1
|
Byeon CH, Kinney T, Saricayir H, Hansen KH, Scott F, Srinivasa S, Wells MK, Mentink-Vigier F, Kim W, Akbey Ü. High-Sensitivity Analysis of Native Bacterial Biofilms Using Dynamic Nuclear Polarization-Enhanced Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614951. [PMID: 39386544 PMCID: PMC11463664 DOI: 10.1101/2024.09.25.614951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial biofilms cause persistent infections that are difficult to treat and contribute greatly to antimicrobial resistance. However, high-resolution structural information on native bacterial biofilms remain very limited. This limitation is primarily due to methodological constraints associated with analyzing complex native samples. Although solid-state NMR (ssNMR) is a promising method in this regard, its conventional applications typically suffer from sensitivity limitations, particularly for unlabeled native samples. Through the use of Dynamic Nuclear Polarization (DNP), we applied sensitivity enhanced ssNMR to characterize native Pseudomonas fluorescens colony biofilms. The increased ssNMR sensitivity by DNP enabled ultrafast structural characterization of the biofilm samples without isotope-labelling, and chemical or physical modification. We collected 1D 13 C and 15 N, and 2D 1 H- 13 C, 1 H- 15 N and 13 C- 13 C ssNMR spectra within seconds/minutes or hours, respectively which enabled us to identify biofilm components as polysaccharides, proteins, and eDNA effectively. This study represents the first application of ultrasensitive DNP ssNMR to characterize a native bacterial biofilm and expands the technical scope of ssNMR towards obtaining insights into the composition and structure of a wide array of in vitro and ex vivo biofilm applications. Such versatility should greatly boost efforts to develop structure-guided approaches for combating infections caused by biofilm-forming microbes.
Collapse
|
2
|
Iungin O, Prekrasna-Kviatkovska Y, Kalinichenko O, Moshynets O, Potters G, Sidorenko M, Savchuk Y, Mickevičius S. Endophytic Bacterial Biofilm-Formers Associated with Antarctic Vascular Plants. Microorganisms 2024; 12:1938. [PMID: 39458248 PMCID: PMC11509575 DOI: 10.3390/microorganisms12101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Deschampsia antarctica and Colobantus quitensis are the only two vascular plants colonized on the Antarctic continent, which is usually exposed to extreme environments. Endophytic bacteria residing within plant tissues can exhibit diverse adaptations that contribute to their ecological success and potential benefits for their plant hosts. This study aimed to characterize 12 endophytic bacterial strains isolated from these plants, focusing on their ecological adaptations and functional roles like plant growth promotion, antifungal activities, tolerance to salt and low-carbon environments, wide temperature range, and biofilm formation. Using 16S rRNA sequencing, we identified several strains, including novel species like Hafnia and Agreia. Many strains exhibited nitrogen-fixing ability, phosphate solubilization, ammonia, and IAA production, potentially benefiting their hosts. Additionally, halotolerance and carbon oligotrophy were also shown by studied bacteria. While some Antarctic bacteria remain strictly psychrophilic, others demonstrate a remarkable ability to tolerate a wider range of temperatures, suggesting that they have acquired mechanisms to cope with fluctuations in environmental temperature and developed adaptations to survive in intermediate hosts like mammals and/or birds. Such adaptations and high plasticity of metabolism of Antarctic endophytic bacteria provide a foundation for research and development of new promising products or mechanisms for use in agriculture and technology.
Collapse
Affiliation(s)
- Olga Iungin
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine;
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
- Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania; (M.S.); (S.M.)
| | | | - Oleksandr Kalinichenko
- Department of Biotechnology, Leather and Fur, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine;
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Geert Potters
- AMACORT, Nautical Faculty, Antwerp Maritime Academy, 2030 Antwerp, Belgium;
- Department of Bioscience Engineering, University of Antwerp, 2000 Antwerp, Belgium
| | - Marina Sidorenko
- Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania; (M.S.); (S.M.)
| | - Yaroslav Savchuk
- Department of Physiology and Systematics of Micromycetes, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Saulius Mickevičius
- Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania; (M.S.); (S.M.)
| |
Collapse
|
3
|
Tan S, Li W, Yang C, Zhan Q, Lu K, Liu J, Jin YM, Bai JS, Wang L, Li J, Li Z, Yu F, Li YY, Duan YX, Lu L, Zhang T, Wei J, Li L, Zheng YT, Jiang S, Liu S. gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity. Cell Mol Immunol 2024; 21:479-494. [PMID: 38443447 PMCID: PMC11061181 DOI: 10.1038/s41423-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one β-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 β-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many β-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Suiyi Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wenjuan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingping Zhan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kunyu Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Yong-Mei Jin
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jin-Song Bai
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Lin Wang
- Department of Pathology, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jinqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaofeng Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yue-Xun Duan
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650301, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lin Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Shuwen Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Isakov NA, Belousov MV, Nizhnikov AA, Noskov BA. Dynamic properties of the layers of cupin-1.1 aggregates at the air/water interface. Biophys Chem 2024; 307:107166. [PMID: 38232602 DOI: 10.1016/j.bpc.2023.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Spread layers of amorphous aggregates of the structural domain of plant protein vicilin, cupin-1.1, at the water - air interface were studied by the surface tensiometry, dilational surface rheology, Brewster angle and atomic force microscopy. The layer properties differed strongly from the results for the layers of previously studied proteins. The dependency of the dynamic elasticity of the layer on surface pressure had two local maxima with the second peak being four times higher than the first one. In the region of the first maximum the obtained results are similar to those for dispersions of polymer microgels with a hairy corona. At the beginning of surface compression separate threads of the corona are stretched along the surface and the surface elasticity increases. The further compression results in the formation of loops and tails leading to a decrease of the elasticity. The second local maximum of the dynamic surface elasticity is presumably caused by the interactions of the rigid cores of the aggregates leading finally to the formation of multilayer structures at high surface pressures. In this case, the surface elasticity starts to decrease as a result of the segment exchange between different layers at the interface.
Collapse
Affiliation(s)
| | - Mikhail V Belousov
- St Petersburg State University, 199034 St. Petersburg, Russia; All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Anton A Nizhnikov
- St Petersburg State University, 199034 St. Petersburg, Russia; All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Boris A Noskov
- St Petersburg State University, 199034 St. Petersburg, Russia.
| |
Collapse
|
5
|
Song B, Wang W, Jia C, Han Z, Yang J, Yang J, Wu Z, Xu H, Qiao M. Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 10:25. [PMID: 38248935 PMCID: PMC10820438 DOI: 10.3390/jof10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.
Collapse
Affiliation(s)
- Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Chunhui Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiuxia Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
- School of Life Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
6
|
Byeon CH, Kinney T, Saricayir H, Srinivasa S, Wells MK, Kim W, Akbey Ü. Tapping into the native Pseudomonas bacterial biofilm structure by high-resolution multidimensional solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107587. [PMID: 37984030 PMCID: PMC10913148 DOI: 10.1016/j.jmr.2023.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
We present a multidimensional magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D 1H-13C ssNMR spectrum and thorough peak deconvolution at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT 13C ssNMR spectra to differentiate signals originating from the mobile and rigid fractions of the biofilm, and qualitatively determined dynamical changes by comparing CP buildup behaviors. Protein and polysaccharide signals were differentiated and identified by utilizing FapC protein signals as a template, a biofilm forming functional amyloid from Pseudomonas. We identified several biofilm polysaccharide species such as glucose, mannan, galactose, heptose, rhamnan, fucose and N-acylated mannuronic acid by using 1H and 13C chemical shifts obtained from the 2D spectrum. To our knowledge, this study marks the first high-resolution multidimensional ssNMR characterization of a native bacterial biofilm. Our experimental pipeline can be readily applied to other in vitro biofilm model systems and natural biofilms and holds the promise of making a substantial impact on biofilm research, fostering new ideas and breakthroughs to aid in the development of strategic approaches to combat infections caused by biofilm-forming bacteria.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Ted Kinney
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Hakan Saricayir
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States
| | - Sadhana Srinivasa
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Meghan K Wells
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Wook Kim
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
7
|
Fulton DA, Dura G, Peters DT. The polymer and materials science of the bacterial fimbriae Caf1. Biomater Sci 2023; 11:7229-7246. [PMID: 37791425 PMCID: PMC10628683 DOI: 10.1039/d3bm01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.
