1
|
Kandemir B, Kurnaz IA. The Role of Pea3 Transcription Factor Subfamily in the Nervous System. Mol Neurobiol 2024:10.1007/s12035-024-04432-w. [PMID: 39269548 DOI: 10.1007/s12035-024-04432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
ETS domain transcription factor superfamily is highly conserved throughout metazoa and is involved in many aspects of development and tissue morphogenesis, and as such, the deregulation of ETS proteins is quite common in many diseases, including cancer. The PEA3 subfamily in particular has been extensively studied with respect to tumorigenesis and metastasis; however, they are also involved in the development of many tissues with branching morphogenesis, such as lung or kidney development. In this review, we aim to summarize findings from various studies on the role of Pea3 subfamily members in nervous system development in the embryo, as well as their functions in the adult neurons. We further discuss the different signals that were shown to regulate the function of the Pea3 family and indicate how this signal-dependent regulation of Pea3 proteins can generate neuronal circuit specificity through unique gene regulation. Finally, we discuss how these developmental roles of Pea3 proteins relate to their role in tumorigenesis.
Collapse
Affiliation(s)
- Basak Kandemir
- Department of Molecular Biology and Genetics, Baskent University, 06790, Etimesgut, Ankara, Turkey
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Isil Aksan Kurnaz
- Department of Molecular Biology and Genetics, Molecular Neurobiology Laboratory (AxanLab), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Chitre K, Kairamkonda S, Dwivedi MK, Yadav S, Kumar V, Sikdar SK, Nongthomba U. Beadex, the Drosophila LIM only protein, is required for the growth of the larval neuromuscular junction. J Neurophysiol 2024; 132:418-432. [PMID: 38838299 DOI: 10.1152/jn.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
The appropriate growth of the neurons, accurate organization of their synapses, and successful neurotransmission are indispensable for sensorimotor activities. These processes are highly dynamic and tightly regulated. Extensive genetic, molecular, physiological, and behavioral studies have identified many molecular candidates and investigated their roles in various neuromuscular processes. In this article, we show that Beadex (Bx), the Drosophila LIM only (LMO) protein, is required for motor activities and neuromuscular growth of Drosophila. The larvae bearing Bx7, a null allele of Bx, and the RNAi-mediated neuronal-specific knockdown of Bx show drastically reduced crawling behavior, a diminished synaptic span of the neuromuscular junctions (NMJs) and an increased spontaneous neuronal firing with altered motor patterns in the central pattern generators (CPGs). Microarray studies identified multiple targets of Beadex that are involved in different cellular and molecular pathways, including those associated with the cytoskeleton and mitochondria that could be responsible for the observed neuromuscular defects. With genetic interaction studies, we further show that Highwire (Hiw), a negative regulator of synaptic growth at the NMJs, negatively regulates Bx, as the latter's deficiency was able to rescue the phenotype of the Hiw null mutant, HiwDN. Thus, our data indicate that Beadex functions downstream of Hiw to regulate the larval synaptic growth and physiology.NEW & NOTEWORTHY A novel role for Beadex (Bx) regulates the larval neuromuscular junction (NMJ) structure and function in a tissue-specific manner. Bx is expressed in a subset of Toll-6-expressing neurons and is involved in regulating synaptic span and physiology, possibly through its negative interaction with Highwire (Hiw). The findings of this study provide insights into the molecular mechanisms underlying NMJ development and function and warrant further investigation to understand the role of Bx in these processes fully.
Collapse
Affiliation(s)
- Kripa Chitre
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| | - Subhash Kairamkonda
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Saumitra Yadav
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Sujit K Sikdar
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, India
| | - Upendra Nongthomba
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
3
|
Sarnat HB, Yu W. Keratan sulfate proteoglycan: putative template for neuroblast migratory and axonal fascicular pathways and fetal expression in globus pallidus, thalamus, and olfactory bulb. J Neuropathol Exp Neurol 2024:nlae057. [PMID: 38950418 DOI: 10.1093/jnen/nlae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Keratan sulfate (KS) is a proteoglycan secreted in the fetal brain astrocytes and radial glia into extracellular parenchyma as granulofilamentous deposits. KS surrounds neurons except dendritic spines, repelling glutamatergic and facilitating GABAergic axons. The same genes are expressed in both neuroblast migration and axonal growth. This study examines timing of KS during morphogenesis of some normally developing human fetal forebrain structures. Twenty normal human fetal brains from 9-41 weeks gestational age were studied at autopsy. KS was examined by immunoreactivity in formalin-fixed paraffin sections, plus other markers including synaptophysin, S-100β protein, vimentin and nestin. Radial and tangential neuroblast migratory pathways from subventricular zone to cortical plate were marked by KS deposits as early as 9wk GA, shortly after neuroblast migration initiated. During later gestation this reactivity gradually diminished and disappeared by term. Long axonal fascicles of the internal capsule and short fascicles of intrinsic bundles of globus pallidus and corpus striatum also appeared as early as 9-12wk, as fascicular sleeves before axons even entered. Intense KS occurs in astrocytic cytoplasm and extracellular parenchyma at 9wk in globus pallidus, 15wk thalamus, 18wk corpus striatum, 22wk cortical plate, and hippocampus postnatally. Corpus callosum and anterior commissure do not exhibit KS at any age. Optic chiasm shows reactivity at the periphery but not around intrinsic subfasciculi. We postulate that KS forms a chemical template for many long and short axonal fascicles before axons enter and neuroblast migratory pathways at initiation of migration. Cross-immunoreactivity with aggrecan may render difficult molecular distinction.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Neuropathology, Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Departments of Paediatrics and Pathology (Neuropathology), Owerko Centre, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Weiming Yu
- Anatomical Pathology, Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Dear R, Wagstyl K, Seidlitz J, Markello RD, Arnatkevičiūtė A, Anderson KM, Bethlehem RAI, Raznahan A, Bullmore ET, Vértes PE. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia. Nat Neurosci 2024; 27:1075-1086. [PMID: 38649755 PMCID: PMC11156586 DOI: 10.1038/s41593-024-01624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.
