1
|
Tišma M, Kaljević J, Gruber S, Le TBK, Dekker C. Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies. FEMS Microbiol Rev 2024; 48:fuad067. [PMID: 38142222 PMCID: PMC10786196 DOI: 10.1093/femsre/fuad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023] Open
Abstract
Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology; Van der Maasweg 9, Delft, the Netherlands
| | - Jovana Kaljević
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, United Kingdom
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne, UNIL-Sorge, Biophore, CH-1015 Lausanne, Switzerland
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH Norwich, United Kingdom
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology; Van der Maasweg 9, Delft, the Netherlands
| |
Collapse
|
2
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
3
|
Yen CY, Lin MG, Chen BW, Ng IW, Read N, Kabli AF, Wu CT, Shen YY, Chen CH, Barillà D, Sun YJ, Hsiao CD. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly. Nucleic Acids Res 2021; 49:13150-13164. [PMID: 34850144 PMCID: PMC8682754 DOI: 10.1093/nar/gkab1155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA–DNA and SegB–DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon–helix–helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA–SegB–DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.
Collapse
Affiliation(s)
- Cheng-Yi Yen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Bo-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Irene W Ng
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nicholas Read
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Azhar F Kabli
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Che-Ting Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yo-You Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Hao Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Daniela Barillà
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
4
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
5
|
Balaguer FDA, Aicart-Ramos C, Fisher GL, de Bragança S, Martin-Cuevas EM, Pastrana CL, Dillingham MS, Moreno-Herrero F. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS. eLife 2021; 10:67554. [PMID: 34250901 PMCID: PMC8299390 DOI: 10.7554/elife.67554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
Faithful segregation of bacterial chromosomes relies on the ParABS partitioning system and the SMC complex. In this work, we used single-molecule techniques to investigate the role of cytidine triphosphate (CTP) binding and hydrolysis in the critical interaction between centromere-like parS DNA sequences and the ParB CTPase. Using a combined optical tweezers confocal microscope, we observe the specific interaction of ParB with parS directly. Binding around parS is enhanced by the presence of CTP or the non-hydrolysable analogue CTPγS. However, ParB proteins are also detected at a lower density in distal non-specific DNA. This requires the presence of a parS loading site and is prevented by protein roadblocks, consistent with one-dimensional diffusion by a sliding clamp. ParB diffusion on non-specific DNA is corroborated by direct visualization and quantification of movement of individual quantum dot labelled ParB. Magnetic tweezers experiments show that the spreading activity, which has an absolute requirement for CTP binding but not hydrolysis, results in the condensation of parS-containing DNA molecules at low nanomolar protein concentrations.
Collapse
Affiliation(s)
- Francisco de Asis Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gemma Lm Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Sara de Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M Martin-Cuevas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cesar L Pastrana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
6
|
Hayashi I. The C-terminal region of the plasmid partitioning protein TubY is a tetramer that can bind membranes and DNA. J Biol Chem 2020; 295:17770-17780. [PMID: 33454013 PMCID: PMC7762940 DOI: 10.1074/jbc.ra120.014705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial low-copy-number plasmids require partition (par) systems to ensure their stable inheritance by daughter cells. In general, these systems consist of three components: a centromeric DNA sequence, a centromere-binding protein and a nucleotide hydrolase that polymerizes and functions as a motor. Type III systems, however, segregate plasmids using three proteins: the FtsZ/tubulin-like GTPase TubZ, the centromere-binding protein TubR and the MerR-like transcriptional regulator TubY. Although the TubZ filament is sufficient to transport the TubR-centromere complex in vitro, TubY is still necessary for the stable maintenance of the plasmid. TubY contains an N-terminal DNA-binding helix-turn-helix motif and a C-terminal coiled-coil followed by a cluster of lysine residues. This study determined the crystal structure of the C-terminal domain of TubY from the Bacillus cereus pXO1-like plasmid and showed that it forms a tetrameric parallel four-helix bundle that differs from the typical MerR family proteins with a dimeric anti-parallel coiled-coil. Biochemical analyses revealed that the C-terminal tail with the conserved lysine cluster helps TubY to stably associate with the TubR-centromere complex as well as to nonspecifically bind DNA. Furthermore, this C-terminal tail forms an amphipathic helix in the presence of lipids but must oligomerize to localize the protein to the membrane in vivo. Taken together, these data suggest that TubY is a component of the nucleoprotein complex within the partitioning machinery, and that lipid membranes act as mediators of type III systems.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Maurya GK, Misra HS. Characterization of ori and parS-like functions in secondary genome replicons in Deinococcus radiodurans. Life Sci Alliance 2020; 4:4/1/e202000856. [PMID: 33199509 PMCID: PMC7671480 DOI: 10.26508/lsa.202000856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanisms underlying multipartite genome maintenance and its functional significance in extraordinary radioresistance of Deinococcus radiodurans are not well understood. The sequences upstream to parAB operons in chrII (cisII) and MP (cisMP) could stabilize an otherwise, non-replicative colE1 plasmid, in D. radiodurans DnaA and cognate ParB proteins bound specifically with cisII and cisMP elements. The ΔcisII and ΔcisMP cells showed the reduced copy number of cognate replicons and radioresistance as compared with wild type. Fluorescent reporter-operator system inserted in chrI, chrII, and MP in wild type and cisII mutants showed the presence of all three replicons in wild-type cells. Although chrI was present in all the ΔcisII and ΔcisMP cells, nearly half of these cells had chrII and MP, respectively, and the other half had the reduced number of foci representing these replications. These results suggested that cisII and cisMP elements contain both origin of replication and parS-like functions and the secondary genome replicons (chrII and MP) are maintained independent of chrI and have roles in radioresistance of D. radiodurans.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India .,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Caccamo M, Dobruk-Serkowska A, Rodríguez-Castañeda F, Pennica C, Barillà D, Hayes F. Genome Segregation by the Venus Flytrap Mechanism: Probing the Interaction Between the ParF ATPase and the ParG Centromere Binding Protein. Front Mol Biosci 2020; 7:108. [PMID: 32613008 PMCID: PMC7308502 DOI: 10.3389/fmolb.2020.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
The molecular events that underpin genome segregation during bacterial cytokinesis have not been fully described. The tripartite segrosome complex that is encoded by the multiresistance plasmid TP228 in Escherichia coli is a tractable model to decipher the steps that mediate accurate genome partitioning in bacteria. In this case, a “Venus flytrap” mechanism mediates plasmid segregation. The ParG sequence-specific DNA binding protein coats the parH centromere. ParF, a ParA-type ATPase protein, assembles in a three-dimensional meshwork that penetrates the nucleoid volume where it recognizes and transports ParG-parH complexes and attached plasmids to the nucleoid poles. Plasmids are deposited at the nucleoid poles following the partial dissolution of the ParF network through a combination of localized ATP hydrolysis within the meshwork and ParG-mediated oligomer disassembly. The current study demonstrates that the conformation of the nucleotide binding pocket in ParF is tuned exquisitely: a single amino acid change that perturbs the molecular arrangement of the bound nucleotide moderates ATP hydrolysis. Moreover, this alteration also affects critical interactions of ParF with the partner protein ParG. As a result, plasmid segregation is inhibited. The data reinforce that the dynamics of nucleotide binding and hydrolysis by ParA-type proteins are key to accurate genome segregation in bacteria.