Collapse
Affiliation(s)
- David A Fulton
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - Gema Dura
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
- Departamento de Química Inorgánica Orgánica y Bioquímica Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas-IRICAAvda, C. J. Cela, 10, Ciudad Real 13071, Spain
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Byeon CH, Kinney T, Saricayir H, Srinivasa S, Wells MK, Kim W, Akbey Ü. Tapping into the native Pseudomonas Bacterial Biofilm Structure by High-Resolution 1D and 2D MAS solid-state NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560490. [PMID: 37873242 PMCID: PMC10592892 DOI: 10.1101/2023.10.02.560490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We present a high-resolution 1D and 2D magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize native Pseudomonas fluorescens colony biofilms at natural abundance without isotope-labelling. By using a high-resolution INEPT-based 2D 1 H- 13 C ssNMR spectrum and thorough peak deconvolution approach at the 1D ssNMR spectra, approximately 80/134 (in 1D/2D) distinct biofilm chemical sites were identified. We compared CP and INEPT 13 C ssNMR spectra to different signals originating from the mobile and rigid fractions of the biofilm, and qualitative determined dynamical changes by comparing CP buildup behaviors. Protein and polysaccharide signals were differentiated and identified by utilizing FapC signals as a template, a biofilm forming functional amyloid from Pseudomonas . We also attempted to identify biofilm polysaccharide species by using 1 H/ 13 C chemical shifts obtained from the 2D spectrum. This study marks the first demonstration of high-resolution 2D ssNMR spectroscopy for characterizing native bacterial biofilms and expands the scope of ssNMR in studying biofilms. Our experimental pipeline can be readily applied to other in vitro biofilm model systems and natural biofilms and holds the promise of making a substantial impact on biofilm research, fostering new ideas and breakthroughs to aid in the development of strategic approaches to combat infections caused by biofilm-forming bacteria.
Collapse
|
9
|
Kummer N, Huguenin-Elie L, Zeller A, Chandorkar Y, Schoeller J, Zuber F, Ren Q, Sinha A, De France K, Fischer P, Campioni S, Nyström G. 2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers. NANOSCALE ADVANCES 2023; 5:5276-5285. [PMID: 37767031 PMCID: PMC10521212 DOI: 10.1039/d3na00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Amyloid fibrils made from inexpensive hen egg white lysozyme (HEWL) are bio-based, bio-degradable and bio-compatible colloids with broad-spectrum antimicrobial activity, making them an attractive alternative to existing small-molecule antibiotics. Their surface activity leads to the formation of 2D foam films within a loop, similar to soap films when blowing bubbles. The stability of the foam was optimized by screening concentration and pH, which also revealed that the HEWL amyloid foams were actually stabilized by unconverted peptides unable to undergo amyloid self-assembly rather than the fibrils themselves. The 2D foam film was successfully deposited on different substrates to produce a homogenous coating layer with a thickness of roughly 30 nm. This was thick enough to shield the negative charge of dry cellulose nanopaper substrates, leading to a positively charged HEWL amyloid coating. The coating exhibited a broad-spectrum antimicrobial effect based on the interactions with the negatively charged cell walls and membranes of clinically relevant pathogens (Staphylococcus aureus, Escherichia coli and Candida albicans). The coating method presented here offers an alternative to existing techniques, such as dip and spray coating, in particular when optimized for continuous production. Based on the facile preparation and broad spectrum antimicrobial performance, we anticipate that these biohybrid materials could potentially be used in the biomedical sector as wound dressings.
Collapse
Affiliation(s)
- Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Luc Huguenin-Elie
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Adrian Zeller
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Yashoda Chandorkar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Jean Schoeller
- Laboratory for Biomimetic Membranes and Textiles, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
- Institute for Biomechanics, ETH Zürich Stefano-Franscini-Platz 5 8093 Zürich Switzerland
| | - Flavia Zuber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland
| | - Ashutosh Sinha
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Kevin De France
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Peter Fischer
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf Switzerland
- Institute of Food Nutrition and Health, ETH Zurich Schmelzbergstrasse 9 8092 Zurich Switzerland
| |
Collapse
|
10
|
Cheung DL. Aggregation of an Amyloidogenic Peptide on Gold Surfaces. Biomolecules 2023; 13:1261. [PMID: 37627326 PMCID: PMC10452923 DOI: 10.3390/biom13081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Solid surfaces have been shown to affect the aggregation and assembly of many biomolecular systems. One important example is the formation of protein fibrils, which can occur on a range of biological and synthetic surfaces. The rate of fibrillation depends on both the protein structure and the surface chemistry, with the different molecular and oligomer structures adopted by proteins on surfaces likely to be crucial. In this paper, the aggregation of the model amyloidogenic peptide, Aβ(16-22), corresponding to a hydrophobic segment of the amyloid beta protein on a gold surface is studied using molecular dynamics simulation. Previous simulations of this peptide on gold surfaces have shown that it adopts conformations on surfaces that are quite different from those in bulk solution. These simulations show that this then leads to significant differences in the oligomer structures formed in solution and on gold surfaces. In particular, oligomers formed on the surface are low in beta-strands so are unlike the structures formed in bulk solution. When oligomers formed in solution adsorb onto gold surfaces they can then restructure themselves. This can then help explain the inhibition of Aβ(16-22) fibrillation by gold surfaces and nanoparticles seen experimentally.
