1
|
Bao L, Liu Y, Jia Q, Chu S, Jiang H, He S. Argon neuroprotection in ischemic stroke and its underlying mechanism. Brain Res Bull 2024; 212:110964. [PMID: 38670471 DOI: 10.1016/j.brainresbull.2024.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Li Bao
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yongxin Liu
- Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qi Jia
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Sihao Chu
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Han Jiang
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Medical College of Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Shuang He
- Department of Stroke Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China.
| |
Collapse
|
2
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of the cell adhesion protein Fasciclin 3 is required for the maintenance of adult olfactory interneurons. J Cell Sci 2024; 137:jcs261759. [PMID: 38934299 DOI: 10.1242/jcs.261759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The proper functioning of the nervous system is dependent on the establishment and maintenance of intricate networks of neurons that form functional neural circuits. Once neural circuits are assembled during development, a distinct set of molecular programs is likely required to maintain their connectivity throughout the lifetime of the organism. Here, we demonstrate that Fasciclin 3 (Fas3), an axon guidance cell adhesion protein, is necessary for the maintenance of the olfactory circuit in adult Drosophila. We utilized the TARGET system to spatiotemporally knockdown Fas3 in selected populations of adult neurons. Our findings show that Fas3 knockdown results in the death of olfactory circuit neurons and reduced survival of adults. We also demonstrated that Fas3 knockdown activates caspase-3-mediated cell death in olfactory local interneurons, which can be rescued by overexpressing baculovirus p35, an anti-apoptotic protein. This work adds to the growing set of evidence indicating a crucial role for axon guidance proteins in the maintenance of neuronal circuits in adults.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, 3402-2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
4
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M, Sie F, Pani L. Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS. Front Comput Neurosci 2024; 17:1199736. [PMID: 38260713 PMCID: PMC10801647 DOI: 10.3389/fncom.2023.1199736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Advances in machine learning (ML) methodologies, combined with multidisciplinary collaborations across biological and physical sciences, has the potential to propel drug discovery and development. Open Science fosters this collaboration by releasing datasets and methods into the public space; however, further education and widespread acceptance and adoption of Open Science approaches are necessary to tackle the plethora of known disease states. Motivation In addition to providing much needed insights into potential therapeutic protein targets, we also aim to demonstrate that small patient datasets have the potential to provide insights that usually require many samples (>5,000). There are many such datasets available and novel advancements in ML can provide valuable insights from these patient datasets. Problem statement Using a public dataset made available by patient advocacy group AnswerALS and a multidisciplinary Open Science approach with a systems biology augmented ML technology, we aim to validate previously reported drug targets in ALS and provide novel insights about ALS subpopulations and potential drug targets using a unique combination of ML methods and graph theory. Methodology We use NetraAI to generate hypotheses about specific patient subpopulations, which were then refined and validated through a combination of ML techniques, systems biology methods, and expert input. Results We extracted 8 target classes, each comprising of several genes that shed light into ALS pathophysiology and represent new avenues for treatment. These target classes are broadly categorized as inflammation, epigenetic, heat shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and excitotoxicity. These findings are not mutually exclusive, and instead represent a systematic view of ALS pathophysiology. Based on these findings, we suggest that simultaneous targeting of ALS has the potential to mitigate ALS progression, with the plausibility of maintaining and sustaining an improved quality of life (QoL) for ALS patients. Even further, we identified subpopulations based on disease onset. Conclusion In the spirit of Open Science, this work aims to bridge the knowledge gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic strategies and pave the way for the development of personalized treatments tailored to the individual's needs.
Collapse
Affiliation(s)
- Joseph Geraci
- NetraMark Corp, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego, San Diego, CA, United States
| | - Ravi Bhargava
- Department of Biomedical and Molecular Science, Queens University, Kingston, ON, Canada
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | | | | | - Douglas Cook
- NetraMark Corp, Toronto, ON, Canada
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Moses Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fanny Sie
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | - Luca Pani
- NetraMark Corp, Toronto, ON, Canada
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
8
|
Traxler L, Lucciola R, Herdy JR, Jones JR, Mertens J, Gage FH. Neural cell state shifts and fate loss in ageing and age-related diseases. Nat Rev Neurol 2023; 19:434-443. [PMID: 37268723 PMCID: PMC10478103 DOI: 10.1038/s41582-023-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/04/2023]
Abstract
Most age-related neurodegenerative diseases remain incurable owing to an incomplete understanding of the disease mechanisms. Several environmental and genetic factors contribute to disease onset, with human biological ageing being the primary risk factor. In response to acute cellular damage and external stimuli, somatic cells undergo state shifts characterized by temporal changes in their structure and function that increase their resilience, repair cellular damage, and lead to their mobilization to counteract the pathology. This basic cell biological principle also applies to human brain cells, including mature neurons that upregulate developmental features such as cell cycle markers or glycolytic reprogramming in response to stress. Although such temporary state shifts are required to sustain the function and resilience of the young human brain, excessive state shifts in the aged brain might result in terminal fate loss of neurons and glia, characterized by a permanent change in cell identity. Here, we offer a new perspective on the roles of cell states in sustaining health and counteracting disease, and we examine how cellular ageing might set the stage for pathological fate loss and neurodegeneration. A better understanding of neuronal state and fate shifts might provide the means for a controlled manipulation of cell fate to promote brain resilience and repair.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
9
|
Jiang W, Long X, Li Z, Hu M, Zhang Y, Lin H, Tang W, Ouyang Y, Jiang L, Chen J, He P, Ouyang X. The Role of Circular RNAs in Ischemic Stroke. Neurochem Res 2023:10.1007/s11064-023-03935-7. [PMID: 37126193 DOI: 10.1007/s11064-023-03935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
Ischemic stroke (IS), a devastating condition characterized by intracranial artery stenosis and middle cerebral artery occlusion leading to insufficient oxygen supply to the brain, is a major cause of death and physical disability worldwide. Recent research has demonstrated the critical role of circular RNAs (circRNAs), a class of covalently enclosed noncoding RNAs that are widespread in eukaryotic cells, in regulating various physiological and pathophysiological cellular processes, including cell apoptosis, autophagy, synaptic plasticity, and neuroinflammation. In the past few years, circRNAs have attracted extensive attention in the field of IS research. This review summarizes the current understanding of the mechanisms underlying the involvement of circRNAs in IS development. A better understanding of circRNA-mediated pathogenic mechanisms in IS may pave the way for translating circRNA research into clinical practice, ultimately improving the clinical outcomes of IS patients.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiongquan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
| | - Zhicheng Li
- Collage of Pharmacy, University of South China, Hengyang, Hunan, China
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Huiling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Wanying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinzhi Chen
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China
| | - Pingping He
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Xinping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan, China.
