1
|
Vasselli JG, Kainer E, Shaw BD. Using fimbrin to quantify the endocytic subapical collar during polarized growth in three filamentous fungi. Mycologia 2023:1-14. [PMID: 37196171 DOI: 10.1080/00275514.2023.2202689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/09/2023] [Indexed: 05/19/2023]
Abstract
Filamentous fungi produce specialized cells called hyphae. These cells grow by polarized extension at their apex, which is maintained by the balance of endocytosis and exocytosis at the apex. Although endocytosis has been well characterized in other organisms, the details of endocytosis and its role in maintaining polarity during hyphal growth in filamentous fungi is comparatively sparsely studied. In recent years, a concentrated region of protein activity that trails the growing apex of hyphal cells has been discovered. This region, dubbed the "endocytic collar" (EC), is a dynamic 3-dimensional region of concentrated endocytic activity, the disruption of which results in the loss of hyphal polarity. Here, fluorescent protein-tagged fimbrin was used as a marker to map the collar during growth of hyphae in three fungi: Aspergillus nidulans, Colletotrichum graminicola, and Neurospora crassa. Advanced microscopy techniques and novel quantification strategies were then utilized to quantify the spatiotemporal localization and recovery rates of fimbrin in the EC during hyphal growth. Correlating these variables with hyphal growth rate revealed that the strongest observed relationship with hyphal growth is the distance by which the EC trails the apex, and that measured endocytic rate does not correlate strongly with hyphal growth rate. This supports the hypothesis that endocytic influence on hyphal growth rate is better explained by spatiotemporal regulation of the EC than by the raw rate of endocytosis.
Collapse
Affiliation(s)
- Joseph G Vasselli
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Ellen Kainer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
2
|
Shree A, Sinha M, Verma PK. BAR domain is essential for early endosomal trafficking and dynamics in Ascochyta rabiei. 3 Biotech 2023; 13:49. [PMID: 36685317 PMCID: PMC9845463 DOI: 10.1007/s13205-022-03451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Ascochyta blight disease is a devastating disease caused by the fungal pathogen Ascochyta rabiei that threatens chickpea production around the globe. Endocytic mechanism has a significant role in fungal growth and virulence. The underlying biology of biogenesis of central component of endocytosis viz Rab5 vesicles, is not completely understood. The involvement of F-BAR domain containing protein (ArF-BAR) in various cellular processes that collectively make ArF-BAR as an important virulence determinant. Here, we report that ArF-BAR is involved in biogenesis and motility of early endosome. In the absence of ArF-BAR gene (Δarf-bar), fungal mutants exhibited reduced number of EGFP coated ArRab5 vesicles, along with the considerable reduction in their dynamics. Here, we show that ArF-BAR interacts with clathrin light chain (ArCLC), specifically with its F-BAR domain. These findings suggests the novel role of ArF-BAR in biogenesis and dynamics of early endosome. Additionally, ArF-BAR is involved in clathrin-mediated mechanism of endocytosis which is required for host infection and disease development. Identification of this pathway offers new impending targets for disease intervention in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03451-5.
Collapse
Affiliation(s)
- Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manisha Sinha
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
3
|
Piper PW, Scott JE, Millson SH. UCS Chaperone Folding of the Myosin Head: A Function That Evolved before Animals and Fungi Diverged from a Common Ancestor More than a Billion Years Ago. Biomolecules 2022; 12:biom12081028. [PMID: 35892339 PMCID: PMC9331494 DOI: 10.3390/biom12081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
The folding of the myosin head often requires a UCS (Unc45, Cro1, She4) domain-containing chaperone. Worms, flies, and fungi have just a single UCS protein. Vertebrates have two; one (Unc45A) which functions primarily in non-muscle cells and another (Unc45B) that is essential for establishing and maintaining the contractile apparatus of cardiac and skeletal muscles. The domain structure of these proteins suggests that the UCS function evolved before animals and fungi diverged from a common ancestor more than a billion years ago. UCS proteins of metazoans and apicomplexan parasites possess a tetratricopeptide repeat (TPR), a domain for direct binding of the Hsp70/Hsp90 chaperones. This, however, is absent in the UCS proteins of fungi and largely nonessential for the UCS protein function in Caenorhabditis elegans and zebrafish. The latter part of this review focusses on the TPR-deficient UCS proteins of fungi. While these are reasonably well studied in yeasts, there is little precise information as to how they might engage in interactions with the Hsp70/Hsp90 chaperones or might assist in myosin operations during the hyphal growth of filamentous fungi.
Collapse
Affiliation(s)
- Peter William Piper
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence: (P.W.P.); (S.H.M.)
| | | | - Stefan Heber Millson
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
- Correspondence: (P.W.P.); (S.H.M.)
| |
Collapse
|
4
|
Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum. mBio 2021; 12:e0232421. [PMID: 34933449 PMCID: PMC8689521 DOI: 10.1128/mbio.02324-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Phox homology (PX) domain is a membrane recruitment module that binds to phosphoinositides (PI) mediating the selective sorting and transport of transmembrane proteins, lipids, and other critical cargo molecules via membrane trafficking processes. However, the mechanism of vesicular trafficking mediated by PX domain-containing proteins in phytopathogenic fungi and how this relates to the fungal development and pathogenicity remain unclear. Here, we systematically identified and characterized the functions of PX domain-containing proteins in the plant fungal pathogen Fusarium graminearum. Our data identified 14 PX domain-containing proteins in F. graminearum, all of which were required for plant infection and deoxynivalenol (DON) production, with the exception of FgMvp1 and FgYkr078. Furthermore, all the PX domain-containing proteins showed distinct localization patterns that were limited to the endosomes, vacuolar membrane, endoplasmic reticulum, cytoplasm, and hyphal septa/tips. Remarkably, among these proteins, FgBem1 targeted to surface crescent and septal pores and was retained at the septum pores even after actin constriction during septum development. Further analyses demonstrated that the surface crescent targeting of FgBem1 solely depended on its SH3 domains, while its septum and apex anchoring localization relied on its PX domain, which was also indispensable for reactive oxygen species (ROS) production, sexual development, and pathogenicity in F. graminearum. In summary, our study is the first detailed and comprehensive functional analysis of PX domain-containing proteins in filamentous fungi, and it provides new insight into the mechanism of FgBem1 involved in septum and apex anchorage mediated by its PX domain, which is necessary for sexual development and pathogenicity of F. graminearum.
