-maternal interface has been demonstrated in numerous mammals, including domestic livestock, such as pigs. However, few studies have focused on revealing the mechanism of EV-mediated crosstalk between developing early embryos and receptive endometrium. Over the past years, it has appeared that understanding the role of EVs in mammalian reproduction can substantially improve our understanding of the biological challenges of successful reproductive performance. This review describes current knowledge of EVs, specifically in relation to the peri-implantation period in pigs, characterized by common features of embryo implantation and high embryonic mortality in mammals.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Szuszkiewicz
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
16
|
Jia W, Yuan J, Cheng B, Ling C. Targeting tumor-derived exosome-mediated premetastatic niche formation: The metastasis-preventive value of traditional Chinese medicine. Cancer Lett 2023:216261. [PMID: 37302563 DOI: 10.1016/j.canlet.2023.216261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Tumor-derived exosome (TDE)-mediated premetastatic niche (PMN) formation is a potential mechanism underlying the organotropic metastasis of primary tumors. Traditional Chinese medicine (TCM) has shown considerable success in preventing and treating tumor metastasis. However, the underlying mechanisms remain elusive. In this review, we discussed PMN formation from the perspectives of TDE biogenesis, cargo sorting, and TDE recipient cell alterations, which are critical for metastatic outgrowth. We also reviewed the metastasis-preventive effects of TCM, which act by targeting the physicochemical materials and functional mediators of TDE biogenesis, regulating the cargo sorting machinery and secretory molecules in TDEs, and targeting the TDE-recipient cells involved in PMN formation.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Jiaying Yuan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| |
Collapse
|
17
|
Rao Ullur A, Côté G, Pelletier K, Kitchlu A. Immunotherapy in oncology and the kidneys: a clinical review of the evaluation and management of kidney immune-related adverse events. Clin Kidney J 2023; 16:939-951. [PMID: 37261008 PMCID: PMC10229281 DOI: 10.1093/ckj/sfad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are now widely used in the treatment of many cancers, and currently represent the standard of care for multiple malignancies. These agents enhance the T cell immune response to target cancer tissues, and have demonstrated considerable benefits for cancer outcomes. However, despite these improved outcomes, there are important kidney immune-related adverse events (iRAEs) associated with ICI. Acute tubulo-interstitial nephritis remains the most frequent kidney iRAE, however glomerular lesions and electrolytes disturbances are increasingly being recognized and reported. In this review, we summarize clinical features and identify risk factors for kidney iRAEs, and discuss the current understanding of pathophysiologic mechanisms. We highlight the evidence basis for guideline-recommended management of ICI-related kidney injury as well as gaps in current knowledge. We advocate for judicious use of kidney biopsy to identify ICI-associated kidney injury, and early use of corticosteroid treatment where appropriate. Selected patients may also be candidates for re-challenge with ICI therapy after a kidney iRAE, in view of current data on recurrent rates of kidney injury. Risk of benefits of re-challenge must be considered on an individual considering patient preferences and prognosis. Lastly, we review current knowledge of ICI use in the setting of patients with end-stage kidney disease, including kidney transplant recipients and those receiving dialysis, which suggest that these patients should not be summarily excluded from the potential benefits of these cancer therapies.
Collapse
Affiliation(s)
- Avinash Rao Ullur
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - Gabrielle Côté
- Division of Nephrology, Department of Medicine, CHU de Québec, Université Laval, Quebec City, Canada
| | - Karyne Pelletier
- Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Lawrence JA, Aguilar-Calvo P, Ojeda-Juárez D, Khuu H, Soldau K, Pizzo DP, Wang J, Malik A, Shay TF, Sullivan EE, Aulston B, Song SM, Callender JA, Sanchez H, Geschwind MD, Roy S, Rissman RA, Trejo J, Tanaka N, Wu C, Chen X, Patrick GN, Sigurdson CJ. Diminished Neuronal ESCRT-0 Function Exacerbates AMPA Receptor Derangement and Accelerates Prion-Induced Neurodegeneration. J Neurosci 2023; 43:3970-3984. [PMID: 37019623 PMCID: PMC10219035 DOI: 10.1523/jneurosci.1878-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.
Collapse
Affiliation(s)
- Jessica A Lawrence
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Patricia Aguilar-Calvo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Daniel Ojeda-Juárez
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Helen Khuu
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Katrin Soldau
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Jin Wang
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Adela Malik
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Erin E Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brent Aulston
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Seung Min Song
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Julia A Callender
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Henry Sanchez
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Gentry N Patrick
- Department of Biology, University of California, San Diego, La Jolla, California 92093
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, California 95616
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
19
|
Ghorbaninezhad F, Alemohammad H, Najafzadeh B, Masoumi J, Shadbad MA, Shahpouri M, Saeedi H, Rahbarfarzam O, Baradaran B. Dendritic cell-derived exosomes: A new horizon in personalized cancer immunotherapy? Cancer Lett 2023; 562:216168. [PMID: 37031915 DOI: 10.1016/j.canlet.2023.216168] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Dendritic cells (DCs) release nanometer-sized membrane vesicles known as dexosomes, containing different molecules, particularly proteins, for presenting antigens, i.e., major histocompatibility complex (MHC)-I/II and CD86. Dexosomes can, directly and indirectly, stimulate antigen-reactive CD8+ and CD4+ T cell responses. Antigen-loaded dexosomes can lead to the development of potent anti-tumoral immune responses. Notably, developing dexosome-based cell-free vaccines could serve as a new vaccination platform in the era of immunotherapy for various cancers. Furthermore, combining dexosomes vaccination strategies with other treatment approaches can considerably increase tumor-specific T cell responses. Herein, we aimed to review how dexosomes interact with immune cells, e.g., CD4+ and CD8+ T cells and natural killer (NK) cells. Besides, we discussed the limitations of this approach and suggested potential strategies to improve its effectiveness for affected patients.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Shahpouri
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbarfarzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Abstract
Exosomes are nanoscale vesicles derived from endocytosis, formed by fusion of multivesicular bodies with membranes and secreted into the extracellular matrix or body fluids. Many studies have shown that exosomes can be present in a variety of biological fluids, such as plasma, urine, saliva, amniotic fluid, ascites, and sweat, and most types of cells can secrete exosomes. Exosomes play an important role in many aspects of human development, including immunity, cardiovascular diseases, neurodegenerative diseases, and neoplasia. Urine can be an alternative to blood or tissue samples as a potential source of disease biomarkers because of its simple, noninvasive, sufficient, and stable characteristics. Therefore, urinary exosomes have valuable potential for early screening, monitoring disease progression, prognosis, and treatment. The method for isolating urinary exosomes has been perfected, and exosome proteomics is widely used. Therefore, we review the potential use of urinary exosomes for disease diagnosis and summarize the related literature.