Collapse
Affiliation(s)
- Richard Dear
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | | | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | | | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Sharma G, Banerjee S. Activity-regulated E3 ubiquitin ligase TRIM47 modulates excitatory synapse development. Front Mol Neurosci 2022; 15:943980. [PMID: 36211980 PMCID: PMC9532517 DOI: 10.3389/fnmol.2022.943980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) has been shown to regulate neuronal development and synapse formation. Activity-dependent regulation of E3 ligase, a component of the UPS that targets specific proteins for proteasome-mediated degradation, is emerging as a pivotal player for the establishment of functional synapses. Here, we identified TRIM47 as a developmentally regulated E3 ligase that is expressed in rat hippocampus during the temporal window of synapse formation. We have demonstrated that the expression of TRIM47 is regulated by the glutamate-induced synaptic activity of hippocampal neurons in culture. In addition, the activity-dependent enhancement of TRIM47 expression is recapitulated following the object location test, a hippocampus-dependent spatial memory paradigm. We observed that this enhancement of TRIM47 expression requires NMDA receptor activation. The knockdown of TRIM47 leads to an enhancement of spine density without affecting dendritic complexity. Furthermore, we observed an increase in excitatory synapse development upon loss of TRIM47 function. Comprehensively, our study identified an activity-regulated E3 ligase that drives excitatory synapse formation in hippocampal neurons.
Collapse
|
6
|
Seng C, Luo W, Földy C. Circuit formation in the adult brain. Eur J Neurosci 2022; 56:4187-4213. [PMID: 35724981 PMCID: PMC9546018 DOI: 10.1111/ejn.15742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult‐brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult‐brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.
Collapse
Affiliation(s)
- Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| |
Collapse
|
7
|
Zhang XL, Spencer WC, Tabuchi N, Kitt MM, Deneris ES. Reorganization of postmitotic neuronal chromatin accessibility for maturation of serotonergic identity. eLife 2022; 11:e75970. [PMID: 35471146 PMCID: PMC9098219 DOI: 10.7554/elife.75970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
Assembly of transcriptomes encoding unique neuronal identities requires selective accessibility of transcription factors to cis-regulatory sequences in nucleosome-embedded postmitotic chromatin. Yet, the mechanisms controlling postmitotic neuronal chromatin accessibility are poorly understood. Here, we show that unique distal enhancers define the Pet1 neuron lineage that generates serotonin (5-HT) neurons in mice. Heterogeneous single-cell chromatin landscapes are established early in postmitotic Pet1 neurons and reveal the putative regulatory programs driving Pet1 neuron subtype identities. Distal enhancer accessibility is highly dynamic as Pet1 neurons mature, suggesting the existence of regulatory factors that reorganize postmitotic neuronal chromatin. We find that Pet1 and Lmx1b control chromatin accessibility to select Pet1-lineage-specific enhancers for 5-HT neurotransmission. Additionally, these factors are required to maintain chromatin accessibility during early maturation suggesting that postmitotic neuronal open chromatin is unstable and requires continuous regulatory input. Together, our findings reveal postmitotic transcription factors that reorganize accessible chromatin for neuron specialization.
Collapse
Affiliation(s)
- Xinrui L Zhang
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - William C Spencer
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Nobuko Tabuchi
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Meagan M Kitt
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| | - Evan S Deneris
- Department of Neurosciences, Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
8
|
Herbst WA, Deng W, Wohlschlegel JA, Achiro JM, Martin KC. Neuronal activity regulates the nuclear proteome to promote activity-dependent transcription. J Cell Biol 2021; 220:e202103087. [PMID: 34617965 PMCID: PMC8504181 DOI: 10.1083/jcb.202103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.
Collapse
Affiliation(s)
- Wendy A. Herbst
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Weixian Deng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M. Achiro
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Kelsey C. Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Sousa E, Flames N. Transcriptional regulation of neuronal identity. Eur J Neurosci 2021; 55:645-660. [PMID: 34862697 PMCID: PMC9306894 DOI: 10.1111/ejn.15551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Neuronal diversity is an intrinsic feature of the nervous system. Transcription factors (TFs) are key regulators in the establishment of different neuronal identities; how are the actions of different TFs coordinated to orchestrate this diversity? Are there common features shared among the different neuron types of an organism or even among different animal groups? In this review, we provide a brief overview on common traits emerging on the transcriptional regulation of neuron type diversification with a special focus on the comparison between mouse and Caenorhabditis elegans model systems. In the first part, we describe general concepts on neuronal identity and transcriptional regulation of gene expression. In the second part of the review, TFs are classified in different categories according to their key roles at specific steps along the protracted process of neuronal specification and differentiation. The same TF categories can be identified both in mammals and nematodes. Importantly, TFs are very pleiotropic: Depending on the neuron type or the time in development, the same TF can fulfil functions belonging to different categories. Finally, we describe the key role of transcriptional repression at all steps controlling neuronal diversity and propose that acquisition of neuronal identities could be considered a metastable process.