Collapse
|
5
|
Higuchi Y. Membrane traffic related to endosome dynamics and protein secretion in filamentous fungi. Biosci Biotechnol Biochem 2021; 85:1038-1045. [PMID: 33686391 DOI: 10.1093/bbb/zbab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, membrane-surrounded organelles are orchestrally organized spatiotemporally under environmental situations. Among such organelles, vesicular transports and membrane contacts occur to communicate each other, so-called membrane traffic. Filamentous fungal cells are highly polarized and thus membrane traffic is developed to have versatile functions. Early endosome (EE) is an endocytic organelle that dynamically exhibits constant long-range motility through the hyphal cell, which is proven to have physiological roles, such as other organelle distribution and signal transduction. Since filamentous fungal cells are also considered as cell factories, to produce valuable proteins extracellularly, molecular mechanisms of secretory pathway including protein glycosylation have been well investigated. In this review, molecular and physiological aspects of membrane traffic especially related to EE dynamics and protein secretion in filamentous fungi are summarized, and perspectives for application are also described.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Tracking Fungal Growth: Establishment of Arp1 as a Marker for Polarity Establishment and Active Hyphal Growth in Filamentous Ascomycetes. J Fungi (Basel) 2021; 7:jof7070580. [PMID: 34356959 PMCID: PMC8304394 DOI: 10.3390/jof7070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Polar growth is a key characteristic of all filamentous fungi. It allows these eukaryotes to not only effectively explore organic matter but also interact within its own colony, mating partners, and hosts. Therefore, a detailed understanding of the dynamics in polar growth establishment and maintenance is crucial for several fields of fungal research. We developed a new marker protein, the actin-related protein 1 (Arp1) fused to red and green fluorescent proteins, which allows for the tracking of polar axis establishment and active hyphal growth in microscopy approaches. To exclude a probable redundancy with known polarity markers, we compared the localizations of the Spitzenkörper (SPK) and Arp1 using an FM4-64 staining approach. As we show in applications with the coprophilous fungus Sordaria macrospora and the hemibiotrophic plant pathogen Colletotrichum graminicola, the monitoring of Arp1 can be used for detailed studies of hyphal growth dynamics and ascospore germination, the interpretation of chemotropic growth processes, and the tracking of elongating penetration pegs into plant material. Since the Arp1 marker showed the same dynamics in both fungi tested, we believe this marker can be broadly applied in fungal research to study the manifold polar growth processes determining fungal life.
Collapse
|
7
|
Abouward R, Schiavo G. Walking the line: mechanisms underlying directional mRNA transport and localisation in neurons and beyond. Cell Mol Life Sci 2021; 78:2665-2681. [PMID: 33341920 PMCID: PMC8004493 DOI: 10.1007/s00018-020-03724-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) localisation enables a high degree of spatiotemporal control on protein synthesis, which contributes to establishing the asymmetric protein distribution required to set up and maintain cellular polarity. As such, a tight control of mRNA localisation is essential for many biological processes during development and in adulthood, such as body axes determination in Drosophila melanogaster and synaptic plasticity in neurons. The mechanisms controlling how mRNAs are localised, including diffusion and entrapment, local degradation and directed active transport, are largely conserved across evolution and have been under investigation for decades in different biological models. In this review, we will discuss the standing of the field regarding directional mRNA transport in light of the recent discovery that RNA can hitchhike on cytoplasmic organelles, such as endolysosomes, and the impact of these transport modalities on our understanding of neuronal function during development, adulthood and in neurodegeneration.
Collapse
Affiliation(s)
- Reem Abouward
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Bieger BD, Rogers AM, Bates S, Egan MJ. Long-distance early endosome motility in Aspergillus fumigatus promotes normal hyphal growth behaviors in controlled microenvironments but is dispensable for virulence. Traffic 2020; 21:479-487. [PMID: 32378777 DOI: 10.1111/tra.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule-based motor proteins, serving as platforms for the long-distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long-distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics-based approach we show that contact-induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA-mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.