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, 410081, Hunan Province, China.
| |
Collapse
|
10
|
Su X, Kovalchuk Y, Mojtahedi N, Kamari F, Claassen M, Garaschuk O. Neuronal silence as a prosurvival factor for adult-born olfactory bulb interneurons. Stem Cell Reports 2023; 18:1182-1195. [PMID: 37116486 DOI: 10.1016/j.stemcr.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/30/2023] Open
Abstract
Adult-born cells, arriving daily into the rodent olfactory bulb, either integrate into the neural circuitry or get eliminated. However, whether these two populations differ in their morphological or functional properties remains unclear. Using longitudinal in vivo two-photon imaging, we monitored dendritic morphogenesis, odor-evoked responsiveness, ongoing Ca2+ signaling, and survival/death of adult-born juxtaglomerular neurons (abJGNs). We found that the maturation of abJGNs is accompanied by a significant reduction in dendritic complexity, with surviving and subsequently eliminated cells showing similar degrees of dendritic remodeling. Surprisingly, ∼63% of eliminated abJGNs acquired odor responsiveness before death, with amplitudes and time courses of odor-evoked responses similar to those recorded in surviving cells. However, the subsequently eliminated cell population exhibited significantly higher ongoing Ca2+ signals, with a difference visible even 10 days before death. Quantitative supervised machine learning analysis revealed a relationship between the abJGNs' activity and survival probability, with low neuronal activity being supportive for survival.
Collapse
Affiliation(s)
- Xin Su
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Yury Kovalchuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nima Mojtahedi
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Farzin Kamari
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany; Department of Computer Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Guo S, Xing N, Xiang G, Zhang Y, Wang S. Eriodictyol: a review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food Funct 2023; 14:1851-1868. [PMID: 36757280 DOI: 10.1039/d2fo03417d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ischemic stroke (IS) is characterized by a prominent mortality and disability rate, which has increased the burden on the global economy to a certain extent. Meanwhile, patients benefit little from the limited clinical strategies of intravenous alteplase and thrombectomy due to the limited therapeutic window. Given this, it is urgent to study new therapeutic methods to intervene in these patients. Eriodyctiol (ERD) is a major natural flavonoid, which widely exists in fruits, vegetables, and medicinal herbs, and has various pharmacological properties. It has been reported that ERD can maintain homeostasis in organisms by exerting neuroprotective and vascular protective effects. Therefore, more and more studies have focused on the pharmacological activity and mechanism of ERD in IS. This paper provides an overview of the plant sources, phytochemical properties, pharmacokinetics, and pathogenesis, as well as the pharmacological effects and mechanisms of ERD in IS. To date, preclinical studies on ERD in diverse cell lines and animal models have established the idea of ERD as a feasible agent capable of specifically ameliorating IS. The molecular mechanisms of ERD to prevent or reduce IS are mainly based on the inhibition of inflammation, oxidative stress, autophagy and apoptosis. Nevertheless, the mechanism of ERD against IS is flawed and needs more exploration by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of the beneficial effects of ERD against IS.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
14
|
Gheorghe RO, Grosu AV, Bica-Popi M, Ristoiu V. The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232012389. [PMID: 36293246 PMCID: PMC9603877 DOI: 10.3390/ijms232012389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Traumatic peripheral neuropathic pain is a complex syndrome caused by a primary lesion or dysfunction of the peripheral nervous system. Secondary to the lesion, resident or infiltrating macrophages proliferate and initiate a cross-talk with the sensory neurons, at the level of peripheral nerves and sensory ganglia. The neuron–macrophage interaction, which starts very early after the lesion, is very important for promoting pain development and for initiating changes that will facilitate the chronicization of pain, but it also has the potential to facilitate the resolution of injury-induced changes and, consequently, promote the reduction of pain. This review is an overview of the unique characteristics of nerve-associated macrophages in the peripheral nerves and sensory ganglia and of the molecules and signaling pathways involved in the neuro-immune cross-talk after a traumatic lesion, with the final aim of better understanding how the balance between pro- and anti-nociceptive dialogue between neurons and macrophages may be modulated for new therapeutic approaches.
Collapse
|
15
|
Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szücs A, Santagostino A, Kim Y, Agarwal RK, Schlachetzki JCM, Glass CK, Lagerwall J, Galasko D, Gage FH, D'Alessandro A, Mertens J. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer's disease. Cell Metab 2022; 34:1248-1263.e6. [PMID: 35987203 PMCID: PMC9458870 DOI: 10.1016/j.cmet.2022.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 12/28/2022]
Abstract
The drivers of sporadic Alzheimer's disease (AD) remain incompletely understood. Utilizing directly converted induced neurons (iNs) from AD-patient-derived fibroblasts, we identified a metabolic switch to aerobic glycolysis in AD iNs. Pathological isoform switching of the glycolytic enzyme pyruvate kinase M (PKM) toward the cancer-associated PKM2 isoform conferred metabolic and transcriptional changes in AD iNs. These alterations occurred via PKM2's lack of metabolic activity and via nuclear translocation and association with STAT3 and HIF1α to promote neuronal fate loss and vulnerability. Chemical modulation of PKM2 prevented nuclear translocation, restored a mature neuronal metabolism, reversed AD-specific gene expression changes, and re-activated neuronal resilience against cell death.
Collapse
Affiliation(s)
- Larissa Traxler
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria.
| | - Joseph R Herdy
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophie Eichhorner
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Silvia Pelucchi
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Attila Szücs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest 1117, Hungary
| | - Alice Santagostino
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Yongsung Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5624, USA
| | - Ravi K Agarwal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jessica Lagerwall
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 214] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Hu C, Chen X, Wang M, Zhang L, Gao D, Zhang L. Analgecine protects against cerebral ischemia-reperfusion through apoptosis inhibition and anti-neuroinflammation in rats. Neuropeptides 2022; 93:102230. [PMID: 35378359 DOI: 10.1016/j.npep.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Stroke influence the quality of life of patients and leave big public health issues as acute cerebrovascular disease all over the world. Analgecine (AGC) relieves pain and accelerates repair of nerve injury. This current study aims to observe the pharmacological effects and related mechanisms of AGC in cerebral ischemic stroke among middle cerebral artery ischemia-reperfusion (MCAO) rats. After seven days of AGC administration, motor function was enhanced as evidenced by the prehensile traction test. Morphological ameliorations were observed by immunohistochemistry analysis. The protein expression levels of HSP70, Bcl-2, Bax, TRAF-6, MyD88, BDNF, NGF, pCREB, CREB, pTrkB, TrkB, pAKT and AKT were estimated by western blot. Meanwhile, AGC alleviated MCAO-induced inflammation chiefly by decreasing inflammatory cytokines in rat brain tissues. These results above suggested that MCAO-caused brain infarction was obviously alleviated by AGC. The immunohistochemistry data showed that AGC reduced neuronal injury and apoptosis, and inhibited microglia and astrocytes activation. The protein results suggested the expression of apoptosis-relevant proteins decreased among AGC treated groups and the neurotrophin related proteins were obviously enhanced by CREB/BDNF/TrkB/AKT and HSP70/Bcl-2/Bax pathways. Collectively, the results demonstrated that AGC primarily promoted neuro-nutrition, reduced the injury of nerve apoptosis and ameliorated neuroinflammation. In summary, AGC played a neuroprotective role, which had provided reliable evidence for AGC to be a potential drug in treating stroke.