Collapse
Affiliation(s)
- Erick Sousa
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain
| |
Collapse
|
10
|
Wang JS, Kamath T, Mazur CM, Mirzamohammadi F, Rotter D, Hojo H, Castro CD, Tokavanich N, Patel R, Govea N, Enishi T, Wu Y, da Silva Martins J, Bruce M, Brooks DJ, Bouxsein ML, Tokarz D, Lin CP, Abdul A, Macosko EZ, Fiscaletti M, Munns CF, Ryder P, Kost-Alimova M, Byrne P, Cimini B, Fujiwara M, Kronenberg HM, Wein MN. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nat Commun 2021; 12:6271. [PMID: 34725346 PMCID: PMC8560803 DOI: 10.1038/s41467-021-26571-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates defects in osteocyte maturation in the absence of Sp7. Sp7-dependent osteocyte gene networks are associated with human skeletal diseases. Moreover, humans with a SP7R316C mutation show defective osteocyte morphology. Sp7-dependent genes that mark osteocytes are enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. These findings reveal a role for Sp7 and its target gene Osteocrin in osteocytogenesis, revealing that pathways that control osteocyte development influence human bone diseases.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tushar Kamath
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Courtney M Mazur
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fatemeh Mirzamohammadi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Wright State University, Dayton, OH, USA
| | - Daniel Rotter
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Christian D Castro
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rushi Patel
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas Govea
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Tetsuya Enishi
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Yunshu Wu
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MaA, USA
| | - Danielle Tokarz
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Saint Mary's University, Halifax, Canada
| | - Charles P Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdul Abdul
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Fiscaletti
- Pediatric Department, Sainte-Justine University Hospital Centre, Montreal, Canada
| | - Craig F Munns
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Paediatrics & Child Health, University of Sydney, Sydney, 2006, Australia
| | - Pearl Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Maria Kost-Alimova
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Patrick Byrne
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Center for the Development of Therapeutics, Cambridge, MA, USA
| | - Beth Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Imaging Platform, Cambridge, MA, USA
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
11
|
McCurdy EP, Chung KM, Benitez-Agosto CR, Hengst U. Promotion of Axon Growth by the Secreted End of a Transcription Factor. Cell Rep 2020; 29:363-377.e5. [PMID: 31597097 DOI: 10.1016/j.celrep.2019.08.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Axon growth is regulated externally by attractive and repulsive cues generated in the environment. In addition, intrinsic pathways govern axon development, although the extent to which axons themselves can influence their own growth is unknown. We find that dorsal root ganglion (DRG) axons secrete a factor supporting axon growth and identify it as the C terminus of the ER stress-induced transcription factor CREB3L2, which is generated by site 2 protease (S2P) cleavage in sensory neurons. S2P and CREB3L2 knockdown or inhibition of axonal S2P interfere with the growth of axons, and C-terminal CREB3L2 is sufficient to rescue these effects. C-terminal CREB3L2 forms a complex with Shh and stabilizes its association with the Patched-1 receptor on developing axons. Our results reveal a neuron-intrinsic pathway downstream of S2P that promotes axon growth.
Collapse
Affiliation(s)
- Ethan P McCurdy
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carlos R Benitez-Agosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
12
|
Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a. Neuroscience 2020; 434:66-82. [PMID: 32200077 DOI: 10.1016/j.neuroscience.2020.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023]
Abstract
During neural network development, growing axons read a map of guidance cues expressed in the surrounding tissue that lead the axons toward their targets. In particular, Xenopus retinal ganglion axons use the cues Slit1 and Semaphorin 3a (Sema3a) at a key guidance decision point in the mid-diencephalon in order to continue on to their midbrain target, the optic tectum. The mechanisms that control the expression of these cues, however, are poorly understood. Extrinsic Fibroblast Growth Factor (Fgf) signals are known to help coordinate the development of the brain by regulating gene expression. Here, we propose Lhx2/9 and Etv1 as potential downstream effectors of Fgf signalling to regulate slit1 and sema3a expression in the Xenopus forebrain. We find that lhx2/9 and etv1 mRNAs are expressed complementary to and within slit1/sema3a expression domains, respectively. Our data indicate that Lhx2 functions as an indirect repressor in that lhx2 overexpression within the forebrain downregulates the mRNA expression of both guidance genes, and in vitro lhx2/9 overexpression decreases the activity of slit1 and sema3a promoters. The Lhx2-VP16 constitutive activator fusion reduces sema3a promoter function, and the Lhx2-En constitutive repressor fusion increases slit1 induction. In contrast, etv1 gain of function transactivates both guidance genes in vitro and in the forebrain. Based on these data, together with our previous work, we hypothesize that Fgf signalling promotes both slit1 and sema3a expression in the forebrain through Etv1, while using Lhx2/9 to limit the extent of expression, thereby establishing the proper boundaries of guidance cue expression.