Collapse
Affiliation(s)
- Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Zhang Y, Wang L, Liang S, Zhang P, Kang R, Zhang M, Wang M, Chen L, Yuan H, Ding S, Li H. FpDep1, a component of Rpd3L histone deacetylase complex, is important for vegetative development, ROS accumulation, and pathogenesis in Fusarium pseudograminearum. Fungal Genet Biol 2019; 135:103299. [PMID: 31706014 DOI: 10.1016/j.fgb.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Histone deacetylases (HDACs) play essential roles in modulating chromatin structure to provide accessibility to gene regulators. Increasing evidence has linked HADCs to pathogenesis control in the filamentous plant fungi. However, its function remains unclear in Fusarium pseudograminearum, which has led to the emergence of the disease Fusarium crown rot in China. Here we identified the FpDEP1 gene, an orthologue of Saccharomyces cerevisiae DEP1 encoding a component of the Rpd3 histone deacetylase complex in F. pseudograminearum. The gene deletion mutant, ΔFpdep1, showed significantly retarded growth on PDA plates with reduced aerial hyphae formation. Pathogenicity tests displayed no typical leaf lesions and limited expansion capability of coleoptiles. Histopathological analysis indicated the ΔFpdep1 deletion mutant differentiated infectious hyphae and triggered massive reactive oxygen species (ROS) accumulation during the early infection stage, resulting in limited expansion to neighbor cells which was concurring with sensitivity to H2O2 and SDS tests in vitro. FM4-64 staining revealed that the ΔFpdep1 deletion mutant was delayed in endocytosis. The FpDEP1-GFP transgene complemented the mutant phenotypes and the fusion protein co-localized with DAPI staining, indicating that the FpDEP1 gene product is localized to the nucleus in spores and mycelia. Immunoprecipitation coupled with LC-MS/MS and yeast two-hybrid screening identified the Rpd3L-like HDAC complex containing at least FpDep1, FpSds3, FpSin3, FpRpd3, FpRxt3, FpCti6, FpRho23, and FpUme6. These results suggest that FpDep1 is involved in a HDAC complex functioning on fungal development and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450009 China
| | - Panpan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Zhang J, Yun Y, Lou Y, Abubakar YS, Guo P, Wang S, Li C, Feng Y, Adnan M, Zhou J, Lu G, Zheng W. FgAP‐2 complex is essential for pathogenicity and polarised growth and regulates the apical localisation of membrane lipid flippases in
Fusarium graminearum. Cell Microbiol 2019; 21:e13041. [DOI: 10.1111/cmi.13041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/11/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Yi Lou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life SciencesFujian Agriculture and Forestry University Fuzhou China
| | | | - Pusheng Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Shumin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Chunling Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Yuan Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life SciencesFujian Agriculture and Forestry University Fuzhou China
| | - Guo‐dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
11
|
Feng Z, Tian J, Han L, Geng Y, Sun J, Kong Z. The Myosin5-mediated actomyosin motility system is required for Verticillium
pathogenesis of cotton. Environ Microbiol 2018; 20:1607-1621. [DOI: 10.1111/1462-2920.14101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Zhidi Feng
- The Key Laboratory of Oasis Eco-Agriculture; College of Agriculture, Shihezi University; Shihezi Xinjiang 832000 China
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Juan Tian
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Libo Han
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Yuan Geng
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture; College of Agriculture, Shihezi University; Shihezi Xinjiang 832000 China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomic; Institute of Microbiology, Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
12
|
Early endosome motility mediates α-amylase production and cell differentiation in Aspergillus oryzae. Sci Rep 2017; 7:15757. [PMID: 29150640 PMCID: PMC5693997 DOI: 10.1038/s41598-017-16163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Recent research in filamentous fungi has revealed that the motility of an endocytic organelle early endosome (EE) has a versatile role in many physiological functions. Here, to further examine the motility of EEs in the industrially important fungus Aspergillus oryzae, we visualized these organelles via the Rab5 homolog AoRab5 and identified AoHok1, a putative linker protein between an EE and a motor protein. The Aohok1 disruptant showed retarded mycelial growth and no EE motility, in addition to an apical accumulation of EEs and peroxisomes. We further demonstrated that the Aohok1 disruptant exhibited less sensitivity to osmotic and cell wall stresses. Analyses on the protein secretory pathway in ΔAohok1 cells showed that, although distribution of the endoplasmic reticulum and Golgi was not affected, formation of the apical secretory vesicle cluster Spitzenkörper was impaired, probably resulting in the observed reduction of the A. oryzae major secretory protein α-amylase. Moreover, we revealed that the transcript level of α-amylase-encoding gene amyB was significantly reduced in the Aohok1 disruptant. Furthermore, we observed perturbed conidial and sclerotial formations, indicating a defect in cell differentiation, in the Aohok1 disruptant. Collectively, our results suggest that EE motility is crucial for α-amylase production and cell differentiation in A. oryzae.
Collapse
|
13
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
|
14
|
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
|
15
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
16
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
17
|
Yang YT, Lee SJ, Nai YS, Kim S, Kim JS. Up-regulation of carbon metabolism-related glyoxylate cycle and toxin production in Beauveria bassiana JEF-007 during infection of bean bug, Riptortus pedestris (Hemiptera: Alydidae). Fungal Biol 2016; 120:1236-48. [PMID: 27647240 DOI: 10.1016/j.funbio.2016.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/09/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
Abstract
Beauveria bassiana (Bb) is used as an environment-friendly biopesticide. However, the molecular mechanisms of Bb-host interactions are not well understood. Herein, RNA isolated from B. bassiana (Bb JEF-007) and Riptortus pedestris (Hemiptera: Alydidae) infected with this strain were firstly subjected to high-throughput next generation sequencing (NGS) to analyze and compare transcriptomes. Due to lack of fungal and host genome information, fungal transcriptome was processed to partially exclude non-infection specific genes and host-flora. Differentially Expressed Gene (DEG) analysis showed that 2381 genes were up-regulated and 2303 genes were down-regulated upon infection. Most DEGs were classified into the categories of single-organism, cellular and metabolism processes by Gene Ontology analysis. Most DEGs were involved in metabolic pathways based on Kyoto Encyclopedia of Genes and Genomes pathway mapping. Carbon metabolism-related enzymes in the glyoxylate cycle were significantly up-regulated, suggesting a possible role for them in Bb growth in the host. Additionally, transcript levels of several fungal genes were dramatically increased after infection, such as cytotoxic lectin-like protein, bacterial-like toxin, proteins related to cell wall formation, hyphal growth, nutrient uptake, and halogenated compound synthesis. This work provides insight into how entomopathogenic B. bassiana grows in agriculturally harmful bean bug at 6 d post infection.
