1
|
Fine JL, Moses AM. An RNA Condensate Model for the Origin of Life. J Mol Biol 2025; 437:169124. [PMID: 40187684 DOI: 10.1016/j.jmb.2025.169124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The RNA World hypothesis predicts that self-replicating RNAs evolved before DNA genomes and coded proteins. Despite widespread support for the RNA World, self-replicating RNAs have yet to be identified in a natural context, leaving a key 'missing link' for this explanation of the origin of life. Inspired by recent work showing that condensates of charged polymers are capable of catalyzing chemical reactions, we consider a catalytic RNA condensate as a candidate for the self-replicating RNA. Specifically, we propose that short, low-complexity RNA polymers formed catalytic condensates capable of templated RNA polymerization. Because the condensate properties depend on the RNA sequences, RNAs that formed condensates with improved polymerization and demixing capacity would be amplified, leading to a 'condensate chain reaction' and evolution by natural selection. Many of the needed properties of this self-replicating RNA condensate have been realized experimentally in recent studies and our predictions could be tested with current experimental and theoretical tools. Our theory addresses central problems in the origins of life: (i) the origin of compartmentalization, (ii) the error threshold for the accuracy of templated replication, (iii) the free energy cost of maintaining an information-rich population of replicating RNA polymers. Furthermore, we note that the extant nucleolus appears to satisfy many of the requirements of an evolutionary relic for the model we propose. More generally, we suggest that future work on the origin of life would benefit from condensate-centric biophysical models of RNA evolution.
Collapse
Affiliation(s)
- Jacob L Fine
- Donnelly Centre, University of Toronto, Toronto, Canada; Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alan M Moses
- Cell & Systems Biology, University of Toronto, Toronto, Canada; Computer Science, University of Toronto, Toronto, Canada; Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Helmbrecht V, Reichelt R, Grohmann D, Orsi WD. Simulated early Earth geochemistry fuels a hydrogen-dependent primordial metabolism. Nat Ecol Evol 2025:10.1038/s41559-025-02676-w. [PMID: 40307408 DOI: 10.1038/s41559-025-02676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025]
Abstract
Molecular hydrogen is the electron donor for the ancient exergonic reductive acetyl-coenzyme A pathway (acetyl-CoA pathway), which is used by hydrogenotrophic methanogenic archaea. How the presence of iron-sulfides influenced the acetyl-CoA pathway under primordial early Earth geochemistry is still poorly understood. Here we show that the iron-sulfides mackinawite (FeS) and greigite (Fe3S4), which formed in chemical garden experiments simulating geochemical conditions of the early Archaean eon (4.0-3.6 billion years ago), produce abiotic H2 in sufficient quantities to support hydrogenotrophic growth of the hyperthermophilic methanogen Methanocaldococcus jannaschii. Abiotic H2 from iron-sulfide formation promoted CO2 fixation and methanogenesis and induced overexpression of genes encoding the acetyl-CoA pathway. We demonstrate that H2 from iron-sulfide precipitation under simulated early Earth hydrothermal geochemistry fuels a H2-dependent primordial metabolism.
Collapse
Affiliation(s)
- Vanessa Helmbrecht
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Reichelt
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab and Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
3
|
Yoffe G, Duer-Milner K, Nordheim TA, Halevy I, Kaspi Y. Fluorescent Biomolecules Detectable in Near-Surface Ice on Europa. ASTROBIOLOGY 2025. [PMID: 40285325 DOI: 10.1089/ast.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Europa, Jupiter's second Galilean moon, is believed to host a subsurface ocean in contact with a rocky mantle, where hydrothermal activity may drive the synthesis of organic molecules. Among these possible organic molecules, abiotic synthesis of aromatic amino acids is unlikely, so their detection on planetary surfaces such as Europa suggests that they could be considered a potential biosignature. Fluorescence from aromatic amino acids, with characteristic emissions in the 200-400 nm wavelength range, can be induced by a laser and may be detectable where ocean material has been relatively recently emplaced on Europa's surface, as indicated by geologically young terrain and surface features. However, surface bombardment by charged particles from the jovian magnetosphere and solar ultraviolet (UV) radiation degrades organic molecules and limits their longevity. We model radiolysis and photolysis of aromatic amino acids embedded in ice. Our model shows dependencies on hemispheric and latitudinal patterns of charged particle bombardment and ice phase. We demonstrate that such molecules contained within freshly deposited ice in high-latitude regions on the surface of Europa are detectable using laser-induced UV fluorescence, even from an orbiting spacecraft.
Collapse
Affiliation(s)
- Gideon Yoffe
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Keren Duer-Milner
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Leiden Observatory, Leiden, Netherlands
| | - Tom Andre Nordheim
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yohai Kaspi
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Gaudu N, Truong C, Farr O, Clouet A, Grauby O, Ferry D, Parent P, Laffon C, Ona-Nguema G, Guyot F, Nitschke W, Duval S. Nanometric and Hydrophobic Green Rust Minerals upon Exposure to Amino Acids and Nickel as Prerequisites for a Primitive Chemiosmosis. Life (Basel) 2025; 15:671. [PMID: 40283225 PMCID: PMC12028411 DOI: 10.3390/life15040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Geological structures known as alkaline hydrothermal vents (AHVs) likely displayed dynamic energy characteristics analogous to cellular chemiosmosis and contained iron-oxyhydroxide green rusts in the early Earth. Under specific conditions, those minerals could have acted as non-enzymatic catalysts in the development of early bioenergetic chemiosmotic energy systems while being integrated into the membrane of AHV-produced organic vesicles. Here, we show that the simultaneous addition of two probable AHV components, namely nickel and amino acids, impacts green rust's physico-chemical properties, especially those required for its incorporation in lipid vesicle's membranes, such as decreasing the mineral size to the nanometer scale and increasing its hydrophobicity. These results suggest that such hydrophobic nano green rusts could fit into lipid vesicle membranes and could have functioned as a primitive, inorganic precursor to modern chemiosmotic metalloenzymes, facilitating both electron and proton transport in early life-like systems.
Collapse
Affiliation(s)
- Nil Gaudu
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Chloé Truong
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Orion Farr
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Adriana Clouet
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Olivier Grauby
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Daniel Ferry
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Philippe Parent
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Carine Laffon
- Centre Interdisciplinaire des Nanosciences de Marseille (CINaM), Aix-Marseille Université, UMR 7325 CNRS, Campus de Luminy, 13288 Marseille, France; (O.G.); (D.F.); (P.P.); (C.L.)
| | - Georges Ona-Nguema
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR 7590 CNRS, 4 Place Jussieu, 75005 Paris, France; (G.O.-N.)
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR 7590 CNRS, 4 Place Jussieu, 75005 Paris, France; (G.O.-N.)
| | - Wolfgang Nitschke
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| | - Simon Duval
- Laboratoire de Bioénergétique et Ingénierie des Protéines (BIP), Aix-Marseille Université, UMR 7281 IMM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France; (C.T.); (O.F.); (A.C.); (W.N.); (S.D.)
| |
Collapse
|
5
|
Balog E, Bene K, Schuszter G. Synthesis of metal-organic framework functionalized macroscopic flow-through precipitate tubes. Sci Rep 2025; 15:13241. [PMID: 40247052 PMCID: PMC12006425 DOI: 10.1038/s41598-025-97630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
The guided growth and the composition control of the well-known chemical garden tubular structures have been widely studied in the literature. However, the applicability of these macroscopic hollow precipitate tubes (e.g., for catalysis, sensorics etc.) is still limited, since these pipes originally do not have a flow-through character, thus the functionalization of these tubes is difficult to implement. In this work, our goal was to design a novel reactor that enables the production of these flow-through precipitate pipes with robust junctions, and thus their functionalization for further applications. We successfully built the reactor and synthesized such pipes. Their flow-through character was proven in case of various template tubes which were produced by injecting one of the reactant solutions into the pool of the other in three dimensions. After the production of the template tubes, we attempted to decorate the surface with sodalite type ZIF-8 crystals, which are of great interest thanks to their beneficial properties (porous structure, huge specific surface area etc.) for catalysis or gas separation. The surface functionalization was carried out by exchanging the reactant solutions inside and outside the template precipitate tubes. Due to the semi-permeable nature of the tube wall, the reactants could diffuse through the membrane and react with each other. This way we produced (most probably sodalite type) ZIF-8 crystals on the inner tube surface and thus functionalized it.
Collapse
Affiliation(s)
- Edina Balog
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, 6720, Hungary
| | - Kinga Bene
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, 6720, Hungary
| | - Gábor Schuszter
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, 6720, Hungary.
| |
Collapse
|
6
|
Damacet P, Mirica KA. Periodic Patterning of Matter in Non-Equilibrium Liesegang-Type Structures. Angew Chem Int Ed Engl 2025:e202425292. [PMID: 40247399 DOI: 10.1002/anie.202425292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Bottom-up self-organization of unordered molecules into ordered, spatiotemporal patterns of complex structures through non-equilibrium reaction-diffusion (RD) processes is ubiquitous in nature across all scales. Unlike many RD processes that typically lead to transient patterns, periodic precipitation reactions governed by the Liesegang phenomenon are distinguished by the formation of stable, permanent structures. This unique characteristic makes them valuable tools in the development of hierarchical multifunctional materials, an area that has seen significant progress in recent decades. This review summarizes the fundamental aspects of the Liesegang phenomenon, focusing on the key characteristics, compositional features, inherent properties, and formation mechanisms of Liesegang patterns in chemical systems, while also highlighting their occurrence in biological and geological settings. We discuss recent advancements in applying periodic precipitation to address global challenges in microelectronics and environmental monitoring, concluding with a forward-looking perspective on the promising future applications of the Liesegang periodic precipitation in materials science, nanotechnology, medicine, and environmental engineering.