Collapse
Affiliation(s)
- Marisa Caccamo
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Aneta Dobruk-Serkowska
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Cecilia Pennica
- Department of Biology, University of York, York, United Kingdom
| | - Daniela Barillà
- Department of Biology, University of York, York, United Kingdom
| | - Finbarr Hayes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Li P, Zhang H, Zhao GP, Zhao W. Deacetylation enhances ParB-DNA interactions affecting chromosome segregation in Streptomyces coelicolor. Nucleic Acids Res 2020; 48:4902-4914. [PMID: 32313947 PMCID: PMC7229854 DOI: 10.1093/nar/gkaa245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 12/29/2022] Open
Abstract
Reversible lysine acetylation plays regulatory roles in diverse biological processes, including cell metabolism, gene transcription, cell apoptosis and ageing. Here, we show that lysine acetylation is involved in the regulation of chromosome segregation, a pivotal step during cell division in Streptomyces coelicolor. Specifically, deacetylation increases the DNA-binding affinity of the chromosome segregation protein ParB to the centromere-like sequence parS. Both biochemical and genetic experiments suggest that the deacetylation process is mainly modulated by a sirtuin-like deacetylase ScCobB1. The Lys-183 residue in the helix-turn-helix region of ParB is the major deacetylation site responsible for the regulation of ParB-parS binding. In-frame deletion of SccobB1 represses formation of ParB segregation complexes and leads to generation of abnormal spores. Taken together, these observations provide direct evidence that deacetylation participates in the regulation of chromosome segregation by targeting ParB in S. coelicolor.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hong Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wei Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,College of Life Sciences, Shanghai Normal University, Shanghai 200232, China
| |
Collapse
|
10
|
Chan H, Söderström B, Skoglund U. Spo0J and SMC are required for normal chromosome segregation in Staphylococcus aureus. Microbiologyopen 2020; 9:e999. [PMID: 31990138 PMCID: PMC7142367 DOI: 10.1002/mbo3.999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial chromosome segregation is an essential cellular process that is particularly elusive in spherical bacteria such as the opportunistic human pathogen Staphylococcus aureus. In this study, we examined the functional significance of a ParB homologue, Spo0J, in staphylococcal chromosome segregation and investigated the role of the structural maintenance of chromosomes (SMC) bacterial condensin in this process. We show that neither spo0J nor smc is essential in S. aureus; however, their absence causes abnormal chromosome segregation. We demonstrate that formation of complexes containing Spo0J and SMC is required for efficient S. aureus chromosome segregation and that SMC localization is dependent on Spo0J. Furthermore, we found that cell division and cell cycle progression are unaffected by the absence of spo0J or smc. Our results verify the role of Spo0J and SMC in ensuring accurate staphylococcal chromosome segregation and also imply functional redundancy or the involvement of additional mechanisms that might contribute to faithful chromosome inheritance.
Collapse
Affiliation(s)
- Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
11
|
Schumacher MA, Henderson M, Zhang H. Structures of maintenance of carboxysome distribution Walker-box McdA and McdB adaptor homologs. Nucleic Acids Res 2019; 47:5950-5962. [PMID: 31106331 PMCID: PMC6582323 DOI: 10.1093/nar/gkz314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Carboxysomes, protein-coated organelles in cyanobacteria, are important in global carbon fixation. However, these organelles are present at low copy in each cell and hence must be segregated to ensure transmission from one generation to the next. Recent studies revealed that a DNA partition-like ParA-ParB system mediates carboxysome maintenance, called McdA-McdB. Here, we describe the first McdA and McdB homolog structures. McdA is similar to partition ParA Walker-box proteins, but lacks the P-loop signature lysine involved in ATP binding. Strikingly, a McdA-ATP structure shows that a lysine distant from the P-loop and conserved in McdA homologs, enables ATP-dependent nucleotide sandwich dimer formation. Similar to partition ParA proteins this ATP-bound form binds nonspecific-DNA. McdB, which we show directly binds McdA, harbors a unique fold and appears to form higher-order oligomers like partition ParB proteins. Thus, our data reveal a new signature motif that enables McdA dimer formation and indicates that, similar to DNA segregation, carboxysome maintenance systems employ Walker-box proteins as DNA-binding motors while McdB proteins form higher order oligomers, which could function as adaptors to link carboxysomes and provide for stable transport by the McdA proteins.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Characterisation of ParB encoded on multipartite genome in Deinococcus radiodurans and their roles in radioresistance. Microbiol Res 2019; 223-225:22-32. [DOI: 10.1016/j.micres.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/27/2019] [Accepted: 03/16/2019] [Indexed: 01/05/2023]
|
13
|
ParA proteins of secondary genome elements cross-talk and regulate radioresistance through genome copy number reduction in Deinococcus radiodurans. Biochem J 2019; 476:909-930. [DOI: 10.1042/bcj20180799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Abstract
Deinococcus radiodurans, an extremely radioresistant bacterium has a multipartite genome system and ploidy. Mechanisms underlying such types of bacterial genome maintenance and its role in extraordinary radioresistance are not known in this bacterium. Chromosome I (Chr I), chromosome II (Chr II) and megaplasmid (Mp) encode its own set of genome partitioning proteins. Here, we have characterized P-loop ATPases of Chr II (ParA2) and Mp (ParA3) and their roles in the maintenance of genome copies and extraordinary radioresistance. Purified ParA2 and ParA3 showed nearly similar polymerization kinetics and interaction patterns with DNA. Electron microscopic examination of purified proteins incubated with DNA showed polymerization on nicked circular dsDNA. ParA2 and ParA3 showed both homotypic and heterotypic interactions to each other, but not with ParA1 (ParA of Chr I). Similarly, ParA2 and ParA3 interacted with ParB2 and ParB3 but not with ParB1 in vivo. ParB2 and ParB3 interaction with cis-elements located upstream to the corresponding parAB operon was found to be sequence-specific. Unlike single mutant of parA2 and parA3, their double mutant (ΔparA2ΔParA3) affected copy number of cognate genome elements and resistance to γ-radiation as well as hydrogen peroxide in this bacterium. These results suggested that ParA2 and ParA3 are DNA-binding ATPases producing higher order polymers on DNA and are functionally redundant in the maintenance of secondary genome elements in D. radiodurans. The findings also suggest the involvement of secondary genome elements such as Chr II and Mp in the extraordinary radioresistance of D. radiodurans.