Collapse
Affiliation(s)
- Yi-Ting Yang
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea
| | - Se Jin Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea
| | - Yu-Shin Nai
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea; Department of Biotechnology and Animal Science, National Ilan University, Yilan, Yilan County 260, Taiwan
| | - Sihyeon Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do 54896, South Korea.
| |
Collapse
|
18
|
Lin R, He L, He J, Qin P, Wang Y, Deng Q, Yang X, Li S, Wang S, Wang W, Liu H, Li P, Zheng A. Comprehensive analysis of microRNA-Seq and target mRNAs of rice sheath blight pathogen provides new insights into pathogenic regulatory mechanisms. DNA Res 2016; 23:415-425. [PMID: 27374612 PMCID: PMC5066168 DOI: 10.1093/dnares/dsw024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease.
Collapse
Affiliation(s)
- Runmao Lin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Liye He
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jiayu He
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Peigang Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yanran Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoting Yang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Xie Q, Chen A, Zheng W, Xu H, Shang W, Zheng H, Zhang D, Zhou J, Lu G, Li G, Wang Z. Endosomal sorting complexes required for transport-0 is essential for fungal development and pathogenicity in Fusarium graminearum. Environ Microbiol 2016; 18:3742-3757. [PMID: 26971885 DOI: 10.1111/1462-2920.13296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/30/2016] [Accepted: 03/09/2016] [Indexed: 01/19/2023]
Abstract
Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The vacuolar protein sorting (Vps) protein Vps27 is a component of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway during endocytosis. In this study, we investigated the function of FgVps27 using a gene replacement strategy. The FgVPS27 deletion mutant (ΔFgvps27) exhibited a reduction in growth rate, aerial hyphae formation and hydrophobicity. It also showed increased sensitivity to cell wall-damaging agents and to osmotic stresses. In addition, FgHog1, the critical component of high osmolarity glycerol response pathway, was mis-localized in the ΔFgvps27 mutant upon NaCl treatment. Furthermore, the ΔFgvps27 mutant was defective in conidial production and was unable to generate perithecium in sexual reproduction. The depletion of FgVPS27 also caused a significant reduction in virulence. Further analysis by domain-specific deletion revealed that the FYVE domain was essential for the FgVps27 function and was necessary for the proper localization of FgVps27-GFP and endocytosis. Another component of ESCRT-0, the FgVps27-interacting partner FgHse1, also played an important role in F. graminearum development and pathogenesis. Overall, our results indicate that ESCRT-0 components play critical roles in a variety of cellular and biological processes.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaijian Xu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjie Shang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.,Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
|
21
|
Higuchi Y, Steinberg G. Early endosomes motility in filamentous fungi: How and why they move. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Higuchi Y. Initial fungal effector production is mediated by early endosome motility. Commun Integr Biol 2015; 8:e1025187. [PMID: 26480479 PMCID: PMC4594235 DOI: 10.1080/19420889.2015.1025187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/23/2022] Open
Abstract
Fungal plant pathogenicity is facilitated by effector proteins that are specifically expressed during infection and are responsible for suppressing plant defense mechanisms. Recent studies have elucidated the detailed molecular mechanisms of effector action throughout fungal infection. However, little is known about the trafficking and secretion of effectors in fungal hyphae during the initial stage of infection. Using state-of-the-art microscopy we have demonstrated that early endosome (EE) motility is required for effector production during fungal infection. Moreover, the MAPK Crk1 has been shown to travel on EEs and to function as a negative regulator of effector expression, suggesting that motile EEs are involved in signal transduction. Here I further discuss possible mechanisms whereby EE motility regulates effector expression in the initial stages of infection.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University , Hakozaki; Fukuoka, Japan
| |
Collapse
|
23
|
Long-distance endosome trafficking drives fungal effector production during plant infection. Nat Commun 2014; 5:5097. [PMID: 25283249 PMCID: PMC4205857 DOI: 10.1038/ncomms6097] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/28/2014] [Indexed: 01/29/2023] Open
Abstract
To cause plant disease, pathogenic fungi can secrete effector proteins into plant cells to suppress plant immunity and facilitate fungal infection. Most fungal pathogens infect plants using very long strand-like cells, called hyphae, that secrete effectors from their tips into host tissue. How fungi undergo long-distance cell signalling to regulate effector production during infection is not known. Here we show that long-distance retrograde motility of early endosomes (EEs) is necessary to trigger transcription of effector-encoding genes during plant infection by the pathogenic fungus Ustilago maydis. We demonstrate that motor-dependent retrograde EE motility is necessary for regulation of effector production and secretion during host cell invasion. We further show that retrograde signalling involves the mitogen-activated kinase Crk1 that travels on EEs and participates in control of effector production. Fungal pathogens therefore undergo long-range signalling to orchestrate host invasion. It is unclear how the nuclei of very long fungal cells (hyphae) receive information from the hyphal tips during the invasion of plant tissues. Here, the authors show that retrograde movement of early endosomes, from the hyphal tip to the nucleus, is required for this signalling process.
Collapse
|
24
|
Martín JF. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb Cell Fact 2014; 13:117. [PMID: 25205075 PMCID: PMC4180148 DOI: 10.1186/s12934-014-0117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of some homologous proteins.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
25
|
Abstract
To exert forces, motor proteins bind with one end to cytoskeletal filaments, such as microtubules and actin, and with the other end to the cell cortex, a vesicle or another motor. A general question is how motors search for sites in the cell where both motor ends can bind to their respective binding partners. In the present review, we focus on cytoplasmic dynein, which is required for a myriad of cellular functions in interphase, mitosis and meiosis, ranging from transport of organelles and functioning of the mitotic spindle to chromosome movements in meiotic prophase. We discuss how dynein targets sites where it can exert a pulling force on the microtubule to transport cargo inside the cell.