Collapse
Affiliation(s)
- Patrick Damacet
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire, 03755, USA
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Burke Laboratory, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
7
|
Wang R, Remsing RC, Klein ML, Borguet E, Carnevale V. On the role of α-alumina in the origin of life: Surface-driven assembly of amino acids. SCIENCE ADVANCES 2025; 11:eadt4151. [PMID: 40215313 PMCID: PMC11988445 DOI: 10.1126/sciadv.adt4151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
We investigate the hypothesis that mineral/water interfaces played a crucial catalytic role in peptide formation by promoting the self-assembly of amino acids. Using classical molecular dynamics simulations, we demonstrate that the α-alumina(0001) surface exhibits an affinity of 4 kBT for individual glycine or GG dipeptide molecules due to hydrogen bonds. In simulations with multiple glycine molecules, surface-bound glycine enhances further adsorption, leading to the formation of long chains connected by hydrogen bonds between the carboxyl and amine groups of glycine molecules. We find that the likelihood of observing chains longer than 10 glycine units increases by at least five orders of magnitude at the surface compared to the bulk. This surface-driven assembly is primarily due to local high density and alignment with the alumina surface pattern. Together, these results propose a model for how mineral surfaces can induce configuration-specific assembly of amino acids, thereby promoting condensation reactions.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
| | - Richard C. Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Samulewski RB, Graff IL, Nemšák S, Zaia DAM. Influence of Cyanide and Thiocyanate on the Formation of Magnetite Synthesized under Prebiotic Chemistry Conditions: Interplay between Surface, Structural, and Magnetic Properties. ACS OMEGA 2025; 10:13377-13387. [PMID: 40224451 PMCID: PMC11983221 DOI: 10.1021/acsomega.4c11450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Understanding the chemical and geological conditions of early Earth is crucial to unraveling the processes that led to the evolution of life. Iron, abundant in the early oceans, likely played a significant role in the evolution of life, particularly in the form of minerals that supported the emergence of the first life forms. This article investigates the catalytic effects of cyanide and thiocyanate ions on magnetite samples synthesized under conditions that simulate the early Earth. Magnetite samples were characterized using X-ray photoelectron spectroscopy (XPS), Fe L23 near-edge X-ray absorption fine structure (NEXAFS), transmission electron microscopy (TEM), and magnetization measurements. The results reveal variations in elemental composition influenced by synthesis conditions, with cyanide ions promoting the formation of magnetite and seawater and thiocyanate inducing the formation of ferrihydrite and goethite, respectively, along with magnetite. These discoveries enrich our understanding of Earth's earliest geochemical processes, contribute to new material synthesis routes, and help environmental science.
Collapse
Affiliation(s)
- Rafael Block Samulewski
- Programa
de Pós-Graduação em Ciência e Engenharia
de Materiais (PPGCEM), Universidade Tecnológica
Federal do Paraná UTFPR, Apucarana, Paraná CEP 86812-460, Brazil
| | - Ismael Leandro Graff
- Departamento
de Física, Universidade Federal do
Paraná UFPR, Curitiba, Paraná CEP 81531-980, Brazil
| | - Slavomír Nemšák
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
9
|
Song Y, Budiyanto E, Kumar A, Landrot G, Tüysüz H. Prebiotic Interconversion of Pyruvate and Lactate over Zeolite-Supported Ni Catalyst. Angew Chem Int Ed Engl 2025:e202503747. [PMID: 40153137 DOI: 10.1002/anie.202503747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 03/30/2025]
Abstract
Submarine hydrothermal vents harbor diverse microbial communities and have long intrigued researchers studying the origin of life. Transition metals in these environments can be reduced by serpentinization, potentially forming zeolite-supported transition metal nanoparticles capable of driving prebiotic chemistry. This inorganic structure could catalyze biochemical reactions, including converting metabolically crucial pyruvate before the emergence of biological processes. This study explores the catalytic interconversion of pyruvate and lactate, mediated by lactate dehydrogenase in biochemical systems, using inorganic zeolite Y-supported Ni nanoparticles (Ni/Y) under mild hydrothermal vent conditions. Our results demonstrate that Ni/Y effectively catalyzes the hydrogenation of pyruvate in an inert environment, facilitated by the in situ generation of H₂ through an autocatalytic reaction between Ni/Y and H₂O. Post-reaction analysis by X-ray absorption spectroscopy (XAS) revealed structural transformations in the catalyst, including the formation of unique nickel oxide and hydroxide species, along with extra-framework aluminum from zeolite dealumination, resulting in a thin amorphous nickel oxide/hydroxide layer. Notably, Ni/Y also enables the oxidative reconversion of lactate to pyruvate under atmospheric conditions-an essential reaction catalyzed by lactate dehydrogenase in biological systems. These findings underscore the potential prebiotic role of Ni/Y, suggesting they may have catalyzed the synthesis of key metabolic intermediates.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Eko Budiyanto
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Gautier Landrot
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin, 91190, France
| | - Harun Tüysüz
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Catalysis and Energy Materials, IMDEA Materials Institute, Calle Eric Kandel 2, Getafe, Madrid, 28906, Spain
| |
Collapse
|
10
|
Tseng LC, Chen HM, Chou C, Twan WH, Zhou YY, Wang L, Hwang JS. Low high-temperature tolerance of the hydrothermal vent crab Xenograpsus testudinatus: Thermal biochemistry, survival rate and histological analyses, and habitat investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179001. [PMID: 40037228 DOI: 10.1016/j.scitotenv.2025.179001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Rising environmental temperatures increase stress on marine organisms, causing physiological damage or death in extreme cases. In this study, we examined the crab species Xenograpsus testudinatus from a shallow hydrothermal vent area in Kueishan Island, off northeast Taiwan. This crab species belongs to the monotypic family Xenograpsidae and is a well-known inhabitant of the shallow hydrothermal vents of Kueishan Island. The maximum temperature tolerance of X. testudinatus and the effects of temperature on this crab species remain unclear. Our laboratory experiments demonstrated the effects of elevated seawater temperatures on the survival and enzymatic function of X. testudinatus. Its mortality rate increased with the elevation of seawater temperature from 25 °C to 40 °C. Survival duration was short (<4 h) when the crabs were reared at 40 °C, and the lethal temperature (LT50; death within 7 days of exposure) was 34.74 °C. The response of six enzymes varied with temperature. Significant differences of enzyme activities were noted among various temperature groups (25 °C, 30 °C, 30 °C, and 40 °C) in the gill, but no significant difference was noted in the hepatopancreas. A univariate analysis indicated the temperature level and exposure duration as key factors driving the variations in enzyme activity. A field investigation on the temperature of the seabed where the crabs aggregated revealed that the preferred temperature was <28 °C. Therefore, X. testudinatus does not prefer elevated temperatures. An expected combined effects of temperature tolerance and acidic, sulfuric-rich vent water on X. testudinatus is warrant further investigation.
Collapse
Affiliation(s)
- Li-Chun Tseng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Hong-Miao Chen
- School of Life Sciences, Shanxi University, Taiyuan 030006, China.
| | - Chi Chou
- Department of Pathology, Mackay Memorial Hospital, New Taipei City 25160, Taiwan.
| | - Wen-Hung Twan
- Institute of Life Science, National Taitung University, Taitung 95092, Taiwan.
| | - Yan-Ying Zhou
- Department of Biology, Xinzhou Normal University, Xinzhou 034000, China.
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan.
| |
Collapse
|
11
|
Yu F, Fei J, Jia Y, Wang T, Martin WF, Li J. Chemiosmotic ATP synthesis by minimal protocells. CELL REPORTS. PHYSICAL SCIENCE 2025; 6:102461. [PMID: 40123866 PMCID: PMC11922820 DOI: 10.1016/j.xcrp.2025.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Energy conservation is crucial to life's origin and evolution. The common ancestor of all cells used ATP synthase to convert proton gradients into ATP. However, pumps generating proton gradients and lipids maintaining proton gradients are not universally conserved across all lineages. A solution to this paradox is that ancestral ATP synthase could harness naturally formed geochemical ion gradients with simpler environmentally provided precursors preceding both proton pumps and biogenic membranes. This runs counter to traditional views that phospholipid bilayers are required to maintain proton gradients. Here, we show that fatty acid membranes can maintain sufficient proton gradients to synthesize ATP by ATP synthase under the steep pH and temperature gradients observed in hydrothermal vent systems. These findings shed substantial light on early membrane bioenergetics, uncovering a functional intermediate in the evolution of chemiosmotic ATP synthesis during protocellular stages postdating the ATP synthase's origin but preceding the advent of enzymatically synthesized cell membranes.
Collapse
Affiliation(s)
- Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Tonghui Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Mauelshagen K, Schienbein P, Kolling I, Schwaab G, Marx D, Havenith M. Random encounters dominate water-water interactions at supercritical conditions. SCIENCE ADVANCES 2025; 11:eadp8614. [PMID: 40085706 PMCID: PMC11908480 DOI: 10.1126/sciadv.adp8614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Supercritical water is widely present in Earth's crust and has a great potential as an environmentally friendly solvent. Water also serves as the prototype for directional hydrogen bonding at ambient conditions. However, the question of whether supercritical water is still hydrogen-bonded or how water molecules interact en route to the supercritical regime is a matter of controversial discussions. We present terahertz (THz) spectra, which directly probe the intermolecular interactions of water under these extreme conditions. While we spectroscopically detect the liquid-gas phase transition just below the critical point, THz spectra of the high-temperature gas phase are indistinguishable from those of supercritical water at the same density. The accompanying ab initio simulations provide the molecular underpinnings: The water-water contacts at supercritical conditions are essentially orientationally random.
