1
|
Longsaward R, Viboonjun U, Wen Z, Asiegbu FO. In silico analysis of secreted effectorome of the rubber tree pathogen Rigidoporus microporus highlights its potential virulence proteins. Front Microbiol 2024; 15:1439454. [PMID: 39360316 PMCID: PMC11446221 DOI: 10.3389/fmicb.2024.1439454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Rigidoporus microporus, the causative agent of the white root rot disease of rubber trees, poses a significant threat to natural rubber production worldwide. Understanding the molecular mechanisms facilitating its pathogenicity would be crucial for developing effective disease management strategies. The pathogen secretes effector proteins, which play pivotal roles in modulating host immune responses and infection. In this study, in silico analyses identified 357 putative secreted effector proteins from the R. microporus genome. These were then integrated into previous RNA-seq data obtained in response to rubber tree latex exposure. Annotation of putative effectors suggested the abundance of proteins in several families associated with the virulence of R. microporus, especially hydrophobin proteins and glycoside hydrolase (GH) proteins. The contribution of secreted effectors to fungal pathogenicity was discussed, particularly in response to rubber tree latex exposure. Some unknown highly expressed effectors were predicted for the protein structures, revealing their similarity to aminopeptidase, ubiquitin ligase, spherulin, and thaumatin protein. This integrative study further elucidates the molecular mechanism of R. microporus pathogenesis and offers alternative targets for developing control strategies for managing white root rot disease in rubber plantations.
Collapse
Affiliation(s)
- Rawit Longsaward
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zilan Wen
- Forest Pathology Research Laboratory, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Forest Pathology Research Laboratory, Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Ohnishi KI, Watanabe S, Kadoya A, Suzuki S. Cellulolytic enzymes in Microbulbifer sp. Strain GL-2, a marine fish intestinal bacterium, with emphasis on endo-1,4-β-glucanases Cel5A and Cel8. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38538333 DOI: 10.2323/jgam.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Cellulose is an abundant biomass on the planet. Various cellulases from environmental microbes have been explored for industrial use of cellulose. Marine fish intestine is of interest as one source of new enzymes. Here, we report the discovery of genes encoding two β-glucosidases (Bgl3A and Bgl3B) and four endo-1,4-β-glucanases (Cel5A, Cel8, Cel5B, and Cel9) as part of the genome sequence of a cellulolytic marine bacterium, Microbulbifer sp. Strain GL-2. Five of these six enzymes (excepting Cel5B) are presumed to localize to the periplasm or outer membrane. Transcriptional analysis demonstrated that all six genes were highly expressed in stationary phase. The transcription was induced by cello-oligosaccharides rather than by glucose, suggesting that the cellulases are produced primarily for nutrient acquisition following initial growth, facilitating the secondary growth phase. We cloned the genes encoding two of the endo-1,4-β-glucanases, Cel5A and Cel8, and purified the corresponding recombinant enzymes following expression in Escherichia coli. The activity of Cel5A was observed across a wide range of temperatures (10-40 ˚C) and pHs (6-8). This pattern differed from those of Cel8 and the commercial cellulase Enthiron, both of which exhibit decreased activities below 30 ˚C and at alkaline pHs. These characteristics suggest that Cel5A might find use in industrial applications. Overall, our results reinforce the hypothesis that marine bacteria remain a possible source of novel cellulolytic activities.
Collapse
Affiliation(s)
| | - Seiya Watanabe
- Center for Marine Environmental Studies, Ehime University
- Graduate School of Agriculture, Ehime University
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
3
|
Mon ML, Romano N, Farace PD, Tortone CA, Oriani DS, Picariello G, Zumárraga MJ, Gioffré AK, Talia PM. Exploring the cellulolytic activity of environmental mycobacteria. Tuberculosis (Edinb) 2024; 147:102516. [PMID: 38735123 DOI: 10.1016/j.tube.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Although studies on non-tuberculous mycobacteria have increased in recent years because they cause a considerable proportion of infections, their cellulolytic system is still poorly studied. This study presents a characterization of the cellulolytic activities of environmental mycobacterial isolates derived from soil and water samples from the central region of Argentina, aimed to evaluate the conservation of the mechanism for the degradation of cellulose in this group of bacteria. The molecular and genomic identification revealed identity with Mycolicibacterium septicum. The endoglucanase and total cellulase activities were assessed both qualitatively and quantitatively and the optimal enzymatic conditions were characterized. A specific protein of around 56 kDa with cellulolytic activity was detected in a zymogram. Protein sequences possibly arising from a cellulase were identified by mass spectrometry-based shotgun proteomics. Results showed that M. septicum encodes for cellulose- and hemicellulose-related degrading enzymes, including at least an active β-1,4 endoglucanase enzyme that could be useful to improve its survival in the environment. Given the important health issues related to mycobacteria, the results of the present study may contribute to the knowledge of their cellulolytic system, which could be important for their ability to survive in many different types of environments.
Collapse
Affiliation(s)
- María Laura Mon
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Nelson Romano
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Pablo Daniel Farace
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Claudia A Tortone
- Cátedra de Bacteriología y Micología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina.
| | - Delia S Oriani
- Cátedra de Bacteriología y Micología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina.
| | - Gianluca Picariello
- Istituto di Scienze Dell'Alimentazione, Consiglio Nazionale Delle Ricerche, Via Roma 64, 83100, Avellino, Italy.
| | - Martín José Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Andrea Karina Gioffré
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Byun KH, Han SH, Choi MW, Kim BH, Ha SD. Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol 2024; 413:110587. [PMID: 38301541 DOI: 10.1016/j.ijfoodmicro.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Fresh produce and animal-based products contaminated with Listeria monocytogenes have been the main cause of listeriosis outbreaks for many years. The present investigation explored the potential of combination treatment of disinfectants with a bacteriophage cocktail to control L. monocytogenes contamination in the food industry. A mixture of 1 minimal inhibitory concentration (MIC) of disinfectants (sodium hypochlorite [NaOCl], hydrogen peroxide [H2O2], and lactic acid [LA]) and multiplicity of infection (MOI) 100 of phage cocktail was applied to both planktonic cells in vitro and already-formed biofilm cells on food contact materials (FCMs; polyethylene, polypropylene, and stainless steel) and foods (celery and chicken meat). All the combinations significantly lowered the population, biofilm-forming ability, and the expression of flaA, motB, hlyA, prfA, actA, and sigB genes of L. monocytogenes. Additionally, in the antibiofilm test, approximately 4 log CFU/cm2 was eradicated by 6 h treatment on FCMs, and 3 log CFU/g was eradicated within 3 days on celery. However, <2 log CFU/g was eradicated in chicken meat, and regrowth of L. monocytogenes was observed on foods after 5 days. The biofilm eradication efficacy of the combination treatment was proven through visualization using scanning electron microscopy (SEM) and confocal microscopy. In the SEM images, the unusual behavior of L. monocytogenes invading from the surface to the inside was observed after treating celery with NaOCl+P or H2O2 + P. These results suggested that combination of disinfectants (NaOCl, H2O2, and LA) with Listeria-specific phage cocktail can be employed in the food industry as a novel antimicrobial and antibiofilm approach, and further research of L. monocytogenes behavior after disinfection is needed.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea; Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|
5
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023; 11:2864. [PMID: 38138008 PMCID: PMC10745983 DOI: 10.3390/microorganisms11122864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Huang Z, Ni G, Dai L, Zhang W, Feng S, Wang F. Biochemical Characterization of Novel GH6 Endoglucanase from Myxococcus sp. B6-1 and Its Effects on Agricultural Straws Saccharification. Foods 2023; 12:2517. [PMID: 37444255 DOI: 10.3390/foods12132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellulase has been widely used in many industrial fields, such as feed and food industry, because it can hydrolyze cellulose to oligosaccharides with a lower degree of polymerization. Endo-β-1,4-glucanase is a critical speed-limiting cellulase in the saccharification process. In this study, endo-β-1,4-glucanase gene (CelA257) from Myxococcus sp. B6-1 was cloned and expressed in Escherichia coli. CelA257 contained carbohydrate-binding module (CBM) 4-9 and glycosyl hydrolase (GH) family 6 domain that shares 54.7% identity with endoglucanase from Streptomyces halstedii. The recombinant enzyme exhibited optimal activity at pH 6.5 and 50 °C and was stable over a broad pH (6-9.5) range and temperature < 50 °C. CelA257 exhibited broad substrate specificity to barley β-glucan, lichenin, CMC, chitosan, laminarin, avicel, and phosphoric acid swollen cellulose (PASC). CelA257 degraded both cellotetrose (G4) and cellppentaose (G5) to cellobiose (G2) and cellotriose (G3). Adding CelA257 increased the release of reducing sugars in crop straw powers, including wheat straw (0.18 mg/mL), rape straw (0.42 mg/mL), rice straw (0.16 mg/mL), peanut straw (0.16 mg/mL), and corn straw (0.61 mg/mL). This study provides a potential additive in biomass saccharification applications.