Collapse
Affiliation(s)
- Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiaoping Chen
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Mingyang Wang
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Dan Gao
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
18
|
Single Cell Analysis of Reversibility of the Cell Death Program in Ethanol-Treated Neuronal PC12 Cells. Int J Mol Sci 2022; 23:ijms23052650. [PMID: 35269792 PMCID: PMC8910107 DOI: 10.3390/ijms23052650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/06/2022] Open
Abstract
Neurodegenerative diseases are generally characterized clinically by the selective loss of a distinct subset of neurons and a slow progressive course. Mounting evidence in vivo indicates that large numbers of neurons pass through a long period of injury and dysfunction before the actual death of the cells. Whether these dying neurons can be rescued and return to a normal, functional state is uncertain. In the present study, we explored the reversibility of the neuronal cell death pathway at various stages by monitoring the dynamics of single cells with high-resolution live-cell spinning disk confocal microscopy in an in vitro neuronal cell death model. We exposed differentiated neuronal PC12 cells to ethanol as our cell death model. Results showed that exposure to 5% ethanol for 24 h induced cell death in >70% of the cells. Ethanol treatment for 3 h already induced cellular changes and damage such as reactive oxygen species generation, elevation of intracellular Ca2+ level, phosphatidylserine exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation and membrane potential loss, and retraction of neurites. These phenomena are often associated with programmed cell death. Importantly, after removing ethanol and further culturing these damaged cells in fresh culture medium, cells recovered from all these cell injuries and generated new neurites. Moreover, results indicated that this recovery was not dependent on exogenous NGF and other growth factors in the cell culture medium. Overall, our results suggest that targeting dying neurons can be an effective therapeutic strategy in neurodegenerative diseases.
Collapse
|
19
|
The concept of intrinsic versus extrinsic apoptosis. Biochem J 2022; 479:357-384. [PMID: 35147165 DOI: 10.1042/bcj20210854] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.
Collapse
|
20
|
Global Reprogramming of Apoptosis-Related Genes during Brain Development. Cells 2021; 10:cells10112901. [PMID: 34831124 PMCID: PMC8616463 DOI: 10.3390/cells10112901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
To enable long-term survival, mammalian adult neurons exhibit unique apoptosis competence. Questions remain as to whether and how neurons globally reprogram the expression of apoptotic genes during development. We systematically examined the in vivo expression of 1923 apoptosis-related genes and associated histone modifications at eight developmental ages of mouse brains. Most apoptotic genes displayed consistent temporal patterns across the forebrain, midbrain, and hindbrain, suggesting ubiquitous robust developmental reprogramming. Although both anti- and pro-apoptotic genes can be up- or downregulated, half the regulatory events in the classical apoptosis pathway are downregulation of pro-apoptotic genes. Reduced expression in initiator caspases, apoptosome, and pro-apoptotic Bcl-2 family members restrains effector caspase activation and attenuates neuronal apoptosis. The developmental downregulation of apoptotic genes is attributed to decreasing histone-3-lysine-4-trimethylation (H3K4me3) signals at promoters, where histone-3-lysine-27-trimethylation (H3K27me3) rarely changes. By contrast, repressive H3K27me3 marks are lost in the upregulated gene groups, for which developmental H3K4me3 changes are not predictive. Hence, developing brains remove epigenetic H3K4me3 and H3K27me3 marks on different apoptotic gene groups, contributing to their downregulation and upregulation, respectively. As such, neurons drastically alter global apoptotic gene expression during development to transform apoptosis controls. Research into neuronal cell death should consider maturation stages as a biological variable.
Collapse
|
21
|
Galindo-Romero C, Vidal-Villegas B, Asís-Martínez J, Lucas-Ruiz F, Gallego-Ortega A, Vidal-Sanz M. 7,8-Dihydroxiflavone Protects Adult Rat Axotomized Retinal Ganglion Cells through MAPK/ERK and PI3K/AKT Activation. Int J Mol Sci 2021; 22:ijms221910896. [PMID: 34639236 PMCID: PMC8509499 DOI: 10.3390/ijms221910896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main intracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3 kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). Methods: Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle (1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK, and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins, and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group). Results: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF- treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei 3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK was higher in DHF-treated groups. Conclusions: Phosphorylation and increased levels of AKT and MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased and long-lasting RGC protection afforded by DHF after IONT.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Correspondence: ; Tel.: +34-8-688-893-09
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier Asís-Martínez
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| |
Collapse
|
22
|
Mertens J, Herdy JR, Traxler L, Schafer ST, Schlachetzki JCM, Böhnke L, Reid DA, Lee H, Zangwill D, Fernandes DP, Agarwal RK, Lucciola R, Zhou-Yang L, Karbacher L, Edenhofer F, Stern S, Horvath S, Paquola ACM, Glass CK, Yuan SH, Ku M, Szücs A, Goldstein LSB, Galasko D, Gage FH. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell 2021; 28:1533-1548.e6. [PMID: 33910058 PMCID: PMC8423435 DOI: 10.1016/j.stem.2021.04.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/17/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Sporadic Alzheimer's disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.
Collapse
Affiliation(s)
- Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria.
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Larissa Traxler
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lena Böhnke
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Dylan A Reid
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hyungjun Lee
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dina Zangwill
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana P Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ravi K Agarwal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lucia Zhou-Yang
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Lukas Karbacher
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cells & Regenerative Medicine, Institute of Molecular Biology, CMBI, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Steve Horvath
- Department of Human Genetics, Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Apua C M Paquola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; University of Minnesota, Twin Cities, Department of Neurology, Minneapolis, MN, USA
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Attila Szücs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Lawrence S B Goldstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
23
|
Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102422. [PMID: 34175455 DOI: 10.1016/j.nano.2021.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
As mitochondria network together to act as the master sensors and effectors of apoptosis, ATP production, reactive oxygen species management, mitophagy/autophagy, and homeostasis; this organelle is an ideal target for pharmaceutical manipulation. Mitochondrial dysfunction contributes to many diseases, for example, β-amyloid has been shown to interfere with mitochondrial protein import and induce apoptosis in Alzheimer's Disease while some forms of Parkinson's Disease are associated with dysfunctional mitochondrial PINK1 and Parkin proteins. Mitochondrial medicine has applications in the treatment of an array of pathologies from cancer to cardiovascular disease. A challenge of mitochondrial medicine is directing therapies to a subcellular target. Nanotechnology based approaches combined with mitochondrial targeting strategies can greatly improve the clinical translation and effectiveness of mitochondrial medicine. This review discusses mitochondrial drug delivery approaches and applications of mitochondrial nanomedicines. Nanomedicine approaches have the potential to drive the success of mitochondrial therapies into the clinic.