Collapse
|
14
|
Hayashi I, Oda T, Sato M, Fuchigami S. Cooperative DNA Binding of the Plasmid Partitioning Protein TubR from the Bacillus cereus pXO1 Plasmid. J Mol Biol 2018; 430:5015-5028. [PMID: 30414406 DOI: 10.1016/j.jmb.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022]
Abstract
Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on-off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA-protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Takashi Oda
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mamoru Sato
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
15
|
Martín-García B, Martín-González A, Carrasco C, Hernández-Arriaga AM, Ruíz-Quero R, Díaz-Orejas R, Aicart-Ramos C, Moreno-Herrero F, Oliva MA. The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems. Nucleic Acids Res 2018; 46:5704-5716. [PMID: 29762781 PMCID: PMC6009700 DOI: 10.1093/nar/gky370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.
Collapse
Affiliation(s)
- Bárbara Martín-García
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | | | - Carolina Carrasco
- Department of Macromolecular Structures, CSIC-Centro Nacional de Biotecnología, Madrid 28049, Spain
| | - Ana M Hernández-Arriaga
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | - Rubén Ruíz-Quero
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | - Ramón Díaz-Orejas
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, CSIC-Centro Nacional de Biotecnología, Madrid 28049, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, CSIC-Centro Nacional de Biotecnología, Madrid 28049, Spain
| | - María A Oliva
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| |
Collapse
|
16
|
Pillet F, Passot FM, Pasta F, Anton Leberre V, Bouet JY. Analysis of ParB-centromere interactions by multiplex SPR imaging reveals specific patterns for binding ParB in six centromeres of Burkholderiales chromosomes and plasmids. PLoS One 2017; 12:e0177056. [PMID: 28562673 PMCID: PMC5450999 DOI: 10.1371/journal.pone.0177056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.
Collapse
Affiliation(s)
- Flavien Pillet
- Ingénierie des Systèmes Biologiques et des Procédés INRA UMR792, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, Toulouse, France
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés CNRS UMR5504, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées, Université de Toulouse, Toulouse, France
| | - Fanny Marie Passot
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
- * E-mail:
| | - Véronique Anton Leberre
- Ingénierie des Systèmes Biologiques et des Procédés INRA UMR792, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, Toulouse, France
- Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés CNRS UMR5504, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
17
|
Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol 2016; 14:88. [PMID: 27733152 PMCID: PMC5059902 DOI: 10.1186/s12915-016-0290-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The navigation of magnetotactic bacteria relies on specific intracellular organelles, the magnetosomes, which are membrane-enclosed crystals of magnetite aligned into a linear chain. The magnetosome chain acts as a cellular compass, aligning the cells in the geomagnetic field in order to search for suitable environmental conditions in chemically stratified water columns and sediments. During cytokinesis, magnetosome chains have to be properly positioned, cleaved and separated in order to be evenly passed into daughter cells. In Magnetospirillum gryphiswaldense, the assembly of the magnetosome chain is controlled by the actin-like MamK, which polymerizes into cytoskeletal filaments that are connected to magnetosomes through the acidic MamJ protein. MamK filaments were speculated to recruit the magnetosome chain to cellular division sites, thus ensuring equal organelle inheritance. However, the underlying mechanism of magnetic organelle segregation has remained largely unknown. RESULTS Here, we performed in vivo time-lapse fluorescence imaging to directly track the intracellular movement and dynamics of magnetosome chains as well as photokinetic and ultrastructural analyses of the actin-like cytoskeletal MamK filament. We show that magnetosome chains undergo rapid intracellular repositioning from the new poles towards midcell into the newborn daughter cells, and the driving force for magnetosomes movement is likely provided by the pole-to-midcell treadmilling growth of MamK filaments. We further discovered that splitting and equipartitioning of magnetosome chains occurs with unexpectedly high accuracy, which depends directly on the dynamics of MamK filaments. CONCLUSION We propose a novel mechanism for prokaryotic organelle segregation that, similar to the type-II bacterial partitioning system of plasmids, relies on the action of cytomotive actin-like filaments together with specific connectors, which transport the magnetosome cargo in a fashion reminiscent of eukaryotic actin-organelle transport and segregation mechanisms.
Collapse
Affiliation(s)
- Mauricio Toro-Nahuelpan
- Department of Microbiology, University of Bayreuth, 95447, Bayreuth, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Frank D Müller
- Department of Microbiology, University of Bayreuth, 95447, Bayreuth, Germany
| | - Stefan Klumpp
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute for Nonlinear Dynamics, Georg August University Göttingen, Göttingen, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Dirk Schüler
- Department of Microbiology, University of Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
18
|
Pompilio A, Riviello A, Crocetta V, Di Giuseppe F, Pomponio S, Sulpizio M, Di Ilio C, Angelucci S, Barone L, Di Giulio A, Di Bonaventura G. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus. Future Microbiol 2016; 11:1315-1338. [PMID: 27633726 DOI: 10.2217/fmb-2016-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial and antibiofilm mechanisms of usnic acid (USN) against methicillin-resistant Staphylococcus aureus from cystic fibrosis patients. MATERIALS & METHODS The effects exerted by USN at subinhibitory concentrations on S. aureus Sa3 strain was evaluated by proteomic, real-time PCR and electron microscopy analyses. RESULTS & CONCLUSION Proteomic analysis showed that USN caused damage in peptidoglycan synthesis, as confirmed by microscopy. Real-time PCR analysis showed that antibiofilm activity of USN is mainly due to impaired adhesion to the host matrix binding proteins, and decreasing lipase and thermonuclease expression. Our data show that USN exerts anti-staphylococcal effects through multitarget inhibitory effects, thus confirming the rationale for considering it 'lead compound' for the treatment of cystic fibrosis infections.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Antonella Riviello
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefano Pomponio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Marilisa Sulpizio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Luana Barone
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| |
Collapse
|
19
|
Oliva MA. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division. Front Mol Biosci 2016; 3:51. [PMID: 27668216 PMCID: PMC5016525 DOI: 10.3389/fmolb.2016.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.