Collapse
Affiliation(s)
- Zhen Huang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Ni
- College of Land Resources and Environment, Jiangxi Agriculture University, Nanchang 330045, China
| | - Longhua Dai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiqi Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Siting Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Zhang J, Zhuo X, Wang Q, Ji H, Chen H, Hao H. Effects of Different Nitrogen Levels on Lignocellulolytic Enzyme Production and Gene Expression under Straw-State Cultivation in Stropharia rugosoannulata. Int J Mol Sci 2023; 24:10089. [PMID: 37373235 DOI: 10.3390/ijms241210089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Stropharia rugosoannulata has been used in environmental engineering to degrade straw in China. The nitrogen and carbon metabolisms are the most important factors affecting mushroom growth, and the aim of this study was to understand the effects of different nitrogen levels on carbon metabolism in S. rugosoannulata using transcriptome analysis. The mycelia were highly branched and elongated rapidly in A3 (1.37% nitrogen). GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were mainly involved in starch and sucrose metabolism; nitrogen metabolism; glycine, serine and threonine metabolism; the MAPK signaling pathway; hydrolase activity on glycosyl bonds; and hemicellulose metabolic processes. The activities of nitrogen metabolic enzymes were highest in A1 (0.39% nitrogen) during the three nitrogen levels (A1, A2 and A3). However, the activities of cellulose enzymes were highest in A3, while the hemicellulase xylanase activity was highest in A1. The DEGs associated with CAZymes, starch and sucrose metabolism and the MAPK signaling pathway were also most highly expressed in A3. These results suggested that increased nitrogen levels can upregulate carbon metabolism in S. rugosoannulata. This study could increase knowledge of the lignocellulose bioconversion pathways and improve biodegradation efficiency in Basidiomycetes.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xinyi Zhuo
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hao Ji
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Trinca V, Carli S, Uliana JVC, Garbelotti CV, Mendes da Silva M, Kunes V, Meleiro LP, Brancini GTP, Menzel F, Andrioli LPM, Torres TT, Ward RJ, Monesi N. Biocatalytic potential of Pseudolycoriella CAZymes (Sciaroidea, Diptera) in degrading plant and fungal cell wall polysaccharides. iScience 2023; 26:106449. [PMID: 37020966 PMCID: PMC10068558 DOI: 10.1016/j.isci.2023.106449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Soil biota has a crucial impact on soil ecology, global climate changes, and effective crop management and studying the diverse ecological roles of dipteran larvae deepens the understanding of soil food webs. A multi-omics study of Pseudolycoriella hygida comb. nov. (Diptera: Sciaroidea: Sciaridae) aimed to characterize carbohydrate-active enzymes (CAZymes) for litter degradation in this species. Manual curation of 17,881 predicted proteins in the Psl. hygida genome identified 137 secreted CAZymes, of which 33 are present in the saliva proteome, and broadly confirmed by saliva CAZyme catalytic profiling against plant cell wall polysaccharides and pNP-glycosyl substrates. Comparisons with two other sciarid species and the outgroup Lucilia cuprina (Diptera: Calliphoridae) identified 42 CAZyme families defining a sciarid CAZyme profile. The litter-degrading potential of sciarids corroborates their significant role as decomposers, yields insights to the evolution of insect feeding habits, and highlights the importance of insects as a source of biotechnologically relevant enzymes.
Collapse
Affiliation(s)
- Vitor Trinca
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Mariana Mendes da Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Vitor Kunes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Guilherme Thomaz Pereira Brancini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Frank Menzel
- Senckenberg Deutsches Entomologisches Institut (SDEI), 15374 Müncheberg, Germany
| | - Luiz Paulo Moura Andrioli
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, São Paulo 03828-000, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
- Corresponding author
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Corresponding author
| |
Collapse
|
9
|
Khamassi A, Dumon C. Enzyme synergy for plant cell wall polysaccharide degradation. Essays Biochem 2023; 67:521-531. [PMID: 37067158 DOI: 10.1042/ebc20220166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023]
Abstract
Valorizing plant cell wall, marine and algal polysaccharides is of utmost importance for the development of the circular bioeconomy. This is because polysaccharides are by far the most abundant organic molecules found in nature with complex chemical structures that require a large set of enzymes for their degradation. Microorganisms produce polysaccharide-specific enzymes that act in synergy when performing hydrolysis. Although discovered since decades enzyme synergy is still poorly understood at the molecular level and thus it is difficult to harness and optimize. In the last few years, more attention has been given to improve and characterize enzyme synergy for polysaccharide valorization. In this review, we summarize literature to provide an overview of the different type of synergy involving carbohydrate modifying enzymes and the recent advances in the field exemplified by plant cell-wall degradation.
Collapse
Affiliation(s)
- Ahmed Khamassi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
10
|
Patel VK, Das A, Kumari R, Kajla S. In silico Analysis of Diverse Endo-β-1,4-glucanases Reveals Their Molecular Evolution. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
McClure R, Farris Y, Danczak R, Nelson W, Song HS, Kessell A, Lee JY, Couvillion S, Henry C, Jansson JK, Hofmockel KS. Interaction Networks Are Driven by Community-Responsive Phenotypes in a Chitin-Degrading Consortium of Soil Microbes. mSystems 2022; 7:e0037222. [PMID: 36154140 PMCID: PMC9599572 DOI: 10.1128/msystems.00372-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, "model soil consortium-2" (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil. IMPORTANCE The soil microbiome performs many functions that are key to ecology, agriculture, and nutrient cycling. However, because of the complexity of this ecosystem we do not know the molecular details of the interactions between microbial species that lead to these important functions. Here, we use a representative but simplified model community of bacteria to understand the details of these interactions. We show that certain species act as primary degraders of carbon sources and that the most successful species are likely those that can take the most advantage of breakdown products, not necessarily the primary degraders. We also show that a species phenotype, including whether it is a primary degrader or not, is driven in large part by the membership of the community it resides in. These conclusions are critical to a better understanding of the soil microbial interaction network and how these interactions drive central soil microbiome functions.
Collapse
Affiliation(s)
- Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Robert Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Aimee Kessell
- Department of Biological Systems Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Joon-Yong Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sneha Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Henry
- Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
Gladkov GV, Kimeklis AK, Afonin AM, Lisina TO, Orlova OV, Aksenova TS, Kichko AA, Pinaev AG, Andronov EE. The Structure of Stable Cellulolytic Consortia Isolated from Natural Lignocellulosic Substrates. Int J Mol Sci 2022; 23:ijms231810779. [PMID: 36142684 PMCID: PMC9501375 DOI: 10.3390/ijms231810779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 10/27/2022] Open
Abstract
Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic substrates—oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of similar, but not identical cellulose-decomposing bacteria from different substrates. Major components in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific for different substrates—Verrucomicrobiota and Myxococcota from straw, Planctomycetota from sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lignocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and two-component systems, usually taxon-specific and associated with CAZymes. Our findings show that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic substrates, the stability of which is ensured by tight microbial relations between its components.
Collapse
Affiliation(s)
- Grigory V. Gladkov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-921-402-65-16
| | - Anastasiia K. Kimeklis
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Department of Applied Ecology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana O. Lisina
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Olga V. Orlova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Tatiana S. Aksenova
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Arina A. Kichko
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Alexander G. Pinaev
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Evgeny E. Andronov
- All-Russian Research Institute of Agricultural Microbiology, 196608 Saint Petersburg, Russia
- Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| |
Collapse
|
13
|
Multikingdom interactions govern the microbiome in subterranean cultural heritage sites. Proc Natl Acad Sci U S A 2022; 119:e2121141119. [PMID: 35344401 PMCID: PMC9169738 DOI: 10.1073/pnas.2121141119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe conservation of historical relics against microbial biodeterioration is critical to preserving cultural heritages. One major challenge is our limited understanding of microorganisms' dispersal, colonization, and persistence on relics after excavation and opening to external environments. Here, we investigate the ecological and physiological profiles of the microbiome within and outside the Dahuting Han Dynasty Tomb with a 1,800-y history. Actinobacteria dominate the microbiome in this tomb. Via interkingdom signaling mutualism, springtails carry Actinobacteria as one possible source into the tomb from surrounding environments. Subsequently, Actinobacteria produce cellulases combined with antimicrobial substances, which helps them to colonize and thrive in the tomb via intrakingdom competition. Our findings unravel the ecology of the microbiomes colonizing historical relics and provide help for conservation practices.