Collapse
Affiliation(s)
- Katja Mauelshagen
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Present Address: Department of Physics, Imperial College London, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - Inga Kolling
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
13
|
Saroha B, Kumar A, Bahadur I, Negi DS, Vats M, Kumar A, Mohammad F, Soleiman AA. Role of metal(ii) hexacyanocobaltate(iii) surface chemistry for prebiotic peptides synthesis. RSC Adv 2025; 15:7855-7868. [PMID: 40078973 PMCID: PMC11897787 DOI: 10.1039/d5ra00205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Double metal cyanide (DMC), a heterogeneous catalyst, provides a surface for the polymerization of amino acids. Based on the hypothesis, the present study is designed to evaluate favorable environmental conditions for the chemical evolution and origin of life, such as the effects of temperature and time on the oligomerization of glycine and alanine on metal(ii) hexacyanocobaltate(iii), MHCCo. A series of MHCCo complexes were synthesized and characterized by XRD and FT-IR techniques. The effect of outer metal ions present in the MHCCo complexes on the condensation of glycine and alanine was studied. Our results revealed that Zn2+ ions in the outer sphere showed high catalytic activity compared to other metal ions in the outer sphere. Manganese(ii) hexacyanocobaltate(iii) (MnHCCo), iron(ii) hexacyanocobaltate(iii) (FeHCCo), nickel(ii) hexacyanocobaltate(iii) (NiHCCo) complexes condense the glycine up to trimer and the alanine up to dimer. At the same time, ZnHCCo showed the most valuable catalytic properties that change glycine into a tetramer and alanine into a dimer with a high yield at 90 °C after four weeks. ZnHCCo showed high catalytic activity because of its high surface area compared to other MHCCo complexes. High-Performance Liquid Chromatography (HPLC) and Electron Spray Ionization-Mass Spectroscopy (ESI-MS) techniques were used to confirm the oligomer products of glycine and alanine formed on MHCCo complexes. The results also exposed the catalytic role of MHCCo for the oligomerization of biomolecules, thus supporting chemical evolution.
Collapse
Affiliation(s)
- Babita Saroha
- School of Biological sciences, Doon University Dehradun 248001 (UK.) India
| | - Anand Kumar
- Department of Chemistry, SGRR (PG) College Dehradun 248001 (UK.) India
| | - Indra Bahadur
- Department of Chemistry, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Devendra Singh Negi
- Department of Chemistry, H. N. B. Garhwal University Srinagar 246174 (UK.) India
| | - Monika Vats
- Department of Chemistry, Dhanauri (PG) College Dhanauri Haridwar 247667 (UK.) India
| | - Ashish Kumar
- Department of Chemistry, H. N. B. Government (PG) College Udham Singh Nagar Khatima 262308 (UK.) India
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh11451 Kingdom of Saudi Arabia
| | | |
Collapse
|
14
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
15
|
Boden JS, Som SM, Brazelton WJ, Anderson RE, Stüeken EE. Evaluating Serpentinization as a Source of Phosphite to Microbial Communities in Hydrothermal Vents. GEOBIOLOGY 2025; 23:e70016. [PMID: 40129261 PMCID: PMC11933879 DOI: 10.1111/gbi.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
Previous studies have documented the presence of phosphite, a reduced and highly soluble form of phosphorus, in serpentinites, which has led to the hypothesis that serpentinizing hydrothermal vents could have been an important source of bioavailable phosphorus for early microbial communities in the Archean. Here, we test this hypothesis by evaluating the genomic hallmarks of phosphorus usage in microbial communities living in modern hydrothermal vents with and without influence from serpentinization. These genomic analyses are combined with results from a geochemical model that calculates phosphorus speciation during serpentinization as a function of temperature, water:rock ratio, and lithology at thermodynamic equilibrium. We find little to no genomic evidence of phosphite use in serpentinizing environments at the Voltri Massif or the Von Damm hydrothermal field at the Mid Cayman Rise, but relatively more in the Lost City hydrothermal field, Coast Range Ophiolite Microbial Observatory, The Cedars, and chimney samples from Old City hydrothermal field and Prony Bay hydrothermal field, as well as in the non-serpentinizing hydrothermal vents at Axial Seamount. Geochemical modeling shows that phosphite production is favored at ca 275°C-325°C and low water:rock ratios, which may explain previous observations of phosphite in serpentinite rocks; however, most of the initial phosphate is trapped in apatite during serpentinization, suppressing the absolute phosphite yield. As a result, phosphite from serpentinizing vents could have supported microbial growth around olivine minerals in chimney walls and suspended aggregates, but it is unlikely to have fueled substantial primary productivity in diffusely venting fluids during life's origin and evolution in the Archean unless substrates equivalent to dunites (composed of > 90 wt% olivine) were more common.
Collapse
Affiliation(s)
- Joanne S. Boden
- School of Earth and Environmental SciencesUniversity of St. AndrewsSt. AndrewsUK
| | - Sanjoy M. Som
- Blue Marble Space Institute of ScienceSeattleWashingtonUSA
- Space Science and Astrobiology Division, Exobiology BranchNASA Ames Research CenterMountain ViewCaliforniaUSA
| | - William J. Brazelton
- Blue Marble Space Institute of ScienceSeattleWashingtonUSA
- School of Biological SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | | - Eva E. Stüeken
- School of Earth and Environmental SciencesUniversity of St. AndrewsSt. AndrewsUK
| |
Collapse
|
16
|
Sharma S, Yang Y, Lee JW. A Prebiotic Route to Lactate from Acetaldehyde, Cyanide and Carbon Dioxide. Chemistry 2025; 31:e202403763. [PMID: 39729528 DOI: 10.1002/chem.202403763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 12/29/2024]
Abstract
The atmospheric concentration of carbon dioxide (CO2) has fluctuated throughout Earth's history. However, the role of CO2 in prebiotic chemistry has been predominantly and limitedly postulated as a C1 precursor, which can be reduced to carbon monoxide or methane mimicking the Wood-Ljungdahl pathway. Herein we present neglected roles of CO2 as an active promoter in accessing biologically important C3-builidng blocks such as lactate, via redox-economic reaction cycles starting from cyanide (C1) and acetaldehyde (C2). We verified that Lewis acidic CO2 facilitates the formation of cyanohydrin of acetaldehyde under ambient conditions. Furthermore, selective protection of cyanohydrin to carbonate by atmospheric CO2 led to anchimeric assisted hydrolysis of the nitrile group to generate lactate. This work supports both warm pond and hydrothermal vent hypotheses, postulating that a CO2-rich primordial atmosphere and the acidic aqueous solution could have fostered the emergence of biologically relevant molecules and life itself.
Collapse
Affiliation(s)
- Shriaya Sharma
- Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Yang Yang
- Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ji-Woong Lee
- Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
- The Novo Nordisk Foundation CO2 Research Center, Gustav Wieds Vej 10 C, 8000, Aarhus, Denmark
| |
Collapse
|
17
|
Sithamparam M, Afrin R, Tharumen N, He MJ, Chen C, Yi R, Wang PH, Jia TZ, Chandru K. Probing the Limits of Reactant Concentration and Volume in Primitive Polyphenyllactate Synthesis and Microdroplet Assembly Processes. ACS BIO & MED CHEM AU 2025; 5:131-142. [PMID: 39990942 PMCID: PMC11843335 DOI: 10.1021/acsbiomedchemau.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025]
Abstract
Polyester microdroplets have been investigated as primitive protocell models that can exhibit relevant primitive functions such as biomolecule segregation, coalescence, and salt uptake. Such microdroplets assemble after dehydration synthesis of alpha-hydroxy acid (αHA) monomers, commonly available on early Earth, via heating at mild temperatures, followed by rehydration in aqueous media. αHAs, in particular, are also ubiquitous in biology, participating in a variety of biochemical processes such as metabolism, suggesting the possible strong link between primitive and modern αHA-based processes. Although some primitive αHA polymerization conditions have been probed previously, including monomer chirality and reaction temperature, relevant factors pertaining to early Earth's local environmental conditions that would likely affect primitive αHA polymerization are yet to be fully investigated. Hence, probing the entire breadth of possible conditions that could promote primitive αHA polymerization is required to understand the plausibility of polyester microdroplet assembly on early Earth at the origin of life. In particular, there are numerous aqueous environments available on early Earth that could have resulted in varying volumes and concentrations of αHA accumulation, which would have affected subsequent αHA polymerization reactions. Similarly, there were likely varying levels of salt in the various aqueous prebiotic solutions, such as in the ocean, lakes, and small pools, that may have affected primitive reactions. Here, we probe the limits of the dehydration synthesis and subsequent membraneless microdroplet (MMD) assembly of phenyllactic acid (PA), a well-studied αHA relevant to both biology and prebiotic chemistry, with respect to reactant concentration and volume and salinity through mass spectrometry- and microscopy-based observations. Our study showed that polymerization and subsequent microdroplet assembly of PA appear robust even at low reactant concentrations, smaller volumes, and higher salinities than those previously tested. This indicates that PA-polyester and its microdroplets are very much viable under a wide variety of conditions, thus more likely participating in prebiotic chemistries at the origins of life.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space
Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43650, Malaysia
| | - Rehana Afrin
- Earth-Life
Science Institute, Institute of Future Science, Institute of Science Tokyo, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Navaniswaran Tharumen
- Space
Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43650, Malaysia
| | - Ming-Jing He
- Department
of Chemical Engineering and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (R.O.C.)
| | - Chen Chen
- Biofunctional
Catalyst Research Team, RIKEN Center for Sustainable Resource Science
(CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ruiqin Yi
- State
Key Laboratory of Isotope Geochemistry and CAS Center for Excellence
in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Po-Hsiang Wang
- Department
of Chemical Engineering and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (R.O.C.)