Collapse
Affiliation(s)
- David L Cheung
- School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
11
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
13
|
Li X, Liu M, Dong C. Hydrophobin Gene Cmhyd4 Negatively Regulates Fruiting Body Development in Edible Fungi Cordyceps militaris. Int J Mol Sci 2023; 24:ijms24054586. [PMID: 36902017 PMCID: PMC10003708 DOI: 10.3390/ijms24054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
A deep understanding of the mechanism of fruiting body development is important for mushroom breeding and cultivation. Hydrophobins, small proteins exclusively secreted by fungi, have been proven to regulate the fruiting body development in many macro fungi. In this study, the hydrophobin gene Cmhyd4 was revealed to negatively regulate the fruiting body development in Cordyceps militaris, a famous edible and medicinal mushroom. Neither the overexpression nor the deletion of Cmhyd4 affected the mycelial growth rate, the hydrophobicity of the mycelia and conidia, or the conidial virulence on silkworm pupae. There was also no difference between the micromorphology of the hyphae and conidia in WT and ΔCmhyd4 strains observed by SEM. However, the ΔCmhyd4 strain showed thicker aerial mycelia in darkness and quicker growth rates under abiotic stress than the WT strain. The deletion of Cmhyd4 could promote conidia production and increase the contents of carotenoid and adenosine. The biological efficiency of the fruiting body was remarkably increased in the ΔCmhyd4 strain compared with the WT strain by improving the fruiting body density, not the height. It was indicated that Cmhyd4 played a negative role in fruiting body development. These results revealed that the diverse negative roles and regulatory effects of Cmhyd4 were totally different from those of Cmhyd1 in C. militaris and provided insights into the developmental regulatory mechanism of C. militaris and candidate genes for C. militaris strain breeding.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence:
| |
Collapse
|
14
|
Liu Y, Liu J, He X. Different p Ka Shifts of Internal GLU8 in Human β-Endorphin Amyloid Revealing a Coupling of Internal Ionization and Stepwise Fibril Disassembly. J Phys Chem B 2023; 127:1089-1096. [PMID: 36696655 DOI: 10.1021/acs.jpcb.2c06706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As a functional amyloid, human β-endorphin amyloid fibril features a β-solenoid conformation and store peptide hormones within acidic secretory granules, which would be released into the blood through fibril disassembly when the cellular milieu pH increases from acidic to neutral level on exocytosis. To gain detailed atomic mechanism of β-endorphin amyloid fibrils' pH-responsive disassembly, we conduct constant pH molecular dynamics simulations to investigate the structural and dynamical properties of β-endorphin amyloid fibrils in experiencing the environmental pH changes. Our results demonstrate a clear pKa shift of the internal ionizable residue of GLU8, and this shift becomes even more pronounced when it is buried more deeply in the amyloid fibrils. The unusual pKa of GLU8 reveals that its protonation state changes from the protonated state in the acidic secretory granule to the deprotonated state in the neutral pH conditions in the blood, where the deprotonation of GLU8 leads to unfavorable interactions within the hydrophobic core of the amyloid and subsequent fibril disassembly. The different pKa shifts of GLU8 relative to its positions in the amyloid fibril indicate that the β-endorphin amyloid fibril disassembly is a stepwise process, accounting for the experimental observation that the disassembly always initiates from the outermost layer. This study reveals the critical role of the protonation state of GLU8 in amyloid fibrils' pH-responsive disassembly, and provides clear insights for understanding the structural transitions of amyloids in hormone secretion. This study also provides theoretical basis for designing pH-sensitive biological tools for specific use with precise positioning of ionizable residues into the hydrophobic interior of proteins.
Collapse
Affiliation(s)
- Yiwei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| |
Collapse
|
15
|
Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin. Nat Commun 2022; 13:7138. [PMID: 36414665 PMCID: PMC9681837 DOI: 10.1038/s41467-022-34908-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The process of recycling poly(ethylene terephthalate) (PET) remains a major challenge due to the enzymatic degradation of high-crystallinity PET (hcPET). Recently, a bacterial PET-degrading enzyme, PETase, was found to have the ability to degrade the hcPET, but with low enzymatic activity. Here we present an engineered whole-cell biocatalyst to simulate both the adsorption and degradation steps in the enzymatic degradation process of PETase to achieve the efficient degradation of hcPET. Our data shows that the adhesive unit hydrophobin and degradation unit PETase are functionally displayed on the surface of yeast cells. The turnover rate of the whole-cell biocatalyst toward hcPET (crystallinity of 45%) dramatically increases approximately 328.8-fold compared with that of purified PETase at 30 °C. In addition, molecular dynamics simulations explain how the enhanced adhesion can promote the enzymatic degradation of PET. This study demonstrates engineering the whole-cell catalyst is an efficient strategy for biodegradation of PET.
Collapse
|
16
|
The Paradoxical Effects of Serum Amyloid-P Component on Disseminated Candidiasis. Pathogens 2022; 11:pathogens11111304. [PMID: 36365055 PMCID: PMC9697064 DOI: 10.3390/pathogens11111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Serum amyloid P component (SAP) may play an important role in human fungal diseases. SAP binds to functional amyloid on the fungal surface and masks fungi from host immune processes, skewing the macrophage population from the pro-inflammatory M1 to the quiescent M2 type. We assessed the role of SAP in a murine model of disseminated candidiasis. Mice were injected with human SAP subcutaneously (SQ) followed by intravenous injection of Candida albicans. Male, BALBcJ mice were administered 2 mg human SAP or the homologous human pro-inflammatory pentraxin CRP, SQ on day −1 followed by 1 mg on days 0 thru 4; yeast cells were administered intravenously on day 0. Mice not receiving a pentraxin were morbid on day 1, surviving 4−7 days. Mice administered SAP survived longer than mice receiving yeast cells alone (p < 0.022), although all mice died. Mice given CRP died faster than mice receiving yeast cells alone (p < 0.017). Miridesap is a molecule that avidly binds SAP, following which the complex is broken down by the liver. Miridesap administered in the drinking water removed SAP from the serum and yeast cells and significantly prolonged the life of mice (p < 0.020). Some were “cured” of candidiasis. SAP administered early in the septic process provided short-lived benefit to mice, probably by blunting cytokine secretion associated with disseminated candidiasis. The most important finding was that removal of SAP with miridesap led to prolonged survival by removing SAP and preventing its dampening effects on the host immune response.
Collapse
|
17
|
Seira Curto J, Surroca Lopez A, Casals Sanchez M, Tic I, Fernandez Gallegos MR, Sanchez de Groot N. Microbiome Impact on Amyloidogenesis. Front Mol Biosci 2022; 9:926702. [PMID: 35782871 PMCID: PMC9245625 DOI: 10.3389/fmolb.2022.926702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Our life is closely linked to microorganisms, either through a parasitic or symbiotic relationship. The microbiome contains more than 1,000 different bacterial species and outnumbers human genes by 150 times. Worryingly, during the last 10 years, it has been observed a relationship between alterations in microbiota and neurodegeneration. Several publications support the hypothesis that amyloid structures formed by microorganisms may trigger host proteins aggregation. In this review, we collect pieces of evidence supporting that the crosstalk between human and microbiota amyloid proteins could be feasible and, probably, a more common event than expected before. The combination of their outnumbers, the long periods of time that stay in our bodies, and the widespread presence of amyloid proteins in the bacteria Domain outline a worrying scenario. However, the identification of the exact microorganisms and the mechanisms through with they can influence human disease also opens the door to developing a new and diverse set of therapeutic strategies.
Collapse
|
18
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
19
|
Walker AC, Bhargava R, Dove AS, Brust AS, Owji AA, Czyż DM. Bacteria-Derived Protein Aggregates Contribute to the Disruption of Host Proteostasis. Int J Mol Sci 2022; 23:4807. [PMID: 35563197 PMCID: PMC9103901 DOI: 10.3390/ijms23094807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis-possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut-brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria's effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host-bacteria interactions in the context of protein conformational diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; (A.C.W.); (R.B.); (A.S.D.); (A.S.B.); (A.A.O.)
| |
Collapse
|
20
|
Rasul M, Cho J, Shin HS, Hur J. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150304. [PMID: 34536873 DOI: 10.1016/j.scitotenv.2021.150304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Biochar (BC) application has the potential to be integrated into a carbon-trading framework owing to its multiple environmental and economic benefits. Despite the increasing research attention over the past ten years, the mechanisms of BC-induced priming effects on soil organic carbon mineralization and their influencing factors have not been systematically considered. This review aims to document the recent progress in BC research by focusing on (1) how BC-induced priming effects change the soil environment, (2) the factors governing the mechanisms underlying BC amendment effects on soils, and (3) how BC amendments alter soil microbial communities and nutrient dynamics. Here, we carried out a detailed examination of the origins of different biochar, its pyrolysis conditions, and potential interactions with various factors that affect BC characteristics and mechanisms of C mineralization in primed soil. These findings clearly addressed the strong linkage between BC properties and abiotic factors that leads to change the soil microclimate, priming effects, and carbon stabilization. This review offers an overview of a fragmented body of evidence and the current state of understanding to support the application of BC in different soil environments with the aim of sustaining or improving the agricultural crop production.