Collapse
|
14
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
15
|
Comparative Genomic Analyses of the Genus Nesterenkonia Unravels the Genomic Adaptation to Polar Extreme Environments. Microorganisms 2022; 10:microorganisms10020233. [PMID: 35208688 PMCID: PMC8875376 DOI: 10.3390/microorganisms10020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Nesterenkonia genus have been isolated from various habitats, like saline soil, salt lake, sponge-associated and the human gut, some of which are even located in polar areas. To identify their stress resistance mechanisms and draw a genomic profile across this genus, we isolated four Nesterenkonia strains from the lakes in the Tibetan Plateau, referred to as the third pole, and compared them with all other 30 high-quality Nesterenkonia genomes that are deposited in NCBI. The Heaps’ law model estimated that the pan-genome of this genus is open and the number of core, shell, cloud, and singleton genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%), respectively. Phylogenomic and ANI/AAI analysis indicated that all genomes can be divided into three main clades, named NES-1, NES-2, and NES-3. The strains isolated from lakes in the Tibetan Plateau were clustered with four strains from different sources in the Antarctic and formed a subclade within NES-2, described as NES-AT. Genome features of this subclade, including GC (guanine + cytosine) content, tRNA number, carbon/nitrogen atoms per residue side chain (C/N-ARSC), and amino acid composition, in NES-AT individuals were significantly different from other strains, indicating genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet conditions in polar areas. Functional analysis revealed the enrichment of specific genes involved in bacteriorhodopsin synthesis, biofilm formation, and more diverse nutrient substance metabolism genes in the NES-AT clade, suggesting potential adaptation strategies for energy metabolism in polar environments. This study provides a comprehensive profile of the genomic features of the Nesterenkonia genus and reveals the possible mechanism for the survival of Nesterenkonia isolates in polar areas.
Collapse
|
16
|
Campbell TP, Ulrich DEM, Toyoda J, Thompson J, Munsky B, Albright MBN, Bailey VL, Tfaily MM, Dunbar J. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Front Microbiol 2022; 12:799014. [PMID: 35126334 PMCID: PMC8811196 DOI: 10.3389/fmicb.2021.799014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
Rapid microbial growth in the early phase of plant litter decomposition is viewed as an important component of soil organic matter (SOM) formation. However, the microbial taxa and chemical substrates that correlate with carbon storage are not well resolved. The complexity of microbial communities and diverse substrate chemistries that occur in natural soils make it difficult to identify links between community membership and decomposition processes in the soil environment. To identify potential relationships between microbes, soil organic matter, and their impact on carbon storage, we used sand microcosms to control for external environmental factors such as changes in temperature and moisture as well as the variability in available carbon that exist in soil cores. Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) on microcosm samples from early phase litter decomposition, we found that protein- and tannin-like compounds exhibited the strongest correlation to dissolved organic carbon (DOC) concentration. Proteins correlated positively with DOC concentration, while tannins correlated negatively with DOC. Through random forest, neural network, and indicator species analyses, we identified 42 bacterial and 9 fungal taxa associated with DOC concentration. The majority of bacterial taxa (26 out of 42 taxa) belonged to the phylum Proteobacteria while all fungal taxa belonged to the phylum Ascomycota. Additionally, we identified significant connections between microorganisms and protein-like compounds and found that most taxa (12/14) correlated negatively with proteins indicating that microbial consumption of proteins is likely a significant driver of DOC concentration. This research links DOC concentration with microbial production and/or decomposition of specific metabolites to improve our understanding of microbial metabolism and carbon persistence.
Collapse
Affiliation(s)
- Tayte P. Campbell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Jason Toyoda
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jaron Thompson
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Brian Munsky
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - Vanessa L. Bailey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Malak M. Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, United States
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
17
|
Malik AD, Furtado IJ. Isolation of Halomicroarcula pellucida strain GUMF5, an archaeon from the Dead Sea-Israel possessing cellulase. 3 Biotech 2022; 12:26. [PMID: 35036274 PMCID: PMC8709806 DOI: 10.1007/s13205-021-03090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/09/2021] [Indexed: 01/03/2023] Open
Abstract
A strain designated GUMF5 was isolated in Goa-India from sediments of Dead Sea-Israel and identified as haloarchaeon Halomicroarcula pellucida based on 16S rRNA gene analysis similarity value of 99.84%. Strain GUMF5 grew on mineral salts medium with 20% NaCl and 0.5% carboxymethyl cellulose-sodium (CMC-Na) as a sole source of carbon and produced haloextremozyme cellulase. The enzyme was concentrated using Sephadex G20, precipitated with ethanol, dialyzed and retentate purified using Sephadex G200, the size exclusion chromatography. A yield of 78.53% cellulase with an activity of 131.13 U/mg and 1.24-fold purity was obtained. The purified cellulase had optimum activity at 20% NaCl, at 40 ºC, 0.5% CMC-Na, pH 7 and 150 rpm. SDS-PAGE combined with zymographic analysis revealed the molecular weight of cellulase as 240 kDa, 40 kDa and 17.4 kDa. The activity of the enzyme was stimulated by metallic cations in the order of Ca+2 > Mn+2 > Mg+2 > SO4 2- > NH4 + and was inhibited by Ag+ > Fe+2 > Cu+2. Methanol and ethanol enhanced the cellulase activity by 6% and 26%, respectively. The haloextremozyme cellulase degraded Whatman No. 1 filter paper indicated in scanning electron micrographs, exposure of open pores and fibers without any intra connectivity corresponding to paperase activity and implicating the possible use of enzyme to bio-convert cellulosic waste. Conclusively, Halomicroarcula pellucida GUMF5 (Accession number: MH244431), globally, is the only Halomicroarcula pellucida isolated from the sediments of Dead Sea producing haloextremozyme cellulase, and hence is an important biotechnological resource.
Collapse
Affiliation(s)
- Alisha D. Malik
- Department of Microbiology, Goa University, Taleigao, Goa 403206 India
| | - Irene J. Furtado
- Department of Microbiology, Goa University, Taleigao, Goa 403206 India
| |
Collapse
|
18
|
Banerjee A, Show BK, Chaudhury S, Balachandran S. Biological pretreatment for enhancement of biogas production. COST EFFECTIVE TECHNOLOGIES FOR SOLID WASTE AND WASTEWATER TREATMENT 2022:101-114. [DOI: 10.1016/b978-0-12-822933-0.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
19
|
Riesco R, Ortúzar M, Fernández-Ábalos JM, Trujillo ME. Deciphering Genomes: Genetic Signatures of Plant-Associated Micromonospora. FRONTIERS IN PLANT SCIENCE 2022; 13:872356. [PMID: 35401599 PMCID: PMC8990736 DOI: 10.3389/fpls.2022.872356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 05/13/2023]
Abstract
Understanding plant-microbe interactions with the possibility to modulate the plant's microbiome is essential to design new strategies for a more productive and sustainable agriculture and to maintain natural ecosystems. Therefore, a key question is how to design bacterial consortia that will yield the desired host phenotype. This work was designed to identify the potential genomic features involved in the interaction between Micromonospora and known host plants. Seventy-four Micromonospora genomes representing diverse environments were used to generate a database of all potentially plant-related genes using a novel bioinformatic pipeline that combined screening for microbial-plant related features and comparison with available plant host proteomes. The strains were recovered in three clusters, highly correlated with several environments: plant-associated, soil/rhizosphere, and marine/mangrove. Irrespective of their isolation source, most strains shared genes coding for commonly screened plant growth promotion features, while differences in plant colonization related traits were observed. When Arabidopsis thaliana plants were inoculated with representative Micromonospora strains selected from the three environments, significant differences were in found in the corresponding plant phenotypes. Our results indicate that the identified genomic signatures help select those strains with the highest probability to successfully colonize the plant and contribute to its wellbeing. These results also suggest that plant growth promotion markers alone are not good indicators for the selection of beneficial bacteria to improve crop production and the recovery of ecosystems.
Collapse
|
20
|
Min K, Kim YH, Kim J, Kim Y, Gong G, Um Y. Effect of manganese peroxidase on the decomposition of cellulosic components: Direct cellulolytic activity and synergistic effect with cellulase. BIORESOURCE TECHNOLOGY 2022; 343:126138. [PMID: 34678456 DOI: 10.1016/j.biortech.2021.126138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Herein, it was unearthed that manganese peroxidase (MnP) from Phanerochaete chrysosporium, a lignin-degrading enzyme, is capable of not only directly decomposing cellulosic components but also boosting cellulase activity. MnP decomposes various cellulosic substrates (carboxymethyl cellulose, cellobiose [CMC], and Avicel®) and produces reducing sugars rather than oxidized sugars such as lactone and ketoaldolase. MnP with MnII in acetate buffer evolves the MnIII-acetate complex functioning as a strong oxidant, and the non-specificity of MnIII-acetate enables cellulose-decomposition. The catalytic mechanism was proposed by analyzing catalytic products derived from MnP-treated cellopentaose. Notably, MnP also boosts cellulase activity on CMC and Avicel®, even considering the cellulolytic activity of MnP itself. To the best of the authors' knowledge, this is the first report demonstrating a previously unknown fungal MnP activity in cellulose-decomposition in addition to a known delignification activity. Consequently, the results provide a promising insight for further investigation of the versatility of lignin-degrading biocatalysts.