Collapse
|
13
|
Cadwell CR, Scala F, Fahey PG, Kobak D, Mulherkar S, Sinz FH, Papadopoulos S, Tan ZH, Johnsson P, Hartmanis L, Li S, Cotton RJ, Tolias KF, Sandberg R, Berens P, Jiang X, Tolias AS. Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex. eLife 2020; 9:e52951. [PMID: 32134385 PMCID: PMC7162653 DOI: 10.7554/elife.52951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Clones of excitatory neurons derived from a common progenitor have been proposed to serve as elementary information processing modules in the neocortex. To characterize the cell types and circuit diagram of clonally related excitatory neurons, we performed multi-cell patch clamp recordings and Patch-seq on neurons derived from Nestin-positive progenitors labeled by tamoxifen induction at embryonic day 10.5. The resulting clones are derived from two radial glia on average, span cortical layers 2-6, and are composed of a random sampling of transcriptomic cell types. We find an interaction between shared lineage and connection type: related neurons are more likely to be connected vertically across cortical layers, but not laterally within the same layer. These findings challenge the view that related neurons show uniformly increased connectivity and suggest that integration of vertical intra-clonal input with lateral inter-clonal input may represent a developmentally programmed connectivity motif supporting the emergence of functional circuits.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Anatomic Pathology, University of California San FranciscoSan FranciscoUnited States
| | - Federico Scala
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Fabian H Sinz
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Computer Science, University of TübingenTübingenGermany
- Interfaculty Institute for Biomedical Informatics, University of TübingenTübingenGermany
| | - Stelios Papadopoulos
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Zheng H Tan
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Per Johnsson
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Shuang Li
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Ronald J Cotton
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUnited States
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Philipp Berens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Department of Computer Science, University of TübingenTübingenGermany
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonUnited States
| | - Andreas Savas Tolias
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Electrical and Computer Engineering, Rice UniversityHoustonUnited States
| |
Collapse
|
14
|
Işıldak U, Somel M, Thornton JM, Dönertaş HM. Temporal changes in the gene expression heterogeneity during brain development and aging. Sci Rep 2020; 10:4080. [PMID: 32139741 PMCID: PMC7058021 DOI: 10.1038/s41598-020-60998-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cells in largely non-mitotic tissues such as the brain are prone to stochastic (epi-)genetic alterations that may cause increased variability between cells and individuals over time. Although increased inter-individual heterogeneity in gene expression was previously reported, whether this process starts during development or if it is restricted to the aging period has not yet been studied. The regulatory dynamics and functional significance of putative aging-related heterogeneity are also unknown. Here we address these by a meta-analysis of 19 transcriptome datasets from three independent studies, covering diverse human brain regions. We observed a significant increase in inter-individual heterogeneity during aging (20 + years) compared to postnatal development (0 to 20 years). Increased heterogeneity during aging was consistent among different brain regions at the gene level and associated with lifespan regulation and neuronal functions. Overall, our results show that increased expression heterogeneity is a characteristic of aging human brain, and may influence aging-related changes in brain functions.
Collapse
Affiliation(s)
- Ulaş Işıldak
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
15
|
Restoration of the Topological Organization of the Trigeminal System Following Trigeminal Nerve Root Injury in the Lamprey. Neuroscience 2019; 423:216-231. [PMID: 31484046 DOI: 10.1016/j.neuroscience.2019.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Two issues were examined regarding the trigeminal system in larval lampreys: (1) for normal animals, double labeling was used to confirm that the trigeminal system has a topological organization; (2) following trigeminal nerve root transections, double labeling was used to test whether the topological organization of the trigeminal system is restored. First, for normal animals, Alexa 488 dextran amine applied to the medial oral hood (anterior head) labeled trigeminal motoneurons (MNs) in the ventromedial part of the trigeminal motor nuclei (nVm) and axons of trigeminal sensory neurons (SNs) in the ventromedial part of the trigeminal descending tracts (dV). Also, Texas red dextran amine (TRDA) applied to the lateral oral hood labeled trigeminal MNs in the dorsolateral nVm and sensory axons in the dorsolateral dV. These results confirm the topological organization of the trigeminal system of normal lampreys. Second, following trigeminal nerve root transections, the physical integrity of the nerves was restored during growth of trigeminal sensory and motor axons. In addition, double labeling indicated a restoration and refinement of the topological organization of the trigeminal system with increasing recovery times, but mainly for nVm. Despite the paucity of growth of trigeminal sensory axons in dV even at long recovery times (12-16 wks), a substantial percentage of experimental animals recovered trigeminal-evoked swimming responses and trigeminal-evoked synaptic responses in reticulospinal (RS) neurons. Following trigeminal nerve root injury, several mechanisms, including axonal guidance cues, probably contribute to the substantial restoration of the topological organization of the lamprey trigeminal system.