Collapse
Affiliation(s)
- Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
21
|
Sharma A. Mitochondrial cargo export in exosomes: Possible pathways and implication in disease biology. J Cell Physiol 2023; 238:687-697. [PMID: 36745675 DOI: 10.1002/jcp.30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Exosome biogenesis occurs parallel to multiple endocytic traffic routes. These coexisting routes drive cargo loading in exosomes via overlapping of exosome biogenesis with endosomal pathways. One such pathway is autophagy which captures damaged intracellular organelles or their components in an autophagosome vesicle and route them for lysosomal degradation. However, in case of a noncanonical fusion event between autophagosome and maturing multivesicular body (MVB)-a site for exosome biogenesis, the autophagic cargo is putatively loaded in exosomes and subsequent released out of the cell via formation of an "amphisome" like structure. Similarly, during "mitophagy" or mitochondrial (mt) autophagy, amphisome formation routes mitophagy cargo to exosomes. These mt-cargo enriched exosomes or mt-enREXO are often positive for LC3 protein-an autophagic flux marker, and potent regulators of paracrine signaling with both homeostatic and pathological roles. Here, I review this emerging concept and discuss how intracellular autophagic routes helps in generation of mt-enREXO and utility of these vesicles in paracrine cellular signaling and diagnostic areas.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Ltd, Pune, India
| |
Collapse
|
22
|
Lalnunthangi A, Dakpa G, Tiwari S. Multifunctional role of the ubiquitin proteasome pathway in phagocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:179-217. [PMID: 36631192 DOI: 10.1016/bs.pmbts.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phagocytosis is a specialized form of endocytosis where large cells and particles (>0.5μm) are engulfed by the phagocytic cells, and ultimately digested in the phagolysosomes. This process not only eliminates unwanted particles and pathogens from the extracellular sources, but also eliminates apoptotic cells within the body, and is critical for maintenance of tissue homeostasis. It is believed that both endocytosis and phagocytosis share common pathways after particle internalization, but specialized features and differences between these two routes of internalization are also likely. The recruitment and removal of each protein/particle during the maturation of endocytic/phagocytic vesicles has to be tightly regulated to ensure their timely action. Ubiquitin proteasome pathway (UPP), degrades unwanted proteins by post-translational modification of proteins with chains of conserved protein Ubiquitin (Ub), with subsequent recognition of Ub chains by the 26S proteasomes and substrate degradation by this protease. This pathway utilizes different Ub linkages to modify proteins to regulate protein-protein interaction, localization, and activity. Due to its vast number of targets, it is involved in many cellular pathways, including phagocytosis. This chapters describes the basic steps and signaling in phagocytosis and different roles that UPP plays at multiple steps in regulating phagocytosis directly, or through its interaction with other phagosomal proteins. How aberrations in UPP function affect phagocytosis and their association with human diseases, and how pathogens exploit this pathway for their own benefit is also discussed.