- Graduate
Institute of Environmental Engineering, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan City 320, Taiwan
| | - Tony Z. Jia
- Earth-Life
Science Institute, Institute of Future Science, Institute of Science Tokyo, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble
Space Institute of Science, 600 first Ave, Floor 1, Seattle, Washington 98104, United States
| | - Kuhan Chandru
- Space
Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43650, Malaysia
- Polymer Research
Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600 Malaysia
- Institute
of Physical Chemistry, CENIDE, University
of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
18
|
Mougkogiannis P, Adamatzky A. Proton Pump Inhibitor Omeprazole Alters the Spiking Characteristics of Proteinoids. ACS OMEGA 2025; 10:5016-5035. [PMID: 39959035 PMCID: PMC11822715 DOI: 10.1021/acsomega.4c10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
This study reveals the significant effect of the proton pump inhibitor omeprazole on the spiking behavior of proteinoids, leading to a transformative shift in the field of unconventional computing. Through the application of different concentrations of omeprazole, we see a notable modification in the spiking characteristics of proteinoids, including significant alterations in amplitude, frequency, and temporal patterns. By using Boolean logic techniques, we analyze the complex dynamics of the proteinoid-omeprazole system, revealing underlying patterns and connections that question our understanding of biological computing. Our research reveals the unexplored potential of proteinoids as a foundation for unconventional computing. Moreover, our research indicates that the electrical spiking observed in proteinoids may be linked to the movement of protons. This discovery offers new insights into the fundamental mechanisms governing the spiking activity of proteinoids, presenting promising opportunities for future research in this area. Additionally, it opens up possibilities of developing new computational models that exploit the inherent nonlinearity and complexity of biological systems. By combining the effects of omeprazole-induced spikes with Boolean logic, a wide range of opportunities arise for information processing, pattern identification, and problem-solving. This pushes the limits of what can be achieved with bioelectronics.
Collapse
Affiliation(s)
| | - Andrew Adamatzky
- Unconventional Computing
Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
19
|
Ball R, Brindley J. Reciprocating thermochemical mediator of pre-biotic polymer decomposition on mineral surfaces. J R Soc Interface 2025; 22:20240492. [PMID: 39907458 PMCID: PMC11796468 DOI: 10.1098/rsif.2024.0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 02/06/2025] Open
Abstract
A continuing frustration for origin of life scientists is that abiotic and, by extension, pre-biotic attempts to develop self-sustaining, evolving molecular systems tend to produce more dead-end substances than macromolecular products with the necessary potential for biostructure and function - the so-called 'tar problem'. Nevertheless primordial life somehow emerged despite that presumed handicap. A resolution of this problem is important in emergence-of-life science because it would provide valuable guidance in choosing subsequent paths of investigation, such as identifying pre-biotic patterns on Mars. To study the problem we set up a simple non-equilibrium flow dynamical model for the coupled temperature and mass dynamics of the decomposition of a polymeric carbohydrate adsorbed on a mineral surface, with incident stochastic thermal fluctuations. Results show that the model system behaves as a reciprocating thermochemical oscillator. The output fluctuation distribution is bimodal, with a right-weighted component that guarantees a bias towards detachment and desorption of monomeric species such as ribose, even while tar is formed concomitantly. This fluctuating thermochemical reciprocator may ensure that non-performing polymers can be fractionated into a refractory carbon reservoir and active monomers which may be reincorporated into better-performing polymers with less vulnerability towards adsorptive tarring.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute, Australian National University, Canberra2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
20
|
Tlusty T, Libchaber A. Life sets off a cascade of machines. Proc Natl Acad Sci U S A 2025; 122:e2418000122. [PMID: 39854238 PMCID: PMC11789027 DOI: 10.1073/pnas.2418000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025] Open
Abstract
Life is invasive, occupying all physically accessible scales, stretching between almost nothing (protons, electrons, and photons) and almost everything (the whole biosphere). Motivated by seventeenth-century insights into this infinity, this paper proposes a language to discuss life as an infinite double cascade of machines making machines. Using this simplified language, we first discuss the micro-cascade proposed by Leibniz, which describes how the self-reproducing machine of the cell is built of smaller submachines down to the atomic scale. In the other direction, we propose that a macro-cascade builds from cells larger, organizational machines, up to the scale of the biosphere. The two cascades meet at the critical point of 103 s in time and 1 micron in length, the scales of a microbial cell. We speculate on how this double cascade evolved once a self-replicating machine emerged in the salty water of prebiotic earth.
Collapse
Affiliation(s)
- Tsvi Tlusty
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan44919, Korea
| | - Albert Libchaber
- Center for Physics and Biology, Rockefeller University, New York, NY10065
| |
Collapse
|
21
|
Mrnjavac N, Martin WF. GTP before ATP: The energy currency at the origin of genes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149514. [PMID: 39326542 PMCID: PMC7616719 DOI: 10.1016/j.bbabio.2024.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Webster KD, Lennon JT. Dormancy in the origin, evolution and persistence of life on Earth. Proc Biol Sci 2025; 292:20242035. [PMID: 39772956 PMCID: PMC11706647 DOI: 10.1098/rspb.2024.2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Life has existed on Earth for most of the planet's history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This process protects inactive individuals and minimizes the risk of extinction by preserving information that stabilizes life-system dynamics. Here, we develop a framework for understanding dormancy on early Earth, beginning with a primer on dormancy theory and its core criteria. We hypothesize that dormancy-like mechanisms acting on chemical precursors in a prebiotic world may have facilitated the origin of life. Drawing on evidence from phylogenetic reconstructions and the fossil record, we demonstrate that dormancy is prevalent across the tree of life and throughout deep time. These observations lead us to consider how dormancy might have shaped nascent living systems by buffering stochastic processes in small populations, protecting against large-scale planetary disturbances, aiding dispersal in patchy landscapes and facilitating adaptive radiations. Given that dormancy is a fundamental and easily evolved property on Earth, it is also likely to be a feature of life elsewhere in the universe.
Collapse
Affiliation(s)
- Kevin D. Webster
- Diné College, Tsaile, AZ, USA
- Planetary Science Institute, Tucson, AZ, USA
| | | |
Collapse
|
23
|
Kim Y, Zheng Y. Thermophilic Behavior of Heat-Dissociative Coacervate Droplets. NANO LETTERS 2024; 24:15964-15972. [PMID: 39573916 DOI: 10.1021/acs.nanolett.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In exploring the genesis of life, liquid-liquid phase-separated coacervate droplets have been proposed as primitive protocells. Within the hydrothermal hypothesis, these droplets would emerge from molecule-rich hot fluids and thus be subjected to temperature gradients. Investigating their thermophoretic behavior can provide insights into protocell footprints in thermal landscapes, advancing our understanding of life's origins. Here, we report the thermophilic behavior of heat-dissociative droplets, contrary to the intuition that heat-associative condensates would prefer hotter areas. This aspect implies the preferential presence of heat-dissociative primordial condensates near hydrothermal environments, facilitating molecular incorporation and biochemical syntheses. Additionally, our investigations reveal similarities between thermophoretic and electrophoretic motions, dictated by molecular redistribution within droplets due to their fluid nature, which necessitates revising current electrophoresis frameworks for surface charge characterization. Our study elucidates how coacervate droplets navigate thermal and electric fields, reveals their thermal-landscape-dependent molecular characteristics, and bridges foundational theories of early life: the hydrothermal and condensate-as-protocell hypotheses.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yuebing Zheng
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Majumdar A, Li H, Muhunthan P, Späh A, Song S, Sun Y, Chollet M, Sokaras D, Zhu D, Ihme M. Direct observation of ultrafast cluster dynamics in supercritical carbon dioxide using X-ray Photon Correlation Spectroscopy. Nat Commun 2024; 15:10540. [PMID: 39627208 PMCID: PMC11615208 DOI: 10.1038/s41467-024-54782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Supercritical fluids exhibit distinct thermodynamic and transport properties, making them of particular interest for a wide range of scientific and engineering applications. These anomalous properties emerge from structural heterogeneities due to the formation of molecular clusters at conditions above the critical point. While the static behavior of these clusters and their effects on the thermodynamic response functions have been recognized, the relation between the ultrafast cluster dynamics and transport properties remains elusive. By measuring the intermediate scattering function in carbon dioxide at conditions near the critical point with X-ray photon correlation spectroscopy, we directly capture the cross-over dynamics between 4 and 13 picoseconds, revealing the transition between ballistic and diffusive motion. Complementary analysis using large-scale molecular dynamics simulations reveals that this behavior arises from collisions between unbound molecules and clusters. This study provides direct evidence of the ultrafast momentum exchange between clusters, which has significant impact on transport properties, solvation processes, and reaction kinetics in supercritical fluids.