Collapse
Affiliation(s)
- María A Oliva
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
20
|
Barillà D. Driving Apart and Segregating Genomes in Archaea. Trends Microbiol 2016; 24:957-967. [PMID: 27450111 PMCID: PMC5120986 DOI: 10.1016/j.tim.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 11/01/2022]
Abstract
Genome segregation is a fundamental biological process in organisms from all domains of life. How this stage of the cell cycle unfolds in Eukarya has been clearly defined and considerable progress has been made to unravel chromosome partition in Bacteria. The picture is still elusive in Archaea. The lineages of this domain exhibit different cell-cycle lifestyles and wide-ranging chromosome copy numbers, fluctuating from 1 up to 55. This plurality of patterns suggests that a variety of mechanisms might underpin disentangling and delivery of DNA molecules to daughter cells. Here I describe recent developments in archaeal genome maintenance, including investigations of novel genome segregation machines that point to unforeseen bacterial and eukaryotic connections.
Collapse
Affiliation(s)
- Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
21
|
Schumacher MA, Tonthat NK, Lee J, Rodriguez-Castañeda FA, Chinnam NB, Kalliomaa-Sanford AK, Ng IW, Barge MT, Shaw PLR, Barillà D. Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science 2015; 349:1120-4. [PMID: 26339031 PMCID: PMC4844061 DOI: 10.1126/science.aaa9046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although recent studies have provided a wealth of information about archaeal biology, nothing is known about the molecular basis of DNA segregation in these organisms. Here, we unveil the machinery and assembly mechanism of the archaeal Sulfolobus pNOB8 partition system. This system uses three proteins: ParA; an atypical ParB adaptor; and a centromere-binding component, AspA. AspA utilizes a spreading mechanism to create a DNA superhelix onto which ParB assembles. This supercomplex links to the ParA motor, which contains a bacteria-like Walker motif. The C domain of ParB harbors structural similarity to CenpA, which dictates eukaryotic segregation. Thus, this archaeal system combines bacteria-like and eukarya-like components, which suggests the possible conservation of DNA segregation principles across the three domains of life.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA.
| | - Nam K Tonthat
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | - Jeehyun Lee
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | | | - Naga Babu Chinnam
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | | | - Irene W Ng
- Department of Biology, University of York, York YO10 5DD, UK
| | - Madhuri T Barge
- Department of Biology, University of York, York YO10 5DD, UK
| | - Porsha L R Shaw
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Box 3711, Durham, NC 27710, USA
| | - Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
22
|
Sanchez A, Cattoni D, Walter JC, Rech J, Parmeggiani A, Nollmann M, Bouet JY. Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus. Cell Syst 2015; 1:163-73. [DOI: 10.1016/j.cels.2015.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/15/2015] [Accepted: 07/30/2015] [Indexed: 11/25/2022]
|
23
|
Sakaguchi Y, Suzuki T, Yamamoto Y, Nishikawa A, Oguma K. Genomics of Clostridium botulinum group III strains. Res Microbiol 2015; 166:318-25. [DOI: 10.1016/j.resmic.2014.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
24
|
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Krämer R, Frunzke J, Bramkamp M. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Res 2015; 43:5002-16. [PMID: 25916847 PMCID: PMC4446434 DOI: 10.1093/nar/gkv374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022] Open
Abstract
In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.
Collapse
Affiliation(s)
- Catriona Donovan
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Antonia Heyer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Eugen Pfeifer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Anja Wittmann
- Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Reinhard Krämer
- Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany Institute for Biochemistry, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| |
Collapse
|
25
|
Saeed S, Jowitt TA, Warwicker J, Hayes F. Breaking and restoring the hydrophobic core of a centromere-binding protein. J Biol Chem 2015; 290:9273-83. [PMID: 25713077 DOI: 10.1074/jbc.m115.638148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
The ribbon-helix-helix (RHH) superfamily of DNA-binding proteins is dispersed widely in procaryotes. The dimeric RHH fold is generated by interlocking of two monomers into a 2-fold symmetrical structure that comprises four α-helices enwrapping a pair of antiparallel β-strands (ribbon). Residues in the ribbon region are the principal determinants of DNA binding, whereas the RHH hydrophobic core is assembled from amino acids in both the α-helices and ribbon element. The ParG protein encoded by multiresistance plasmid TP228 is a RHH protein that functions dually as a centromere binding factor during segrosome assembly and as a transcriptional repressor. Here we identify residues in the α-helices of ParG that are critical for DNA segregation and in organization of the protein hydrophobic core. A key hydrophobic aromatic amino acid at one position was functionally substitutable by other aromatic residues, but not by non-aromatic hydrophobic amino acids. Nevertheless, intramolecular suppression of the latter by complementary change of a residue that approaches nearby from the partner monomer fully restored activity in vivo and in vitro. The interactions involved in assembling the ParG core may be highly malleable and suggest that RHH proteins are tractable platforms for the rational design of diverse DNA binding factors useful for synthetic biology and other purposes.
Collapse
Affiliation(s)
- Sadia Saeed
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas A Jowitt
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jim Warwicker
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Finbarr Hayes
- From the Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
Kun Á, Szilágyi A, Könnyű B, Boza G, Zachar I, Szathmáry E. The dynamics of the RNA world: insights and challenges. Ann N Y Acad Sci 2015; 1341:75-95. [PMID: 25735569 DOI: 10.1111/nyas.12700] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RNA world hypothesis of the origin of life, in which RNA emerged as both enzyme and information carrier, is receiving solid experimental support. The prebiotic synthesis of biomolecules, the catalytic aid offered by mineral surfaces, and the vast enzymatic repertoire of ribozymes are only pieces of the origin of life puzzle; the full picture can only emerge if the pieces fit together by either following from one another or coexisting with each other. Here, we review the theory of the origin, maintenance, and enhancement of the RNA world as an evolving population of dynamical systems. The dynamical view of the origin of life allows us to pinpoint the missing and the not fitting pieces: (1) How can the first self-replicating ribozyme emerge in the absence of template-directed information replication? (2) How can nucleotide replicators avoid competitive exclusion despite utilizing the very same resources (nucleobases)? (3) How can the information catastrophe be avoided? (4) How can enough genes integrate into a cohesive system in order to transition to a cellular stage? (5) How can the way information is stored and metabolic complexity coevolve to pave to road leading out of the RNA world to the present protein-DNA world?