Collapse
Affiliation(s)
| | | | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
23
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
24
|
Avalos-Padilla Y, Georgiev VN, Ewins E, Robinson T, Orozco E, Lipowsky R, Dimova R. Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins. iScience 2022; 26:105765. [PMID: 36590172 PMCID: PMC9800321 DOI: 10.1016/j.isci.2022.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate. Here, giant unilamellar vesicles, microfluidic technology, and micropipette aspiration are combined to continuously follow the ESCRT-III-mediated membrane remodeling on the single-vesicle level for the first time. With this approach, we identify different mechanisms by which a minimal set of three ESCRT-III proteins from Entamoeba histolytica reshape the membrane. These proteins modulate the membrane stiffness and spontaneous curvature to regulate bud size and generate intraluminal vesicles even in the absence of ATP. We demonstrate that the bud stability depends on the protein concentration and membrane tension. The approaches introduced here should open the road to diverse applications in synthetic biology for establishing artificial cells with several membrane compartments.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain,Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - Vasil N. Georgiev
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Eleanor Ewins
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, 07360 Ciudad de México, México
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany,Corresponding author
| |
Collapse
|
25
|
Klyosova E, Azarova I, Polonikov A. A Polymorphism in the Gene Encoding Heat Shock Factor 1 ( HSF1) Increases the Risk of Type 2 Diabetes: A Pilot Study Supports a Role for Impaired Protein Folding in Disease Pathogenesis. Life (Basel) 2022; 12:life12111936. [PMID: 36431071 PMCID: PMC9694443 DOI: 10.3390/life12111936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this pilot study was to investigate whether polymorphisms in the gene encoding heat shock factor 1 (HSF1), a transcriptional activator of molecular chaperones, play a role in the development of type 2 diabetes (T2D). A total of 3229 unrelated individuals of Slavic origin, including 1569 T2D patients and 1660 age- and sex-matched healthy controls, were enrolled for the study. Five common single nucleotide polymorphisms (SNPs) of the HSF1 gene were genotyped using the MassArray-4 system. SNPs rs7838717 (p = 0.002) and rs3757971 (p = 0.005) showed an association with an increased risk of T2D in females with a body mass index ≥ 25 kg/m2. The rs7838717T-rs4279640T-rs3757971C and rs7838717T-rs4279640T-rs3757971T haplotypes were associated with increased and decreased disease risk in overweight or obese females, respectively. The associations were replicated as disease susceptibility genes in large cohorts from the UK Biobank (p = 0.008), DIAMANTE (p = 2.7 × 10-13), and DIAGRAM (p = 0.0004) consortiums. The functional annotation of the SNPs revealed that the rs7838717-T and rs3757971C alleles correlated with increased expression of the genes involved in unfolded protein response. The present study showed, for the first time, that genetic variation of HSF1 is associated with the risk of type 2 diabetes, supporting a role for impaired protein folding in disease pathogenesis.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
26
|
A multivesicular body-like organelle mediates stimulus-regulated trafficking of olfactory ciliary transduction proteins. Nat Commun 2022; 13:6889. [PMID: 36371422 PMCID: PMC9653401 DOI: 10.1038/s41467-022-34604-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulus transduction in cilia of olfactory sensory neurons is mediated by odorant receptors, Gαolf, adenylate cyclase-3, cyclic nucleotide-gated and chloride ion channels. Mechanisms regulating trafficking and localization of these proteins in the dendrite are unknown. By lectin/immunofluorescence staining and in vivo correlative light-electron microscopy (CLEM), we identify a retinitis pigmentosa-2 (RP2), ESCRT-0 and synaptophysin-containing multivesicular organelle that is not part of generic recycling/degradative/exosome pathways. The organelle's intraluminal vesicles contain the olfactory transduction proteins except for Golf subunits Gγ13 and Gβ1. Instead, Gβ1 colocalizes with RP2 on the organelle's outer membrane. The organelle accumulates in response to stimulus deprivation, while odor stimuli or adenylate cyclase activation cause outer membrane disintegration, release of intraluminal vesicles, and RP2/Gβ1 translocation to the base of olfactory cilia. Together, these findings reveal the existence of a dendritic organelle that mediates both stimulus-regulated storage of olfactory ciliary transduction proteins and membrane-delimited sorting important for G protein heterotrimerization.
Collapse
|
27
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Golden CK, Kazmirchuk TDD, McNally EK, El eissawi M, Gokbayrak ZD, Richard JD, Brett CL. A two-tiered system for selective receptor and transporter protein degradation. PLoS Genet 2022; 18:e1010446. [PMID: 36215320 PMCID: PMC9584418 DOI: 10.1371/journal.pgen.1010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Diverse physiology relies on receptor and transporter protein down–regulation and degradation mediated by ESCRTs. Loss–of–function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail–safe layer of defense when ESCRTs disregard their clients, representing a two–tiered system that ensures degradation of surface polytopic proteins. Receptor, transporter and channel proteins on the plasma membranes (or surface) of all cells mediate extensive physiology. This requires precise control of their numbers, and damaged copies must be removed to prevent cytotoxicity. Their downregulation and degradation is mediated by lysosomes after endocytosis and entry into the multi–vesicular body (MVB) pathway which depends on ESCRTs (Endosomal Sorting Complexes Required for Transport). Loss–of–function mutations in ESCRT genes are linked to cancers and neurological disease, but cells survive and some proteins continue to be degraded. Herein, we use baker’s yeast (Saccharomyces cerevisiae) as model to better understand how surface proteins are degraded in cells missing ESCRT genes. Using fluorescence microscopy matched with biochemical and genetic approaches, we find that the methionine transporter Mup1 and G-protein coupled receptor Ste3 continue to be degraded when two ESCRT genes are deleted. They are endocytosed but rerouted to membranes of vacuolar lysosomes after stimuli are applied to trigger their downregulation. Here they are sorted into intralumenal fragments and degraded by acid hydrolases within vacuolar lysosomes upon homotypic membrane fusion. We propose that this intralumenal fragment (ILF) pathway functions as a secondary mechanism to degrade surface proteins with the canonical MVB pathway is disrupted.
Collapse
Affiliation(s)
| | | | - Erin Kate McNally
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
29
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
30
|
Exporting Proteins Associated with Senescence Repair via Extracellular Vesicles May Be Associated with Early Pregnancy Loss. Cells 2022; 11:cells11182772. [PMID: 36139348 PMCID: PMC9496689 DOI: 10.3390/cells11182772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Dysfunction of placental development is involved in early pregnancy loss. Senescent changes have been seen in missed miscarriage, one type of pregnancy loss. Extracellular vesicles (EVs) have been widely implicated in the pathogenesis of diseases. In this study, we investigated the protein profiles in placental EVs derived from missed miscarriage in comparison with healthy pregnancy. We also investigated whether cargos packed into EVs are involved in the dysfunctional development of the placenta seen in missed miscarriage. Methods: Proteomic analysis of placental EVs derived from healthy and missed-miscarriage placentae was performed. Three senescence-repair-associated proteins, replication protein A-70 (RPA-70), proteasome activator subunit-4 (PMSE-4), and protein activated kinase-2, (PAK-2) were examined in placental EVs and placentae, and in placental explants that had been treated with or without GW4869, by western blotting and immunohistochemistry. Results: The total number of proteins associated with placental EVs was not different between the two groups. However, there were 106 and 151 abundantly expressed proteins associated with placental micro- or nano-EVs from missed miscarriage in comparison with EVs from controls. Of these abundant proteins, 59 and 81 proteins in placental micro- or nano-EVs, respectively, are associated with DNA damage/repair and cell death/survival. We further found higher levels of three senescence-repair-associated proteins (RPA-70, PMSE-4, and PAK-2) associated with placental EVs, but lower levels of these proteins in missed-miscarriage placentae. Regarding inhibition of EV formation or release by GW4869, we found that the expression of these three proteins was higher in GW4869-treated placental explants from missed miscarriage. Discussion: Our data may suggest that “inadvertently” sorting of cargos and exporting proteins associated with senescence-repair by placental EVs may be associated with the dysfunction of placental development seen in missed miscarriage.