Collapse
|
16
|
Iakoucheva LM, Muotri AR, Sebat J. Getting to the Cores of Autism. Cell 2019; 178:1287-1298. [PMID: 31491383 PMCID: PMC7039308 DOI: 10.1016/j.cell.2019.07.037] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/07/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
The genetic architecture of autism spectrum disorder (ASD) is itself a diverse allelic spectrum that consists of rare de novo or inherited variants in hundreds of genes and common polygenic risk at thousands of loci. ASD susceptibility genes are interconnected at the level of transcriptional and protein networks, and many function as genetic regulators of neurodevelopment or synaptic proteins that regulate neural activity. So that the core underlying neuropathologies can be further elucidated, we emphasize the importance of first defining subtypes of ASD on the basis of the phenotypic signatures of genes in model systems and humans.
Collapse
Affiliation(s)
- Lilia M Iakoucheva
- University of California San Diego, Department of Psychiatry, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92093, USA; University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92093, USA; University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| | - Jonathan Sebat
- University of California San Diego, Department of Psychiatry, La Jolla, CA 92093, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92093, USA; University of California San Diego, Beyster Center for Psychiatric Genomics, La Jolla, CA 92093.
| |
Collapse
|
17
|
Priya R, Paredes MF, Karayannis T, Yusuf N, Liu X, Jaglin X, Graef I, Alvarez-Buylla A, Fishell G. Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism. Cell Rep 2019; 22:1695-1709. [PMID: 29444424 DOI: 10.1016/j.celrep.2018.01.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/26/2017] [Accepted: 12/30/2017] [Indexed: 02/03/2023] Open
Abstract
We demonstrate that cortical interneurons derived from ventral eminences, including the caudal ganglionic eminence, undergo programmed cell death. Moreover, with the exception of VIP interneurons, this occurs in a manner that is activity-dependent. In addition, we demonstrate that, within interneurons, Calcineurin, a calcium-dependent protein phosphatase, plays a critical role in sequentially linking activity to maturation (E15-P5) and survival (P5-P20). Specifically, embryonic inactivation of Calcineurin results in a failure of interneurons to morphologically mature and prevents them from undergoing apoptosis. By contrast, early postnatal inactivation of Calcineurin increases apoptosis. We conclude that Calcineurin serves a dual role of promoting first the differentiation of interneurons and, subsequently, their survival.
Collapse
Affiliation(s)
- Rashi Priya
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Mercedes Francisca Paredes
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theofanis Karayannis
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nusrath Yusuf
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xingchen Liu
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Xavier Jaglin
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabella Graef
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gord Fishell
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Stanley Center at the Broad Institute, 75 Ames Street, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Mason C, Guillery R. Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development. Eur J Neurosci 2019; 49:913-927. [PMID: 30801828 DOI: 10.1111/ejn.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.
Collapse
Affiliation(s)
- Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| | - Ray Guillery
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| |
Collapse
|
19
|
Rodent Models of Developmental Ischemic Stroke for Translational Research: Strengths and Weaknesses. Neural Plast 2019; 2019:5089321. [PMID: 31093271 PMCID: PMC6476045 DOI: 10.1155/2019/5089321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia can occur at any stage in life, but clinical consequences greatly differ depending on the developmental stage of the affected brain structures. Timing of the lesion occurrence seems to be critical, as it strongly interferes with neuronal circuit development and determines the way spontaneous plasticity takes place. Translational stroke research requires the use of animal models as they represent a reliable tool to understand the pathogenic mechanisms underlying the generation, progression, and pathological consequences of a stroke. Moreover, in vivo experiments are instrumental to investigate new therapeutic strategies and the best temporal window of intervention. Differently from adults, very few models of the human developmental stroke have been characterized, and most of them have been established in rodents. The models currently used provide a better understanding of the molecular factors involved in the effects of ischemia; however, they still hold many limitations due to matching developmental stages across different species and the complexity of the human disorder that hardly can be described by segregated variables. In this review, we summarize the key factors contributing to neonatal brain vulnerability to ischemic strokes and we provide an overview of the advantages and limitations of the currently available models to recapitulate different aspects of the human developmental stroke.
Collapse
|
20
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
21
|
Kamath SP, Chen AI. Myocyte Enhancer Factor 2c Regulates Dendritic Complexity and Connectivity of Cerebellar Purkinje Cells. Mol Neurobiol 2018; 56:4102-4119. [PMID: 30276662 PMCID: PMC6505522 DOI: 10.1007/s12035-018-1363-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/21/2018] [Indexed: 12/05/2022]
Abstract
Mef2c haploinsufficiency is implicated in behavioral deficits related to autism, schizophrenia, and intellectual disability. Although perturbations in the cerebellum, notably Purkinje cells, have been linked to these neurological disorders, the underlying mechanisms remain poorly understood. In this study, we investigated the roles of Mef2c in cerebellar Purkinje cells during the first three weeks of postnatal development. Our analysis revealed that in comparison to other members of the Mef2 family, Mef2c expression is limited to postnatal Purkinje cells. Because the role of Mef2c has not been assessed in GABAergic neurons, we set out to determine the functional significance of Mef2c by knocking down the expression of Mef2c selectively in Purkinje cells. We found that the loss of Mef2c expression during the first and second postnatal week results in an increase in dendritic arborization without impact on the general growth and migration of Purkinje cells. The influence of Mef2c on dendritic arborization persists throughout the first three weeks, but is most prominent during the first postnatal week suggesting a critical period of Mef2c activity. Additionally, the loss of Mef2c expression results in an increase in the number of spines accompanied by an increase in Gad67 and vGluT1 puncta and decrease in vGluT2 puncta. Thus, our results reveal the specific expression and functional relevance of Mef2c in developing Purkinje cells and offer insight to how disruption of the expression of Mef2c in a GABAergic neuronal subtype may lead to pathogenesis of cerebellar-associated disorders.