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany; MTA-ELTE-MTMT Ecology Research Group, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
It has recently been demonstrated that bacterial chromosomes are highly organized, with specific positioning of the replication initiation region. Moreover, the positioning of the replication machinery (replisome) has been shown to be variable and dependent on species-specific cell cycle features. Here, we analyzed replisome positions in Mycobacterium smegmatis, a slow-growing bacterium that exhibits characteristic asymmetric polar cell extension. Time-lapse fluorescence microscopy analyses revealed that the replisome is slightly off-center in mycobacterial cells, a feature that is likely correlated with the asymmetric growth of Mycobacterium cell poles. Estimates of the timing of chromosome replication in relation to the cell cycle, as well as cell division and chromosome segregation events, revealed that chromosomal origin-of-replication (oriC) regions segregate soon after the start of replication. Moreover, our data demonstrate that organization of the chromosome by ParB determines the replisome choreography. Despite significant progress in elucidating the basic processes of bacterial chromosome replication and segregation, understanding of chromosome dynamics during the mycobacterial cell cycle remains incomplete. Here, we provide in vivo experimental evidence that replisomes in Mycobacterium smegmatis are highly dynamic, frequently splitting into two distinct replication forks. However, unlike in Escherichia coli, the forks do not segregate toward opposite cell poles but remain in relatively close proximity. In addition, we show that replication cycles do not overlap. Finally, our data suggest that ParB participates in the positioning of newly born replisomes in M. smegmatis cells. The present results broaden our understanding of chromosome segregation in slow-growing bacteria. In view of the complexity of the mycobacterial cell cycle, especially for pathogenic representatives of the genus, understanding the mechanisms and factors that affect chromosome dynamics will facilitate the identification of novel antimicrobial factors.
Collapse
|
28
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
29
|
Miyazaki R, Bertelli C, Benaglio P, Canton J, De Coi N, Gharib WH, Gjoksi B, Goesmann A, Greub G, Harshman K, Linke B, Mikulic J, Mueller L, Nicolas D, Robinson-Rechavi M, Rivolta C, Roggo C, Roy S, Sentchilo V, Siebenthal AV, Falquet L, van der Meer JR. Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds. Environ Microbiol 2014; 17:91-104. [PMID: 24803113 DOI: 10.1111/1462-2920.12498] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/28/2014] [Indexed: 01/24/2023]
Abstract
Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan; Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chromosome segregation by the Escherichia coli Min system. Mol Syst Biol 2014; 9:686. [PMID: 24022004 PMCID: PMC3792344 DOI: 10.1038/msb.2013.44] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/07/2013] [Indexed: 12/26/2022] Open
Abstract
The mechanisms underlying chromosome segregation in prokaryotes remain a subject of debate and no unifying view has yet emerged. Given that the initial disentanglement of duplicated chromosomes could be achieved by purely entropic forces, even the requirement of an active prokaryotic segregation machinery has been questioned. Using computer simulations, we show that entropic forces alone are not sufficient to achieve and maintain full separation of chromosomes. This is, however, possible by assuming repeated binding of chromosomes along a gradient of membrane-associated tethering sites toward the poles. We propose that, in Escherichia coli, such a gradient of membrane tethering sites may be provided by the oscillatory Min system, otherwise known for its role in selecting the cell division site. Consistent with this hypothesis, we demonstrate that MinD binds to DNA and tethers it to the membrane in an ATP-dependent manner. Taken together, our combined theoretical and experimental results suggest the existence of a novel mechanism of chromosome segregation based on the Min system, further highlighting the importance of active segregation of chromosomes in prokaryotic cell biology.
Collapse
|
31
|
Bartosik AA, Glabski K, Jecz P, Mikulska S, Fogtman A, Koblowska M, Jagura-Burdzy G. Transcriptional profiling of ParA and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa. PLoS One 2014; 9:e87276. [PMID: 24498062 PMCID: PMC3909081 DOI: 10.1371/journal.pone.0087276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022] Open
Abstract
Accurate chromosome segregation to progeny cells is a fundamental process ensuring proper inheritance of genetic material. In bacteria with simple cell cycle, chromosome segregation follows replication initiation since duplicated oriC domains start segregating to opposite halves of the cell soon after they are made. ParA and ParB proteins together with specific DNA sequences are parts of the segregation machinery. ParA and ParB proteins in Pseudomonas aeruginosa are important for optimal growth, nucleoid segregation, cell division and motility. Comparative transcriptome analysis of parAnull and parBnull mutants versus parental P. aeruginosa PAO1161 strain demonstrated global changes in gene expression pattern in logarithmically growing planktonic cultures. The set of genes similarly affected in both mutant strains is designated Par regulon and comprises 536 genes. The Par regulon includes genes controlled by two sigma factors (RpoN and PvdS) as well as known and putative transcriptional regulators. In the absence of Par proteins, a large number of genes from RpoS regulon is induced, reflecting the need for slowing down the cell growth rate and decelerating the metabolic processes. Changes in the expression profiles of genes involved in c-di-GMP turnover point out the role of this effector in such signal transmission. Microarray data for chosen genes were confirmed by RT-qPCR analysis. The promoter regions of selected genes were cloned upstream of the promoter-less lacZ gene and analyzed in the heterologous host E. coliΔlac. Regulation by ParA and ParB of P. aeruginosa was confirmed for some of the tested promoters. Our data demonstrate that ParA and ParB besides their role in accurate chromosome segregation may act as modulators of genes expression. Directly or indirectly, Par proteins are part of the wider regulatory network in P. aeruginosa linking the process of chromosome segregation with the cell growth, division and motility.
Collapse
Affiliation(s)
- Aneta A. Bartosik
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | - Krzysztof Glabski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Jecz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Mikulska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
32
|
Sakai Y, Ogawa N, Shimomura Y, Fujii T. A 2,4-dichlorophenoxyacetic acid degradation plasmid pM7012 discloses distribution of an unclassified megaplasmid group across bacterial species. MICROBIOLOGY-SGM 2014; 160:525-536. [PMID: 24440834 DOI: 10.1099/mic.0.074369-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.
Collapse
Affiliation(s)
- Yoriko Sakai
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Naoto Ogawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Surugaku, Shizuoka 422-8529, Japan
| | - Yumi Shimomura
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Takeshi Fujii
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
33
|
Okibe N, Suzuki N, Inui M, Yukawa H. pCGR2 copy number depends on the par
locus that forms a ParC-ParB-DNA partition complex in Corynebacterium glutamicum. J Appl Microbiol 2013; 115:495-508. [DOI: 10.1111/jam.12257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/12/2013] [Accepted: 04/29/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Naoko Okibe
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Nobuaki Suzuki
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth; Kizugawa Kyoto Japan
| |
Collapse
|
34
|
Ditkowski B, Holmes N, Rydzak J, Donczew M, Bezulska M, Ginda K, Kedzierski P, Zakrzewska-Czerwińska J, Kelemen GH, Jakimowicz D. Dynamic interplay of ParA with the polarity protein, Scy, coordinates the growth with chromosome segregation in Streptomyces coelicolor. Open Biol 2013; 3:130006. [PMID: 23536551 PMCID: PMC3718342 DOI: 10.1098/rsob.130006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Prior to bacterial cell division, the ATP-dependent polymerization of the cytoskeletal protein, ParA, positions the newly replicated origin-proximal region of the chromosome by interacting with ParB complexes assembled on parS sites located close to the origin. During the formation of unigenomic spores from multi-genomic aerial hyphae compartments of Streptomyces coelicolor, ParA is developmentally triggered to form filaments along the hyphae; this promotes the accurate and synchronized segregation of tens of chromosomes into prespore compartments. Here, we show that in addition to being a segregation protein, ParA also interacts with the polarity protein, Scy, which is a component of the tip-organizing centre that controls tip growth. Scy recruits ParA to the hyphal tips and regulates ParA polymerization. These results are supported by the phenotype of a strain with a mutant form of ParA that uncouples ParA polymerization from Scy. We suggest that the ParA–Scy interaction coordinates the transition from hyphal elongation to sporulation.