Collapse
Affiliation(s)
- Maria Rasul
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Hyun-Sang Shin
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
21
|
Yates EA, Estrella LA, So CR. High-Throughput Screening of Heterologous Functional Amyloids Using Escherichia coli. Methods Mol Biol 2022; 2538:131-144. [PMID: 35951298 DOI: 10.1007/978-1-0716-2529-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Escherichia coli remains one of the most widely used workhorse microorganisms for the expression of heterologous proteins. The large number of cloning vectors and mutant host strains available for E. coli yields an impressively wide array of folded globular proteins in the laboratory. However, applying modern functional screening approaches to interrogate insoluble protein aggregates such as amyloids requires the use of nonstandard expression pathways. In this chapter, we detail the use of the curli export pathway in E. coli to express a library of gene fragments and variants of a functional amyloid protein to screen sequence traits responsible for aggregation and the formation of nanoscale materials.
Collapse
Affiliation(s)
| | - Luis A Estrella
- Formerly Chemistry Division, US Naval Research Laboratory, Washington, DC, USA
| | - Christopher R So
- Chemistry Division, US Naval Research Laboratory, Washington, DC, USA.
| |
Collapse
|
22
|
Prebble DW, Xu M, Mellick GD, Carroll AR. Sycosterol A, an α-Synuclein Inhibitory Sterol from the Australian Ascidian Sycozoa cerebriformis. JOURNAL OF NATURAL PRODUCTS 2021; 84:3039-3043. [PMID: 34787419 DOI: 10.1021/acs.jnatprod.1c00768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During a recent biodiscovery study to identify new α-synuclein (α-syn) aggregation inhibitors, we screened 29 Australian marine sponge and ascidian extracts in an MS binding assay. This resulted in an extract from the ascidian Sycozoa cerebriformis showing activity toward α-syn. The bioassay and MS guided isolation process led to the identification of one new polyoxygenated sterol sulfate, sycosterol A (1). The structure of this low-yielding steroid was elucidated from HRMS and NMR analysis. Sycosterol A displayed moderate antiaggregation activity with 46.2% (±1.8) inhibition when screened against α-syn at a 5:1 (sycosterol A:α-syn) molar ratio. The α-syn antiaggregation activity displayed by 1 and the recent discovery of similar sterols with α-syn antiaggregation activity and potent antiprion activity suggest this unique class may be useful antineurodegenerative compounds.
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
23
|
Fan H, Wang B, Zhang Y, Zhu Y, Song B, Xu H, Zhai Y, Qiao M, Sun F. A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI. Nat Commun 2021; 12:7257. [PMID: 34907237 PMCID: PMC8671466 DOI: 10.1038/s41467-021-27596-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has become a powerful tool to resolve high-resolution structures of biomacromolecules in solution. However, air-water interface induced preferred orientations, dissociation or denaturation of biomacromolecules during cryo-vitrification remains a limiting factor for many specimens. To solve this bottleneck, we developed a cryo-EM support film using 2D crystals of hydrophobin HFBI. The hydrophilic side of the HFBI film adsorbs protein particles via electrostatic interactions and sequesters them from the air-water interface, allowing the formation of sufficiently thin ice for high-quality data collection. The particle orientation distribution can be regulated by adjusting the buffer pH. Using this support, we determined the cryo-EM structures of catalase (2.29 Å) and influenza haemagglutinin trimer (2.56 Å), which exhibited strong preferred orientations using a conventional cryo-vitrification protocol. We further show that the HFBI film is suitable to obtain high-resolution structures of small proteins, including aldolase (150 kDa, 3.28 Å) and haemoglobin (64 kDa, 3.6 Å). Our work suggests that HFBI films may have broad future applications in increasing the success rate and efficiency of cryo-EM.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China.
- School of Life Science, Shanxi University, Shanxi, China.
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- Physical Science Laboratory, Huairou National Comprehensive Science Center, No. 5 Yanqi East Second Street, 101400, Beijing, China.
- Bioland Laboratory, 510005, Guangzhou, Guangdong Province, China.
| |
Collapse
|
24
|
Liu Y, Zhang Y, Sun Y, Ding F. A buried glutamate in the cross-β core renders β-endorphin fibrils reversible. NANOSCALE 2021; 13:19593-19603. [PMID: 34812835 PMCID: PMC8674924 DOI: 10.1039/d1nr05679d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional amyloids are abundant in living organisms from prokaryotes to eukaryotes playing diverse biological roles. In contrast to the irreversible aggregation of most known pathological amyloids, we postulate that naturally-occurring functional amyloids are reversible under evolutionary pressure to be able to modulate the fibrillization process, reuse the composite peptides, or perform their biological functions. β-Endorphin, an endogenous opioid peptide hormone, forms such kinds of reversible amyloid fibrils in secretory granules for efficient storage and returns to the functional state of monomers upon release into the blood. The environmental change between low pH in secretory granules and neutral pH in extracellular spaces is believed to drive the reversible fibrillization of β-endorphin. Here, we investigate the critical role of a buried glutamate, Glu8, in the pH-responsive disassembly of β-endorphin fibrils using all-atom molecular dynamics simulations along with structure-based pKa prediction. The fibril was stable at pH 5.5 or lower with all the buried Glu8 residues protonated and neutrally charged. After switching to neutral pH, the Glu8 residues of peptides at the outer layers of the ordered fibrils became deprotonated due to partial solvent exposure, causing sheet-to-coil conformational changes and subsequent exposure of adjacent Glu8 residues in the inner chains. Via iterative deprotonation of Glu8 and induced structural disruption, all Glu8 residues would be progressively deprotonated. Electrostatic repulsion between deprotonated Glu8 residues along with their high solvation tendency disrupted the hydrogen bonding between the β1 strands and increased the solvent exposure of those otherwise buried residues in the cross-β core. Overall, our computational study reveals that the strategic positioning of ionizable residues into the cross-β core is a potential approach for designing reversible amyloid fibrils as pH-responsive smart bio-nanomaterials.
Collapse
Affiliation(s)
- Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA.
| |
Collapse
|
25
|
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, Fu Z, Xu P, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet 2021; 17:e1009924. [PMID: 34788288 PMCID: PMC8635391 DOI: 10.1371/journal.pgen.1009924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/01/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Zhifei Fu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (QS); (ISD)
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S. Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- * E-mail: (QS); (ISD)
| |
Collapse
|
26
|
Takács K, Grolmusz V. On the border of the amyloidogenic sequences: prefix analysis of the parallel beta sheets in the PDB_Amyloid collection. J Integr Bioinform 2021; 19:jib-2020-0043. [PMID: 34303324 PMCID: PMC9069647 DOI: 10.1515/jib-2020-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
The Protein Data Bank (PDB) today contains more than 174,000 entries with the 3-dimensional structures of biological macromolecules. Using the rich resources of this repository, it is possible identifying subsets with specific, interesting properties for different applications. Our research group prepared an automatically updated list of amyloid- and probably amyloidogenic molecules, the PDB_Amyloid collection, which is freely available at the address http://pitgroup.org/amyloid. This resource applies exclusively the geometric properties of the steric structures for identifying amyloids. In the present contribution, we analyze the starting (i.e., prefix) subsequences of the characteristic, parallel beta-sheets of the structures in the PDB_Amyloid collection, and identify further appearances of these length-5 prefix subsequences in the whole PDB data set. We have identified this way numerous proteins, whose normal or irregular functions involve amyloid formation, structural misfolding, or anti-coagulant properties, simply by containing these prefixes: including the T-cell receptor (TCR), bound with the major histocompatibility complexes MHC-1 and MHC-2; the p53 tumor suppressor protein; a mycobacterial RNA polymerase transcription initialization complex; the human bridging integrator protein BIN-1; and the tick anti-coagulant peptide TAP.