Collapse
Affiliation(s)
- Lara Milane
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA.
| | - Saket Dolare
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Tanjheela Jahan
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| | - Mansoor Amiji
- Northeastern University, Department of Pharmaceutical Sciences, Boston, MA
| |
Collapse
|
24
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
25
|
Pelisch N, Rosas Almanza J, Stehlik KE, Aperi BV, Kroner A. CCL3 contributes to secondary damage after spinal cord injury. J Neuroinflammation 2020; 17:362. [PMID: 33246483 PMCID: PMC7694914 DOI: 10.1186/s12974-020-02037-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background Secondary damage after spinal cord injury (SCI) is characterized by a cascade of events including hemorrhage, apoptosis, oxidative stress, and inflammation which increase the lesion size which can influence the functional impairment. Thus, identifying specific mechanisms attributed to secondary injury is critical in minimizing tissue damage and improving neurological outcome. In this work, we are investigating the role of CCL3 (macrophage inflammatory protein 1-α, MIP-1α), a chemokine involved in the recruitment of inflammatory cells, which plays an important role in inflammatory conditions of the central and peripheral nervous system. Methods A mouse model of lower thoracic (T11) spinal cord contusion injury was used. We assessed expression levels of CCL3 and its receptors on the mRNA and protein level and analyzed changes in locomotor recovery and the inflammatory response in the injured spinal cord of wild-type and CCL3−/− mice. Results The expression of CCL3 and its receptors was increased after thoracic contusion SCI in mice. We then examined the role of CCL3 after SCI and its direct influence on the inflammatory response, locomotor recovery and lesion size using CCL3−/− mice. CCL3−/− mice showed mild but significant improvement of locomotor recovery, a smaller lesion size and reduced neuronal damage compared to wild-type controls. In addition, neutrophil numbers as well as the pro-inflammatory cytokines and chemokines, known to play a deleterious role after SCI, were markedly reduced in the absence of CCL3. Conclusion We have identified CCL3 as a potential target to modulate the inflammatory response and secondary damage after SCI. Collectively, this study shows that CCL3 contributes to progressive tissue damage and functional impairment during secondary injury after SCI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02037-3.
Collapse
Affiliation(s)
- Nicolas Pelisch
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
26
|
Kwak JH, Kim S, Yu NK, Seo H, Choi JE, Kim JI, Choi DI, Kim MW, Kwak C, Lee K, Kaang BK. Loss of the neuronal genome organizer and transcription factor CTCF induces neuronal death and reactive gliosis in the anterior cingulate cortex. GENES BRAIN AND BEHAVIOR 2020; 20:e12701. [PMID: 32909350 DOI: 10.1111/gbb.12701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
CCCTC-binding factor (CTCF) is a genome organizer that regulates gene expression through transcription and chromatin structure regulation. CTCF also plays an important role during the developmental and adult stages. Cell-specific CTCF deletion studies have shown that a reduction in CTCF expression leads to the development of distinct clinical features and cognitive disorders. Therefore, we knocked out Ctcf (CTCF cKO) in the excitatory neurons of the forebrain in a Camk2a-Cre mouse strain to examine the role of CTCF in cell death and gliosis in the cortex. CTCF cKO mice were viable, but they demonstrated an age-dependent increase in reactive gliosis of astrocytes and microglia in the anterior cingulate cortex (ACC) from 16 weeks of age prior to neuronal loss observed at over 20 weeks of age. Consistent with these data, qRT-PCR analysis of the CTCF cKO ACC revealed changes in the expression of inflammation-related genes (Hspa1a, Prokr2 and Itga8) linked to gliosis and neuronal death. Our results suggest that prolonged Ctcf gene deficiency in excitatory neurons results in neuronal cell death and gliosis, possibly through functional changes in inflammation-related genes.
Collapse
Affiliation(s)
- Ji-Hye Kwak
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Somi Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Nam-Kyung Yu
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Hyunhyo Seo
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ja Eun Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Il Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Dong Il Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Myung Won Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Chuljung Kwak
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon. Neuron 2020; 107:1180-1196.e8. [PMID: 32710818 DOI: 10.1016/j.neuron.2020.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/29/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
Continuous neuronal survival is vital for mammals because mammalian brains have limited regeneration capability. After neurogenesis, suppression of apoptosis is needed to ensure a neuron's long-term survival. Here we describe a robust genetic program that intrinsically attenuates apoptosis competence in neurons. Developmental downregulation of the splicing regulator PTBP1 in immature neurons allows neural-specific splicing of the evolutionarily conserved Bak1 microexon 5. Exon 5 inclusion triggers nonsense-mediated mRNA decay (NMD) and unproductive translation of Bak1 transcripts (N-Bak mRNA), leading to suppression of pro-apoptotic BAK1 proteins and allowing neurons to reduce apoptosis. Germline heterozygous ablation of exon 5 increases BAK1 proteins exclusively in the brain, inflates neuronal apoptosis, and leads to early postnatal mortality. Therefore, neural-specific exon 5 splicing and depletion of BAK1 proteins uniquely repress neuronal apoptosis. Although apoptosis is important for development, attenuation of apoptosis competence through neural-specific splicing of the Bak1 microexon is essential for neuronal and animal survival.