Collapse
Affiliation(s)
- Bartosz Ditkowski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The perspective of the cytoskeleton as a feature unique to eukaryotic organisms was overturned when homologs of the eukaryotic cytoskeletal elements were identified in prokaryotes and implicated in major cell functions, including growth, morphogenesis, cell division, DNA partitioning, and cell motility. FtsZ and MreB were the first identified homologs of tubulin and actin, respectively, followed by the discovery of crescentin as an intermediate filament-like protein. In addition, new elements were identified which have no apparent eukaryotic counterparts, such as the deviant Walker A-type ATPases, bactofilins, and several novel elements recently identified in streptomycetes, highlighting the unsuspected complexity of cytostructural components in bacteria. In vivo multidimensional fluorescence microscopy has demonstrated the dynamics of the bacterial intracellular world, and yet we are only starting to understand the role of cytoskeletal elements. Elucidating structure-function relationships remains challenging, because core cytoskeletal protein motifs show remarkable plasticity, with one element often performing various functions and one function being performed by several types of elements. Structural imaging techniques, such as cryo-electron tomography in combination with advanced light microscopy, are providing the missing links and enabling scientists to answer many outstanding questions regarding prokaryotic cellular architecture. Here we review the recent advances made toward understanding the different roles of cytoskeletal proteins in bacteria, with particular emphasis on modern imaging approaches.
Collapse
|
36
|
Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum. PLoS One 2013; 8:e55078. [PMID: 23405112 PMCID: PMC3566199 DOI: 10.1371/journal.pone.0055078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
Spatial and temporal regulation of bacterial cell division is imperative for the production of viable offspring. In many rod-shaped bacteria, regulatory systems such as the Min system and nucleoid occlusion ensure the high fidelity of midcell divisome positioning. However, regulation of division site selection in bacteria lacking recognizable Min and nucleoid occlusion remains less well understood. Here, we describe one such rod-shaped organism, Corynebacterium glutamicum, which does not always place the division septum precisely at midcell. Here we now show at single cell level that cell growth and division site selection are spatially and temporally regulated by chromosome segregation. Mutants defective in chromosome segregation have more variable cell growth and aberrant placement of the division site. In these mutants, division septa constrict over and often guillotine the nucleoid, leading to nonviable, DNA-free cells. Our results suggest that chromosome segregation or some nucleoid associated factor influences growth and division site selection in C. glutamicum. Understanding growth and regulation of C. glutamicum cells will also be of importance to develop strains for industrial production of biomolecules, such as amino acids.
Collapse
|
37
|
Sanchez A, Rech J, Gasc C, Bouet JY. Insight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance. Nucleic Acids Res 2013; 41:3094-103. [PMID: 23345617 PMCID: PMC3597684 DOI: 10.1093/nar/gkt018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.
Collapse
Affiliation(s)
- Aurore Sanchez
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
38
|
Qian S, Dean R, Urban VS, Chaudhuri BN. The internal organization of mycobacterial partition assembly: does the DNA wrap a protein core? PLoS One 2012; 7:e52690. [PMID: 23285150 PMCID: PMC3527565 DOI: 10.1371/journal.pone.0052690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
Before cell division in many bacteria, the ParBs spread on a large segment of DNA encompassing the origin-proximal parS site(s) to form the partition assembly that participates in chromosome segregation. Little is known about the structural organization of chromosomal partition assembly. We report solution X-ray and neutron scattering data characterizing the size parameters and internal organization of a nucleoprotein assembly formed by the mycobacterial chromosomal ParB and a 120-meric DNA containing a parS-encompassing region from the mycobacterial genome. The cross-sectional radii of gyration and linear mass density describing the rod-like ParB-DNA assembly were determined from solution scattering. A "DNA outside, protein inside" mode of partition assembly organization consistent with the neutron scattering hydrogen/deuterium contrast variation data is discussed. In this organization, the high scattering DNA is positioned towards the outer region of the partition assembly. The new results presented here provide a basis for understanding how ParBs organize the parS-proximal chromosome, thus setting the stage for further interactions with the DNA condensins, the origin tethering factors and the ParA.
Collapse
Affiliation(s)
- Shuo Qian
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Rebecca Dean
- Hauptman Woodward Institute, Buffalo, New York, United States of America
| | - Volker S. Urban
- Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Barnali N. Chaudhuri
- Hauptman Woodward Institute, Buffalo, New York, United States of America
- Department of Structural Biology, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
39
|
Dobruk-Serkowska A, Caccamo M, Rodríguez-Castañeda F, Wu M, Bryce K, Ng I, Schumacher MA, Barillà D, Hayes F. Uncoupling of nucleotide hydrolysis and polymerization in the ParA protein superfamily disrupts DNA segregation dynamics. J Biol Chem 2012; 287:42545-53. [PMID: 23093445 DOI: 10.1074/jbc.m112.410324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA segregation in bacteria is mediated most frequently by proteins of the ParA superfamily that transport DNA molecules attached via the segrosome nucleoprotein complex. Segregation is governed by a cycle of ATP-induced polymerization and subsequent depolymerization of the ParA factor. Here, we establish that hyperactive ATPase variants of the ParA homolog ParF display altered segrosome dynamics that block accurate DNA segregation. An arginine finger-like motif in the ParG centromere-binding factor augments ParF ATPase activity but is ineffective in stimulating nucleotide hydrolysis by the hyperactive proteins. Moreover, whereas polymerization of wild-type ParF is accelerated by ATP and inhibited by ADP, filamentation of the mutated proteins is blocked indiscriminately by nucleotides. The mutations affect a triplet of conserved residues that are situated neither in canonical nucleotide binding and hydrolysis motifs in the ParF tertiary structure nor at interfaces implicated in ParF polymerization. Instead the residues are involved in shaping the contours of the binding pocket so that nucleotide binding locks the mutant proteins into a configuration that is refractory to polymerization. Thus, the architecture of the pocket not only is crucial for optimal ATPase kinetics but also plays a key role in the polymerization dynamics of ParA proteins that drive DNA segregation ubiquitously in procaryotes.