Collapse
Affiliation(s)
- Arijit Majumdar
- Mechanical Engineering Department, Stanford University, Stanford, CA, 94305, USA
| | - Haoyuan Li
- Mechanical Engineering Department, Stanford University, Stanford, CA, 94305, USA
| | - Priyanka Muhunthan
- Mechanical Engineering Department, Stanford University, Stanford, CA, 94305, USA
| | - Alexander Späh
- Mechanical Engineering Department, Stanford University, Stanford, CA, 94305, USA
| | - Sanghoon Song
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Yanwen Sun
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Matthieu Chollet
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Diling Zhu
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Matthias Ihme
- Mechanical Engineering Department, Stanford University, Stanford, CA, 94305, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Energy Science and Engineering Department, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Mackay SM, Sutherland B, Easingwood RA, Hopkins A, Bostina M, Tan EW. Evidence for phospholipid self-organisation in concentrated ammonia-water environments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184391. [PMID: 39389227 DOI: 10.1016/j.bbamem.2024.184391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Titan, the largest moon of Saturn is thought to have the potential to support primordial life. The surface of Titan contains bodies of liquid hydrocarbons, and modelling suggests that an ammonia-water ocean resides deep beneath the surface, both of which have been speculated to support primordial chemistry. Here we present the first evidence that both preformed and self-organised phospholipid vesicles remain stable and can maintain concentration gradients in ammonia-water environments; a fundamental requirement for primordial chemistry and biology to originate. We further reveal the remarkable stability of a diether phospholipid, such as those found in extremophilic bacteria, under these conditions and demonstrate that electron microscopy and tomography are useful tools to investigate macromolecular structure under diverse physico-chemical environments.
Collapse
Affiliation(s)
- Sean M Mackay
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Now at Massey University, John Lyttleton Building, Dairy Farm Road, Palmerston North 4442, New Zealand.
| | - Ben Sutherland
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Richard A Easingwood
- Otago Micro and Nanoscale Imaging (EM), University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Andrew Hopkins
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Otago Micro and Nanoscale Imaging (EM), University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Eng Wui Tan
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
26
|
Zhang H, Zhou Y, Yang Z. Genetic adaptations of marine invertebrates to hydrothermal vent habitats. Trends Genet 2024; 40:1047-1059. [PMID: 39277449 DOI: 10.1016/j.tig.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhuo Yang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Nan J, Luo S, Tran QP, Fahrenbach AC, Lu WN, Hu Y, Yin Z, Ye J, Van Kranendonk MJ. Iron sulfide-catalyzed gaseous CO 2 reduction and prebiotic carbon fixation in terrestrial hot springs. Nat Commun 2024; 15:10280. [PMID: 39609396 PMCID: PMC11605115 DOI: 10.1038/s41467-024-54062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Understanding abiotic carbon fixation provides insights into early Earth's carbon cycles and life's emergence in terrestrial hot springs, where iron sulfide (FeS), similar to cofactors in metabolic enzymes, may catalyze prebiotic synthesis. However, the role of FeS-mediated carbon fixation in such conditions remains underexplored. Here, we investigate the catalytic behaviors of FeS (pure and doped with Ti, Ni, Mn, and Co), which are capable of H2-driven CO2 reduction to methanol under simulated hot spring vapor-zone conditions, using an anaerobic flow chamber connected to a gas chromatograph. Specifically, Mn-doped FeS increases methanol production five-fold at 120 °C, with UV-visible light (300-720 nm) and UV-enhanced light (200-600 nm) further increasing this activity. Operando and theoretical investigations indicate the mechanism involves a reverse water-gas shift with CO as an intermediate. These findings highlight the potential of FeS-catalyzed carbon fixation in early Earth's terrestrial hot springs, effective with or without UV light.
Collapse
Affiliation(s)
- Jingbo Nan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Shunqin Luo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Quoc Phuong Tran
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wen-Ning Lu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, 330013, Nanchang, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China
| | - Yingjie Hu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, 211171, Nanjing, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan.
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China.
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Earth and Planetary Sciences, Curtin University, Bentley, 6845, Western Australia
| |
Collapse
|
28
|
Li T, Stolte N, Tao R, Sverjensky DA, Daniel I, Pan D. Synthesis and Stability of Biomolecules in C-H-O-N Fluids under Earth's Upper Mantle Conditions. J Am Chem Soc 2024; 146:31240-31250. [PMID: 39485931 DOI: 10.1021/jacs.4c11680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How life started on Earth is an unsolved mystery. There are various hypotheses for the location ranging from outer space to the seafloor, subseafloor, or potentially deeper. Here, we applied extensive ab initio molecular dynamics simulations to study chemical reactions between NH3, H2O, H2, and CO at pressures (P) and temperatures (T) approximating the conditions of Earth's upper mantle (i.e., 10-13 GPa, 1000-1400 K). Contrary to the previous assumptions that large organic molecules might readily disintegrate in aqueous solutions at extreme P-T conditions, we found that many organic compounds formed without any catalysts and persisted in C-H-O-N fluids under these extreme conditions, including glycine, ribose, urea, and uracil-like molecules. Particularly, our free-energy calculations showed that the C-N bond is thermodynamically stable at 10 GPa and 1400 K. Moreover, while the pyranose (six-membered ring) form of ribose is more stable than the furanose (five-membered ring) form at ambient conditions, we found that the formation of the five-membered-ring form of ribose is thermodynamically more favored at extreme conditions, which is consistent with the exclusive incorporation of β-d-ribofuranose in RNA. We have uncovered a previously unexplored pathway through which the crucial biomolecules could be abiotically synthesized from geofluids in the deep interior of Earth and other planets, and these formed biomolecules could potentially contribute to the early stage of the emergence of life.
Collapse
Affiliation(s)
- Tao Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Nore Stolte
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Renbiao Tao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, China
| | - Dimitri A Sverjensky
- Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Isabelle Daniel
- Universite Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, Ens de Lyon, Universite Jean Monnet Saint-Etienne, Villeurbanne 69622, France
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
29
|
Duan Z, Wang J, Liu S, Xu Q, Chen H, Li C, Hui M, Chen N. Positive selection in cilia-related genes may facilitate deep-sea adaptation of Thermocollonia jamsteci. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175358. [PMID: 39127215 DOI: 10.1016/j.scitotenv.2024.175358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Deep-sea hydrothermal vents are characterized by high hydrostatic pressure, hypoxia, darkness and toxic substances. However, how organisms adapt to such extreme marine ecosystems remain poorly understood. We hypothesize that adaptive evolution plays an essential role in generating novelty for evolutionary adaptation to the deep-sea environment because adaptive evolution has been found to be critical for species origin and evolution. In this project, the chromosome-level genome of the deep-sea hydrothermal vent gastropod T. jamsteci was constructed for the first time to examine molecular mechanisms of its adaptation to the deep-sea environment. The genome size was large (2.54 Gb), ranking at the top of all species in the Vetigastropoda subclass, driven primarily by the bursts of transposable elements (TEs). The transposition of TEs may also trigger chromosomal changes including both inter-chromosomal fusions and intra-chromosomal activities involving chromosome inversions, rearrangements and fusions, as revealed by comparing the genomes of T. jamsteci and its closely related shallow-sea species Gibbula magus. Innovative changes including the expansion of the ABC transporter gene family that may facilitate detoxification, duplication of genes related to endocytosis, immunity, apoptosis, and anti-apoptotic domains that may help T. jamsteci fight against microbial pathogens, were identified. Furthermore, comparative analysis identified positive selection signals in a large number of genes including the hypoxia up-regulated protein 1, which is a chaperone that may promote adaptation of the T. jamsteci to hypoxic deepsea environments, hox2, Rx2, Pax6 and cilia-related genes BBS1, BBS2, BBS9 and RFX4. Notably, because of the critical importance of cilia and IFT in development, positive selection in cilia-related genes may play a critical role in facilitating T. jamsteci to adapt to the high-pressure deep-sea ecosystem. Results from this study thus revealed important molecular clues that may facilitate further research on the adaptation of molluscs to deep-sea hydrothermal vents.
Collapse
Affiliation(s)
- Zelin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Min Hui
- Laoshan Laboratory, Qingdao 266237, China; Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China.
| |
Collapse
|
30
|
Chen X, Wang Y, Hou Q, Liao X, Zheng X, Dong W, Wang J, Zhang X. Significant correlations between heavy metals and prokaryotes in the Okinawa Trough hydrothermal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135657. [PMID: 39213773 DOI: 10.1016/j.jhazmat.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Prokaryotes play crucial roles in hydrothermal vent ecosystems, yet their interactions with heavy metals are not well understood. This study explored the diversity of prokaryotic communities and their correlations with heavy metals and nutrient elements in hydrothermal sediments from Okinawa Trough. A total of 117 bacterial genera in 26 bacterial phyla and 10 archaeal classes in 3 archaeal phyla were identified, including dominant prokaryotic phyla Planctomycetes, Acidobacteria, Verrucomicrobia, and Euryarchaeota. Furthermore, Fe (39.61 mg/g), Mn (2.84 mg/g) and Ba (0.36 mg/g) were found to be the most abundant heavy metals in the Okinawa hydrothermal sediments. Notably, the concentrations of Zn, Ba, Mn, total organic carbon, and total nitrogen significantly increased, whereas the total sulfur concentration distinctively decreased at sampling sites farther from hydrothermal vents. These changes corresponded with reductions in prokaryotic abundance and diversity. Most heavy metals, including Mn, Fe, Co, Cu and As, presented significant positive correlations with a number of prokaryotic genera in the nearby sediment samples. In contrast, both positive and negative correlations with prokaryotes were observed in remote sediment. The keystone taxa include Magnetospirillum, GOUTA19, Lysobacter, Kaistobacter, Treponema, and Clostridium were detected through prokaryote interspecies interactions. The functional predictions revealed significant genes involved in carbon fixation, nitrogen/sulfur cycling, heat shock protein, and metal resistance pathways. Structural equation modeling confirmed that metal and nutrient elements directly influence the composition of prokaryotic communities, which in turn affects the relative abundance of functional genes.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yizhuo Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qili Hou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
31
|
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour-New Insights and Perspectives. Life (Basel) 2024; 14:1425. [PMID: 39598223 PMCID: PMC11595344 DOI: 10.3390/life14111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Extremophiles, throughout evolutionary time, have evolved a plethora of unique strategies to overcome hardships associated with the environments they are found in. Modifying their genome, showing a bias towards certain amino acids, redesigning their proteins, and enhancing their membranes and other organelles with specialised chemical compounds are only some of those strategies. Scientists can utilise such attributes of theirs for a plethora of biotechnological and astrobiological applications. Moreover, the rigorous study of such microorganisms regarding their evolution and ecological niche can offer deep insight into science's most paramount inquiries such as how life originated on Earth and whether we are alone in the universe. The intensification of studies involving extremophiles in the future can prove to be highly beneficial for humanity, even potentially ameliorating modern problems such as those related to climate change while also expanding our knowledge about the complex biochemical reactions that ultimately resulted in life as we know it today.