Collapse
|
26
|
Shoji JY, Kikuma T, Kitamoto K. Vesicle trafficking, organelle functions, and unconventional secretion in fungal physiology and pathogenicity. Curr Opin Microbiol 2014; 20:1-9. [PMID: 24835421 DOI: 10.1016/j.mib.2014.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
Specific localization of appropriate sets of proteins and lipids is central to functions and integrity of organelles, which in turn underlie cellular activities of eukaryotes. Vesicle trafficking is a conserved mechanism of intracellular transport, which ensures such a specific localization to a subset of organelles. In this review article, we summarize recent advances in our understanding of how vesicle trafficking and related organelles support physiology and pathogenicity of filamentous fungi. Examples include a link between Golgi organization and polarity maintenance during hyphal tip growth, a new role of early endosomes in transport of translational machinery, involvement of endosomal/vacuolar compartments in secondary metabolite synthesis, and functions of vacuoles and autophagy in fungal development, nutrient recycling and allocation. Accumulating evidence showing the importance of unconventional secretion in fungal pathogenicity is also summarized.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
27
|
Higuchi Y, Ashwin P, Roger Y, Steinberg G. Early endosome motility spatially organizes polysome distribution. ACTA ACUST UNITED AC 2014; 204:343-57. [PMID: 24493587 PMCID: PMC3912533 DOI: 10.1083/jcb.201307164] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To distribute the protein translation machinery throughout the cytoplasm, polysomes in the fungus Ustilago maydis associate with mobile early endosomes, resulting in long-range motility along microtubules. Early endosomes (EEs) mediate protein sorting, and their cytoskeleton-dependent motility supports long-distance signaling in neurons. Here, we report an unexpected role of EE motility in distributing the translation machinery in a fungal model system. We visualize ribosomal subunit proteins and show that the large subunits diffused slowly throughout the cytoplasm (Dc,60S = 0.311 µm2/s), whereas entire polysomes underwent long-range motility along microtubules. This movement was mediated by “hitchhiking” on kinesin-3 and dynein-driven EEs, where the polysomes appeared to translate EE-associated mRNA into proteins. Modeling indicates that this motor-driven transport is required for even cellular distribution of newly formed ribosomes. Indeed, impaired EE motility in motor mutants, or their inability to bind EEs in mutants lacking the RNA-binding protein Rrm4, reduced ribosome transport and induced ribosome aggregation near the nucleus. As a consequence, cell growth was severely restricted. Collectively, our results indicate that polysomes associate with moving EEs and that “off- and reloading” distributes the protein translation machinery.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Biosciences and 2 Mathematics Research Institute, University of Exeter, Exeter EX4 4QD, England, UK
| | | | | | | |
Collapse
|
28
|
Short B. Motor proteins Hook on to early endosomes. J Biophys Biochem Cytol 2014. [PMCID: PMC3998808 DOI: 10.1083/jcb.2046if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two studies identify a linker protein that coordinates endosome motility by recruiting microtubule-based motors.
Collapse
|
29
|
Affiliation(s)
- Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico 22860;
| |
Collapse
|
30
|
Wang J, Du Y, Zhang H, Zhou C, Qi Z, Zheng X, Wang P, Zhang Z. The actin-regulating kinase homologue MoArk1 plays a pleiotropic function in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2013; 14:470-82. [PMID: 23384308 PMCID: PMC3642230 DOI: 10.1111/mpp.12020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endocytosis is an essential cellular process in eukaryotic cells that involves concordant functions of clathrin and adaptor proteins, various protein and lipid kinases, phosphatases and the actin cytoskeleton. In Saccharomyces cerevisiae, Ark1p is a member of the serine/threonine protein kinase (SPK) family that affects profoundly the organization of the cortical actin cytoskeleton. To study the function of MoArk1, an Ark1p homologue identified in Magnaporthe oryzae, we disrupted the MoARK1 gene and characterized the ΔMoark1 mutant strain. The ΔMoark1 mutant exhibited various defects ranging from mycelial growth and conidial formation to appressorium-mediated host infection. The ΔMoark1 mutant also exhibited decreased appressorium turgor pressure and attenuated virulence on rice and barley. In addition, the ΔMoark1 mutant displayed defects in endocytosis and formation of the Spitzenkörper, and was hyposensitive to exogenous oxidative stress. Moreover, a MoArk1-green fluorescent protein (MoArk1-GFP) fusion protein showed an actin-like localization pattern by localizing to the apical regions of hyphae. This pattern of localization appeared to be regulated by the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins MoSec22 and MoVam7. Finally, detailed analysis revealed that the proline-rich region within the MoArk1 serine/threonine kinase (S_TKc) domain was critical for endocytosis, subcellular localization and pathogenicity. These results collectively suggest that MoArk1 exhibits conserved functions in endocytosis and actin cytoskeleton organization, which may underlie growth, cell wall integrity and virulence of the fungus.