Collapse
|
40
|
Miyakoshi M, Shintani M, Inoue K, Terabayashi T, Sai F, Ohkuma M, Nojiri H, Nagata Y, Tsuda M. ParI, an orphan ParA family protein from Pseudomonas putida KT2440-specific genomic island, interferes with the partition system of IncP-7 plasmids. Environ Microbiol 2012; 14:2946-59. [PMID: 22925377 DOI: 10.1111/j.1462-2920.2012.02861.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/26/2012] [Accepted: 07/28/2012] [Indexed: 01/09/2023]
Abstract
Pseudomonas putida KT2440 is an ideal soil bacterium for expanding the range of degradable compounds via the recruitment of various catabolic plasmids. In the course of our investigation of the host range of IncP-7 catabolic plasmids pCAR1, pDK1 and pWW53, we found that the IncP-7 miniplasmids composed of replication and partition loci were exceptionally unstable in KT2440, which is the authentic host of the archetypal IncP-9 plasmid pWW0. This study identified ParI, a homologue of ParA family of plasmid partitioning proteins encoded on the KT2440-specific cryptic genomic island, as a negative host factor for the maintenance of IncP-7 plasmids. The miniplasmids were destabilized by ectopic expression of ParI, and the loss rate correlated with the copy number of ParB binding sites in the centromeric parS region. Mutations in the conserved ATPase domains of ParI abolished destabilization of miniplasmids. Furthermore, ParI destabilized miniplasmid derivatives carrying the partition-deficient parA mutations but failed to impact the stability of miniplasmid derivatives with parB mutations in the putative arginine finger. Altogether, these results indicate that ParI interferes with the IncP-7 plasmid partition system. This study extends canonical partition-mediated incompatibility of plasmids beyond heterogeneous mobile genetic elements, namely incompatibility between plasmid and genomic island.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Functional characterization of the role of the chromosome I partitioning system in genome segregation in Deinococcus radiodurans. J Bacteriol 2012; 194:5739-48. [PMID: 22843847 DOI: 10.1128/jb.00610-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans, a radiation-resistant bacterium, harbors a multipartite genome. Chromosome I contains three putative centromeres (segS1, segS2, and segS3), and ParA (ParA1) and ParB (ParB1) homologues. The ParB1 interaction with segS was sequence specific, and ParA1 was shown to be a DNA binding ATPase. The ATPase activity of ParA1 was stimulated when segS elements were coincubated with ParB1, but the greatest increase was observed with segS3. ParA1 incubated with the segS-ParB1 complex showed increased light scattering in the absence of ATP. In the presence of ATP, this increase was continued with segS1-ParA1B1 and segS2-ParA1B1 complexes, while it decreased rapidly after an initial increase for 30 min in the case of segS3. D. radiodurans cells expressing green fluorescent protein (GFP)-ParB1 produced foci on nucleoids, and the ΔparB1 mutant showed growth retardation and ∼13%-higher anucleation than the wild type. Unstable mini-F plasmids carrying segS1 and segS2 showed inheritance in Escherichia coli without ParA1B1, while segS3-mediated plasmid stability required the in trans expression of ParA1B1. Unlike untransformed E. coli cells, cells harboring pDAGS3, a plasmid carrying segS3 and also expressing ParB1-GFP, produced discrete GFP foci on nucleoids. These findings suggested that both segS elements and the ParA1B1 proteins of D. radiodurans are functionally active and have a role in genome segregation.
Collapse
|
42
|
Jakimowicz D, van Wezel GP. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere? Mol Microbiol 2012; 85:393-404. [PMID: 22646484 DOI: 10.1111/j.1365-2958.2012.08107.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomycetes are antibiotic-producing filamentous microorganisms that have a mycelial life style. In many ways streptomycetes are the odd ones out in terms of cell division. While the basic components of the cell division machinery are similar to those found in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, many aspects of the control of cell division and its co-ordination with chromosome segregation are remarkably different. The rather astonishing fact that cell division is not essential for growth makes these bacteria unique. The fundamental difference between the cross-walls produced during normal growth and sporulation septa formed in aerial hyphae, and the role of the divisome in their formation are discussed. We then take a closer look at the way septum site localization is regulated in the long and multinucleoid Streptomyces hyphae, with particular focus on actinomycete-specific proteins and the role of nucleoid segregation and condensation.
Collapse
|
43
|
Characterization of a conserved interaction between DNA glycosylase and ParA in Mycobacterium smegmatis and M. tuberculosis. PLoS One 2012; 7:e38276. [PMID: 22675536 PMCID: PMC3366916 DOI: 10.1371/journal.pone.0038276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/02/2012] [Indexed: 11/19/2022] Open
Abstract
The chromosome partitioning proteins, ParAB, ensure accurate segregation of genetic materials into daughter cells and most bacterial species contain their homologs. However, little is known about the regulation of ParAB proteins. In this study, we found that 3-methyladenine DNA glycosylase I MsTAG(Ms5082) regulates bacterial growth and cell morphology by directly interacting with MsParA (Ms6939) and inhibiting its ATPase activity in Mycobacterium smegmatis. Using bacterial two-hybrid and pull-down techniques in combination with co-immunoprecipitation assays, we show that MsTAG physically interacts with MsParA both in vitro and in vivo. Expression of MsTAG under conditions of DNA damage induction exhibited similar inhibition of growth as the deletion of the parA gene in M. smegmatis. Further, the effect of MsTAG on mycobacterial growth was found to be independent of its DNA glycosylase activity, and to result instead from direct inhibition of the ATPase activity of MsParA. Co-expression of these two proteins could counteract the growth defect phenotypes observed in strains overexpressing MsTAG alone in response to DNA damage induction. Based on protein co-expression and fluorescent co-localization assays, MsParA and MsTAG were further found to co-localize in mycobacterial cells. In addition, the interaction between the DNA glycosylase and ParA, and the regulation of ParA by the glycosylase were conserved in M. tuberculosis and M. smegmatis. Our findings provide important new insights into the regulatory mechanism of cell growth and division in mycobacteria.