Collapse
Affiliation(s)
- George N. Angelakis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Chrysianna Psarologaki
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Biology and Psychology, Georg-August University of Göttingen, Wilhelm-Weber-Straße 2, 37073 Göttingen, Germany
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| |
Collapse
|
32
|
Yoshida T, Koyama S, Nakamura Y, Terada N, Kuramoto K. Self-Shielding Enhanced Organics Synthesis in an Early Reduced Earth's Atmosphere. ASTROBIOLOGY 2024; 24:1074-1084. [PMID: 39435594 DOI: 10.1089/ast.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Earth is expected to have acquired a reduced proto-atmosphere enriched in H2 and CH4 through the accretion of building blocks that contain metallic Fe and/or the gravitational trapping of surrounding nebula gas. Such an early, wet, reduced atmosphere that covers a proto-ocean would then ultimately evolve toward oxidized chemical compositions through photochemical processes that involve reactions with H2O-derived oxidant radicals and the selective escape of hydrogen to space. During this time, atmospheric CH4 could be photochemically reprocessed to generate not only C-bearing oxides but also organics. However, the branching ratio between organic matter formation and oxidation remains unknown despite its significance on the abiotic chemical evolution of early Earth. Here, we show via numerical analyses that UV absorptions by gaseous hydrocarbons such as C2H2 and C3H4 significantly suppress H2O photolysis and subsequent CH4 oxidation during the photochemical evolution of a wet proto-atmosphere enriched in H2 and CH4. As a result, nearly half of the initial CH4 converted to heavier organics along with the deposition of prebiotically essential molecules such as HCN and H2CO on the surface of a primordial ocean for a geological timescale order of 10-100 Myr. Our results suggest that the accumulation of organics and prebiotically important molecules in the proto-ocean could produce a soup enriched in various organics, which might have eventually led to the emergence of living organisms.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Shungo Koyama
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yuki Nakamura
- Graduate School of Science, University of Tokyo, Bunkyo, Japan
| | - Naoki Terada
- Graduate School of Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
33
|
Demetrius LA. Directionality theory and the origin of life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230623. [PMID: 39539501 PMCID: PMC11558456 DOI: 10.1098/rsos.230623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/16/2023] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
The origin of cellular life can be described in terms of the transition from inorganic matter to the emergence of cooperative assemblies of organic matter: DNA and proteins, capable of replication and metabolism. Directionality theory is a mathematical theory of the collective behaviour of networks of organic matter: activated macromolecules, cells and higher organisms. Evolutionary entropy, a generalization of the thermodynamic entropy of Boltzmann, is a statistical measure of the cooperativity of the biotic components. The cornerstone of Directionality theory is the Entropic Principle of Evolution: evolutionary entropy increases in systems driven by a stable energy source, and decreases in systems subject to a fluctuating energy source. This article invokes the Entropic Principle of Evolution-an extension to biological systems of the Second Law of Thermodynamics-to provide an adaptive rationale for the following sequence of transformations that define the emergence of cellular life: (i) the self-assembly of activated macromolecules from inorganic matter; (ii) the emergence of an RNA world, defined by RNA molecules with catalytic and replicative properties; and (iii) the origin of cellular life, the integration of the three carbon-based polymers-DNA, proteins and lipids, to generate a metabolic and replicative unit.
Collapse
Affiliation(s)
- Lloyd A. Demetrius
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, Cambridge, MA02138, USA
| |
Collapse
|
34
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
35
|
Deamer D. Perspective: Protocells and the Path to Minimal Life. J Mol Evol 2024; 92:530-538. [PMID: 39230713 PMCID: PMC11458682 DOI: 10.1007/s00239-024-10197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The path to minimal life involves a series of stages that can be understood in terms of incremental, stepwise additions of complexity ranging from simple solutions of organic compounds to systems of encapsulated polymers capable of capturing nutrients and energy to grow and reproduce. This brief review will describe the initial stages that lead to populations of protocells capable of undergoing selection and evolution. The stages incorporate knowledge of chemical and physical properties of organic compounds, self-assembly of membranous compartments, non-enzymatic polymerization of amino acids and nucleotides followed by encapsulation of polymers to produce protocell populations. The results are based on laboratory simulations related to cyclic hydrothermal conditions on the prebiotic Earth. The final portion of the review looks ahead to what remains to be discovered about this process in order to understand the evolutionary path to minimal life.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
36
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
37
|
Lee HE, Okumura T, Ooka H, Adachi K, Hikima T, Hirata K, Kawano Y, Matsuura H, Yamamoto M, Yamamoto M, Yamaguchi A, Lee JE, Takahashi H, Nam KT, Ohara Y, Hashizume D, McGlynn SE, Nakamura R. Osmotic energy conversion in serpentinite-hosted deep-sea hydrothermal vents. Nat Commun 2024; 15:8193. [PMID: 39322632 PMCID: PMC11424637 DOI: 10.1038/s41467-024-52332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Cells harvest energy from ionic gradients by selective ion transport across membranes, and the same principle is recently being used for osmotic power generation from salinity gradients at ocean-river interfaces. Common to these ionic gradient conversions is that they require intricate nanoscale structures. Here, we show that natural submarine serpentinite-hosted hydrothermal vent (HV) precipitates are capable of converting ionic gradients into electrochemical energy by selective transport of Na+, K+, H+, and Cl-. Layered hydroxide nanocrystals are aligned radially outwards from the HV fluid channels, constituting confined nanopores that span millimeters in the HV wall. The nanopores change the surface charge depending on adsorbed ions, allowing the mineral to function as a cation- and anion-selective ion transport membrane. Our findings indicate that chemical disequilibria originating from flow and concentration gradients in geologic environments generate confined nanospaces which enable the spontaneous establishment of osmotic energy conversion.
Collapse
Affiliation(s)
- Hye-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| | | | - Hideshi Ooka
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kiyohiro Adachi
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | | | | | | | | | - Masahiro Yamamoto
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Akira Yamaguchi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Ji-Eun Lee
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroya Takahashi
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea
| | - Yasuhiko Ohara
- Research Institute for Marine Geodynamics, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- Hydrographic and Oceanographic Department of Japan, Tokyo, Japan
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | | | - Shawn Erin McGlynn
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Ryuhei Nakamura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
38
|
Zhu P, Wang C, Lang J, He D, Jin F. Prebiotic Synthesis of Microdroplets from Formate over a Bimetallic Cobalt-Nickel Nanomotif. J Am Chem Soc 2024; 146:25005-25015. [PMID: 39219062 DOI: 10.1021/jacs.4c06989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The hypothesis underlying the abiogenic origin of life suggests that the nonenzymatic synthesis of long-chain fatty acids led to the construction of vesicles for compartmentalization in an early stage during the transition from geochemistry to biochemistry. However, evidence for this theory remains elusive as C5+ carboxylic acids cannot be synthesized using current laboratory simulations. Here, we report the synthesis of long-chain carboxylic acids (C3-C7) with a 42 mmol/gCo+Ni yield and 87.7% selectivity from formate (an intermediate of the acetyl-CoA pathway) over a cobalt-nickel alloy under alkaline hydrothermal conditions and the subsequent formation of microdroplets from organics. Density functional theory (DFT) calculations confirmed that the synergistic effect of the bimetal catalyst is key for catalyzing C-C coupling. Investigations by infrared spectroscopy, electron paramagnetic resonance, and isotope-labeled experiments revealed that HCO* serves as a reaction intermediate and is involved in the subsequent elementary steps for synthesizing long-chain carboxylic acids from formate. Taken together, these findings may help explain how the first protocells emerged geochemically and provide support for the hypothesis of the abiogenic origin of life. The hydrothermal system developed may also be applicable for the sustainable synthesis of long-chain carboxylates from one-carbon substrates using nonnoble metal catalysts.