Collapse
Affiliation(s)
- Kristóf Takács
- PIT Bioinformatics Group, Eötvös University, BudapestH-1117, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, BudapestH-1117, Hungary.,Uratim Ltd., BudapestH-1118, Hungary
| |
Collapse
|
27
|
Zajkowski T, Lee MD, Mondal SS, Carbajal A, Dec R, Brennock PD, Piast RW, Snyder JE, Bense NB, Dzwolak W, Jarosz DF, Rothschild LJ. The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements. Mol Biol Evol 2021; 38:2088-2103. [PMID: 33480998 DOI: 10.1093/molbev/msab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions, proteins that can convert between structurally and functionally distinct states and serve as non-Mendelian mechanisms of inheritance, were initially discovered and only known in eukaryotes, and consequently considered to likely be a relatively late evolutionary acquisition. However, the recent discovery of prions in bacteria and viruses has intimated a potentially more ancient evolutionary origin. Here, we provide evidence that prion-forming domains exist in the domain archaea, the last domain of life left unexplored with regard to prions. We searched for archaeal candidate prion-forming protein sequences computationally, described their taxonomic distribution and phylogeny, and analyzed their associated functional annotations. Using biophysical in vitro assays, cell-based and microscopic approaches, and dye-binding analyses, we tested select candidate prion-forming domains for prionogenic characteristics. Out of the 16 tested, eight formed amyloids, and six acted as protein-based elements of information transfer driving non-Mendelian patterns of inheritance. We also identified short peptides from our archaeal prion candidates that can form amyloid fibrils independently. Lastly, candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, an observation that may help future archaeal prion predictions. Taken together, our discovery of functional prion-forming domains in archaea provides evidence that multiple archaeal proteins are capable of acting as prions-thus expanding our knowledge of this epigenetic phenomenon to the third and final domain of life and bolstering the possibility that they were present at the time of the last universal common ancestor.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,University Space Research Association, Mountain View, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Shamba S Mondal
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Amanda Carbajal
- University Space Research Association, Mountain View, CA, USA.,University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Radoslaw W Piast
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | | | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
28
|
Matilla-Cuenca L, Toledo-Arana A, Valle J. Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics (Basel) 2021; 10:antibiotics10070795. [PMID: 34210036 PMCID: PMC8300730 DOI: 10.3390/antibiotics10070795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.
Collapse
|
29
|
Andersson S, Romero A, Rodrigues JI, Hua S, Hao X, Jacobson T, Karl V, Becker N, Ashouri A, Rauch S, Nyström T, Liu B, Tamás MJ. Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. J Cell Sci 2021; 134:jcs258338. [PMID: 34085697 PMCID: PMC8214759 DOI: 10.1242/jcs.258338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Antonia Romero
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sansan Hua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Vivien Karl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Nathalie Becker
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
30
|
Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. Int J Mol Sci 2021; 22:ijms22094349. [PMID: 33919421 PMCID: PMC8122407 DOI: 10.3390/ijms22094349] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid fibrils are supramolecular protein assemblies represented by a cross-β structure and fibrous morphology, whose structural architecture has been previously investigated. While amyloid fibrils are basically a main-chain-dominated structure consisting of a backbone of hydrogen bonds, side-chain interactions also play an important role in determining their detailed structures and physicochemical properties. In amyloid fibrils comprising short peptide segments, a steric zipper where a pair of β-sheets with side chains interdigitate tightly is found as a fundamental motif. In amyloid fibrils comprising longer polypeptides, each polypeptide chain folds into a planar structure composed of several β-strands linked by turns or loops, and the steric zippers are formed locally to stabilize the structure. Multiple segments capable of forming steric zippers are contained within a single protein molecule in many cases, and polymorphism appears as a result of the diverse regions and counterparts of the steric zippers. Furthermore, the β-solenoid structure, where the polypeptide chain folds in a solenoid shape with side chains packed inside, is recognized as another important amyloid motif. While side-chain interactions are primarily achieved by non-polar residues in disease-related amyloid fibrils, the participation of hydrophilic and charged residues is prominent in functional amyloids, which often leads to spatiotemporally controlled fibrillation, high reversibility, and the formation of labile amyloids with kinked backbone topology. Achieving precise control of the side-chain interactions within amyloid structures will open up a new horizon for designing useful amyloid-based nanomaterials.
Collapse
|
31
|
Khambhati K, Patel J, Saxena V, A P, Jain N. Gene Regulation of Biofilm-Associated Functional Amyloids. Pathogens 2021; 10:490. [PMID: 33921583 PMCID: PMC8072697 DOI: 10.3390/pathogens10040490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix. The sociobiology of bacterial communities within a biofilm is astonishing, with environmental factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight regulation of expression of various biofilm-matrix components. One of the major constituents of the biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within the bacterial cells to perform a diverse function. This review provides a comprehensive account of the genetic regulation associated with the expression of amyloids in bacteria. The stringent control ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by summarizing environmental factors influencing the expression and regulation of amyloids.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Jaykumar Patel
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Vijaylaxmi Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Parvathy A
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
32
|
Patel RJ, Patel UD, Nerurkar AS. Moving bed biofilm reactor developed with special microbial seed for denitrification of high nitrate containing wastewater. World J Microbiol Biotechnol 2021; 37:68. [PMID: 33748870 DOI: 10.1007/s11274-021-03035-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/07/2022]
Abstract
Biological denitrification is the most promising alternative approach for the removal of nitrate from wastewater. MBBR inoculated with activated sludge is a widely studied approach, but very few studies have focused on the bioaugmentation of biofilm forming bacteria in MBBR. Our study revealed that the use of special microbial seed of biofilm forming denitrifying bacteria Diaphorobacter sp. R4, Pannonibacter sp. V5, Thauera sp. V9, Pseudomonas sp.V11, and Thauera sp.V14 to form biofilm on carriers enhanced nitrate removal performance of developed MBBR. Various process parameters C/N ratio 0.3, HRT 3 h at Nitrate loading 2400 mg L-1, Filling ratio 20%, operated with Pall ring carrier were optimized to achieve highest nitrate removal. After 300 days of continuous operation results of whole genome metagenomic studies showed that Thauera spp. were the most dominant and key contributor to the denitrification of nitrate containing wastewater and the reactor was totally conditioned for denitrification. Overall, findings suggest that bench-scale MBBR developed with biofilm forming denitrifying microbial seed accelerated the denitrification process; therefore in conclusion it is suggested as one of the best suitable and effective approach for removal of nitrate from wastewater.
Collapse
Affiliation(s)
- Roshni J Patel
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Upendra D Patel
- Department of Civil Engineering, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - Anuradha S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
33
|
Puopolo R, Sorrentino I, Gallo G, Piscitelli A, Giardina P, Le Goff A, Fiorentino G. Self-assembling thermostable chimeras as new platform for arsenic biosensing. Sci Rep 2021; 11:2991. [PMID: 33542380 PMCID: PMC7862302 DOI: 10.1038/s41598-021-82648-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
The correct immobilization and orientation of enzymes on nanosurfaces is a crucial step either for the realization of biosensors, as well as to guarantee the efficacy of the developed biomaterials. In this work we produced two versions of a chimeric protein, namely ArsC-Vmh2 and Vmh2-ArsC, which combined the self-assembling properties of Vmh2, a hydrophobin from Pleurotus ostreatus, with that of TtArsC, a thermophilic arsenate reductase from Thermus thermophilus; both chimeras were heterologously expressed in Escherichia coli and purified from inclusion bodies. They were characterized for their enzymatic capability to reduce As(V) into As(III), as well as for their immobilization properties on polystyrene and gold in comparison to the native TtArsC. The chimeric proteins immobilized on polystyrene can be reused up to three times and stored for 15 days with 50% of activity loss. Immobilization on gold electrodes showed that both chimeras follow a classic Langmuir isotherm model towards As(III) recognition, with an association constant (KAsIII) between As(III) and the immobilized enzyme, equal to 650 (± 100) L mol-1 for ArsC-Vmh2 and to 1200 (± 300) L mol-1 for Vmh2-ArsC. The results demonstrate that gold-immobilized ArsC-Vmh2 and Vmh2-ArsC can be exploited as electrochemical biosensors to detect As(III).