Collapse
|
28
|
Doll JR, Hoebe K, Thompson RL, Sawtell NM. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog 2020; 16:e1008296. [PMID: 32134994 PMCID: PMC7058292 DOI: 10.1371/journal.ppat.1008296] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
A fundamental question in herpes simplex virus (HSV) pathogenesis is the consequence of viral reactivation to the neuron. Evidence supporting both post-reactivation survival and demise is published. The exceedingly rare nature of this event at the neuronal level in the sensory ganglion has limited direct examination of this important question. In this study, an in-depth in vivo analysis of the resolution of reactivation was undertaken. Latently infected C57BL/6 mice were induced to reactivate in vivo by hyperthermic stress. Infectious virus was detected in a high percentage (60-80%) of the trigeminal ganglia from these mice at 20 hours post-reactivation stimulus, but declined by 48 hours post-stimulus (0-13%). With increasing time post-reactivation stimulus, the percentage of reactivating neurons surrounded by a cellular cuff increased, which correlated with a decrease in detectable infectious virus and number of viral protein positive neurons. Importantly, in addition to intact viral protein positive neurons, fragmented viral protein positive neurons morphologically consistent with apoptotic bodies and containing cleaved caspase-3 were detected. The frequency of this phenotype increased through time post-reactivation. These fragmented neurons were surrounded by Iba1+ cells, consistent with phagocytic removal of dead neurons. Evidence of neuronal destruction post-reactivation prompted re-examination of the previously reported non-cytolytic role of T cells in controlling reactivation. Latently infected mice were treated with anti-CD4/CD8 antibodies prior to induced reactivation. Neither infectious virus titers nor neuronal fragmentation were altered. In contrast, when viral DNA replication was blocked during reactivation, fragmentation was not observed even though viral proteins were expressed. Our data demonstrate that at least a portion of reactivating neurons are destroyed. Although no evidence for direct T cell mediated antigen recognition in this process was apparent, inhibition of viral DNA replication blocked neuronal fragmentation. These unexpected findings raise new questions about the resolution of HSV reactivation in the host nervous system.
Collapse
Affiliation(s)
- Jessica R. Doll
- Department of Molecular Genetics, Biochemistry, and Microbiology,University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Kasper Hoebe
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Richard L. Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology,University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Nancy M. Sawtell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
29
|
Korshunova I, Rhein S, García-González D, Stölting I, Pfisterer U, Barta A, Dmytriyeva O, Kirkeby A, Schwaninger M, Khodosevich K. Genetic modification increases the survival and the neuroregenerative properties of transplanted neural stem cells. JCI Insight 2020; 5:126268. [PMID: 31999645 DOI: 10.1172/jci.insight.126268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell therapy raises hopes high for better treatment of brain disorders. However, the majority of transplanted cells often die soon after transplantation, and those that survive initially continue to die in the subacute phase, diminishing the impact of transplantations. In this study, we genetically modified transplanted human neural stem cells (hNSCs), from 2 distant embryonic stem cell lines (H9 and RC17), to express 1 of 4 prosurvival factors - Hif1a, Akt1, Bcl-2, or Bcl-xl - and studied how these modifications improve short- and long-term survival of transplanted hNSCs. All genetic modifications dramatically increased survival of the transplanted hNSCs. Importantly, 3 out of 4 modifications also enhanced the exit of hNSCs from the cell cycle, thus avoiding aberrant growth of the transplants. Bcl-xl expression provided the strongest protection of transplanted cells, reducing both immediate and delayed cell death, and stimulated hNSC differentiation toward neuronal and oligodendroglial lineages. By designing hNSCs with drug-controlled expression of Bcl-xl, we demonstrated that short-term expression of a prosurvival factor can ensure the long-term survival of transplanted cells. Importantly, transplantation of Bcl-xl-expressing hNSCs into mice suffering from stroke improved behavioral outcome and recovery of motor activity in mice.
Collapse
Affiliation(s)
- Irina Korshunova
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ulrich Pfisterer
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anna Barta
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Department of Biomedical Sciences.,Novo Nordisk Foundation Center for Basic Metabolic Research, and
| | - Agnete Kirkeby
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Experimental Medical Science and Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
30
|
Pardo E, Barake F, Godoy JA, Oyanadel C, Espinoza S, Metz C, Retamal C, Massardo L, Tapia-Rojas C, Inestrosa NC, Soza A, González A. GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Mol Neurobiol 2019; 56:7774-7788. [PMID: 31119556 DOI: 10.1007/s12035-019-1621-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Galectin-8 (Gal-8) is a glycan-binding protein that modulates a variety of cellular processes interacting with cell surface glycoproteins. Neutralizing anti-Gal-8 antibodies that block Gal-8 functions have been described in autoimmune and inflammatory disorders, likely playing pathogenic roles. In the brain, Gal-8 is highly expressed in the choroid plexus and accordingly has been detected in human cerebrospinal fluid. It protects against central nervous system autoimmune damage through its immune-suppressive potential. Whether Gal-8 plays a direct role upon neurons remains unknown. Here, we show that Gal-8 protects hippocampal neurons in primary culture against damaging conditions such as nutrient deprivation, glutamate-induced excitotoxicity, hydrogen peroxide (H2O2)-induced oxidative stress, and β-amyloid oligomers (Aβo). This protective action is manifested even after 2 h of exposure to the harmful condition. Pull-down assays demonstrate binding of Gal-8 to selected β1-integrins, including α3 and α5β1. Furthermore, Gal-8 activates β1-integrins, ERK1/2, and PI3K/AKT signaling pathways that mediate neuroprotection. Hippocampal neurons in primary culture produce and secrete Gal-8, and their survival decreases upon incubation with human function-blocking Gal-8 autoantibodies obtained from lupus patients. Despite the low levels of Gal-8 expression detected by real-time PCR in hippocampus, compared with other brain regions, the complete lack of Gal-8 in Gal-8 KO mice determines higher levels of apoptosis upon H2O2 stereotaxic injection in this region. Therefore, endogenous Gal-8 likely contributes to generate a neuroprotective environment in the brain, which might be eventually counteracted by human function-blocking autoantibodies.
Collapse
Affiliation(s)
- Evelyn Pardo
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca Barake
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Sofía Espinoza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Loreto Massardo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Center of Excellence in Biomedicine of Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Andrea Soza
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Alfonso González
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
31
|
Wiberg R, Novikova LN, Kingham PJ. Evaluation of apoptotic pathways in dorsal root ganglion neurons following peripheral nerve injury. Neuroreport 2019; 29:779-785. [PMID: 29659443 DOI: 10.1097/wnr.0000000000001031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral nerve injuries induce significant sensory neuronal cell death in the dorsal root ganglia (DRG); however, the role of specific apoptotic pathways is still unclear. In this study, we performed peripheral nerve transection on adult rats, after which the corresponding DRGs were harvested at 7, 14, and 28 days after injury for subsequent molecular analyses with quantitative reverse transcription-PCR, western blotting, and immunohistochemistry. Nerve injury led to increased levels of caspase-3 mRNA and active caspase-3 protein in the DRG. Increased expression of caspase-8, caspase-12, caspase-7, and calpain suggested that both the extrinsic and the endoplasmic reticulum (ER) stress-mediated apoptotic pathways were activated. Phosphorylation of protein kinase R-like ER kinase further implied the involvement of ER-stress in the DRG. Phosphorylated protein kinase R-like ER kinase was most commonly associated with isolectin B4 (IB4)-positive neurons in the DRG and this may provide an explanation for the increased susceptibility of these neurons to die following nerve injury, likely in part because of an activation of the ER-stress response.