Collapse
Affiliation(s)
- Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Yong Hwan Kim
- Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jiye Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yunje Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
21
|
Huang Z, Ni G, Zhao X, Wang F, Qu M. Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws. J Microbiol Biotechnol 2021; 31:1446-1454. [PMID: 34409950 PMCID: PMC9705894 DOI: 10.4014/jmb.2105.05026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50°C, respectively, and it was stable at pH 3-9 and temperature ≤50°C. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 μmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.
Collapse
Affiliation(s)
- Zhen Huang
- Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Guorong Ni
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Xiaoyan Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China,Corresponding author F. Wang Phone/Fax: +86 791 83813459 E-mail:
| | - Mingren Qu
- Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China,
M. Qu E-mail:
| |
Collapse
|
22
|
|
23
|
Araújo EA, Dias AHS, Kadowaki MAS, Piyadov V, Pellegrini VOA, Urio MB, Ramos LP, Skaf MS, Polikarpov I. Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase. Carbohydr Polym 2021; 264:118059. [PMID: 33910709 DOI: 10.1016/j.carbpol.2021.118059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Processive cellulases are highly efficient molecular engines involved in the cellulose breakdown process. However, the mechanism that processive bacterial enzymes utilize to recruit and retain cellulose strands in the catalytic site remains poorly understood. Here, integrated enzymatic assays, protein crystallography and computational approaches were combined to study the enzymatic properties of the processive BlCel48B cellulase from Bacillus licheniformis. Hydrolytic efficiency, substrate binding affinity, cleavage patterns, and the apparent processivity of bacterial BlCel48B are significantly impacted by the cellulose size and its surface morphology. BlCel48B crystallographic structure was solved with ligands spanning -5 to -2 and +1 to +2 subsites. Statistical coupling analysis and molecular dynamics show that co-evolved residues on active site are critical for stabilizing ligands in the catalytic tunnel. Our results provide mechanistic insights into BlCel48B molecular-level determinants of activity, substrate binding, and processivity on insoluble cellulose, thus shedding light on structure-activity correlations of GH48 family members in general.
Collapse
Affiliation(s)
- Evandro A Araújo
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13560-970, São Paulo, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, São Paulo, Brazil
| | - Artur Hermano Sampaio Dias
- Institute of Chemistry and Center for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, São Paulo, Brazil
| | - Marco A S Kadowaki
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13560-970, São Paulo, Brazil
| | - Vasily Piyadov
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13560-970, São Paulo, Brazil
| | - Vanessa O A Pellegrini
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13560-970, São Paulo, Brazil
| | - Mateus B Urio
- Graduate Programs in Bioenergy, Chemistry and Chemical Engineering, Federal University of Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Luiz P Ramos
- Graduate Programs in Bioenergy, Chemistry and Chemical Engineering, Federal University of Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computer in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, São Paulo, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13560-970, São Paulo, Brazil.
| |
Collapse
|
24
|
Pinheiro MP, Reis RA, Dupree P, Ward RJ. Plant cell wall architecture guided design of CBM3-GH11 chimeras with enhanced xylanase activity using a tandem repeat left-handed β-3-prism scaffold. Comput Struct Biotechnol J 2021; 19:1108-1118. [PMID: 33680354 PMCID: PMC7890094 DOI: 10.1016/j.csbj.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/19/2023] Open
Abstract
Effective use of plant biomass as an abundant and renewable feedstock for biofuel production and biorefinery requires efficient enzymatic mobilization of cell wall polymers. Knowledge of plant cell wall composition and architecture has been exploited to develop novel multifunctional enzymes with improved activity against lignocellulose, where a left-handed β-3-prism synthetic scaffold (BeSS) was designed for insertion of multiple protein domains at the prism vertices. This allowed construction of a series of chimeras fusing variable numbers of a GH11 β-endo-1,4-xylanase and the CipA-CBM3 with defined distances and constrained relative orientations between catalytic domains. The cellulose binding and endoxylanase activities of all chimeras were maintained. Activity against lignocellulose substrates revealed a rapid 1.6- to 3-fold increase in total reducing saccharide release and increased levels of all major oligosaccharides as measured by polysaccharide analysis using carbohydrate gel electrophoresis (PACE). A construct with CBM3 and GH11 domains inserted in the same prism vertex showed highest activity, demonstrating interdomain geometry rather than number of catalytic sites is important for optimized chimera design. These results confirm that the BeSS concept is robust and can be successfully applied to the construction of multifunctional chimeras, which expands the possibilities for knowledge-based protein design.
Collapse
Affiliation(s)
- Matheus P. Pinheiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil
| | - Renata A.G. Reis
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Richard J. Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil
| |
Collapse
|
25
|
Bernardi AV, Gerolamo LE, de Gouvêa PF, Yonamine DK, Pereira LMS, de Oliveira AHC, Uyemura SA, Dinamarco TM. LPMO AfAA9_B and Cellobiohydrolase AfCel6A from A. fumigatus Boost Enzymatic Saccharification Activity of Cellulase Cocktail. Int J Mol Sci 2020; 22:E276. [PMID: 33383972 PMCID: PMC7795096 DOI: 10.3390/ijms22010276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Cellulose is the most abundant polysaccharide in lignocellulosic biomass, where it is interlinked with lignin and hemicellulose. Bioethanol can be produced from biomass. Since breaking down biomass is difficult, cellulose-active enzymes secreted by filamentous fungi play an important role in degrading recalcitrant lignocellulosic biomass. We characterized a cellobiohydrolase (AfCel6A) and lytic polysaccharide monooxygenase LPMO (AfAA9_B) from Aspergillus fumigatus after they were expressed in Pichia pastoris and purified. The biochemical parameters suggested that the enzymes were stable; the optimal temperature was ~60 °C. Further characterization revealed high turnover numbers (kcat of 147.9 s-1 and 0.64 s-1, respectively). Surprisingly, when combined, AfCel6A and AfAA9_B did not act synergistically. AfCel6A and AfAA9_B association inhibited AfCel6A activity, an outcome that needs to be further investigated. However, AfCel6A or AfAA9_B addition boosted the enzymatic saccharification activity of a cellulase cocktail and the activity of cellulase Af-EGL7. Enzymatic cocktail supplementation with AfCel6A or AfAA9_B boosted the yield of fermentable sugars from complex substrates, especially sugarcane exploded bagasse, by up to 95%. The synergism between the cellulase cocktail and AfAA9_B was enzyme- and substrate-specific, which suggests a specific enzymatic cocktail for each biomass by up to 95%. The synergism between the cellulase cocktail and AfAA9_B was enzyme- and substrate-specific, which suggests a specific enzymatic cocktail for each biomass.
Collapse
Affiliation(s)
- Aline Vianna Bernardi
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| | - Luis Eduardo Gerolamo
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| | - Paula Fagundes de Gouvêa
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| | - Deborah Kimie Yonamine
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| | - Lucas Matheus Soares Pereira
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| | - Arthur Henrique Cavalcante de Oliveira
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| | - Sérgio Akira Uyemura
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil;
| | - Taisa Magnani Dinamarco
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil; (A.V.B.); (L.E.G.); (P.F.d.G.); (D.K.Y.); (L.M.S.P.); (A.H.C.d.O.)
| |
Collapse
|
26
|
Steiner E, Margesin R. Production and partial characterization of a crude cold-active cellulase (CMCase) from Bacillus mycoides AR20-61 isolated from an Alpine forest site. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01607-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
To evaluate the production of a cold-active CMCase (endoglucanase) by Bacillus mycoides AR20-61 isolated from Alpine forest soil and to characterize the crude enzyme.
Methods
After studying the effect of cultivation parameters (medium composition, temperature, NaCl concentration, pH) on bacterial growth and enzyme production, the crude enzyme was characterized with regard to the effect of pH, temperature, and inhibitors on enzyme activity and stability.
Result
Optimum growth and enzyme production occurred at 20–25 °C, pH 7, and 1–1.5% (w/v) CMC. Despite high biomass production over the whole growth temperature range (10–35 °C), enzyme production was low at 10 and 35 °C. CMC concentration had a minor effect on growth, independent of the growth temperature, but a significant effect on CMCase production at temperatures ≥ 20 °C. The crude enzyme was active over a broad temperature range (0–60 °C); the apparent optimum temperature for activity was at 40–50 °C. The cultivation temperature influenced the effect of temperature on enzyme activity and stability. A significantly higher thermosensitivity of the enzyme produced at a cultivation temperature of 10 °C compared to that produced at 25 °C was noted at 50 and 65 °C. The enzyme was highly active over a pH range of 4–6 and showed optimum activity at pH 5. No activity was lost after 60 min of incubation at 30 °C and pH 4–9. The CMCase was resistant against a number of monovalent and divalent metal ions, metal-chelating agents, and phenol.