Collapse
Affiliation(s)
- Rosanna Puopolo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ilaria Sorrentino
- Department of Molecular Chemistry, CNRS, University Grenoble Alpes, 38000, Grenoble, France
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Alessandra Piscitelli
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Paola Giardina
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alan Le Goff
- Department of Molecular Chemistry, CNRS, University Grenoble Alpes, 38000, Grenoble, France.
| | | |
Collapse
|
34
|
Jennings LK, Prebble DW, Xu M, Ekins MG, Munn AL, Mellick GD, Carroll AR. Anti-prion and α-Synuclein Aggregation Inhibitory Sterols from the Sponge Lamellodysidea cf. chlorea. JOURNAL OF NATURAL PRODUCTS 2020; 83:3751-3757. [PMID: 33269586 DOI: 10.1021/acs.jnatprod.0c01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In a study aimed at identifying new anti-prion compounds we screened a library of 500 Australian marine invertebrate derived extracts using a yeast-based anti-prion assay. This resulted in an extract from the subtropical sponge Lamellodysidea cf. chlorea showing potent anti-prion activity. The bioassay-guided investigation of the sponge extract led to the isolation of three new bioactive polyoxygenated steroids, lamellosterols A-C (1-3). These sterols were all isolated in low yield, and their structures elucidated by extensive NMR and MS data analysis. Lamellosterols A-C displayed potent anti-prion activity against the [PSI+] yeast prion (EC50s of 12.7, 13.8, and 9.8 μM, respectively). Lamellosterol A (1) was further shown to bind to the Parkinson's disease implicated amyloid protein, α-synuclein, and to significantly inhibit its aggregation. Our findings indicate that these polyoxygenated sterol sulfates may be useful compounds to study mechanisms associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Laurence K Jennings
- Environmental Futures Research Institute, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Dale W Prebble
- Environmental Futures Research Institute, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Mingming Xu
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | | | - Alan L Munn
- School of Medical Science and Molecular Basis of Disease Program, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
35
|
Said MS, Navale GR, Yadav A, Khonde N, Shinde SS, Jha A. Effect of tert-alcohol functional imidazolium salts on oligomerization and fibrillization of amyloid β (1–42) peptide. Biophys Chem 2020; 267:106480. [DOI: 10.1016/j.bpc.2020.106480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
|
36
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
37
|
Seuring C, Verasdonck J, Gath J, Ghosh D, Nespovitaya N, Wälti MA, Maji SK, Cadalbert R, Güntert P, Meier BH, Riek R. The three-dimensional structure of human β-endorphin amyloid fibrils. Nat Struct Mol Biol 2020; 27:1178-1184. [PMID: 33046908 DOI: 10.1038/s41594-020-00515-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022]
Abstract
In the pituitary gland, hormones are stored in a functional amyloid state within acidic secretory granules before they are released into the blood. To gain a detailed understanding of the structure-function relationship of amyloids in hormone secretion, the three-dimensional (3D) structure of the amyloid fibril of the human hormone β-endorphin was determined by solid-state NMR. We find that β-endorphin fibrils are in a β-solenoid conformation with a protonated glutamate residue in their fibrillar core. During exocytosis of the hormone amyloid the pH increases from acidic in the secretory granule to neutral level in the blood, thus it is suggested-and supported with mutagenesis data-that the pH change in the cellular milieu acts through the deprotonation of glutamate 8 to release the hormone from the amyloid. For amyloid disassembly in the blood, it is proposed that the pH change acts together with a buffer composition change and hormone dilution. In the pituitary gland, peptide hormones can be stored as amyloid fibrils within acidic secretory granules before release into the blood stream. Here, we use solid-state NMR to determine the 3D structure of the amyloid fiber formed by the human hormone β-endorphin. We find that β-endorphin fibrils are in a β-solenoid conformation that is generally reminiscent of other functional amyloids. In the β-endorphin amyloid, every layer of the β-solenoid is composed of a single peptide and protonated Glu8 is located in the fibrillar core. The secretory granule has an acidic pH but, on exocytosis, the β-endorphin fibril would encounter neutral pH conditions (pH 7.4) in the blood; this pH change would result in deprotonation of Glu8 to release the hormone peptide from the amyloid. Analyses of β-endorphin variants carrying mutations in Glu8 support the role of the protonation state of this residue in fibril disassembly, among other environmental changes.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Joeri Verasdonck
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Julia Gath
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Dhimam Ghosh
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.,Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | | | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India
| | | | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.,Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland. .,Structural Biology Laboratory, The Salk Institute, La Jolla, CA, USA.
| |
Collapse
|
38
|
Zhao J, Miao B, Yang P. Biomimetic Amyloid-like Protein/Laponite Nanocomposite Thin Film through Regulating Protein Conformation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35435-35444. [PMID: 32635714 DOI: 10.1021/acsami.0c08692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of natural protein-based thin films has been severely limited because of their relatively low stiffness and strength compared to synthetic polymers. Although the mechanical properties of the protein-based thin films could be enhanced through blending with nanofillers, the fabrication of these materials with nanoscale-to-macroscale hierarchical architecture and robust interfacial adhesion via a facile and green method remains a challenge. Here, we prepared robust protein-based organic/inorganic nanocomposite films with a nacre-like microstructure through directly regulating protein conformation in a simple and biocompatible all-aqueous system. These films contain a high concentration of laponite (Lap) and amyloid-like phase-transited bovine serum albumin (PTB) aggregates rich in β-sheets, which could organize Lap nanoplatelets into an intercalated and multistacked structure. In addition, the PTB aggregates present strong mechanical strength, good stability, and especially superior bioadhesion to afford strong organic/inorganic interface bonding. The resultant PTB/Lap films exhibit high Young's modulus and strength and good chemical stability (in both aqueous solution and organic solvent) and flame retardation, while they are also very transparent (maintaining more than 90% transmittance). Moreover, the film could adhere onto various substrates with robust biomimetic interfacial adhesion, and the resultant coating on glass could function as a smart window to cool down the indoor temperature. Because of their excellent performance and high versatility, the amyloid-like protein/clay nanocomposite films are expected to find broad practical applications.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Bianliang Miao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
39
|
Scanavachi G, Espinosa Y, Yoneda J, Rial R, Ruso J, Itri R. Aggregation features of partially unfolded bovine serum albumin modulated by hydrogenated and fluorinated surfactants: Molecular dynamics insights and experimental approaches. J Colloid Interface Sci 2020; 572:9-21. [DOI: 10.1016/j.jcis.2020.03.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
|
40
|
Nagaraj M, Ahmed M, Lyngsø J, Vad BS, Bøggild A, Fillipsen A, Pedersen JS, Otzen DE, Akbey Ü. Predicted Loop Regions Promote Aggregation: A Study of Amyloidogenic Domains in the Functional Amyloid FapC. J Mol Biol 2020; 432:2232-2252. [DOI: 10.1016/j.jmb.2020.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
|
41
|
Adsorption layer formation in dispersions of protein aggregates. Adv Colloid Interface Sci 2020; 276:102086. [PMID: 31895989 DOI: 10.1016/j.cis.2019.102086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
The review discusses recent results on the adsorption of amyloid fibrils and protein microgels at liquid/fluid interfaces. The application of the shear and dilational surface rheology, atomic force microscopy and passive particle probe tracking allowed for elucidating characteristic features of the protein aggregate adsorption while some proposed hypothesis still must be examined by special methods for structural characterization. Although the distinctions of the shear surface properties of dispersions of protein aggregates from the properties of native protein solutions are higher than the corresponding distinctions of the dilational surface properties, the latter ones give a possibility to obtain new information on the formation of fibril aggregates at the water/air interface. Only the adsorption of BLG microgels and fibrils was studied in some details. The kinetic dependencies of the dynamic surface tension and dilational surface elasticity for aqueous dispersions of protein globules, protein microgels and purified fibrils are similar if the system does not contain flexible macromolecules or flexible protein fragments. In the opposite case the kinetic dependencies of the dynamic surface elasticity can be non-monotonic. The solution pH influences strongly the dynamic surface properties of the dispersions of protein aggregates indicating that the adsorption kinetics is controlled by an electrostatic adsorption barrier if the pH deviates from the isoelectric point. A special section of the review considers the possibility to apply kinetic models of nanoparticle adsorption to the adsorption of protein aggregates.