Collapse
|
31
|
Sakamaki JI, Ode KL, Kurikawa Y, Ueda HR, Yamamoto H, Mizushima N. Ubiquitination of phosphatidylethanolamine in organellar membranes. Mol Cell 2022; 82:3677-3692.e11. [PMID: 36044902 DOI: 10.1016/j.molcel.2022.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.
Collapse
Affiliation(s)
- Jun-Ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-0871, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
32
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
33
|
Xing J, Ji D, Duan Z, Chen T, Luo X. Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in response to flg22 elicitor stimuli. THE NEW PHYTOLOGIST 2022; 235:518-532. [PMID: 35358335 DOI: 10.1111/nph.18127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The plant receptor-like kinase FERONIA (FER) functions in the response to multiple extracellular signals, thereby regulating diverse cellular processes, such as polarized cell growth, hormone signaling and responses to pathogens. Here, we reported that in Arabidopsis thaliana, flagellin peptide flg22 stimulus significantly promoted the lateral mobility and dissociation of FER from the plasma membrane by inducing the association of FER with membrane microdomain components. FER underwent constitutive endocytosis and recycling in a brefeldin A (BFA)-sensitive manner via a clathrin-mediated pathway. Following flg22 elicitation, FER localized to bona fide endosomes via two distinct endocytic routes, showing differential sensitivity to BFA. These results at the single-particle level confirm that FER acts as an essential regulator during flg22 perception and immune activation, thus broadening our understanding of location-specific protein dynamics and membrane trafficking in receptor/receptor kinase signaling.
Collapse
Affiliation(s)
- Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaomin Luo
- Key Laboratory of Plant Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
34
|
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK. A multi-omics approach identifies pancreatic cancer cell extracellular vesicles as mediators of the unfolded protein response in normal pancreatic epithelial cells. J Extracell Vesicles 2022; 11:e12232. [PMID: 35656858 PMCID: PMC9164146 DOI: 10.1002/jev2.12232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/22/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023] Open
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment.
Collapse
Affiliation(s)
- Charles P. Hinzman
- Department of BiochemistryMolecular and Cellular BiologyGeorgetown University Medical CentreWashingtonDCUSA
| | - Baldev Singh
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | - Shivani Bansal
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | - Yaoxiang Li
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | - Anton Iliuk
- Tymora Analytical OperationsWest LafayetteINUSA
| | - Michael Girgis
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | | | - Jose G. Trevino
- Division of Surgical OncologyVCU Massey Cancer CentreRichmondVAUSA
| | - Vijay K. Singh
- Department of Pharmacology and Molecular TherapeuticsSchool of MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
- Armed Forces Radiobiology Research InstituteUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Partha P. Banerjee
- Department of BiochemistryMolecular and Cellular BiologyGeorgetown University Medical CentreWashingtonDCUSA
| | - Amrita K. Cheema
- Department of BiochemistryMolecular and Cellular BiologyGeorgetown University Medical CentreWashingtonDCUSA
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| |
Collapse
|
35
|
Adashev VE, Bazylev SS, Potashnikova DM, Godneeva BK, Shatskikh AS, Olenkina OM, Olenina LV, Kotov AA. Comparative transcriptional analysis uncovers molecular processes in early and mature somatic cyst cells of Drosophila testes. Eur J Cell Biol 2022; 101:151246. [PMID: 35667338 DOI: 10.1016/j.ejcb.2022.151246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
The tight interaction between somatic and germline cells is conserved in animal spermatogenesis. The testes of Drosophila melanogaster are the model of choice to identify processes responsible for mature gamete production. However, processes of differentiation and soma-germline interactions occurring in somatic cyst cells are currently understudied. Here we focused on the comparison of transcriptome expression patterns of early and mature somatic cyst cells to find out the developmental changes taking place in them. We employed a FACS-based approach for the isolation of early and mature somatic cyst cells from fly testes, subsequent preparation of RNA-Seq libraries, and analysis of gene differential expression in the sorted cells. We found increased expression of genes involved in cell cycle-related processes in early cyst cells, which is necessary for the proliferation and self-renewal of a crucial population of early cyst cells, cyst stem cells. Genes proposedly required for lamellipodium-like projection organization for proper cyst formation were also detected among the upregulated ones in early cyst cells. Gene Ontology and interactome analyses of upregulated genes in mature cyst cells revealed a striking over-representation of gene categories responsible for metabolic and catabolic cellular processes, as well as genes supporting the energetic state of the cells provided by oxidative phosphorylation that is carried out in mitochondria. Our comparative analyses of differentially expressed genes revealed major peculiarities in early and mature cyst cells and provide novel insight into their regulation, which is important for male fertility.