Collapse
|
44
|
Schumacher MA, Ye Q, Barge MT, Zampini M, Barillà D, Hayes F. Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation. J Biol Chem 2012; 287:26146-54. [PMID: 22674577 DOI: 10.1074/jbc.m112.373696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Segregation of the bacterial multidrug resistance plasmid TP228 requires the centromere-binding protein ParG, the parH centromere, and the Walker box ATPase ParF. The cycling of ParF between ADP- and ATP-bound states drives TP228 partition; ATP binding stimulates ParF polymerization, which is essential for segregation, whereas ADP binding antagonizes polymerization and inhibits DNA partition. The molecular mechanism involved in this adenine nucleotide switch is unclear. Moreover, it is unknown how any Walker box protein polymerizes in an ATP-dependent manner. Here, we describe multiple ParF structures in ADP- and phosphomethylphosphonic acid adenylate ester (AMPPCP)-bound states. ParF-ADP is monomeric but dimerizes when complexed with AMPPCP. Strikingly, in ParF-AMPPCP structures, the dimers interact to create dimer-of-dimer "units" that generate a specific linear filament. Mutation of interface residues prevents both polymerization and DNA segregation in vivo. Thus, these data provide insight into a unique mechanism by which a Walker box protein forms polymers that involves the generation of ATP-induced dimer-of-dimer building blocks.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Siddique A, Figurski DH. Different phenotypes of Walker-like A box mutants of ParA homolog IncC of broad-host-range IncP plasmids. Plasmid 2012; 68:93-104. [PMID: 22579980 DOI: 10.1016/j.plasmid.2012.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 11/30/2022]
Abstract
The promiscuous IncPα plasmids RK2 and R995 encode a broad-host-range partition system, whose essential components include the incC and korB genes and a DNA site (O(B)) to which the korB product binds. IncC2, the smaller of the two incC products, is sufficient for stabilization of R995ΔincC. It is a member of the type Ia ParA family of partition ATPases. To better understand the role of ATP in partition, we constructed three alanine-substitution mutants of IncC2. Each mutation changed a different residue of the Walker-like ATP-binding and hydrolysis motif, including a lysine (K10) conserved solely among members of the ParA and MinD families. All three IncC2 mutants were defective in plasmid partition, but they differed from one another in other respects. The IncC2 T16A mutant, predicted to be defective in Mg²⁺ coordination, was severely impaired in all activities tested. IncC2 K10A, predicted to be defective in ATP hydrolysis, mediated enhanced incompatibility with R995 derivatives. IncC2 K15A, predicted to be defective in ATP binding, exhibited two distinct incompatibility properties depending on the genotype of the target plasmid. When in trans to plasmids carrying a complementable incC deletion, IncC2 K15A caused dramatic plasmid loss, even at low levels of expression. In trans to wild-type R995 or to R995ΔincC carrying a functional P1 partition system, IncC2 K15A-mediated incompatibility was significantly less than that caused by wild-type IncC2. All three Walker-like A box mutants were also defective for the host toxicity that normally results from co-overexpression of incC and korB. The phenotypes of the mutants support a model in which nucleotide hydrolysis is required for separation of paired plasmid complexes and possible interaction with a host factor.
Collapse
Affiliation(s)
- Azeem Siddique
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
46
|
Abstract
Partition systems are responsible for the process whereby large and essential plasmids are accurately positioned to daughter cells during bacterial division. They are typically made of three components: a centromere-like DNA zone, an adaptor protein, and an assembling protein that is either a Walker-box ATPase (type I) or an actin-like ATPase (type II). A recently described type III segregation system has a tubulin/FtsZ-like protein, called TubZ, for plasmid movement. Here, we present the 2.3 Å structure and dynamic assembly of a TubZ tubulin homolog from a bacteriophage and unravel the Clostridium botulinum phage c-st type III partition system. Using biochemical and biophysical approaches, we prove that a gene upstream from tubZ encodes the partner TubR and localize the centromeric region (tubS), both of which are essential for anchoring phage DNA to the motile TubZ filaments. Finally, we describe a conserved fourth component, TubY, which modulates the TubZ-R-S complex interaction.
Collapse
|
47
|
Chromosome segregation in Archaea mediated by a hybrid DNA partition machine. Proc Natl Acad Sci U S A 2012; 109:3754-9. [PMID: 22355141 DOI: 10.1073/pnas.1113384109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukarya and, more recently, some bacteria have been shown to rely on a cytoskeleton-based apparatus to drive chromosome segregation. In contrast, the factors and mechanisms underpinning this fundamental process are underexplored in archaea, the third domain of life. Here we establish that the archaeon Sulfolobus solfataricus harbors a hybrid segrosome consisting of two interacting proteins, SegA and SegB, that play a key role in genome segregation in this organism. SegA is an ortholog of bacterial, Walker-type ParA proteins, whereas SegB is an archaea-specific factor lacking sequence identity to either eukaryotic or bacterial proteins, but sharing homology with a cluster of uncharacterized factors conserved in both crenarchaea and euryarchaea, the two major archaeal sub-phyla. We show that SegA is an ATPase that polymerizes in vitro and that SegB is a site-specific DNA-binding protein contacting palindromic sequences located upstream of the segAB cassette. SegB interacts with SegA in the presence of nucleotides and dramatically affects its polymerization dynamics. Our data demonstrate that SegB strongly stimulates SegA polymerization, possibly by promoting SegA nucleation and accelerating polymer growth. Increased expression levels of segAB resulted in severe growth and chromosome segregation defects, including formation of anucleate cells, compact nucleoids confined to one half of the cell compartment and fragmented nucleoids. The overall picture emerging from our findings indicates that the SegAB complex fulfills a crucial function in chromosome segregation and is the prototype of a DNA partition machine widespread across archaea.
Collapse
|
48
|
Schumacher MA. Bacterial plasmid partition machinery: a minimalist approach to survival. Curr Opin Struct Biol 2011; 22:72-9. [PMID: 22153351 DOI: 10.1016/j.sbi.2011.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 10/25/2022]
Abstract
The accurate segregation or partition of replicated DNA is essential for ensuring stable genome transmission. Partition of bacterial plasmids requires only three elements: a centromere-like DNA site and two proteins, a partition NTPase, and a centromere-binding protein (CBP). Because of this simplicity, partition systems have served as tractable model systems to study the fundamental molecular mechanisms required for DNA segregation at an atomic level. In the last few years, great progress has been made in this endeavor. Surprisingly, these studies have revealed that although the basic partition components are functionally conserved between three types of plasmid partition systems, these systems employ distinct mechanisms of DNA segregation. This review summarizes the molecular insights into plasmid segregation that have been achieved through these recent structural studies.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Abstract
The cytoskeleton is a system of intracellular filaments crucial for cell shape, division, and function in all three domains of life. The simple cytoskeletons of prokaryotes show surprising plasticity in composition, with none of the core filament-forming proteins conserved in all lineages. In contrast, eukaryotic cytoskeletal function has been hugely elaborated by the addition of accessory proteins and extensive gene duplication and specialization. Much of this complexity evolved before the last common ancestor of eukaryotes. The distribution of cytoskeletal filaments puts constraints on the likely prokaryotic line that made this leap of eukaryogenesis.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK.
| | | |
Collapse
|
50
|
Havey JC, Vecchiarelli AG, Funnell BE. ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS. Nucleic Acids Res 2011; 40:801-12. [PMID: 21965538 PMCID: PMC3258138 DOI: 10.1093/nar/gkr747] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition.
Collapse
Affiliation(s)
- James C Havey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|