Conclusion
The CMCase produced by the studied strain is characterized by high activities in the low temperature range (down to 0 °C) and acidic pH range, high stability over a broad pH range, and high resistance against a number of effectors. Our results also demonstrate the different, independent roles of temperature in bacterial growth, enzyme production, nutrient requirements during enzyme production, and enzyme characteristics regarding thermosensitivity, which has not yet been described for cellulases.
Collapse
|
27
|
Estrada-Rivera M, Hernández-Oñate MÁ, Dautt-Castro M, Gallardo-Negrete JDJ, Rebolledo-Prudencio OG, Uresti-Rivera EE, Arenas-Huertero C, Herrera-Estrella A, Casas-Flores S. IPA-1 a Putative Chromatin Remodeler/Helicase-Related Protein of Trichoderma virens Plays Important Roles in Antibiosis Against Rhizoctonia solani and Induction of Arabidopsis Systemic Disease Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:808-824. [PMID: 32101077 DOI: 10.1094/mpmi-04-19-0092-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichoderma spp. are filamentous fungi that colonize plant roots conferring beneficial effects to plants, either indirectly through the induction of their defense systems or directly through the suppression of phytopathogens in the rhizosphere. Transcriptomic analyses of Trichoderma spp. emerged as a powerful method for identifying the molecular events underlying the establishment of this beneficial relationship. Here, we focus on the transcriptomic response of Trichoderma virens during its interaction with Arabidopsis seedlings. The main response of T. virens to cocultivation with Arabidopsis was the repression of gene expression. The biological processes of transport and metabolism of carbohydrates were downregulated, including a set of cell wall-degrading enzymes putatively relevant for root colonization. Repression of such genes reached their basal levels at later times in the interaction, when genes belonging to the biological process of copper ion transport were induced, a necessary process providing copper as a cofactor for cell wall-degrading enzymes with the auxiliary activities class. RNA-Seq analyses showed the induction of a member of the SNF2 family of chromatin remodelers/helicase-related proteins, which was named IPA-1 (increased protection of Arabidopsis-1). Sequence analyses of IPA-1 showed its closest relatives to be members of the Rad5/Rad16 and SNF2 subfamilies; however, it grouped into a different clade. Although deletion of IPA-1 in T. virens did not affect its growth, the antibiotic activity of Δipa-1 culture filtrates against Rhizoctonia solani diminished but it remained unaltered against Botrytis cinerea. Triggering of the plant defense genes in plants treated with Δipa-1 was higher, showing enhanced resistance against Pseudomonas syringae but not against B. cinerea as compared with the wild type.
Collapse
Affiliation(s)
- Magnolia Estrada-Rivera
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, C.P. 83304. Hermosillo, Sonora, Mexico
| | - Mitzuko Dautt-Castro
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| | - José de Jesús Gallardo-Negrete
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| | | | - Edith Elena Uresti-Rivera
- Facultad de Ciencias Químicas, Departamento de Inmunología y Biología Celular y Molecular, Universidad Autónoma de San Luis Potosí, Av. Salvador Nava s/n, Zona Universitaria, 78290, San Luis Potosí, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec No. 1570. Priv. del Pedregal 78295, San Luis Potosí, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, C.P. 36824, Irapuato, Gto., México
| | - Sergio Casas-Flores
- IPICYT, División de Biología Molecular, Camino a la presa San José No. 2055, Colonia Lomas 4a sección, C.P. 78216, San Luis Potosí, Mexico
| |
Collapse
|
28
|
Berlemont R, Winans N, Talamantes D, Dang H, Tsai HW. MetaGeneHunt for protein domain annotation in short-read metagenomes. Sci Rep 2020; 10:7712. [PMID: 32382098 PMCID: PMC7205989 DOI: 10.1038/s41598-020-63775-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
The annotation of short-reads metagenomes is an essential process to understand the functional potential of sequenced microbial communities. Annotation techniques based solely on the identification of local matches tend to confound local sequence similarity and overall protein homology and thus don't mirror the complex multidomain architecture and the shuffling of functional domains in many protein families. Here, we present MetaGeneHunt to identify specific protein domains and to normalize the hit-counts based on the domain length. We used MetaGeneHunt to investigate the potential for carbohydrate processing in the mouse gastrointestinal tract. We sampled, sequenced, and analyzed the microbial communities associated with the bolus in the stomach, intestine, cecum, and colon of five captive mice. Focusing on Glycoside Hydrolases (GHs) we found that, across samples, 58.3% of the 4,726,023 short-read sequences matching with a GH domain-containing protein were located outside the domain of interest. Next, before comparing the samples, the counts of localized hits matching the domains of interest were normalized to account for the corresponding domain length. Microbial communities in the intestine and cecum displayed characteristic GH profiles matching distinct microbial assemblages. Conversely, the stomach and colon were associated with structurally and functionally more diverse and variable microbial communities. Across samples, despite fluctuations, changes in the functional potential for carbohydrate processing correlated with changes in community composition. Overall MetaGeneHunt is a new way to quickly and precisely identify discrete protein domains in sequenced metagenomes processed with MG-RAST. In addition, using the sister program "GeneHunt" to create custom Reference Annotation Table, MetaGeneHunt provides an unprecedented way to (re)investigate the precise distribution of any protein domain in short-reads metagenomes.
Collapse
Affiliation(s)
- R Berlemont
- Department of biological Sciences, California State University, Long Beach, California, USA.
| | - N Winans
- Department of biological Sciences, California State University, Long Beach, California, USA
| | - D Talamantes
- Department of biological Sciences, California State University, Long Beach, California, USA
- Department of Bioinformatics, University of Georgia Athens, Athens, Georgia, USA
| | - H Dang
- Department of biological Sciences, California State University, Long Beach, California, USA
| | - H-W Tsai
- Department of biological Sciences, California State University, Long Beach, California, USA
| |
Collapse
|
29
|
Guo Y, Lin Q, Chen L, Carballar-Lejarazú R, Zhang A, Shao E, Liang G, Hu X, Wang R, Xu L, Zhang F, Wu S. Characterization of bacterial communities associated with the pinewood nematode insect vector Monochamus alternatus Hope and the host tree Pinus massoniana. BMC Genomics 2020; 21:337. [PMID: 32357836 PMCID: PMC7195709 DOI: 10.1186/s12864-020-6718-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/05/2020] [Indexed: 01/24/2023] Open
Abstract
Background Monochamus alternatus Hope is one of the insect vectors of pinewood nematode (Bursaphelenchus xylophilus), which causes the destructive pine wilt disease. The microorganisms within the ecosystem, comprising plants, their environment, and insect vectors, form complex networks. This study presents a systematic analysis of the bacterial microbiota in the M. alternatus midgut and its habitat niche. Methods Total DNA was extracted from 20 types of samples (with three replicates each) from M. alternatus and various tissues of healthy and infected P. massoniana (pines). 16S rDNA amplicon sequencing was conducted to determine the composition and diversity of the bacterial microbiota in each sample. Moreover, the relative abundances of bacteria in the midgut of M. alternatus larvae were verified by counting the colony-forming units. Results Pinewood nematode infection increased the microbial diversity in pines. Bradyrhizobium, Burkholderia, Dyella, Mycobacterium, and Mucilaginibacter were the dominant bacterial genera in the soil and infected pines. These results indicate that the bacterial community in infected pines may be associated with the soil microbiota. Interestingly, the abundance of the genus Gryllotalpicola was highest in the bark of infected pines. The genus Cellulomonas was not found in the midgut of M. alternatus, but it peaked in the phloem of infected pines, followed by the phloem of heathy pines. Moreover, the genus Serratia was not only present in the habitat niche, but it was also enriched in the M. alternatus midgut. The colony-forming unit assays showed that the relative abundance of Serratia sp. peaked in the midgut of instar II larvae (81%). Conclusions Overall, the results indicate that the bacterial microbiota in the soil and in infected pines are correlated. The Gryllotalpicola sp. and Cellulomonas sp. are potential microbial markers of pine wilt disease. Additionally, Serratia sp. could be an ideal agent for expressing insecticidal protein in the insect midgut by genetic engineering, which represents a new use of microbes to control M. alternatus.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Lyuyi Chen
- Universityof California, Irvine, CA, 92697-4025, USA
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Aishan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Ensi Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| |
Collapse
|
30
|
McConnell SA, Cannon KA, Morgan C, McAllister R, Amer BR, Clubb RT, Yeates TO. Designed Protein Cages as Scaffolds for Building Multienzyme Materials. ACS Synth Biol 2020; 9:381-391. [PMID: 31922719 DOI: 10.1021/acssynbio.9b00407] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of enzymes can be strongly affected by their higher-order spatial arrangements. In this study we combine multiple new technologies-designer protein cages and sortase-based enzymatic attachments between proteins-as a novel platform for organizing multiple enzymes (of one or more types) in specified configurations. As a scaffold we employ a previously characterized 24-subunit designed protein cage whose termini are outwardly exposed for attachment. As a first-use case, we test the attachment of two cellulase enzymes known to act synergistically in cellulose degradation. We show that, after endowing the termini of the cage subunits with a short "sort-tag" sequence (LPXTG) and the opposing termini of the cellulase enzymes with a short polyglycine sequence tag, addition of sortase covalently attaches the enzymes to the cage with good reactivity and high copy number. The doubly modified cages show enhanced activity in a cellulose degradation assay compared to enzymes in solution, and compared to a combination of singly modified cages. These new engineering strategies could be broadly useful in the development of enzymatic material and synthetic biology applications.