Collapse
Affiliation(s)
- Peidong Zhu
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunling Wang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Daoping He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
39
|
Stewart S, Erastova V. Understanding the Role of Layered Minerals in the Emergence and Preservation of Proto-Proteins and Detection of Traces of Early Life. Acc Chem Res 2024; 57:2453-2463. [PMID: 39141709 PMCID: PMC11375777 DOI: 10.1021/acs.accounts.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
The origin of life remains one of the most profound mysteries in science. Over millennia, theories have evolved, yet the question persists: How did life emerge from inanimate matter? At its core, the study of life's origin offers insights into our place in the universe and the nature of life itself. By delving into the chemical and geological processes that led to life's emergence, scientists gain a deeper understanding of the fundamental principles that govern living systems. This knowledge not only expands our scientific understanding but also has profound implications for fields ranging from astrobiology to synthetic biology. This research employs a multidisciplinary approach, combining a diverse array of techniques, from space missions to wet laboratory experiments to theoretical modeling. Investigations into the formation of the first proto-biomolecules are tailored to explore both the complex molecular processes that underpin life and the geological contexts in which these processes may have occurred. While laboratory experiments are aimed at mimicking the processes of early planets, not every process and sample is attainable. To this end, we demonstrate the use of molecular modeling techniques to complement experimental efforts and extraterrestrial missions. The simulations enable researchers to test hypotheses and explore scenarios that are difficult or impossible to replicate in the laboratory, bridging gaps in our understanding of prebiotic processes across vast time and space scales. Minerals, particularly layered structures like clays and hydrotalcites, play diverse and pivotal roles in the origin of life. They concentrate organic species, catalyze polymerization reactions (such as peptide formation), and provide protective environments for the molecules. Minerals have also been suggested to have acted as primitive genetic materials. Nevertheless, they may lack the ability for long-term information replication. Instead, we suggest that minerals may act as transcribers of information encoded in environmental cyclic phenomena, such as tidal or seasonal changes. We argue that extensive protection of the produced polymer will immobilize it, making it inactive for any further function. Therefore, in order to generate a functional polymer, it is essential that it remains mobile and chemically active. Furthermore, we suggest a route to the identification of pseudobiosignatures, a polymer that was polymerized on the same mineral surface and consequently retained through overprotection. This Account presents a comprehensive evaluation of the current understanding of the role of layered mineral surfaces on life's origin and biosignature preservation. It highlights the complexity of mineral-organic interactions and proposes pathways for proto-biomolecule emergence and methods for identifying and interpreting potential biosignatures. Ultimately, the quest to uncover the origin of life continues to drive scientific exploration and innovation, offering profound insights into the fundamental nature of existence and our place in the universe.
Collapse
Affiliation(s)
- Sarah
V. Stewart
- School
of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 3FJ, United Kingdom
- UK
Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait
Road, Edinburgh EH9 3FD, United Kingdom
| | - Valentina Erastova
- School
of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 3FJ, United Kingdom
- UK
Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait
Road, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
40
|
Rasmussen KL, Thieringer PH, Nevadomski S, Martinez AM, Dawson KS, Corsetti FA, Zheng XY, Lv Y, Chen X, Celestian AJ, Berelson WM, Rollins NE, Spear JR. Living to Lithified: Construction and Preservation of Silicified Biomarkers. GEOBIOLOGY 2024; 22:1-30. [PMID: 39319483 DOI: 10.1111/gbi.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/21/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Whole microorganisms are rarely preserved in the fossil record but actively silicifying environments like hot springs provide an opportunity for microbial preservation, making silicifying environments critical for the study of microbial life through time on Earth and possibly other planetary bodies. Yet, the changes that biosignatures may undergo through lithification and burial remain unconstrained. At Steep Cone Geyser in Yellowstone National Park, we collected microbial material from (1) the living system across the active outflows, (2) the silicified areas adjacent to flows, and (3) lithified and buried material to assess the preservation of biosignatures and their changes across the lithification transect. Five biofabrics, built predominantly by Cyanobacteria Geitlerinema, Pseudanabaenaceae, and Leptolyngbya with some filamentous anoxygenic phototrophs contributions, were identified and tracked from the living system through the process of silicification/lithification. In the living systems, δ30Si values decrease from +0.13‰ in surficial waters to -2‰ in biomat samples, indicating a kinetic isotope effect potentially induced by increased association with actively growing biofabrics. The fatty acids C16:1 and iso-C14:0 and the hydrocarbon C17:0 were disentangled from confounding signals and determined to be reliable lipid biosignatures for living biofabric builders and tenant microorganisms. Builder and tenant microbial biosignatures were linked to specific Cyanobacteria, anoxygenic phototrophs, and heterotrophs, which are prominent members of the living communities. Upon lithification and burial, silicon isotopes of silicified biomass began to re-equilibrate, increasing from δ30Si -2‰ in living biomats to -0.55‰ in lithified samples. Active endolithic microbial communities were identified in lithified samples and were dominated by Cyanobacteria, heterotrophic bacteria, and fungi. Results indicate that distinct microbial communities build and inhabit silicified biofabrics through time and that microbial biosignatures shift over the course of lithification. These findings improve our understanding of how microbial communities silicify, the biomarkers they retain, and transitionary impacts that may occur through lithification and burial.
Collapse
Affiliation(s)
- Kalen L Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Patrick H Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Sophia Nevadomski
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Aaron M Martinez
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Katherine S Dawson
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Xin-Yuan Zheng
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiwen Lv
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xinyang Chen
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron J Celestian
- Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Nick E Rollins
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Quantitative Biosciences and Engineering Programs, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
41
|
Colman DR, Keller LM, Arteaga-Pozo E, Andrade-Barahona E, St Clair B, Shoemaker A, Cox A, Boyd ES. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat Commun 2024; 15:7506. [PMID: 39209850 PMCID: PMC11362583 DOI: 10.1038/s41467-024-51841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The geosphere and the microbial biosphere have co-evolved for ~3.8 Ga, with many lines of evidence suggesting a hydrothermal habitat for life's origin. However, the extent that contemporary thermophiles and their hydrothermal habitats reflect those that likely existed on early Earth remains unknown. To address this knowledge gap, 64 geochemical analytes were measured and 1022 metagenome-assembled-genomes (MAGs) were generated from 34 chemosynthetic high-temperature springs in Yellowstone National Park and analysed alongside 444 MAGs from 35 published metagenomes. We used these data to evaluate co-variation in MAG taxonomy, metabolism, and phylogeny as a function of hot spring geochemistry. We found that cohorts of MAGs and their functions are discretely distributed across pH gradients that reflect different geochemical provinces. Acidic or circumneutral/alkaline springs harbor MAGs that branched later and are enriched in sulfur- and arsenic-based O2-dependent metabolic pathways that are inconsistent with early Earth conditions. In contrast, moderately acidic springs sourced by volcanic gas harbor earlier-branching MAGs that are enriched in anaerobic, gas-dependent metabolisms (e.g. H2, CO2, CH4 metabolism) that have been hypothesized to support early microbial life. Our results provide insight into the influence of redox state in the eco-evolutionary feedbacks between thermophiles and their habitats and suggest moderately acidic springs as early Earth analogs.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Emilia Arteaga-Pozo
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eva Andrade-Barahona
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Brian St Clair
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Anna Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Alysia Cox
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
42
|
Wang J, Li X, Jin H, Yang S, Yu L, Wang H, Huang S, Liao H, Wang X, Yan J, Yang Y. CO-driven electron and carbon flux fuels synergistic microbial reductive dechlorination. MICROBIOME 2024; 12:154. [PMID: 39160636 PMCID: PMC11334346 DOI: 10.1186/s40168-024-01869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.
Collapse
Grants
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No.2023004 Zhiyuan Science Foundation of BIPT
- Grant No. 2019YFC1804400 National Key Research and Development Program of China
- Grant No. ZDBS-LY-DQC038 Key Research Program of Frontier Science, Chinese Academy of Sciences
- Grant No. 2021-MS-026 Natural Science Foundation of Liaoning Province of China
- Grant No. IAEMP202201 Major Program of Institute of Applied Ecology, Chinese Academy of Sciences
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shujing Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 117004, China
| | - Lian Yu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Liao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhao Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
43
|
Lissenberg CJ, McCaig AM, Lang SQ, Blum P, Abe N, Brazelton WJ, Coltat R, Deans JR, Dickerson KL, Godard M, John BE, Klein F, Kuehn R, Lin KY, Liu H, Lopes EL, Nozaka T, Parsons AJ, Pathak V, Reagan MK, Robare JA, Savov IP, Schwarzenbach EM, Sissmann OJ, Southam G, Wang F, Wheat CG, Anderson L, Treadwell S. A long section of serpentinized depleted mantle peridotite. Science 2024; 385:623-629. [PMID: 39116218 DOI: 10.1126/science.adp1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024]
Abstract
The upper mantle is critical for our understanding of terrestrial magmatism, crust formation, and element cycling between Earth's solid interior, hydrosphere, atmosphere, and biosphere. Mantle composition and evolution have been primarily inferred by surface sampling and indirect methods. We recovered a long (1268-meter) section of serpentinized abyssal mantle peridotite interleaved with thin gabbroic intrusions. We find depleted compositions with notable variations in mantle mineralogy controlled by melt flow. Dunite zones have predominantly intermediate dips, in contrast to the originally steep mantle fabrics, indicative of oblique melt transport. Extensive hydrothermal fluid-rock interaction is recorded across the full depth of the core and is overprinted by oxidation in the upper 200 meters. Alteration patterns are consistent with vent fluid composition in the nearby Lost City hydrothermal field.