Collapse
Affiliation(s)
- Vladimir E Adashev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Sergei S Bazylev
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Daria M Potashnikova
- Lomonosov Moscow State University, School of Biology, Department of Cell Biology and Histology, Moscow 119234, Russia.
| | - Baira K Godneeva
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Aleksei S Shatskikh
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Oxana M Olenkina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Ludmila V Olenina
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| | - Alexei A Kotov
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 2 Kurchatov Sq., Moscow 123182, Russia.
| |
Collapse
|
36
|
Karoui H, Patwal PS, Pavan Kumar BVVS, Martin N. Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Front Mol Biosci 2022; 9:880525. [PMID: 35720123 PMCID: PMC9199989 DOI: 10.3389/fmolb.2022.880525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, the focus of bottom-up synthetic biology has shifted from the design of complex artificial cell architectures to the design of interactions between artificial cells mediated by physical and chemical cues. Engineering communication between artificial cells is crucial for the realization of coordinated dynamic behaviours in artificial cell populations, which would have implications for biotechnology, advanced colloidal materials and regenerative medicine. In this review, we focus our discussion on molecular communication between artificial cells. We cover basic concepts such as the importance of compartmentalization, the metabolic machinery driving signaling across cell boundaries and the different modes of communication used. The various studies in artificial cell signaling have been classified based on the distance between sender and receiver cells, just like in biology into autocrine, juxtacrine, paracrine and endocrine signaling. Emerging tools available for the design of dynamic and adaptive signaling are highlighted and some recent advances of signaling-enabled collective behaviours, such as quorum sensing, travelling pulses and predator-prey behaviour, are also discussed.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| | - Pankaj Singh Patwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | | | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| |
Collapse
|
37
|
Optineurin promotes myogenesis during muscle regeneration in mice by autophagic degradation of GSK3β. PLoS Biol 2022; 20:e3001619. [DOI: 10.1371/journal.pbio.3001619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/09/2022] [Accepted: 04/04/2022] [Indexed: 01/18/2023] Open
Abstract
Skeletal muscle regeneration is essential for maintaining muscle function in injury and muscular disease. Myogenesis plays key roles in forming new myofibers during the process. Here, through bioinformatic screen for the potential regulators of myogenesis from 5 independent microarray datasets, we identify an overlapping differentially expressed gene (DEG) optineurin (OPTN). Optn knockdown (KD) delays muscle regeneration in mice and impairs C2C12 myoblast differentiation without affecting their proliferation. Conversely, Optn overexpression (OE) promotes myoblast differentiation. Mechanistically, OPTN increases nuclear levels of β-catenin and enhances the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription activity, suggesting activation of Wnt signaling pathway. The activation is accompanied by decreased protein levels of glycogen synthase kinase 3β (GSK3β), a negative regulator of the pathway. We further show that OPTN physically interacts with and targets GSK3β for autophagic degradation. Pharmacological inhibition of GSK3β rescues the impaired myogenesis induced by Optn KD during muscle regeneration and myoblast differentiation, corroborating that GSK3β is the downstream effector of OPTN-mediated myogenesis. Together, our study delineates the novel role of OPTN as a potential regulator of myogenesis and may open innovative therapeutic perspectives for muscle regeneration.
Collapse
|
38
|
Endocytosis at the Crossroad of Polarity and Signaling Regulation: Learning from Drosophila melanogaster and Beyond. Int J Mol Sci 2022; 23:ijms23094684. [PMID: 35563080 PMCID: PMC9101507 DOI: 10.3390/ijms23094684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular trafficking through the endosomal–lysosomal system is essential for the transport of cargo proteins, receptors and lipids from the plasma membrane inside the cells and across membranous organelles. By acting as sorting stations, vesicle compartments direct the fate of their content for degradation, recycling to the membrane or transport to the trans-Golgi network. To effectively communicate with their neighbors, cells need to regulate their compartmentation and guide their signaling machineries to cortical membranes underlying these contact sites. Endosomal trafficking is indispensable for the polarized distribution of fate determinants, adaptors and junctional proteins. Conversely, endocytic machineries cooperate with polarity and scaffolding components to internalize receptors and target them to discrete membrane domains. Depending on the cell and tissue context, receptor endocytosis can terminate signaling responses but can also activate them within endosomes that act as signaling platforms. Therefore, cell homeostasis and responses to environmental cues rely on the dynamic cooperation of endosomal–lysosomal machineries with polarity and signaling cues. This review aims to address advances and emerging concepts on the cooperative regulation of endocytosis, polarity and signaling, primarily in Drosophila melanogaster and discuss some of the open questions across the different cell and tissue types that have not yet been fully explored.
Collapse
|
39
|
Kumar DN, Chaudhuri A, Aqil F, Dehari D, Munagala R, Singh S, Gupta RC, Agrawal AK. Exosomes as Emerging Drug Delivery and Diagnostic Modality for Breast Cancer: Recent Advances in Isolation and Application. Cancers (Basel) 2022; 14:1435. [PMID: 35326585 PMCID: PMC8946254 DOI: 10.3390/cancers14061435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common type of malignancy which covers almost one-fourth of all the cancers diagnosed in women. Conventionally, chemo-, hormonal-, immune-, surgery, and radiotherapy are the clinically available therapies for BC. However, toxicity and other related adverse effects are still the major challenges. A variety of nano platforms have been reported to overcome these limitations, among them, exosomes provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. Exosomes are biological nanovesicles made up of a lipidic bilayer and known for cell-to-cell communication. Exosomes have been reported to be present in almost all bodily fluids, viz., blood, milk, urine, saliva, pancreatic juice, bile, peritoneal, and cerebrospinal fluid. Such characteristics of exosomes have attracted immense interest in cancer diagnosis and therapy. They can deliver bioactive moieties such as protein, lipids, hydrophilic as well as hydrophobic drugs, various RNAs to both distant and nearby recipient cells as well as have specific biological markers. By considering the growing interest of the scientific community in this field, we comprehensively compiled the information about the biogenesis of exosomes, various isolation methods, the drug loading techniques, and their diverse applications in breast cancer diagnosis and therapy along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (F.A.); (R.M.); (R.C.G.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Radha Munagala
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (F.A.); (R.M.); (R.C.G.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Ramesh C. Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (F.A.); (R.M.); (R.C.G.)