Collapse
Affiliation(s)
- Scott A. McConnell
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Kevin A. Cannon
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Christian Morgan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, United States
| | - Rachel McAllister
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Brendan R. Amer
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Robert T. Clubb
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Todd O. Yeates
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
32
|
A thermostable GH8 endoglucanase of Enterobacter sp. R1 is suitable for β-glucan deconstruction. Food Chem 2019; 298:124999. [DOI: 10.1016/j.foodchem.2019.124999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
|
33
|
Petrović DM, Várnai A, Dimarogona M, Mathiesen G, Sandgren M, Westereng B, Eijsink VGH. Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation. J Biol Chem 2019; 294:15068-15081. [PMID: 31431506 DOI: 10.1074/jbc.ra119.008196] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/02/2019] [Indexed: 11/06/2022] Open
Abstract
Many fungi produce multiple lytic polysaccharide monooxygenases (LPMOs) with seemingly similar functions, but the biological reason for this multiplicity remains unknown. To address this question, here we carried out comparative structural and functional characterizations of three cellulose-active C4-oxidizing family AA9 LPMOs from the fungus Neurospora crassa, NcLPMO9A (NCU02240), NcLPMO9C (NCU02916), and NcLPMO9D (NCU01050). We solved the three-dimensional structure of copper-bound NcLPMO9A at 1.6-Å resolution and found that NcLPMO9A and NcLPMO9C, containing a CBM1 carbohydrate-binding module, bind cellulose more strongly and were less susceptible to inactivation than NcLPMO9D, which lacks a CBM. All three LPMOs were active on tamarind xyloglucan and konjac glucomannan, generating similar products but clearly differing in activity levels. Importantly, in some cases, the addition of phosphoric acid-swollen cellulose (PASC) had a major effect on activity: NcLPMO9A was active on xyloglucan only in the presence of PASC, and PASC enhanced NcLPMO9D activity on glucomannan. Interestingly, the three enzymes also exhibited large differences in their interactions with enzymatic electron donors, which could reflect that they are optimized to act with different reducing partners. All three enzymes efficiently used H2O2 as a cosubstrate, yielding product profiles identical to those obtained in O2-driven reactions with PASC, xyloglucan, or glucomannan. Our results indicate that seemingly similar LPMOs act preferentially on different types of copolymeric substructures in the plant cell wall, possibly because these LPMOs are functionally adapted to distinct niches differing in the types of available reductants.
Collapse
Affiliation(s)
- Dejan M Petrović
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Maria Dimarogona
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.,Laboratory of Biotechnology and Structural Biology, Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
34
|
Herrera LM, Braña V, Franco Fraguas L, Castro-Sowinski S. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol Res 2019; 223-225:13-21. [PMID: 31178046 DOI: 10.1016/j.micres.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Flavobacterium sp. AUG42 is a cellulase-producing bacterium isolated from the Antarctic oligochaete Grania sp. (Annelida). In this work, we report that AUG42 produces a glycoside hydrolase cocktail with CMCase, PASCase and cellobiase activities (optimum pHs and temperatures ranging from 5.5 to 6.5 and 40 to 50 °C, respectively). The time-course analyses of the bacterial growth and cellulase production showed that the cocktail has maximal activity at the stationary phase when growing at 16 °C with filter paper as a cellulosic carbon source, among the tested substrates. The analyses of the CAZome and the identification of secreted proteins by shotgun Mass Spectrometry analysis showed that five glycoside hydrolyses are present in the bacterial secretome, which probably cooperate in the degradation of the cellulosic substrates. Two of these glycoside hydrolyses may harbor putative carbohydrate binding modules, both with a cleft-like active site. The cellulolytic cocktail was assayed in saccharification experiments using carboxymethylcellulose as a substrate and results showed the release of glucose (a fermentable sugar) and other reducing-sugars, after 24 h incubation. The ecological relevance of producing cellulases in the Antarctic environment, as well as their potential use in the bio-refinery industry, are discussed.
Collapse
Affiliation(s)
- Lorena M Herrera
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República (UdelaR), Iguá 4225, 11400, Montevideo, Uruguay
| | - Victoria Braña
- Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Laura Franco Fraguas
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, 11800, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República (UdelaR), Iguá 4225, 11400, Montevideo, Uruguay; Molecular Microbiology, Institute Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
35
|
Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 2019; 61:579-601. [DOI: 10.1007/s12033-019-00187-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Roach R, Mann R, Gambley CG, Chapman T, Shivas RG, Rodoni B. Genomic sequence analysis reveals diversity of Australian Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli. BMC Genomics 2019; 20:310. [PMID: 31014247 PMCID: PMC6480910 DOI: 10.1186/s12864-019-5600-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/12/2019] [Indexed: 01/03/2023] Open
Abstract
Background The genetic diversity in Australian populations of Xanthomonas species associated with bacterial leaf spot in tomato, capsicum and chilli were compared to worldwide bacterial populations. The aim of this study was to confirm the identities of these Australian Xanthomonas species and classify them in comparison to overseas isolates. Analysis of whole genome sequence allows for the investigation of bacterial population structure, pathogenicity and gene exchange, resulting in better management strategies and biosecurity. Results Phylogenetic analysis of the core genome alignments and SNP data grouped strains in distinct clades. Patterns observed in average nucleotide identity, pan genome structure, effector and carbohydrate active enzyme profiles reflected the whole genome phylogeny and highlight taxonomic issues in X. perforans and X. euvesicatoria. Circular sequences with similarity to previously characterised plasmids were identified, and plasmids of similar sizes were isolated. Potential false positive and false negative plasmid assemblies were discussed. Effector patterns that may influence virulence on host plant species were analysed in pathogenic and non-pathogenic xanthomonads. Conclusions The phylogeny presented here confirmed X. vesicatoria, X. arboricola, X. euvesicatoria and X. perforans and a clade of an uncharacterised Xanthomonas species shown to be genetically distinct from all other strains of this study. The taxonomic status of X. perforans and X. euvesicatoria as one species is discussed in relation to whole genome phylogeny and phenotypic traits. The patterns evident in enzyme and plasmid profiles indicate worldwide exchange of genetic material with the potential to introduce new virulence elements into local bacterial populations. Electronic supplementary material The online version of this article (10.1186/s12864-019-5600-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Roach
- Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, QLD, Australia. .,Agriculture Victoria Research Division, Department of Economic Development, Jobs, Transport & Resources, AgriBio, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - R Mann
- Agriculture Victoria Research Division, Department of Economic Development, Jobs, Transport & Resources, AgriBio, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - C G Gambley
- Department of Agriculture and Fisheries, Applethorpe Research Facility, Applethorpe, QLD, Australia
| | - T Chapman
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - B Rodoni
- Agriculture Victoria Research Division, Department of Economic Development, Jobs, Transport & Resources, AgriBio, La Trobe University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
37
|
Planý M, Czolderová M, Kraková L, Puškárová A, Bučková M, Šoltys K, Budiš J, Szemes T, Mackulak T, Wu JH, Pangallo D. Biogas production: evaluation of the influence of K2FeO4 pretreatment of maple leaves (Acer platanoides) on microbial consortia composition. Bioprocess Biosyst Eng 2019; 42:1151-1163. [DOI: 10.1007/s00449-019-02112-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
38
|
Hwang IS, Oh EJ, Lee HB, Oh CS. Functional Characterization of Two Cellulase Genes in the Gram-Positive Pathogenic Bacterium Clavibacter michiganensis for Wilting in Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:491-501. [PMID: 30345870 DOI: 10.1094/mpmi-08-18-0227-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Diverse plant pathogens secrete cellulases to degrade plant cell walls. Previously, the plasmid-borne cellulase gene celA was shown to be important for the virulence of the gram-positive bacterium Clavibacter michiganensis in tomato. However, details of the contribution of cellulases to the development of wilting in tomato have not been well-determined. To better understand the contribution of cellulases to the virulence of C. michiganensis in tomato, a mutant lacking cellulase activity was generated and complemented with truncated forms of certain cellulase genes, and virulence of those strain was examined. A celA mutant of the C. michiganensis type strain LMG7333 lost its cellulase activity and almost all its ability to cause wilting in tomato. The cellulase catalytic domain and cellulose-binding domain of CelA together were sufficient for both cellulase activity and the development of wilting in tomato. However, the expansin domain did not affect virulence or cellulase activity. The celA ortholog of Clavibacter sepedonicus restored the full virulence of the celA mutant of C. michiganensis. Another cellulase gene, celB, located in the chromosome, carries a single-base deletion in most C. michiganensis strains but does not carry a functional signal peptide in its N terminus. Nevertheless, an experimentally modified CelB protein with a CelA signal peptide was secreted and able to cause wilting in tomato. These results indicate that cellulases are major virulence factors of C. michiganensis that causes wilting in tomato. Furthermore, there are natural variations among cellulase genes directly affecting their function.