Collapse
Affiliation(s)
- Jiamei Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Colabardini AC, Brown NA, Savoldi M, Goldman MHS, Goldman GH. Functional characterization of Aspergillus nidulans ypkA, a homologue of the mammalian kinase SGK. PLoS One 2013; 8:e57630. [PMID: 23472095 PMCID: PMC3589345 DOI: 10.1371/journal.pone.0057630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
The serum- and glucocorticoid-regulated protein kinase (SGK) is an AGC kinase involved in signal cascades regulated by glucocorticoid hormones and serum in mammals. The Saccharomyces cerevisiae ypk1 and ypk2 genes were identified as SGK homologues and Ypk1 was shown to regulate the balance of sphingolipids between the inner and outer plasma membrane. This investigation characterized the Aspergillus nidulans YPK1 homologue, YpkA, representing the first filamentous fungal YPK1 homologue. Two conditional mutant strains were constructed by replacing the endogenous ypk1 promoter with two different regulatable promoters, alcA (from the alcohol dehydrogenase gene) and niiA (from the nitrate reductase gene). Both constructs confirmed that ypkA was an essential gene in A. nidulans. Repression of ypkA caused decreased radial growth, a delay in conidial germination, deficient polar axis establishment, intense branching during late stages of growth, a lack of asexual spores, and a terminal phenotype. Membrane lipid polarization, endocytosis, eisosomes and vacuolar distribution were also affected by ypkA repression, suggesting that YpkA plays a role in hyphal morphogenesis via coordinating the delivery of cell membrane and wall constituents to the hyphal apex. The A. nidulans Pkh1 homologue pkhA was also shown to be an essential gene, and preliminary genetic analysis suggested that the ypkA gene is not directly downstream of pkhA or epistatic to pkhA, rather, ypkA and pkhA are genetically independent or in parallel. BarA is a homologue of the yeast Lag1 acyl-CoA-dependent ceramide synthase, which catalyzes the condensation of phytosphingosine with a fatty acyl-CoA to form phytoceramide. When barA was absent, ypkA repression was lethal to the cell. Therefore, there appears to be a genetic interaction between ypkA, barA, and the sphingolipid synthesis. Transcriptional profiling of ypkA overexpression and down-regulation revealed several putative YpkA targets associated with the observed phenotypes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- * E-mail: address:
| |
Collapse
|
32
|
Dijksterhuis J, Molenaar D. Vesicle trafficking via the Spitzenkörper during hyphal tip growth in Rhizoctonia solani. Antonie van Leeuwenhoek 2013; 103:921-31. [DOI: 10.1007/s10482-012-9873-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
|
33
|
Chitcholtan K, Harris E, Yu Y, Harland C, Garrill A. An investigation into plasmolysis in the oomycete Achlya bisexualis reveals that membrane–wall attachment points are sensitive to peptides containing the sequence RGD and that cell wall deposition can occur despite retraction of the protoplast. Can J Microbiol 2012; 58:1212-20. [DOI: 10.1139/w2012-099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure and function of membrane–wall attachment sites in walled cells, and how these relate to animal focal adhesions, is an area that is poorly understood. In view of this, we investigated how membrane–wall attachments that form upon plasmolysis, respond to peptides that disrupt animal focal adhesions. The degree of cytoplasmic disruption during plasmolysis was also investigated. Upon hyperosmotic challenge, the protoplast in hyphae of the oomycete Achlya bisexualis typically retracted incompletely due to membrane–wall attachments. The inclusion, in the plasmolysing solution, of peptides containing the sequence RGD disrupted these attachments in a dose-dependent manner. In some hyphae, protoplast retraction stopped temporarily at attachment points — upon resumption of retraction, material was left that traced the outline of the static protoplast. Staining of this material with fluorescence brightener indicated the presence of cellulose, which suggests that wall deposition was able to occur despite plasmolysis. The F-actin cytoskeleton was disrupted during plasmolysis; peripheral F-actin staining was observed, but there was no distinct F-actin cap; staining was more diffuse; and there were fewer plaques compared with nonplasmolysed hyphae. Our data indicate that membrane–wall attachment points are sensitive to RGD-containing peptides and that wall deposition continues despite protoplast retraction and F-actin disruption.
Collapse
Affiliation(s)
- Kenny Chitcholtan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Elisa Harris
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - YuPing Yu
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Chad Harland
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
34
|
Göhre V, Vollmeister E, Bölker M, Feldbrügge M. Microtubule-dependent membrane dynamics in Ustilago maydis: Trafficking and function of Rab5a-positive endosomes. Commun Integr Biol 2012; 5:485-90. [PMID: 23181166 PMCID: PMC3502213 DOI: 10.4161/cib.21219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Long-distance trafficking of membranous structures along the cytoskeleton is crucial for secretion and endocytosis in eukaryotes. Molecular motors are transporting both secretory and endocytic vesicles along polarized microtubules. Here, we review the transport mechanism and biological function of a distinct subset of large vesicles marked by the G-protein Rab5a in the model microorganism Ustilago maydis. These Rab5a-positive endosomes shuttle bi-directionally along microtubules mediated by the Unc104/KIF1A-related motor Kin3 and dynein Dyn1/2. Rab5a-positive endosomes exhibit diverse functions during the life cycle of U. maydis. In haploid budding cells they are involved in cytokinesis and pheromone signaling. During filamentous growth endosomes are used for long-distance transport of mRNA, a prerequisite to maintain polarity most likely via local translation of specific proteins at both the apical and distal ends of filaments. Endosomal co-transport of mRNA constitutes a novel function of these membrane compartments supporting the view that endosomes function as multipurpose platforms.