Collapse
|
42
|
Huang YM, Hong XZ, Shen J, Geng LJ, Pan YH, Ling W, Zhao HL. Amyloids in Site-Specific Autoimmune Reactions and Inflammatory Responses. Front Immunol 2020; 10:2980. [PMID: 31993048 PMCID: PMC6964640 DOI: 10.3389/fimmu.2019.02980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Amyloid deposition is a histological hallmark of common human disorders including Alzheimer's disease (AD) and type 2 diabetes. Although some reports highlight that amyloid fibrils might activate the innate immunity system via pattern recognition receptors, here, we provide multiple lines of evidence for the protection by site-specific amyloid protein analogs and fibrils against autoimmune attacks: (1) strategies targeting clearance of the AD-related brain amyloid plaque induce high risk of deadly autoimmune destructions in subjects with cognitive dysfunction; (2) administration of amyloidogenic peptides with either full length or core hexapeptide structure consistently ameliorates signs of experimental autoimmune encephalomyelitis; (3) experimental autoimmune encephalomyelitis is exacerbated following genetic deletion of amyloid precursor proteins; (4) absence of islet amyloid coexists with T-cell-mediated insulitis in autoimmune diabetes and autoimmune polyendocrine syndrome; (5) use of islet amyloid polypeptide agonists rather than antagonists improves diabetes care; and (6) common suppressive signaling pathways by regulatory T cells are activated in both local and systemic amyloidosis. These findings indicate dual modulation activity mediated by amyloid protein monomers, oligomers, and fibrils to maintain immune homeostasis. The protection from autoimmune destruction by amyloid proteins offers a novel therapeutic approach to regenerative medicine for common degenerative diseases.
Collapse
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Xue-Zhi Hong
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Rheumatology and Immunology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Pathology, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Li-Jun Geng
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Yan-Hong Pan
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Wei Ling
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Department of Endocrinology, Xiangya Medical School, Central South University, Changsha, China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence, Guilin Medical University, Guilin, China.,Center for Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China.,Institute of Basic Medical Sciences, Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
43
|
Abstract
When protein/peptides aggregate, they usually form the amyloid state consisting of cross β-sheet structure built by repetitively stacked β-strands forming long fibrils. Amyloids are usually associated with disease including Alzheimer's. However, amyloid has many useful features. It efficiently transforms protein from the soluble to the insoluble state in an essentially two-state process, while its repetitive structure provides high stability and a robust prion-like replication mechanism. Accordingly, amyloid is used by nature in multifaceted and ingenious ways of life, ranging from bacteria and fungi to mammals. These include (1) Structure: Templating for small chemical molecules (Pmel17), biofilm formation in bacteria (curli), assisting aerial hyphae formation in streptomycetes (chaplins) or monolayer formation at a surface (hydrophobins). (2) Reservoirs: A storage state for peptide/proteins to protect them from their surroundings or vice versa (storage of peptide hormones in mammalian secretory granules or major basic protein in eosinophils). (3) Information carriers: The fungal immune system (HET-s prion in Podospora anserina, yeast prions) or long-term memory (e.g., mnemons in yeast, cytoplasmic polyadenylation element-binding protein in aplysia). Aggregation is also used to (4) "suppress" the function of the soluble protein (e.g., Cdc19 in yeast stress granules), or (5) "signaling" through formation of oligomers (e.g., HET-s prion, necroptosis-related proteins RIP1/RIP3). This review summarizes current knowledge on functional amyloids with a focus on the amyloid systems curli in bacteria, HET-s prion in P. anserina, and peptide hormone storage in mammals together with an attempt to highlight differences between functional and disease-associated amyloids.
Collapse
Affiliation(s)
- Daniel Otzen
- iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| |
Collapse
|
44
|
Sarang MC, Nerurkar AS. Amyloid protein produced by B. cereus CR4 possesses bioflocculant activity and has potential application in microalgae harvest. Biotechnol Lett 2019; 42:79-91. [PMID: 31720978 DOI: 10.1007/s10529-019-02758-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
Bacillus cereus CR4 from the flocs of activated sludge was found to produce an extracellular bioflocculant, which was characterized as amyloid protein and demonstrated to have potential application in microalgae recovery. Cell surface amyloid production was demonstrated by fluorescence, confocal and scanning electron microscopy. Birefringence, spectral shift assay, TEM, FTIR and CD spectra confirmed the amyloid nature of the purified protein that demonstrated flocculation. The gene for amyloid protein of B. cereus CR4 was found to be related to tasA gene of amyloid protein produced by Bacillus subtilis. The results demonstrated that the amyloid protein produced by B. cereus CR4 possessed a novel bioflocculant activity which at pH below 4.5 reached to a maximum of 86.87%. The amyloid bioflocculant producing B. cereus CR4 has a potential in biotechnological application like Scenedesmus biomass recovery.
Collapse
Affiliation(s)
- M C Sarang
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - A S Nerurkar
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| |
Collapse
|
45
|
Orner EP, Bhattacharya S, Kalenja K, Hayden D, Del Poeta M, Fries BC. Cell Wall-Associated Virulence Factors Contribute to Increased Resilience of Old Cryptococcus neoformans Cells. Front Microbiol 2019; 10:2513. [PMID: 31787940 PMCID: PMC6854031 DOI: 10.3389/fmicb.2019.02513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
As Cryptococcus neoformans mother cells generationally age, their cell walls become thicker and cell-wall associated virulence factors are upregulated. Antiphagocytic protein 1 (App1), and laccase enzymes (Lac1 and Lac2) are virulence factors known to contribute to virulence of C. neoformans during infection through inhibition of phagocytic uptake and melanization. Here we show that these cell-wall-associated proteins are not only significantly upregulated in old C. neoformans cells, but also that their upregulation likely contributes to the increased resistance to antifungal and host-mediated killing during infection and to the subsequent accumulation of old cells. We found that old cells melanize to a greater extent than younger cells and as a consequence, old melanized cells are more resistant to killing by amphotericin B compared to young melanized cells. A decrease in melanization of old lacΔ mutants lead to a decrease in old-cell resilience, indicating that age-related melanization is contributing to the overall resilience of older cells and is being mediated by laccase genes. Additionally, we found that older cells are more resistant to macrophage phagocytosis, but this resistance is lost when APP1 is knocked out, indicating that upregulation of APP1 in older cells is in part responsible for their increased resistance to phagocytosis by macrophages. Finally, infections with old cells in the Galleria mellonella model support our conclusions, as loss of the APP1, LAC1, and LAC2 gene ablates the enhanced virulence of old cells, indicating their importance in age-dependent resilience.