Collapse
Affiliation(s)
- Rebecca Wiberg
- Department of Integrative Medical Biology, Section of Anatomy.,Department of Surgical & Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | | | - Paul J Kingham
- Department of Integrative Medical Biology, Section of Anatomy
| |
Collapse
|
32
|
|
33
|
Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME. Dental pulp stem cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World J Stomatol 2019; 7:1-19. [DOI: 10.5321/wjs.v7.i1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration of peripheral nerves comprises complicated steps involving a set of cellular and molecular events in distal nerve stumps with axonal sprouting and remyelination. Stem cell isolation and expansion for peripheral nerve repair (PNR) can be achieved using a wide diversity of prenatal and adult tissues, such as bone marrow or brain tissues. The ability to obtain stem cells for cell-based therapy (CBT) is limited due to donor site morbidity and the invasive nature of the harvesting process. Dental pulp stem cells (DPSCs) can be relatively and simply isolated from the dental pulps of permanent teeth, extracted for surgical or orthodontic reasons. DPSCs are of neural crest origin with an outstanding ability to differentiate into multiple cell lineages. They have better potential to differentiate into neural and glial cells than other stem cell sources through the expression and secretion of certain markers and a range of neurotropic factors; thus, they should be considered a good choice for PNR using CBT. In addition, these cells have paracrine effects through the secretion of neurotrophic growth factors and extracellular vesicles, which can enhance axonal growth and remyelination by decreasing the number of dying cells and activating local inhabitant stem cell populations, thereby revitalizing dormant or blocked cells, modulating the immune system and regulating inflammatory responses. The use of DPSC-derived secretomes holds great promise for controllable and manageable therapy for peripheral nerve injury. In this review, up-to-date information about the neurotrophic and neurogenic properties of DPSCs and their secretomes is provided.
Collapse
Affiliation(s)
- Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Laila E Amin
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, United Kingdom
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
34
|
Zuo W, Yan F, Zhang B, Hu X, Mei D. Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment. Eur J Pharmacol 2018; 830:128-138. [PMID: 29626425 DOI: 10.1016/j.ejphar.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Cerebral ischemia causes blood-brain barrier (BBB) injury and thus increases the risk of complications secondary to thrombolysis, which limited its clinical application. This study aims to clarify the role and mechanism of salidroside (SALD) in alleviating brain ischemic injury and whether pretreatment of it could improve prognosis of delayed treatment of tissue plasminogen activator (t-PA). Rats were subjected to 3 h of middle cerebral artery occlusion (MCAO) and were intraperitoneally administered with 10, 20 or 40 mg/kg SALD before ischemia. 1.5% 5-triphenyl-2H-tetrazolium chloride (TTC) staining and neurological studies were performed to observe the effectiveness of SALD. The expressions and the distribution of phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling were analyzed. Experiments were further conducted in isolated microvessels and human brain microvascular endothelial cells (HBMECs) to explore the protective mechanism of SALD. Finally, rats were subjected to 6 h of MCAO and 24 h of reperfusion. tPA was given with or without the pretreatment of SALD. Various approaches including gelatin zymography, western blot and immunofluorescence were used to evaluate the effect of this combination therapy. SALD could reduce cerebral ischemic injury and enhance HBMECs viability subjected to OGD. In vivo and in vitro studies showed the mechanism might be related to the activation of PI3K/Akt signaling by phosphorylating Akt on Ser473. Pretreatment of SALD could alleviate BBB injury and improve the outcome of delayed treatment of tPA. These results provide evidence that SALD might be an effective adjuvant to reduce the complications induced by delayed tPA treatment for brain ischemia.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Feng Yan
- Center for Brain Disorders Research, Capital Mexical University, PR China; Beijing Institute for Brain Disorders, PR China; Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaomin Hu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
35
|
Cheon S, Dean M, Chahrour M. The ubiquitin proteasome pathway in neuropsychiatric disorders. Neurobiol Learn Mem 2018; 165:106791. [PMID: 29398581 DOI: 10.1016/j.nlm.2018.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved pathway that tightly regulates protein turnover in cells. This process is integral to neuronal development, differentiation, and function. Several members of the UPS are disrupted in neuropsychiatric disorders, highlighting the importance of this pathway in brain development and function. In this review, we discuss some of these pathway members, the molecular processes they regulate, and the potential for targeting the UPS in an effort to develop therapeutic strategies in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solmi Cheon
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan Dean
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Neuroscience and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway. Mol Cell Biochem 2017; 445:45-58. [DOI: 10.1007/s11010-017-3250-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 01/02/2023]
|
37
|
Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol 2017; 101:13-36. [PMID: 29129736 DOI: 10.1016/j.exger.2017.10.029] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
Aging is a phenomenon that all living organisms inevitably face. Every year, 9.9million people, globally, suffer from dementia, an indicator of the aging brain. Brain aging is significantly associated with mitochondrial dysfunction. This is characterized by a decrease in the activity of respiratory chain enzymes and ATP production, and increased free radical generation, mitochondrial deoxyribonucleic acid (DNA) mutations, and impaired mitochondrial structures. To get a better understanding of aging and to prevent its effects on many organs, chronic systemic administration of D-galactose was used to artificially create brain senescence in animal models and established to be beneficial for studies of anti-aging therapeutic interventions. Several studies have shown that D-galactose-induced brain aging which does so not only by causing mitochondrial dysfunction, but also by increasing oxidative stress, inflammation, and apoptosis, as well as lowering brain-derived neurotrophic factors. All of these defects finally lead to cognitive decline. Various therapeutic approaches which act on mitochondria and cognition were evaluated to assess their effectiveness in the battle to reverse brain aging. The aim of this article is to comprehensively summarize and discuss the underlying mechanisms involved in D-galactose-induced brain aging, particularly as regards alterations in brain mitochondria and cognitive function. In addition, the aim is to summarize the different therapeutic approaches which have been utilized to address D-galactose-induced brain aging.
Collapse
|
38
|
Wehner AB, Abdesselem H, Dickendesher TL, Imai F, Yoshida Y, Giger RJ, Pierchala BA. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons. Development 2017; 143:1560-70. [PMID: 27143756 DOI: 10.1242/dev.134627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as 'competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death.