Collapse
Affiliation(s)
- Vera Göhre
- Heinrich Heine University Düsseldorf; Center of Excellence on Plant Sciences (CEPLAS); Institute for Microbiology; Düsseldorf, Germany
| | - Evelyn Vollmeister
- Heinrich Heine University Düsseldorf; Center of Excellence on Plant Sciences (CEPLAS); Institute for Microbiology; Düsseldorf, Germany
| | - Michael Bölker
- Philipps University Marburg; Department of Biology; Marburg, Germany
| | - Michael Feldbrügge
- Heinrich Heine University Düsseldorf; Center of Excellence on Plant Sciences (CEPLAS); Institute for Microbiology; Düsseldorf, Germany
| |
Collapse
|
35
|
Zeng G, Wang YM, Wang Y. Cdc28-Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth. Mol Biol Cell 2012; 23:3485-97. [PMID: 22787279 PMCID: PMC3431942 DOI: 10.1091/mbc.e12-03-0231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A dynamic balance between targeted transport and endocytosis is critical for polarized cell growth. However, how actin-mediated endocytosis is regulated in different growth modes remains unclear. Here we report differential regulation of cortical actin patch dynamics between the yeast and hyphal growth in Candida albicans. The mechanism involves phosphoregulation of the endocytic protein Sla1 by the cyclin-dependent kinase (CDK) Cdc28-Cln3 and the actin-regulating kinase Prk1. Mutational studies of the CDK phosphorylation sites of Sla1 revealed that Cdc28-Cln3 phosphorylation of Sla1 enhances its further phosphorylation by Prk1, weakening Sla1 association with Pan1, an activator of the actin-nucleating Arp2/3 complex. Sla1 is rapidly dephosphorylated upon hyphal induction and remains so throughout hyphal growth. Consistently, cells expressing a phosphomimetic version of Sla1 exhibited markedly reduced actin patch dynamics, impaired endocytosis, and defective hyphal development, whereas a nonphosphorylatable Sla1 had the opposite effect. Taken together, our findings establish a molecular link between CDK and a key component of the endocytic machinery, revealing a novel mechanism by which endocytosis contributes to cell morphogenesis.
Collapse
Affiliation(s)
- Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | | | | |
Collapse
|
36
|
Abenza JF, Galindo A, Pinar M, Pantazopoulou A, de los Ríos V, Peñalva MA. Endosomal maturation by Rab conversion in Aspergillus nidulans is coupled to dynein-mediated basipetal movement. Mol Biol Cell 2012; 23:1889-901. [PMID: 22456509 PMCID: PMC3350553 DOI: 10.1091/mbc.e11-11-0925] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Highly motile fungal early endosomes can be easily distinguished from more static late endosomes and vacuoles, a feature that is exploited to study endosomal maturation. RabA/RabB early endosomes mature into RabSRab7 late endosomes as they move away from the tip where endocytosis predominates, augmenting their size, with concomitant loss of motility. We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabSRab7 mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41–dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabSRab7 are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired. Without RabSRab7, early endosomal Rab5s—RabA and RabB—reach minivacuoles, in agreement with the view that Rab7 homologues facilitate the release of Rab5 homologues from endosomes. RabSRab7 is recruited to membranes already at the stage of late endosomes still lacking vacuolar morphology, but the transition between early and late endosomes is sharp, as only in a minor proportion of examples are RabA/RabB and RabSRab7 detectable in the same—frequently the less motile—structures. This early-to-late endosome/vacuole transition is coupled to dynein-dependent movement away from the tip, resembling the periphery-to-center traffic of endosomes accompanying mammalian cell endosomal maturation. Genetic studies establish that endosomal maturation is essential, whereas homotypic vacuolar fusion is not.
Collapse
Affiliation(s)
- Juan F Abenza
- Departamento de Medicina Molecular y Celular, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Cientificas, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Taheri-Talesh N, Xiong Y, Oakley BR. The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PLoS One 2012; 7:e31218. [PMID: 22359575 PMCID: PMC3281053 DOI: 10.1371/journal.pone.0031218] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/04/2012] [Indexed: 01/05/2023] Open
Abstract
Because of the industrial and medical importance of members of the fungal genus Aspergillus, there is considerable interest in the functions of cytoskeletal components in growth and secretion in these organisms. We have analyzed the genome of Aspergillus nidulans and found that there are two previously unstudied myosin genes, a myosin II homolog, myoB (product = MyoB) and a myosin V homolog, myoE (product = MyoE). Deletions of either cause significant growth defects. MyoB localizes in strings that coalesce into contractile rings at forming septa. It is critical for septation and normal deposition of chitin but not for hyphal extension. MyoE localizes to the Spitzenkörper and to moving puncta in the cytoplasm. Time-lapse imaging of SynA, a v-SNARE, reveals that in myoE deletion strains vesicles no longer localize to the Spitzenkörper. Tip morphology is slightly abnormal and branching occurs more frequently than in controls. Tip extension is slower than in controls, but because hyphal diameter is greater, growth (increase in volume/time) is only slightly reduced. Concentration of vesicles into the Spitzenkörper before incorporation into the plasma membrane is, thus, not required for hyphal growth but facilitates faster tip extension and a more normal hyphal shape.
Collapse
Affiliation(s)
- Naimeh Taheri-Talesh
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Yi Xiong
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Steinberg G. The transport machinery for motility of fungal endosomes. Fungal Genet Biol 2012; 49:675-6. [PMID: 22330672 DOI: 10.1016/j.fgb.2012.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 01/25/2012] [Accepted: 01/29/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
39
|
Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 2012; 125:2740-52. [DOI: 10.1242/jcs.101212] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive. Here, we solve the motor composition of transported mRNPs containing the RNA-binding protein Rrm4 of the pathogen Ustilago maydis. The underlying transport process determines the axis of polarity in infectious filaments. Plus end-directed Kin3, a Kinesin-3 type motor, mediates anterograde transport of mRNPs and is also present in transport units moving retrogradely. Split-dynein Dyn1/2 functions in retrograde movement of mRNPs. Plus end-directed conventional kinesin Kin1 is indirectly involved by transporting minus end-directed Dyn1/2 back to plus ends. Importantly, we additionally demonstrate that Rrm4-containing mRNPs co-localise with the t-SNARE Yup1 on shuttling endosomes and that functional endosomes are essential for mRNP movement. Either loss of Kin3 or removal of its lipid-binding pleckstrin homology domain abolish Rrm4-dependent movement without preventing co-localisation of Rrm4 and Yup1-positive endosomes. In summary, we uncovered the combination of motors required for mRNP shuttling along microtubules. Furthermore, intimately linked co-transport of endosomes and mRNPs suggests vesicle hitchhiking as novel mode of mRNP transport.