Collapse
Affiliation(s)
- In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Han Beoyl Lee
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
39
|
Miao J, Wang M, Ma L, Li T, Huang Q, Liu D, Shen Q. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: insights into performance, transcriptional, and proteomic profiles. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:4. [PMID: 30622646 PMCID: PMC6318881 DOI: 10.1186/s13068-018-1350-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND As a ubiquitous filamentous fungal, Aspergillus spp. play a critical role in lignocellulose degradation, which was also defined as considerable cell factories for organic acids and industrially relevant enzymes producer. Nevertheless, the production of various extracellular enzymes can be influenced by different factors including nitrogen source, carbon source, cultivation temperature, and initial pH value. Thus, this study aims to reveal how amino acids affect the decomposition of lignocellulose by Aspergillus fumigatus Z5 through transcriptional and proteomics methods. RESULTS The activities of several lignocellulosic enzymes secreted by A. fumigatus Z5 adding with cysteine, methionine, and ammonium sulfate were determined with the chromatometry method. The peak of endo-glucanase (7.33 ± 0.03 U mL-1), exo-glucanase (10.50 ± 0.07 U mL-1), β-glucosidase (21.50 ± 0.22 U mL-1), and xylanase (76.43 ± 0.71 U mL-1) were all obtained in the Cys treatment. The secretomes of A. fumigatus Z5 under different treatments were also identified by LC-MS/MS, and 227, 256 and 159 different proteins were identified in the treatments of Cys, Met, and CK (Control, treatment with ammonium sulfate as the sole nitrogen source), respectively. Correlation analysis results of transcriptome and proteome data with fermentation profiles showed that most of the cellulose-degrading enzymes including cellulases, hemicellulases and glycoside hydrolases were highly upregulated when cysteine was added to the growth medium. In particular, the enzymes that convert cellulose into cellobiose appear to be upregulated. This study could increase knowledge of lignocellulose bioconversion pathways and fungal genetics. CONCLUSIONS Transcriptome and proteome analyses' results indicated that cysteine could significantly promote the secretion of lignocellulosic enzymes of an efficient lignocellulosic decomposing strain, A. fumigatus Z5. The possible reason for these results is that Z5 preferred to use amino acids such as cysteine to adapt to the external environment through upregulating carbon-related metabolism pathways.
Collapse
Affiliation(s)
- Jiaxi Miao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| | - Mengmeng Wang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Ma
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tuo Li
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiwei Huang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongyang Liu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
40
|
Singh RP, Manchanda G, Maurya IK, Maheshwari NK, Tiwari PK, Rai AR. Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Chang YJ, Yang SS, Yu X, Zhang H, Shang W, Gu ZY. Ultrahigh efficient laser desorption ionization of saccharides by Ti-based metal-organic frameworks nanosheets. Anal Chim Acta 2018; 1032:91-98. [DOI: 10.1016/j.aca.2018.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
42
|
Luo C, Li Y, Liao H, Yang Y. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:292. [PMID: 30386429 PMCID: PMC6204003 DOI: 10.1186/s13068-018-1291-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bamboo weevil Cyrtotrachelus buqueti, which is considered a pest species, damages bamboo shoots via its piercing-sucking mode of feeding. C. buqueti is well known for its ability to transform bamboo shoot biomass into nutrients and energy for growth, development and reproduction with high specificity and efficacy of bioconversion. Woody bamboo is a perennial grass that is a potential feedstock for lignocellulosic biomass because of its high growth rate and lignocellulose content. To verify our hypothesis that C. buqueti efficiently degrades bamboo lignocellulose, we assessed the bamboo lignocellulose-degrading ability of this insect through RNA sequencing for identifying a potential route for utilisation of bamboo biomass. RESULTS Analysis of carbohydrate-active enzyme (CAZyme) family genes in the developmental transcriptome of C. buqueti revealed 1082 unigenes, including 55 glycoside hydrolases (GH) families containing 309 GHs, 51 glycosyltransferases (GT) families containing 329 GTs, 8 carbohydrate esterases (CE) families containing 174 CEs, 6 polysaccharide lyases (PL) families containing 11 PLs, 8 auxiliary activities (AA) families containing 131 enzymes with AAs and 17 carbohydrate-binding modules (CBM) families containing 128 CBMs. We used weighted gene co-expression network analysis to analyse developmental RNA sequencing data, and 19 unique modules were identified in the analysis. Of these modules, the expression of MEyellow module genes was unique and the module included numerous CAZyme family genes. CAZyme genes in this module were divided into two groups depending on whether gene expression was higher in the adult/larval stages or in the egg/pupal stages. Enzyme assays revealed that cellulase activity was highest in the midgut whereas lignin-degrading enzyme activity was highest in the hindgut, consistent with findings from intestinal gene expression studies. We also analysed the expression of CAZyme genes in the transcriptome of C. buqueti from two cities and found that several genes were also assigned to CAZyme families. The insect had genes and enzymes associated with lignocellulose degradation, the expression of which differed with developmental stage and intestinal region. CONCLUSION Cyrtotrachelus buqueti exhibits lignocellulose degradation-related enzymes and genes, most notably CAZyme family genes. CAZyme family genes showed differences in expression at different developmental stages, with adults being more effective at cellulose degradation and larvae at lignin degradation, as well as at different regions of the intestine, with the midgut being more cellulolytic than the hindgut. This degradative system could be utilised for the bioconversion of bamboo lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|
43
|
Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME JOURNAL 2018; 13:413-429. [PMID: 30258172 PMCID: PMC6331573 DOI: 10.1038/s41396-018-0279-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/20/2018] [Accepted: 08/11/2018] [Indexed: 11/19/2022]
Abstract
Delignification, or lignin-modification, facilitates the decomposition of lignocellulose in woody plant biomass. The extant diversity of lignin-degrading bacteria and fungi is underestimated by culture-dependent methods, limiting our understanding of the functional and ecological traits of decomposers populations. Here, we describe the use of stable isotope probing (SIP) coupled with amplicon and shotgun metagenomics to identify and characterize the functional attributes of lignin, cellulose and hemicellulose-degrading fungi and bacteria in coniferous forest soils from across North America. We tested the extent to which catabolic genes partitioned among different decomposer taxa; the relative roles of bacteria and fungi, and whether taxa or catabolic genes correlated with variation in lignocellulolytic activity, measured as the total assimilation of 13C-label into DNA and phospholipid fatty acids. We found high overall bacterial degradation of our model lignin substrate, particularly by gram-negative bacteria (Comamonadaceae and Caulobacteraceae), while fungi were more prominent in cellulose-degradation. Very few taxa incorporated 13C-label from more than one lignocellulosic polymer, suggesting specialization among decomposers. Collectively, members of Caulobacteraceae could degrade all three lignocellulosic polymers, providing new evidence for their importance in lignocellulose degradation. Variation in lignin-degrading activity was better explained by microbial community properties, such as catabolic gene content and community structure, than cellulose-degrading activity. SIP significantly improved shotgun metagenome assembly resulting in the recovery of several high-quality draft metagenome-assembled genomes and over 7500 contigs containing unique clusters of carbohydrate-active genes. These results improve understanding of which organisms, conditions and corresponding functional genes contribute to lignocellulose decomposition.