Collapse
Affiliation(s)
- Amanda B Wehner
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Houari Abdesselem
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Travis L Dickendesher
- Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Fumiyasu Imai
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45299, USA
| | - Roman J Giger
- Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis 2017; 8:e2643. [PMID: 28252642 PMCID: PMC5386560 DOI: 10.1038/cddis.2017.64] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Uzdensky A, Berezhnaya E, Khaitin A, Kovaleva V, Komandirov M, Neginskaya M, Rudkovskii M, Sharifulina S. Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Mol Neurobiol 2016; 52:811-25. [PMID: 26063591 DOI: 10.1007/s12035-015-9237-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress is the reason of diverse neuropathological processes. Photodynamic therapy (PDT), an effective inducer of oxidative stress, is used for cancer treatment, including brain tumors. We studied the role of various signaling pathways in photodynamic injury and protection of single neurons and satellite glial cells in the isolated crayfish mechanoreceptor. It was photosensitized with alumophthalocyanine Photosens in the presence of inhibitors or activators of various signaling proteins. PDT eliminated neuronal activity and killed neurons and glial cells. Inhibitory analysis showed the involvement of protein kinases Akt, glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinases 1 and 2 (MEK1/2), calmodulin, calmodulin-dependent kinase II (CaMKII), adenylate cyclase, and nuclear factor NF-κB in PDT-induced necrosis of neurons. Nitric oxide (NO) and glial cell-derived neurotrophic factor (GDNF) reduced neuronal necrosis. In glial cells, protein kinases Akt, calmodulin, and CaMKII; protein kinases C and G, adenylate cyclase, and p38; and nuclear transcription factor NF-κB also mediated PDT-induced necrosis. In contrast, NO and neurotrophic factors nerve growth factor (NGF) and GDNF demonstrated anti-necrotic activity. Phospholipase Cγ, protein kinase C, GSK-3β, mTOR, NF-κB, mitochondrial permeability transition pores, and NO synthase mediated PDT-induced apoptosis of glial cells, whereas protein kinase A, tyrosine phosphatases, and neurotrophic factors NGF, GDNF, and neurturin were involved in protecting glial cells from photoinduced apoptosis. Signaling pathways that control cell survival and death differed in neurons and glia. Inhibitors or activators of some signaling pathways may be used as potential protectors of neurons and glia from photooxidative stress and following death.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cioato SG, Medeiros LF, Marques Filho PR, Vercelino R, de Souza A, Scarabelot VL, de Oliveira C, Adachi LNS, Fregni F, Caumo W, Torres IL. Long-Lasting Effect of Transcranial Direct Current Stimulation in the Reversal of Hyperalgesia and Cytokine Alterations Induced by the Neuropathic Pain Model. Brain Stimul 2016; 9:209-17. [DOI: 10.1016/j.brs.2015.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 11/05/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022] Open
|
42
|
Völgyi K, Háden K, Kis V, Gulyássy P, Badics K, Györffy BA, Simor A, Szabó Z, Janáky T, Drahos L, Dobolyi Á, Penke B, Juhász G, Kékesi KA. Mitochondrial Proteome Changes Correlating with β-Amyloid Accumulation. Mol Neurobiol 2016; 54:2060-2078. [PMID: 26910821 DOI: 10.1007/s12035-015-9682-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of β-amyloid (Aβ) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aβ progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aβ accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aβ-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aβ accumulation as a prodromal stage of human AD.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary.
| | - Krisztina Háden
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Balázs András Györffy
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP B Neuroimmunology Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Szabó
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Botond Penke
- Medical Chemistry Department, University of Szeged, Szeged, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- MTA-TTK NAP B MS Neuroproteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
43
|
Jeong JH, Noh MY, Choi JH, Lee H, Kim SH. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H 2O 2-induced oxidative stress in rat cortical neurons. Exp Ther Med 2016; 11:1201-1210. [PMID: 27073423 PMCID: PMC4812428 DOI: 10.3892/etm.2016.3056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 08/12/2015] [Indexed: 12/27/2022] Open
Abstract
Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H2O2)-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H2O2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H2O2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c, apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H2O2, and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H2O2-induced cell death by reducing oxidative stress, enhancing survival signaling, and inhibiting death signals.
Collapse
Affiliation(s)
- Jong Hee Jeong
- Department of Convergences Nanoscience, College of Natural Science, Hanyang University, Seoul 133791, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 133791, Republic of Korea
| | - Jae-Hyeok Choi
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553, Republic of Singapore
| | - Haiwon Lee
- Department of Convergences Nanoscience, College of Natural Science, Hanyang University, Seoul 133791, Republic of Korea; Department of Chemistry, College of Natural Science, Hanyang University, Seoul 133070, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 133791, Republic of Korea
| |
Collapse
|
44
|
Jaeger A, Fröhlich M, Klum S, Lantow M, Viergutz T, Weiss DG, Kriehuber R. Characterization of Apoptosis Signaling Cascades During the Differentiation Process of Human Neural ReNcell VM Progenitor Cells In Vitro. Cell Mol Neurobiol 2015; 35:1203-16. [PMID: 26022602 DOI: 10.1007/s10571-015-0213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is an essential physiological process accompanying the development of the central nervous system and human neurogenesis. However, the time scale and the underlying molecular mechanisms are yet poorly understood. Due to this fact, we investigated the functionality and general inducibility of apoptosis in the human neural ReNcell VM progenitor cell line during differentiation and also after exposure to staurosporine (STS) and ultraviolet B (UVB) irradiation. Transmission light microscopy, flow cytometry, and Western-/Immunoblot analysis were performed to compare proliferating and differentiating, in addition to STS- and UVB-treated cells. In particular, from 24 to 72 h post-initiation of differentiation, G0/G1 cell cycle arrest, increased loss of apoptotic cells, activation of pro-apoptotic BAX, Caspase-3, and cleavage of its substrate PARP were observed during cell differentiation and, to a higher extent, after treatment with STS and UVB. We conclude that redundant or defective cells are eliminated by apoptosis, while otherwise fully differentiated cells were less responsive to apoptosis induction by STS than proliferating cells, likely as a result of reduced APAF-1 expression, and increased levels of BCL-2. These data provide the evidence that apoptotic mechanisms in the neural ReNcell VM progenitor cell line are not only functional, but also inducible by external stimuli like growth factor withdrawal or treatment with STS and UVB, which marks this cell line as a suitable model to investigate apoptosis signaling pathways in respect to the differentiation processes of human neural progenitor cells in vitro.
Collapse
Affiliation(s)
- Alexandra Jaeger
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Michael Fröhlich
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Susanne Klum
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Margareta Lantow
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Torsten Viergutz
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dieter G Weiss
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Ralf Kriehuber
- Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.