Collapse
Affiliation(s)
- Sandhya Prakash Kamath
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Albert I Chen
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore.
- A*STAR, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
22
|
Hirata T, Iwai L. Timing matters: A strategy for neurons to make diverse connections. Neurosci Res 2018; 138:79-83. [PMID: 30227163 DOI: 10.1016/j.neures.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
Neurogenesis proceeds like a continuous wave, in which each type of neurons is produced over a few days to several days. During this protracted time window, early-born and late-born neurons are sequentially produced with a considerable time lag. Even if they are identical in their genetic and molecular specifications, they could develop different characteristics under the influences of the timing of their birth. In this review, we discuss the potential influences of "timing" as a generic parameter affecting neuronal differentiation, particularly on axon guidance and connections. These ideas have rarely been tested experimentally, but may provide a new strategy by which phenotypic diversity is increased in neurons.
Collapse
Affiliation(s)
- Tatsumi Hirata
- Division of Brain Function, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan; SOKENDAI (Graduate University for Advanced Studies), Japan.
| | - Lena Iwai
- Division of Brain Function, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
| |
Collapse
|
23
|
Contreras EG, Palominos T, Glavic Á, Brand AH, Sierralta J, Oliva C. The transcription factor SoxD controls neuronal guidance in the Drosophila visual system. Sci Rep 2018; 8:13332. [PMID: 30190506 PMCID: PMC6127262 DOI: 10.1038/s41598-018-31654-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/23/2018] [Indexed: 01/21/2023] Open
Abstract
Precise control of neurite guidance during development is essential to ensure proper formation of neuronal networks and correct function of the central nervous system (CNS). How neuronal projections find their targets to generate appropriate synapses is not entirely understood. Although transcription factors are key molecules during neurogenesis, we do not know their entire function during the formation of networks in the CNS. Here, we used the Drosophila melanogaster optic lobe as a model for understanding neurite guidance during development. We assessed the function of Sox102F/SoxD, the unique Drosophila orthologue of the vertebrate SoxD family of transcription factors. SoxD is expressed in immature and mature neurons in the larval and adult lobula plate ganglia (one of the optic lobe neuropils), but is absent from glial cells, neural stem cells and progenitors of the lobula plate. SoxD RNAi knockdown in all neurons results in a reduction of the lobula plate neuropil, without affecting neuronal fate. This morphological defect is associated with an impaired optomotor response of adult flies. Moreover, knocking down SoxD only in T4/T5 neuronal types, which control motion vision, affects proper neurite guidance into the medulla and lobula. Our findings suggest that SoxD regulates neurite guidance, without affecting neuronal fate.
Collapse
Affiliation(s)
- Esteban G Contreras
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia, 1027, Santiago, Chile.,Center for Genome Regulation, Faculty of Sciences, Universidad de Chile, Las Palmeras, 3425, Nuñoa, Santiago, Chile
| | - Tomás Palominos
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Álvaro Glavic
- Center for Genome Regulation, Faculty of Sciences, Universidad de Chile, Las Palmeras, 3425, Nuñoa, Santiago, Chile
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia, 1027, Santiago, Chile
| | - Carlos Oliva
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile.
| |
Collapse
|
24
|
Development of Microplatforms to Mimic the In Vivo Architecture of CNS and PNS Physiology and Their Diseases. Genes (Basel) 2018; 9:genes9060285. [PMID: 29882823 PMCID: PMC6027402 DOI: 10.3390/genes9060285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the mechanisms that govern nervous tissues function remains a challenge. In vitro two-dimensional (2D) cell culture systems provide a simplistic platform to evaluate systematic investigations but often result in unreliable responses that cannot be translated to pathophysiological settings. Recently, microplatforms have emerged to provide a better approximation of the in vivo scenario with better control over the microenvironment, stimuli and structure. Advances in biomaterials enable the construction of three-dimensional (3D) scaffolds, which combined with microfabrication, allow enhanced biomimicry through precise control of the architecture, cell positioning, fluid flows and electrochemical stimuli. This manuscript reviews, compares and contrasts advances in nervous tissues-on-a-chip models and their applications in neural physiology and disease. Microplatforms used for neuro-glia interactions, neuromuscular junctions (NMJs), blood-brain barrier (BBB) and studies on brain cancer, metastasis and neurodegenerative diseases are addressed. Finally, we highlight challenges that can be addressed with interdisciplinary efforts to achieve a higher degree of biomimicry. Nervous tissue microplatforms provide a powerful tool that is destined to provide a better understanding of neural health and disease.