Collapse
|
40
|
Steinberg G. Motors in fungal morphogenesis: cooperation versus competition. Curr Opin Microbiol 2011; 14:660-7. [DOI: 10.1016/j.mib.2011.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 10/15/2022]
|
41
|
Berepiki A, Lichius A, Read ND. Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 2011; 9:876-87. [PMID: 22048737 DOI: 10.1038/nrmicro2666] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.
Collapse
Affiliation(s)
- Adokiye Berepiki
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
42
|
Comparative analysis of putative pathogenesis-related gene expression in two Rhizoctonia solani pathosystems. Curr Genet 2011; 57:391-408. [DOI: 10.1007/s00294-011-0353-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
43
|
Zhang J, Yao X, Fischer L, Abenza JF, Peñalva MA, Xiang X. The p25 subunit of the dynactin complex is required for dynein-early endosome interaction. ACTA ACUST UNITED AC 2011; 193:1245-55. [PMID: 21708978 PMCID: PMC3216330 DOI: 10.1083/jcb.201011022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The p25 subunit of the dynactin complex is required for the interaction between cytoplasmic dynein and early endosomes but is not required for dynein-mediated nuclear distribution. Cytoplasmic dynein transports various cellular cargoes including early endosomes, but how dynein is linked to early endosomes is unclear. We find that the Aspergillus nidulans orthologue of the p25 subunit of dynactin is critical for dynein-mediated early endosome movement but not for dynein-mediated nuclear distribution. In the absence of NUDF/LIS1, p25 deletion abolished the localization of dynein–dynactin to the hyphal tip where early endosomes abnormally accumulate but did not prevent dynein–dynactin localization to microtubule plus ends. Within the dynactin complex, p25 locates at the pointed end of the Arp1 filament with Arp11 and p62, and our data suggest that Arp11 but not p62 is important for p25–dynactin association. Loss of either Arp1 or p25 significantly weakened the physical interaction between dynein and early endosomes, although loss of p25 did not apparently affect the integrity of the Arp1 filament. These results indicate that p25, in conjunction with the rest of the dynactin complex, is important for dynein–early endosome interaction.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
44
|
Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 2011; 22:3645-57. [PMID: 21832152 PMCID: PMC3183019 DOI: 10.1091/mbc.e11-03-0217] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 μm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 μm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 2011; 36:59-77. [PMID: 21729109 DOI: 10.1111/j.1574-6976.2011.00296.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The maize pathogen Ustilago maydis has to undergo various morphological transitions for the completion of its sexual life cycle. For example, haploid cells respond to pheromone by forming conjugation tubes that fuse at their tips. The resulting dikaryon grows filamentously, expanding rapidly at the apex and inserting retraction septa at the basal pole. In this review, we present progress on the underlying mechanisms regulating such defined developmental programmes. The key findings of the postgenomic era are as follows: (1) endosomes function not only during receptor recycling, but also as multifunctional transport platforms; (2) a new transcriptional master regulator for pathogenicity is part of an intricate transcriptional network; (3) determinants for uniparental mitochondrial inheritance are encoded at the a2 mating-type locus; (4) microtubule-dependent mRNA transport is important in determining the axis of polarity; and (5) a battery of fungal effectors encoded in gene clusters is crucial for plant infection. Importantly, most processes are tightly controlled at the transcriptional, post-transcriptional and post-translational levels, resulting in a complex regulatory network. This intricate system is crucial for the timing of the correct order of developmental phases. Thus, new insights from all layers of regulation have substantially advanced our understanding of fungal development.
Collapse
Affiliation(s)
- Evelyn Vollmeister
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Doehlemann G, Reissmann S, Assmann D, Fleckenstein M, Kahmann R. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol Microbiol 2011; 81:751-66. [PMID: 21692877 DOI: 10.1111/j.1365-2958.2011.07728.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ustilago maydis is a biotrophic fungal pathogen that colonizes living tissue of its host plant maize. Based on transcriptional upregulation during biotrophic development we identified the pit (proteins important for tumours) cluster, a novel gene cluster comprising four genes of which two are predicted to encode secreted effectors. Disruption of the gene cluster abolishes U. maydis-induced tumour formation and this phenotype can be caused by deleting either pit1 encoding a transmembrane protein or pit2 encoding a secreted protein. Pit1 localizes to the fungal plasma membrane at hyphal tips, endosomes and vacuoles while Pit2 is secreted to the biotrophic interface. Both Δpit1 and Δpit2 mutants are able to penetrate maize epidermis and grow intracellularly at sites of infection but fail to spread in the infected leaf. Microarray analysis shows an indistinguishable response of the plant to infection by Δpit1 and Δpit2 mutant strains. Transcriptional activation of maize defence genes in infections with Δpit1/2 mutant strains indicates that the mutants have a defect in suppressing plant immune responses. Our results suggest that the activity of Pit1 and Pit2 during tumour formation might be functionally linked and we discuss possibilities for a putative functional connection of the two proteins.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Deparment of Organismic Interactions, Max-Planck-Institute for terrestrial Microbiology, D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
48
|
On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biol 2011; 115:506-17. [PMID: 21640315 DOI: 10.1016/j.funbio.2011.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/01/2023]
|
49
|
|
50
|
Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S. A role for endocytic recycling in hyphal growth. Fungal Biol 2011; 115:541-6. [PMID: 21640317 DOI: 10.1016/j.funbio.2011.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/24/2022]
Abstract
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.
Collapse
Affiliation(s)
- Brian D Shaw
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 2132, USA.
| | | | | | | | | |
Collapse
|