Collapse
Affiliation(s)
- C Johan Lissenberg
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Andrew M McCaig
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Susan Q Lang
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Peter Blum
- International Ocean Discovery Program, Texas A&M University, College Station, TX, USA
| | - Natsue Abe
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | | | - Rémi Coltat
- Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Granada, Spain
| | - Jeremy R Deans
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Kristin L Dickerson
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Marguerite Godard
- Geosciences Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Barbara E John
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Rebecca Kuehn
- Institute of Geosciences and Geography, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kuan-Yu Lin
- Department of Earth Sciences, University of Delaware, Newark, DE, USA
| | - Haiyang Liu
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ethan L Lopes
- Department of Geophysics, Stanford University, Stanford, CA, USA
| | - Toshio Nozaka
- Department of Earth Sciences, Okayama University, Okayama, Japan
| | - Andrew J Parsons
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Vamdev Pathak
- Department of Geology, Central University of Punjab, Bathinda, India
| | - Mark K Reagan
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA, USA
| | - Jordyn A Robare
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Ivan P Savov
- School of Earth and Environment, University of Leeds, Leeds, UK
| | | | | | - Gordon Southam
- School of the Environment, The University of Queensland, St. Lucia, QLD, Australia
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; and School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - C Geoffrey Wheat
- Global Undersea Research Unit, University of Alaska Fairbanks, Moss Landing, CA, USA
| | | | - Sarah Treadwell
- Department of Communication, University of North Dakota, Grand Forks, ND, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
44
|
Song Y, Tüysüz H. CO 2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts. Acc Chem Res 2024; 57:2038-2047. [PMID: 39024180 PMCID: PMC11308370 DOI: 10.1021/acs.accounts.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Węgrzyn E, Mejdrová I, Carell T. Gradual evolution of a homo-l-peptide world on homo-d-configured RNA and DNA. Chem Sci 2024; 15:d4sc03384a. [PMID: 39129775 PMCID: PMC11306956 DOI: 10.1039/d4sc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Modern life requires the translation of genetic information - encoded by nucleic acids - into proteins, which establishes the essential link between genotype and phenotype. During translation, exclusively l-amino acids are loaded onto transfer RNA molecules (tRNA), which are then connected at the ribosome to give homo-l-proteins. In contrast to the homo-l-configuration of amino acids and proteins, the oligonucleotides involved are all d-configured (deoxy)ribosides. Previously, others and us have shown that if peptide synthesis occurs at homo d-configured oligonucleotides, a pronounced l-amino acid selectivity is observed, which reflects the d-sugar/l-amino acid world that evolved in nature. Here we further explore this astonishing selectivity. We show a peptide-synthesis/recapture-cycle that can lead to a gradual enrichment and hence selection of a homo-l-peptide world. We show that even if peptides with a mixed l/d-stereochemistry are formed, they are not competitive against the homo-l-counterparts. We also demonstrate that this selectivity is not limited to RNA but that peptide synthesis on DNA features the same l-amino acid preference. In total, the data bring us a step closer to an understanding of how homochirality on Earth once evolved.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Ivana Mejdrová
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Carell
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
46
|
Lingam M, Nichols R, Balbi A. A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis. ASTROBIOLOGY 2024; 24:813-823. [PMID: 39159441 DOI: 10.1089/ast.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth's environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life's emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Ruth Nichols
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Amedeo Balbi
- Dipartimento di Fisica, Università di Roma "Tor Vergata," Roma, Italy
| |
Collapse
|
47
|
Jiang J, Zou X, Mitchell RN, Zhang Y, Zhao Y, Yin QZ, Yang W, Zhou X, Wang H, Spencer CJ, Shan X, Wu S, Li G, Qin K, Li XH. Sediment subduction in Hadean revealed by machine learning. Proc Natl Acad Sci U S A 2024; 121:e2405160121. [PMID: 38976765 PMCID: PMC11287277 DOI: 10.1073/pnas.2405160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Due to the scarcity of rock samples, the Hadean Era predating 4 billion years ago (Ga) poses challenges in understanding geological processes like subaerial weathering and plate tectonics that are critical for the evolution of life. The Jack Hills zircon from Western Australia, the primary Hadean samples available, offer valuable insights into magma sources and tectonic genesis through trace element signatures. However, a consensus on these signatures has not been reached. To address this, we developed a machine learning classifier capable of deciphering the geochemical fingerprints of zircon. This allowed us to identify the oldest detrital zircon originating from sedimentary-derived "S-type" granites. Our results indicate the presence of S-type granites as early as 4.24 Ga, persisting throughout the Hadean into the Archean. Examining global detrital zircon across Earth's history reveals consistent supercontinent-like cycles from the present back to the Hadean. These findings suggest that a significant amount of Hadean continental crust was exposed, weathered into sediments, and incorporated into the magma sources of Jack Hills zircon. Only the early operation of both subaerial weathering and plate subduction can account for the prevalence of S-type granites we observe. Additionally, the periodic evolution of S-type granite proportions implies that subduction-driven tectonic cycles were active during the Hadean, at least around 4.2 Ga. The evidence thus points toward an early Earth resembling the modern Earth in terms of active tectonics and habitable surface conditions. This suggests the potential for life to originate in environments like warm ponds rather than extreme hydrothermal settings.
Collapse
Affiliation(s)
- Jilian Jiang
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Xinyu Zou
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Ross N. Mitchell
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Yigang Zhang
- Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Yong Zhao
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau999078, People’s Republic of China
| | - Qing-Zhu Yin
- Department of Earth and Planetary Sciences, University of California, Davis, CA95616
| | - Wei Yang
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Xiqiang Zhou
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Hao Wang
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Christopher J. Spencer
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Xiaocai Shan
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
| | - Shitou Wu
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Guangming Li
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Kezhang Qin
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, People’s Republic of China
| | - Xian-Hua Li
- State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing100029, People’s Republic of China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
48
|
Wray AC, Downey AR, Nodal AA, Park KK, Gorman-Lewis D. Bioenergetic characterization of hyperthermophilic archaean Methanocaldococcus sp. FS406-22. Extremophiles 2024; 28:32. [PMID: 39023751 DOI: 10.1007/s00792-024-01349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 ℃) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.
Collapse
Affiliation(s)
- Addien C Wray
- Earth and Space Sciences, University of Washington, Seattle, WA, USA.
| | - Autum R Downey
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Andrea A Nodal
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Katherine K Park
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Drew Gorman-Lewis
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Noetzel J, Schienbein P, Forbert H, Marx D. Solvation Properties of Neutral Gold Species in Supercritical Water Studied By THz Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202402120. [PMID: 38695846 DOI: 10.1002/anie.202402120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 06/05/2024]
Abstract
Supercritical water provides distinctly different solvation properties compared to what is known from liquid water. Despite its prevalence deep in the Earth's crust and its role in chemosynthetic ecosystems in the vicinity of hydrothermal vents, molecular insights into its solvation mechanisms are still very scarce compared to what is known for liquid water. Recently, neutral metal particles have been detected in hydrothermal fluids and proposed to explain the transport of gold species to ore deposits on Earth. Using ab initio molecular dynamics, we elucidate the solvation properties of small gold species at supercritical conditions. The neutral metal clusters themselves contribute enormous THz intensity not because of their intramolecular vibrations, but due to their pronounced electronic polarization coupling to the dynamical supercritical solvent, leading to a continuum absorption up to about 1000 cm-1. On top, long-lived interactions between the gold clusters and solvation water leads at these supercritical conditions to a sharp THz resonance that happens to be close to the one due to H-bonding in liquid water at ambient conditions. The resulting distinct resonances can be used to analyse the solvation properties of neutral metal particles in supercritical aqueous solutions.
Collapse
Affiliation(s)
- Jan Noetzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Bochum
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Bochum
- Present Address, Department of Physics, Imperial College London, Exhibition Rd, South Kensington, London, SW7 2AZ, United Kingdom
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, D-44780, Bochum
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780, Bochum
| |
Collapse
|
50
|
Tang Z, Liu X, Yang Y, Jin F. Recent advances in CO 2 reduction with renewable reductants under hydrothermal conditions: towards efficient and net carbon benefit CO 2 conversion. Chem Sci 2024; 15:9927-9948. [PMID: 38966379 PMCID: PMC11220608 DOI: 10.1039/d4sc01265h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/19/2024] [Indexed: 07/06/2024] Open
Abstract
The ever-growing atmospheric CO2 concentration threatening the environmental sustainability of humankind makes the reduction of CO2 to chemicals or fuels an ideal solution. Two priorities are anticipated for the conversion technology, high efficiency and net carbon benefit, to ensure the mitigation of the CO2 problem both promptly and sustainably. Until now, catalytic hydrogenation or solar/electro-chemical CO2 conversion have achieved CO2 reduction promisingly while, to some extent, compromising to fulfill the two rules, and thus alternative approaches for CO2 reduction are necessary. Natural geochemical processes as abiotic CO2 reductions give hints for efficient CO2 reduction by building hydrothermal reaction systems, and this type of reaction atmosphere provides room for introducing renewable substances as reductants, which offers the possibility to achieve CO2 reduction with net carbon benefit. While the progress in CO2 reduction has been abundantly summarized, reviews on hydrothermal CO2 reduction are relatively scarce and, more importantly, few have focused on CO2 reduction with renewable reductants with the consideration of both scale of efficiency and sustainability. This review provides a fundamental and critical review of metal, biomass and polymer waste as reducing agents for hydrothermal CO2 reduction. Various products including formic acid, methanol, methane and multi-carbon chemicals can be formed, and effects of operational parameters such as temperature, batch holding time, pH value and water filing as well as detailed reaction mechanisms are illustrated. Particularly, the critical roles of high temperature and pressure water as reaction promotor and catalyst in hydrothermal CO2 conversion are discussed at the mechanistic level. More importantly, this review compares hydrothermal CO2 reduction with other methods such as catalytic hydrogenation and photo/electrocatalysis, evaluating their efficiency and potential for net carbon benefit. The aim of this review is to promote the understanding of CO2 activation under a hydrothermal environment and provide insights into the efficient and sustainable strategy of hydrothermal CO2 conversion for future fundamental research and industrial applications.
Collapse
Affiliation(s)
- Zien Tang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xu Liu
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Shanghai Key Laboratory of Hydrogen Science, Center of Hydrogen Science, Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| |
Collapse
|