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, Baxter II Research Building, University of Louisville, Louisville, KY 40202, USA
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| |
Collapse
|
40
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
41
|
Moore CA, Ferrer AI, Alonso S, Pamarthi SH, Sandiford OA, Rameshwar P. Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:67-89. [PMID: 34888844 DOI: 10.1007/978-3-030-83282-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a complex organ that sustains hematopoiesis via mechanisms involving the microenvironment. The microenvironment includes several cell types, neurotransmitters from innervated fibers, growth factors, extracellular matrix proteins, and extracellular vesicles. The main function of the BM is to regulate hematopoietic function to sustain the production of blood and immune cells. However, the BM microenvironment can also accommodate the survival of malignant cells. A major mechanism by which the cancer cells communicate with cells of the BM microenvironment is through the exchange of exosomes, a subset of extracellular vesicles that deliver molecular signals bidirectionally between malignant and healthy cells. The field of exosomes is an active area of investigation since an understanding of how the exosomal packaging, cargo, and production can be leveraged therapeutically to deter cancer progression and sensitize malignant cells to other therapies. Altogether, this chapter discusses the crucial role of exosomes in the development and progression of BM-associated cancers, such as hematologic malignancies and marrow-metastatic breast cancer. Exosome-based therapeutic strategies and their limitations are also considered.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alejandra I Ferrer
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sara Alonso
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Oleta A Sandiford
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
42
|
Hanumantha Rao K, Roy K, Paul S, Ghosh S. N-acetylglucosamine transporter, Ngt1, undergoes sugar-responsive endosomal trafficking in Candida albicans. Mol Microbiol 2021; 117:429-449. [PMID: 34877729 DOI: 10.1111/mmi.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
N-acetylglucosamine (GlcNAc), an important amino sugar at the infection sites of the fungal pathogen Candida albicans, triggers multiple cellular processes. GlcNAc import at the cell surface is mediated by GlcNAc transporter, Ngt1 which seems to play a critical role during GlcNAc signaling. We have investigated the Ngt1 dynamics that provide a platform for further studies aimed at understanding the mechanistic insights of regulating process(es) in C. albicans. The expression of this transporter is prolific and highly sensitive to even very low levels (˂2 µM) of GlcNAc. Under these conditions, Ngt1 undergoes phosphorylation-associated ubiquitylation as a code for internalization. This ubiquitylation process involves the triggering proteins like protein kinase Snf1, arrestin-related trafficking adaptors (ART) protein Rod1, and yeast ubiquitin ligase Rsp5. Interestingly, analysis of ∆snf1 and ∆rsp5 mutants revealed that while Rsp5 is promoting the endosomal trafficking of Ngt1-GFPɤ, Snf1 hinders the process. Furthermore, colocalization experiments of Ngt1 with Vps17 (an endosomal marker), Sec7 (a trans-Golgi marker), and a vacuolar marker revealed the fate of Ngt1 during sugar-responsive endosomal trafficking. ∆ras1 and ∆ubi4 mutants showed decreased ubiquitylation and delayed endocytosis of Ngt1. According to our knowledge, this is the first report which illustrates the mechanistic insights that are responsible for endosomal trafficking of a GlcNAc transporter in an eukaryotic organism.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.,Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Kasturi Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Soumita Paul
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Swagata Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| |
Collapse
|
43
|
Garzón M, Wang G, Chan J, Bourie F, Mackie K, Pickel VM. Adolescent administration of Δ 9-THC decreases the expression and function of muscarinic-1 receptors in prelimbic prefrontal cortical neurons of adult male mice. IBRO Neurosci Rep 2021; 11:144-155. [PMID: 34667972 PMCID: PMC8506972 DOI: 10.1016/j.ibneur.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Long-term cannabis use during adolescence has deleterious effects in brain that are largely ascribed to the activation of cannabinoid-1 receptors (CB1Rs) by delta-9-tetrahydrocannabinol (∆9-THC), the primary psychoactive compound in marijuana. Systemic administration of ∆9-THC inhibits acetylcholine release in the prelimbic-prefrontal cortex (PL-PFC). In turn, PL-PFC acetylcholine plays a role in executive activities regulated by CB1R-targeting endocannabinoids, which are generated by cholinergic stimulation of muscarinic-1 receptors (M1Rs). However, the long-term effects of chronic administration of increasing doses of ∆9-THC in adolescent males on the distribution and function of M1 and/or CB1 receptors in the PL-PFC remains unresolved. We used C57BL\6J male mice pre-treated with vehicle or escalating daily doses of ∆9-THC to begin filling this gap. Electron microscopic immunolabeling showed M1R-immunogold particles on plasma membranes and in association with cytoplasmic membranes in varying sized dendrites and dendritic spines. These dendritic profiles received synaptic inputs from unlabeled, CB1R- and/or M1R-labeled axon terminals in the PL-PFC of both treatment groups. However, there was a size-dependent decrease in total (plasmalemmal and cytoplasmic) M1R gold particles in small dendrites within the PL-PFC of mice receiving ∆9-THC. Whole cell current-clamp recording in PL-PFC slice preparations further revealed that adolescent pretreatment with ∆9-THC attenuates the hyperpolarization and increases the firing rate produced by local muscarinic stimulation. Repeated administration of ∆9-THC during adolescence also reduced spontaneous alternations in a Y-maze paradigm designed for measures of PFC-dependent memory function in adult mice. Our results provide new information implicating M1Rs in cortical dysfunctions resulting from adolescent abuse of marijuana.