Collapse
Affiliation(s)
- Roland C Wilhelm
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Rahul Singh
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lindsay D Eltis
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - William W Mohn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
44
|
Krah FS, Bässler C, Heibl C, Soghigian J, Schaefer H, Hibbett DS. Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evol Biol 2018; 18:119. [PMID: 30075699 PMCID: PMC6091043 DOI: 10.1186/s12862-018-1229-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
Background The majority of wood decomposing fungi are mushroom-forming Agaricomycetes, which exhibit two main modes of plant cell wall decomposition: white rot, in which all plant cell wall components are degraded, including lignin, and brown rot, in which lignin is modified but not appreciably removed. Previous studies suggested that brown rot fungi tend to be specialists of gymnosperm hosts and that brown rot promotes gymnosperm specialization. However, these hypotheses were based on analyses of limited datasets of Agaricomycetes. Overcoming this limitation, we used a phylogeny with 1157 species integrating available sequences, assembled decay mode characters from the literature, and coded host specialization using the newly developed R package, rusda. Results We found that most brown rot fungi are generalists or gymnosperm specialists, whereas most white rot fungi are angiosperm specialists. A six-state model of the evolution of host specialization revealed high transition rates between generalism and specialization in both decay modes. However, while white rot lineages switched most frequently to angiosperm specialists, brown rot lineages switched most frequently to generalism. A time-calibrated phylogeny revealed that Agaricomycetes is older than the flowering plants but many of the large clades originated after the diversification of the angiosperms in the Cretaceous. Conclusions Our results challenge the current view that brown rot fungi are primarily gymnosperm specialists and reveal intensive white rot specialization to angiosperm hosts. We thus suggest that brown rot associated convergent loss of lignocellulose degrading enzymes was correlated with host generalism, rather than gymnosperm specialism. A likelihood model of host specialization evolution together with a time-calibrated phylogeny further suggests that the rise of the angiosperms opened a new mega-niche for wood-decay fungi, which was exploited particularly well by white rot lineages. Electronic supplementary material The online version of this article (10.1186/s12862-018-1229-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Plant Biodiversity Research Group, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Freising, Germany. .,Baverian Forest National Park, Grafenau, Germany.
| | | | | | - John Soghigian
- Department of Environmental Science, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Hanno Schaefer
- Plant Biodiversity Research Group, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - David S Hibbett
- Biology Department, Clark University, Worcester, MA, 01610, USA
| |
Collapse
|
45
|
Várnai A, Umezawa K, Yoshida M, Eijsink VGH. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Appl Environ Microbiol 2018; 84:e00156-18. [PMID: 29602785 PMCID: PMC5960967 DOI: 10.1128/aem.00156-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023] Open
Abstract
Fungi secrete a set of glycoside hydrolases and oxidoreductases, including lytic polysaccharide monooxygenases (LPMOs), for the degradation of plant polysaccharides. LPMOs catalyze the oxidative cleavage of glycosidic bonds after activation by an external electron donor. So far, only flavin-dependent oxidoreductases (from the auxiliary activity [AA] family AA3) have been shown to activate LPMOs. Here, we present LPMO activation by a pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase (PDH) from Coprinopsis cinerea, CcPDH, the founding member of the recently discovered auxiliary activity family AA12. CcPDH contains a C-terminal family 1 carbohydrate binding module (CBM1), an N-terminal family AA8 cytochrome domain, and a central AA12 dehydrogenase domain. We have studied the ability of full-length CcPDH and its truncated variants to drive catalysis by two Neurospora crassa LPMOs. The results show that CcPDH indeed can activate the C-1-oxidizing N. crassa LPMO 9F (NcLPMO9F) and the C-4-oxidizing Neurospora crassa LPMO 9C (NcLPMO9C), that this activation depends on the cytochrome domain, and that the dehydrogenase and the LPMO reactions are strongly coupled. The two tested CcPDH-LPMO systems showed quite different efficiencies, and this difference disappeared upon the addition of free PQQ acting as a diphenol/quinone redox mediator, showing that LPMOs differ when it comes to their direct interactions with the cytochrome domain. Surprisingly, removal of the CBM domain from CcPDH had a considerable negative impact on the efficiency of the CcPDH-LPMO systems, suggesting that electron transfer in the vicinity of the substrate is beneficial. CcPDH does not oxidize cello-oligosaccharides, which makes this enzyme a useful tool for studying cellulose-oxidizing LPMOs.IMPORTANCE Lytic polysaccharide monooxygenases (LPMOs) are currently receiving increasing attention because of their importance in degrading recalcitrant polysaccharides and their potential roles in biological processes, such as bacterial virulence. LPMO action requires an external electron donor, and fungi growing on biomass secrete various so-called glucose-methanol-choline (GMC) oxidoreductases, including cellobiose dehydrogenase, which can donate electrons to LPMOs. This paper describes how an enzyme not belonging to the GMC oxidoreductase family, CcPDH, can activate LPMOs, and it provides new insights into the activation process by (i) describing the roles of individual CcPDH domains (a dehydrogenase, a cytochrome, and a carbohydrate-binding domain), (ii) showing that the PDH and LPMO enzyme reactions are strongly coupled, (iii) demonstrating that LPMOs differ in terms of their efficiencies of activation by the same activator, and (iv) providing indications that electron transferring close to the substrate surface is beneficial for the overall efficiency of the CcPDH-LPMO system.
Collapse
Affiliation(s)
- Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kiwamu Umezawa
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
46
|
Su X, Zhang S, Mei R, Zhang Y, Hashmi MZ, Liu J, Lin H, Ding L, Sun F. Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microb Biotechnol 2018. [PMID: 29536669 PMCID: PMC5902322 DOI: 10.1111/1751-7915.13256] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nowadays, much of what we know regarding the isolated cellulolytic bacteria comes from the conventional plate separation techniques. However, the culturability of many bacterial species is controlled by resuscitation‐promoting factors (Rpfs) due to entering a viable but non‐culturable (VBNC) state. Therefore, in this study, Rpf from Micrococcus luteus was added in the culture medium to evaluate its role in bacterial isolation and enhanced effects on cellulose‐degrading capability of bacterial community in the compost. It was found that Proteobacteria and Actinobacteria were two main phyla in the compost sample. The introduction of Rpf could isolate some unique bacterial species. The cellulase activity of enrichment cultures with and without Rpf treatment revealed that Rpf treatment significantly enhanced cellulase activity. Ten isolates unique in Rpf addition displayed carboxymethyl‐cellulase (CMCase) activity, while six isolates possessed filter paper cellulase (FPCase) activity. This study provides new insights into broader cellulose degraders, which could be utilized for enhancing cellulosic waste treatment.
Collapse
Affiliation(s)
- Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuo Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Rongwu Mei
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Yu Zhang
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Muhammad Zaffar Hashmi
- Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan
| | - Jingjing Liu
- Department of Architecture and Resources Engineering, Jiangxi University of Science and Technology, Nanchang, 310013, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
47
|
Nguyen STC, Freund HL, Kasanjian J, Berlemont R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol 2018; 102:1629-1637. [PMID: 29359269 DOI: 10.1007/s00253-018-8778-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/30/2022]
Abstract
The enzymatic deconstruction of structural polysaccharides, which relies on the production of specific glycoside hydrolases (GHs), is an essential process across environments. Over the past few decades, researchers studying the diversity and evolution of these enzymes have isolated and biochemically characterized thousands of these proteins. The carbohydrate-active enzymes database (CAZy) lists these proteins and provides some metadata. Here, the sequences and metadata of characterized sequences derived from GH families associated with the deconstruction of cellulose, xylan, and chitin were collected and discussed. First, although few polyspecific enzymes are identified, characterized GH families are mostly monospecific. Next, the taxonomic distribution of characterized GH mirrors the distribution of identified sequences in sequenced genomes. This provides a rationale for connecting the identification of GH sequences to specific reactions or lineages. Finally, we tested the annotation of the characterized GHs using HMM scan and the protein families database (Pfam). The vast majority of GHs targeting cellulose, xylan, and chitin can be identified using this publicly accessible approach.
Collapse
Affiliation(s)
- Stanley T C Nguyen
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA
| | - Hannah L Freund
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA
| | - Joshua Kasanjian
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA
| | - Renaud Berlemont
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840-9502, USA.
| |
Collapse
|
48
|
Blake AD, Beri NR, Guttman HS, Cheng R, Gardner JG. The complex physiology of
Cellvibrio japonicus
xylan degradation relies on a single cytoplasmic β‐xylosidase for xylo‐oligosaccharide utilization. Mol Microbiol 2018; 107:610-622. [DOI: 10.1111/mmi.13903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew D. Blake
- Department of Biological SciencesUniversity of Maryland ‐ Baltimore CountyBaltimore Maryland USA
| | - Nina R. Beri
- Department of Biological SciencesUniversity of Maryland ‐ Baltimore CountyBaltimore Maryland USA
| | - Hadassa S. Guttman
- Department of Biological SciencesUniversity of Maryland ‐ Baltimore CountyBaltimore Maryland USA
| | - Raymond Cheng
- Department of Biological SciencesUniversity of Maryland ‐ Baltimore CountyBaltimore Maryland USA
| | - Jeffrey G. Gardner
- Department of Biological SciencesUniversity of Maryland ‐ Baltimore CountyBaltimore Maryland USA
| |
Collapse
|
49
|
Chahed H, Boumaiza M, Ezzine A, Marzouki M. Heterologous expression and biochemical characterization of a novel thermostable Sclerotinia sclerotiorum GH45 endoglucanase in Pichia pastoris. Int J Biol Macromol 2018; 106:629-635. [DOI: 10.1016/j.ijbiomac.2017.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|
50
|
Reina R, García-Sánchez M, Liers C, García-Romera I, Aranda E. An Overview of Fungal Applications in the Valorization of Lignocellulosic Agricultural By-Products: The Case of Two-Phase Olive Mill Wastes. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|