Collapse
Affiliation(s)
- Erika P Orner
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Somanon Bhattacharya
- Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States
| | - Klea Kalenja
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Danielle Hayden
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States.,Northport Veterans Affairs Medical Center, Northport, NY, United States
| | - Bettina C Fries
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States.,Northport Veterans Affairs Medical Center, Northport, NY, United States
| |
Collapse
|
46
|
Achieving cytochrome c fibril/aggregate control towards micro-platelets and micro-fibers by tuning pH and protein concentration: A combined morphological and spectroscopic analysis. Int J Biol Macromol 2019; 138:106-115. [DOI: 10.1016/j.ijbiomac.2019.07.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/20/2022]
|
47
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
48
|
So CR, Yates EA, Estrella LA, Fears KP, Schenck AM, Yip CM, Wahl KJ. Molecular Recognition of Structures Is Key in the Polymerization of Patterned Barnacle Adhesive Sequences. ACS NANO 2019; 13:5172-5183. [PMID: 30986028 DOI: 10.1021/acsnano.8b09194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The permanent adhesive produced by adult barnacles is held together by tightly folded proteins that form amyloid-like materials distinct among marine foulants. In this work, we link stretches of alternating charged and noncharged linear sequences from a family of adhesive proteins to their role in forming fibrillar nanomaterials. Using recombinant proteins and short barnacle cement derived peptides (BCPs), we find a central sequence with charged motifs of the pattern [Gly/Ser/Val/Thr/Ala-X], where X are charged amino acids, to exert specific control over timing, structure, and morphology of fibril formation. While most BCPs remain dormant, the core segment demonstrates rapid polymerization as well as an ability to template other peptides with no propensity for self-assembly. Patterned charge domains assemble dormant peptides through a specific antiparallel β-sheet structure as measured by FTIR. While charged domains favor an antiparallel structure, BCPs without charged domains switch fibril assembly to favor simpler parallel β-sheet aggregates. In addition to activation, charged domains direct nanofibers to grow into discrete microns long fibrils similar to the natural adhesive, while segments without such domains only form short branched aggregates. The assembly of adhesive sequences through recognition of structured templates outlines a strategy used by barnacles to control physical mechanisms of underwater adhesive delivery, activation, and curing based on molecular recognition between proteins.
Collapse
Affiliation(s)
- Christopher R So
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| | - Elizabeth A Yates
- US Naval Academy Faculty Sited in Code 6176 , US Naval Research Laboratory , Washington , DC 20375-5342 , United States
| | - Luis A Estrella
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| | - Kenan P Fears
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| | - Ashley M Schenck
- US Naval Academy Midshipmen Sited in Code 6176 , US Naval Research Laboratory , Washington , DC 20375-5342 , United States
| | - Catherine M Yip
- US Naval Academy Midshipmen Sited in Code 6176 , US Naval Research Laboratory , Washington , DC 20375-5342 , United States
| | - Kathryn J Wahl
- Chemistry Division, Code 6176 , US Naval Research Laboratory , 4555 Overlook Avenue, SW , Washington , DC 20375-5342 , United States
| |
Collapse
|
49
|
Mbareche H, Veillette M, Teertstra W, Kegel W, Bilodeau GJ, Wösten HAB, Duchaine C. Recovery of Fungal Cells from Air Samples: a Tale of Loss and Gain. Appl Environ Microbiol 2019; 85:e02941-18. [PMID: 30824432 PMCID: PMC6495771 DOI: 10.1128/aem.02941-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
There are limitations in establishing a direct link between fungal exposure and health effects due to the methodology used, among other reasons. Culture methods ignore the nonviable/uncultivable fraction of airborne fungi. Molecular methods allow for a better understanding of the environmental health impacts of microbial communities. However, there are challenges when applying these techniques to bioaerosols, particularly to fungal cells. This study reveals that there is a loss of fungal cells when samples are recovered from air using wet samplers and aimed to create and test an improved protocol for concentrating mold spores via filtration prior to DNA extraction. Results obtained using the new technique showed that up to 3 orders of magnitude more fungal DNA was retrieved from the samples using quantitative PCR. A sequencing approach with MiSeq revealed a different diversity profile depending on the methodology used. Specifically, 8 fungal families out of 19 families tested were highlighted to be differentially abundant in centrifuged and filtered samples. An experiment using laboratory settings showed the same spore loss during centrifugation for Aspergillus niger and Penicillium roquefortii strains. We believe that this work helped identify and address fungal cell loss during processing of air samples, including centrifugation steps, and propose an alternative method for a more accurate evaluation of fungal exposure and diversity.IMPORTANCE This work shed light on a significant issue regarding the loss of fungal spores when recovered from air samples using liquid medium and centrifugation to concentrate air particles before DNA extraction. We provide proof that the loss affects the overall fungal diversity of aerosols and that some taxa are differentially more affected than others. Furthermore, a laboratory experiment confirmed the environmental results obtained during field sampling. The filtration protocol described in this work offers a better description of the fungal diversity of aerosols and should be used in fungal aerosol studies.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Wieke Teertstra
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Willem Kegel
- Department of Physical and Colloid Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Guillaume J Bilodeau
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency (CFIA), Ottawa, Canada
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
50
|
Valsecchi I, Lai JI, Stephen-Victor E, Pillé A, Beaussart A, Lo V, Pham CLL, Aimanianda V, Kwan AH, Duchateau M, Gianetto QG, Matondo M, Lehoux M, Sheppard DC, Dufrene YF, Bayry J, Guijarro JI, Sunde M, Latgé JP. Assembly and disassembly of Aspergillus fumigatus conidial rodlets. ACTA ACUST UNITED AC 2019; 5:100023. [PMID: 32743139 PMCID: PMC7389560 DOI: 10.1016/j.tcsw.2019.100023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/27/2022]
Abstract
The rodlet structure present on the Aspergillus fumigatus conidial surface hides conidia from immune recognition. In spite of the essential biological role of the rodlets, the molecular basis for their self-assembly and disaggregation is not known. Analysis of the soluble forms of conidia-extracted and recombinant RodA by NMR spectroscopy has indicated the importance of disulfide bonds and identified two dynamic regions as likely candidates for conformational change and intermolecular interactions during conversion of RodA into the amyloid rodlet structure. Point mutations introduced into the RODA sequence confirmed that (1) mutation of a single cysteine was sufficient to block rodlet formation on the conidial surface and (2) both presumed amyloidogenic regions were needed for proper rodlet assembly. Mutations in the two putative amyloidogenic regions retarded and disturbed, but did not completely inhibit, the formation of the rodlets in vitro and on the conidial surface. Even in a disturbed form, the presence of rodlets on the surface of the conidia was sufficient to immunosilence the conidium. However, in contrast to the parental conidia, long exposure of mutant conidia lacking disulfide bridges within RodA or expressing RodA carrying the double (I115S/I146G) mutation activated dendritic cells with the subsequent secretion of proinflammatory cytokines. The immune reactivity of the RodA mutant conidia was not due to a modification in the RodA structure, but to the exposure of different pathogen-associated molecular patterns on the surface as a result of the modification of the rodlet surface layer. The full degradation of the rodlet layer, which occurs during early germination, is due to a complex array of cell wall bound proteases. As reported earlier, this loss of the rodlet layer lead to a strong anti-fumigatus host immune response in mouse lungs.
Collapse
Affiliation(s)
- Isabel Valsecchi
- Unité des Aspergillus, Institut Pasteur, Paris, France.,Biological NMR Technological Platform, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Jennifer I Lai
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Ariane Pillé
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Audrey Beaussart
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Belgium
| | - Victor Lo
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | - Chi L L Pham
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | | | - Ann H Kwan
- School of Life and Environmental Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | - Magalie Duchateau
- Pasteur Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Quentin Giai Gianetto
- Pasteur Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France.,Bioinformatics and Biostatistics Hub, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Pasteur Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Melanie Lehoux
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Yves F Dufrene
- Institute of Life Sciences, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Belgium
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - J Iñaki Guijarro
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|