Collapse
Key Words
- 2-AG, 2-arachidonoyl-glycerol diacylglycerol
- ABC, avidin biotin complex
- ACSF, artificial cerebrospinal fluid
- Adolescence
- BSA, bovine serum albumin
- CB1Rs, cannabinoid-1 receptors
- Cannabinoid
- DAG, diacylglycerol
- EPSC, excitatory postsynaptic current
- ETOH, ethyl alcohol
- IP3, inositol 1,4,5-trisphosphate
- IPSC, inhibitory postsynaptic current
- ITI, intertrial interval
- LTD, long term depression
- M1Rs, muscarinic-1 receptors
- Marijuana
- Muscarinic-1 receptor
- NMDA, N- methyl-D-aspartate
- PBS, phosphate buffered saline
- PD, postnatal day
- PL-PFC, prelimbic-prefrontal cortex
- PLC, phospholipase C
- Prefrontal cortex
- Prelimbic
- RMP, resting membrane potential
- SA, spontaneous alternation
- TS, Tris-buffered saline
- ∆9-THC, delta-9-tetrahydrocannabinol
Collapse
Affiliation(s)
- Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid 28029, Spain
| | - Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - June Chan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Faye Bourie
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
44
|
Li Y, Tan J, Miao Y, Zhang Q. MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Dis 2021; 7:285. [PMID: 34635652 PMCID: PMC8505641 DOI: 10.1038/s41420-021-00670-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Extracellular vesicle (EV), critical mediators of cell-cell communication, allow cells to exchange proteins, lipids, and genetic material and therefore profoundly affect the general homeostasis. A hypoxic environment can affect the biogenesis and secrete of EVs, and the cargoes carried can participate in a variety of physiological and pathological processes. In hypoxia-induced inflammation, microRNA(miRNA) in EV participates in transcriptional regulation through various pathways to promote or reduce the inflammatory response. Meanwhile, as an important factor of immune response, the polarization of macrophages is closely linked to miRNAs, which will eventually affect the inflammatory state. In this review, we outline the possible molecular mechanism of EV changes under hypoxia, focusing on the signaling pathways of several microRNAs involved in inflammation regulation and describing the process and mechanism of EV-miRNAs regulating macrophage polarization in hypoxic diseases.
Collapse
Affiliation(s)
- Ye Li
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jin Tan
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yuyang Miao
- grid.265021.20000 0000 9792 1228Tianjin Medical University, 300052 Tianjin, China
| | - Qiang Zhang
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| |
Collapse
|
45
|
Linder M, Pogge von Strandmann E. The Role of Extracellular HSP70 in the Function of Tumor-Associated Immune Cells. Cancers (Basel) 2021; 13:cancers13184721. [PMID: 34572948 PMCID: PMC8466959 DOI: 10.3390/cancers13184721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The intracellular heat shock protein 70 (HSP70) is essential for cells to respond to stress, for instance, by refolding damaged proteins or inhibiting apoptosis. However, in cancer, HSP70 is overexpressed and can translocate to the extracellular milieu, where it emerged as an important modulator of tumor-associated immune cells. By targeting the tumor microenvironment (TME) through different mechanisms, extracellular HSP70 can trigger pro- or anti-tumorigenic responses. Therefore, understanding the pathways and their consequences is crucial for therapeutically targeting cancer and its surrounding microenvironment. In this review, we summarize current knowledge on the translocation of extracellular HSP70. We further elucidate its functions within the TME and provide an overview of potential therapeutic options. Abstract Extracellular vesicles released by tumor cells (T-EVs) are known to contain danger-associated molecular patterns (DAMPs), which are released in response to cellular stress to alert the immune system to the dangerous cell. Part of this defense mechanism is the heat shock protein 70 (HSP70), and HSP70-positive T-EVs are known to trigger anti-tumor immune responses. Moreover, extracellular HSP70 acts as an immunogen that contributes to the cross-presentation of major histocompatibility complex (MHC) class I molecules. However, the release of DAMPs, including HSP70, may also induce chronic inflammation or suppress immune cell activity, promoting tumor growth. Here, we summarize the current knowledge on soluble, membrane-bound, and EV-associated HSP70 regarding their functions in regulating tumor-associated immune cells in the tumor microenvironment. The molecular mechanisms involved in the translocation of HSP70 to the plasma membrane of tumor cells and its release via exosomes or soluble proteins are summarized. Furthermore, perspectives for immunotherapies aimed to target HSP70 and its receptors for cancer treatment are discussed and presented.
Collapse
|
46
|
Rühl S, Broz P. Regulation of Lytic and Non-Lytic Functions of Gasdermin Pores. J Mol Biol 2021; 434:167246. [PMID: 34537232 DOI: 10.1016/j.jmb.2021.167246] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a necrotic form of cell death that was initially found to be induced upon activation of inflammatory caspases by inflammasome complexes. Mechanistically, pyroptosis induction requires cleavage of the caspase substrate gasdermin D (GSDMD), and the release of the GSDMD N-terminal fragment, which targets the plasma membrane to form large β-barrel pores. GSDMD shares this pore-forming ability with other gasdermin family members, which induce pyroptosis during infection or upon treatment with chemotherapy drugs. While induction of cell death has been assumed to be the main function of the gasdermin pores, increasing evidence suggests that these pores have non-lytic functions, such as in releasing cytokines or alarmins and in regulating intracellular signaling via ionic fluxes. Here we discuss how gasdermin pore formation is regulated to induce membrane permeabilization or lysis, how gasdermin pores achieve specificity for cargo-release and how cells repair gasdermin-induced damage to the plasma membrane.