Collapse
|
25
|
Santiago C, Bashaw GJ. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor. Cell Rep 2017; 18:1646-1659. [PMID: 28199838 DOI: 10.1016/j.celrep.2017.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/30/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl) controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra)/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Park E, Noh H, Park S. Identification of an Enhancer Critical for the ephirn-A5 Gene Expression in the Posterior Region of the Mesencephalon. Mol Cells 2017; 40:426-433. [PMID: 28614915 PMCID: PMC5523019 DOI: 10.14348/molcells.2017.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022] Open
Abstract
Ephrin-A5 has been implicated in the regulation of brain morphogenesis and axon pathfinding. In this study, we used bacterial homologous recombination to express a LacZ reporter in various ephrin-A5 BAC clones to identify elements that regulate ephrin-A5 gene expression during mesencephalon development. We found that there is mesencephalon-specific enhancer activity localized to a specific +25.0 kb to +30.5 kb genomic region in the first intron of ephrin-A5. Further comparative genomic analysis indicated that two evolutionary conserved regions, ECR1 and ECR2, were present within this 5.5 kb region. Deletion of ECR1 from the enhancer resulted in disrupted mesencephalon-specific enhancer activity in transgenic embryos. We also found a consensus binding site for basic helix-loop-helix (bHLH) transcription factors (TFs) in a highly conserved region at the 3'-end of ECR1. We further demonstrated that specific deletion of the bHLH TF binding site abrogated the mesencephalon-specific enhancer activity in transgenic embryos. Finally, both electrophoretic mobility shift assay and luciferase-based transactivation assay revealed that the transcription factor Ascl1 bound the bHLH consensus binding site in the mesencephalon-specific ephrin-A5 enhancer in vitro. Together, these results suggest that the bHLH TF binding site in ECR1 is involved in the positive regulation of ephrin-A5 gene expression during the development of the mesencephalon.
Collapse
Affiliation(s)
- Eunjeong Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Hyuna Noh
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
27
|
Gennaro M, Mattiello A, Mazziotti R, Antonelli C, Gherardini L, Guzzetta A, Berardi N, Cioni G, Pizzorusso T. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System. Front Neural Circuits 2017; 11:47. [PMID: 28706475 PMCID: PMC5489564 DOI: 10.3389/fncir.2017.00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a “maladaptive” strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke.
Collapse
Affiliation(s)
- Mariangela Gennaro
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of FlorenceFlorence, Italy.,Institute of Neuroscience, National Research Council (CNR)Pisa, Italy
| | - Alessandro Mattiello
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of FlorenceFlorence, Italy.,Institute of Neuroscience, National Research Council (CNR)Pisa, Italy
| | - Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of FlorenceFlorence, Italy.,Institute of Neuroscience, National Research Council (CNR)Pisa, Italy
| | - Camilla Antonelli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Scientific InstitutePisa, Italy
| | - Lisa Gherardini
- Institute of Neuroscience, National Research Council (CNR)Pisa, Italy.,Institute of Clinical Physiology, National Research Council (CNR)Siena, Italy
| | - Andrea Guzzetta
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Scientific InstitutePisa, Italy
| | - Nicoletta Berardi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of FlorenceFlorence, Italy.,Institute of Neuroscience, National Research Council (CNR)Pisa, Italy
| | - Giovanni Cioni
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Scientific InstitutePisa, Italy
| | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of FlorenceFlorence, Italy.,Institute of Neuroscience, National Research Council (CNR)Pisa, Italy
| |
Collapse
|
28
|
Chen LF, Zhou AS, West AE. Transcribing the connectome: roles for transcription factors and chromatin regulators in activity-dependent synapse development. J Neurophysiol 2017; 118:755-770. [PMID: 28490640 DOI: 10.1152/jn.00067.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
The wiring of synaptic connections in the developing mammalian brain is shaped by both intrinsic and extrinsic signals. One point where these regulatory pathways converge is via the sensory experience-dependent regulation of new gene transcription. Recent studies have elucidated a number of molecular mechanisms that allow nuclear transcription factors and chromatin regulatory proteins to encode aspects of specificity in experience-dependent synapse development. Here we review the evidence for the transcriptional mechanisms that sculpt activity-dependent aspects of synaptic connectivity during postnatal development and discuss how disruption of these processes is associated with aberrant brain development in autism and intellectual disability.