- Department of Safety and Radiation Protection, Radiation Biology Unit (S-US), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
45
|
Abstract
Cancer and its treatment exert a heavy psychological and physical toll. Of the myriad symptoms which result, pain is common, encountered in between 30% and 60% of cancer survivors. Pain in cancer survivors is a major and growing problem, impeding the recovery and rehabilitation of patients who have beaten cancer and negatively impacting on cancer patients' quality of life, work prospects and mental health. Persistent pain in cancer survivors remains challenging to treat successfully. Pain can arise both due to the underlying disease and the various treatments the patient has been subjected to. Chemotherapy causes painful chemotherapy-induced peripheral neuropathy (CIPN), radiotherapy can produce late effect radiation toxicity and surgery may lead to the development of persistent post-surgical pain syndromes. This review explores a selection of the common causes of persistent pain in cancer survivors, detailing our current understanding of the pathophysiology and outlining both the clinical manifestations of individual pain states and the treatment options available.
Collapse
Affiliation(s)
- Matthew Rd Brown
- Pain Management Department, The Royal Marsden Hospital, London, UK ; Institute of Cancer Research, London, UK
| | - Juan D Ramirez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
46
|
Safari R, Tunca Z, Ozerdem A, Ceylan D, Yazicioglu CE, Sakizli M. New alterations at potentially regulated regions of the Glial Derived Neurotrophic Factor gene in bipolar disorder. J Affect Disord 2015; 167:244-50. [PMID: 24997227 DOI: 10.1016/j.jad.2014.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glial Derived Neurotrophic Factor (GDNF) plays an important role in the survival and differentiation of neurons. We examined 5'upstream and 3' untranslated region of the GDNF gene by PCR amplification and direct sequencing to explore the effect of alteration in the potentially regulated part of GDNF in bipolar disorder. MATERIALS AND METHODS Sixty-six patients with bipolar disorder, 27 first degree relatives of these patients and 56 healthy volunteers were screened for mutations and polymorphisms in GDNF gene. RESULTS Seven previously reported polymorphisms and additional three novel allele variants of GDNF were detected. Association test of rs2075680 C>A SNP showed significant difference between patients and healthy subjects with higher allele frequency in healthy subjects performing Chi-square test. However, there was no significant difference after multiple test corrections between groups. There were no significant differences in association test of rs2075680 C>A SNP between first degree relatives and healthy volunteers/patients. rs142426358 T>C SNP was seen only in one patient with an early age of illness onset. New T>A alterations were found in chromosome locations 5:37812784 and 5:37812782 in two male bipolar disorder patients with age of illness onset 12 and 24 years. LIMITATIONS The sample size was relatively small. DISCUSSION Our study proposes the suggestive association between polymorphisms in the potential regulatory sites of GDNF and bipolar disorder.
Collapse
Affiliation(s)
- Roghaiyeh Safari
- Department of Molecular Medicine, Dokuz Eylul University, Faculty of Medicine and Institute of Health Sciences, Inciralti, Izmir, Turkey.
| | - Zeliha Tunca
- Department of Psychiatry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Aysegul Ozerdem
- Department of Psychiatry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey; Department of Neuroscience, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Deniz Ceylan
- Department of Psychiatry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Cigdem Eresen Yazicioglu
- Department of Medical Biology and Genetics, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Meral Sakizli
- Department of Medical Biology and Genetics, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
47
|
Wang ZY, Shi SY, Li SJ, Chen F, Chen H, Lin HZ, Lin JM. Efficacy and Safety of Duloxetine on Osteoarthritis Knee Pain: A Meta-Analysis of Randomized Controlled Trials. PAIN MEDICINE 2015; 16:1373-85. [PMID: 26176791 DOI: 10.1111/pme.12800] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 01/06/2015] [Accepted: 03/29/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Zhao Yu Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics; Guangdong Pharmaceutical University; Guangzhou 510006 China
| | - Sheng Ying Shi
- Department of Pharmacy; Zhujiang Hospital, Southern Medical University; Guangzhou 510282 China
| | - Shu Jie Li
- Department of Pharmacy; Zhujiang Hospital, Southern Medical University; Guangzhou 510282 China
| | - Feng Chen
- Department of Pharmacy; Yue Bei People's Hospital, Shantou University; Shaoguan 512026 China
| | - Huang Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics; Guangdong Pharmaceutical University; Guangzhou 510006 China
| | - Hai Zhen Lin
- Department of Pharmacy; Zhujiang Hospital, Southern Medical University; Guangzhou 510282 China
| | - Jing Ming Lin
- Pharmaceutical Research & Development, Zhujiang Hospital, Southern Medical University; Guangzhou 510282 China
| |
Collapse
|
48
|
Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207:40-58. [PMID: 25841699 DOI: 10.1016/j.jconrel.2015.03.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Collapse
|
49
|
Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q. Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol Neurobiol 2015; 53:1637-1647. [PMID: 25680637 DOI: 10.1007/s12035-015-9122-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/01/2015] [Indexed: 01/07/2023]
Abstract
Neuronal nuclei (NeuN) is a well-recognized "marker" that is detected exclusively in post-mitotic neurons and was initially identified through an immunological screen to produce neuron-specific antibodies. Immunostaining evidence indicates that NeuN is distributed in the nuclei of mature neurons in nearly all parts of the vertebrate nervous system. NeuN is highly conserved among species and is stably expressed during specific stages of development. Therefore, NeuN has been considered to be a reliable marker of mature neurons for the past two decades. However, this role has been challenged by recent studies indicating that NeuN staining is variable and even absent during certain diseases and specific physiological states. More importantly, despite the widespread use of the anti-NeuN antibody, the natural identity of the NeuN protein remained elusive for 17 years. NeuN was recently eventually identified as an epitope of Rbfox3, which is a novel member of the Rbfox1 family of splicing factors. This identification might provide a novel perspective on NeuN expression during both physiological and pathological conditions. This review summarizes the current progress on the biochemical identity and biological significance of NeuN and recommends caution when applying NeuN immunoreactivity as a definitive marker of mature neurons in certain diseases and specific physiological states.
Collapse
Affiliation(s)
- Wei Duan
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yu-Ping Zhang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Zhi Hou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - He Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| | - Qing Yin
- Department of Rehabilitation and Physical Therapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
50
|
Carriba P, Jimenez S, Navarro V, Moreno-Gonzalez I, Barneda-Zahonero B, Moubarak RS, Lopez-Soriano J, Gutierrez A, Vitorica J, Comella JX. Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell Death Dis 2015; 6:e1639. [PMID: 25675299 PMCID: PMC4669818 DOI: 10.1038/cddis.2015.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cells.
Collapse
Affiliation(s)
- P Carriba
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - S Jimenez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - V Navarro
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - I Moreno-Gonzalez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - B Barneda-Zahonero
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - R S Moubarak
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J Lopez-Soriano
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - A Gutierrez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - J Vitorica
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - J X Comella
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|