Collapse
Affiliation(s)
- Sebastian Rühl
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
47
|
Schuler MH, English AM, Xiao T, Campbell TJ, Shaw JM, Hughes AL. Mitochondrial-derived compartments facilitate cellular adaptation to amino acid stress. Mol Cell 2021; 81:3786-3802.e13. [PMID: 34547239 PMCID: PMC8513802 DOI: 10.1016/j.molcel.2021.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alyssa M English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Thane J Campbell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Janet M Shaw
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
48
|
Logozzi M, Di Raimo R, Mizzoni D, Fais S. What we know on the potential use of exosomes for nanodelivery. Semin Cancer Biol 2021; 86:13-25. [PMID: 34517111 DOI: 10.1016/j.semcancer.2021.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Antitumor therapy is taking into consideration the possibility to use natural nanovesicles, called exosomes, as an ideal delivery for both old and new anti-cancer molecules. This with the attempt to improve the efficacy, at the same time reducing the systemic toxicity of physical, chemical, and biological molecules. Exosomes may in fact increase the level of biomimetism, through simulating what really occurs in nature. Although extracellularly released vesicles include both microvesicles (MVs) and exosomes, only exosomes have the size that may be considered suitable for potential use to this purpose, also by analogy with the diffusely used artificial nanoparticles, such as lyposomes. In fact, recent reports have shown that exosomes are able to interact with target cells within an organ or at a distance using different mechanisms. Much is yet to be understood about exosomes, and currently, we are looking at the visible top of an iceberg, with most of what we have to understand on these nanovesicles still under the sea. In fact, we know that exosomes released by normal cells always trigger positive effects, while those released by cells in pathological condition, such as tumors may induce undesired, dangerous, and mostly unknown effects. To date we have many pre-clinical data available and possibly useful to think about a strategic use of exosomes as a delivery nanodevice in cancer treatment. However, this review wants to critically emphasize two important points actually hampering further discussion in the field : (i) the clinical data are virtually absent at the moment ; (ii) the best cellular source of exosomes to be used to deliver drugs is really far to be defined. Facing off these two points may well facilitate the attempt to figure out this very important issue for improving at the best future anti-cancer treatments.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
49
|
Nishimura T, Oyama T, Hu HT, Fujioka T, Hanawa-Suetsugu K, Ikeda K, Yamada S, Kawana H, Saigusa D, Ikeda H, Kurata R, Oono-Yakura K, Kitamata M, Kida K, Hikita T, Mizutani K, Yasuhara K, Mimori-Kiyosue Y, Oneyama C, Kurimoto K, Hosokawa Y, Aoki J, Takai Y, Arita M, Suetsugu S. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev Cell 2021; 56:842-859.e8. [PMID: 33756122 DOI: 10.1016/j.devcel.2021.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are classified as large EVs (l-EVs, or microvesicles) and small EVs (s-EVs, or exosomes). S-EVs are thought to be generated from endosomes through a process that mainly depends on the ESCRT protein complex, including ALG-2 interacting protein X (ALIX). However, the mechanisms of l-EV generation from the plasma membrane have not been identified. Membrane curvatures are generated by the bin-amphiphysin-rvs (BAR) family proteins, among which the inverse BAR (I-BAR) proteins are involved in filopodial protrusions. Here, we show that the I-BAR proteins, including missing in metastasis (MIM), generate l-EVs by scission of filopodia. Interestingly, MIM-containing l-EV production was promoted by in vivo equivalent external forces and by the suppression of ALIX, suggesting an alternative mechanism of vesicle formation to s-EVs. The MIM-dependent l-EVs contained lysophospholipids and proteins, including IRS4 and Rac1, which stimulated the migration of recipient cells through lamellipodia formation. Thus, these filopodia-dependent l-EVs, which we named as filopodia-derived vesicles (FDVs), modify cellular behavior.
Collapse
Affiliation(s)
- Tamako Nishimura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takuya Oyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hooi Ting Hu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Toshifumi Fujioka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Kazusa DNA Research Institute, 2-6-7 Kazusa, kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hiroki Kawana
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke Saigusa
- Tohoku University Tohoku Medical Megabank Organization, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Rie Kurata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Manabu Kitamata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazuki Kida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kiyohito Mizutani
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Junken Aoki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-0011, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| |
Collapse
|
50
|
Zhang Q, Yang X, Liu H. Extracellular Vesicles in Cancer Metabolism: Implications for Cancer Diagnosis and Treatment. Technol Cancer Res Treat 2021; 20:15330338211037821. [PMID: 34427131 PMCID: PMC8388228 DOI: 10.1177/15330338211037821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Metabolic reprogramming is one of the most common characteristics of cancer cells. The metabolic alterations of glucose, amino acids and lipids can support the aggressive phenotype of cancer cells. Exosomes, a kind of extracellular vesicles, participate in the intercellular communication through transferring bioactive molecules. Increasing evidence has demonstrated that enzymes, metabolites and non-coding RNAs in exosomes are responsible for the metabolic alteration of cancer cells. In this review, we summarize the past and recent findings of exosomes in altering cancer metabolism and elaborate on the role of the specific enzymes, metabolites and non-coding RNAs transferred by exosomes. Moreover, we give evidence of the role of exosomes in cancer diagnosis and treatment. Finally, we discuss the existing problems in the study and application of exosomes in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|