Collapse
Affiliation(s)
- Liang-Fu Chen
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Allen S Zhou
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, North Carolina
| |
Collapse
|
29
|
Krsnik Ž, Majić V, Vasung L, Huang H, Kostović I. Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain. Front Neurosci 2017; 11:233. [PMID: 28496398 PMCID: PMC5406414 DOI: 10.3389/fnins.2017.00233] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/07/2017] [Indexed: 01/17/2023] Open
Abstract
Thalamocortical (TH-C) fiber growth begins during the embryonic period and is completed by the third trimester of gestation in humans. Here we determined the timing and trajectories of somatosensory TH-C fibers in the developing human brain. We analyzed the periods of TH-C fiber outgrowth, path-finding, "waiting" in the subplate (SP), target selection, and ingrowth in the cortical plate (CP) using histological sections from post-mortem fetal brain [from 7 to 34 postconceptional weeks (PCW)] that were processed with acetylcholinesterase (AChE) histochemistry and immunohistochemical methods. Images were compared with post mortem diffusion tensor imaging (DTI)-based fiber tractography (code No NO1-HD-4-3368). The results showed TH-C axon outgrowth occurs as early as 7.5 PCW in the ventrolateral part of the thalamic anlage. Between 8 and 9.5 PCW, TH-C axons form massive bundles that traverse the diencephalic-telencephalic boundary. From 9.5 to 11 PCW, thalamocortical axons pass the periventricular area at the pallial-subpallial boundary and enter intermediate zone in radiating fashion. Between 12 and 14 PCW, the TH-C axons, aligned along the fibers from the basal forebrain, continue to grow for a short distance within the deep intermediate zone and enter the deep CP, parallel with SP expansion. Between 14 and 18 PCW, the TH-C interdigitate with callosal fibers, running shortly in the sagittal stratum and spreading through the deep SP ("waiting" phase). From 19 to 22 PCW, TH-C axons accumulate in the superficial SP below the somatosensory cortical area; this occurs 2 weeks earlier than in the frontal and occipital cortices. Between 23 and 24 PCW, AChE-reactive TH-C axons penetrate the CP concomitantly with its initial lamination. Between 25 and 34 PCW, AChE reactivity of the CP exhibits an uneven pattern suggestive of vertical banding, showing a basic 6-layer pattern. In conclusion, human thalamocortical axons show prolonged growth (4 months), and somatosensory fibers precede the ingrowth of fibers destined for frontal and occipital areas. The major features of growing TH-C somatosensory fiber trajectories are fan-like radiation, short runs in the sagittal strata, and interdigitation with the callosal system. These results support our hypothesis that TH-C axons are early factors in SP and CP morphogenesis and synaptogenesis and may regulate cortical somatosensory system maturation.
Collapse
Affiliation(s)
- Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| | - Visnja Majić
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| | - Lana Vasung
- Harvard Medical School, Boston Children's HospitalBoston, MA, USA
| | - Hao Huang
- Laboratory of Neural MRI and Brain Connectivity, School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania PerelmanPhiladelphia, PA, USA
| | - Ivica Kostović
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| |
Collapse
|
30
|
Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C. SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System. Neuron 2017; 93:1110-1125.e5. [PMID: 28215559 DOI: 10.1016/j.neuron.2017.01.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 12/06/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
Transcription factors control cell identity by regulating diverse developmental steps such as differentiation and axon guidance. The mammalian binocular visual circuit is comprised of projections of retinal ganglion cells (RGCs) to ipsilateral and contralateral targets in the brain. A transcriptional code for ipsilateral RGC identity has been identified, but less is known about the transcriptional regulation of contralateral RGC development. Here we demonstrate that SoxC genes (Sox4, 11, and 12) act on the progenitor-to-postmitotic transition to implement contralateral, but not ipsilateral, RGC differentiation, by binding to Hes5 and thus repressing Notch signaling. When SoxC genes are deleted in postmitotic RGCs, contralateral RGC axons grow poorly on chiasm cells in vitro and project ipsilaterally at the chiasm midline in vivo, and Plexin-A1 and Nr-CAM expression in RGCs is downregulated. These data implicate SoxC transcription factors in the regulation of contralateral RGC differentiation and axon guidance.
Collapse
Affiliation(s)
- Takaaki Kuwajima
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Célia A Soares
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Austen A Sitko
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
31
|
Blondeau A, Lucier JF, Matteau D, Dumont L, Rodrigue S, Jacques PÉ, Blouin R. Dual leucine zipper kinase regulates expression of axon guidance genes in mouse neuronal cells. Neural Dev 2016; 11:13. [PMID: 27468987 PMCID: PMC4965899 DOI: 10.1186/s13064-016-0068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Recent genetic studies in model organisms, such as Drosophila, C. elegans and mice, have highlighted a critical role for dual leucine zipper kinase (DLK) in neural development and axonal responses to injury. However, exactly how DLK fulfills these functions remains to be determined. Using RNA-seq profiling, we evaluated the global changes in gene expression that are caused by shRNA-mediated knockdown of endogenous DLK in differentiated Neuro-2a neuroblastoma cells. Results Our analysis led to the identification of numerous up- and down-regulated genes, among which several were found to be associated with system development and axon guidance according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, respectively. Because of their importance in axonal growth, pruning and regeneration during development and adult life, we then examined by quantitative RT-PCR the mRNA expression levels of the identified axon guidance genes in DLK-depleted cells. Consistent with the RNA-seq data, our results confirmed that loss of DLK altered expression of the genes encoding neuropilin 1 (Nrp1), plexin A4 (Plxna4), Eph receptor A7 (Epha7), Rho family GTPase 1 (Rnd1) and semaphorin 6B (Sema6b). Interestingly, this regulation of Nrp1 and Plxna4 mRNA expression by DLK in Neuro-2a cells was also reflected at the protein level, implicating DLK in the modulation of the function of these axon guidance molecules. Conclusions Collectively, these results provide the first evidence that axon guidance genes are downstream targets of the DLK signaling pathway, which through their regulation probably modulates neuronal cell development, structure and function. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0068-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andréanne Blondeau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Jean-François Lucier
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Dominick Matteau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Lauralyne Dumont
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.,Département d'informatique, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Canada
| | - Richard Blouin
- Département de biologie, Faculté des sciences, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
32
|
Noh H, Lee H, Park E, Park S. Proper closure of the optic fissure requires ephrin A5-EphB2-JNK signaling. Development 2016; 143:461-72. [PMID: 26839344 DOI: 10.1242/dev.129478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of complex organs such as the eye requires a delicate and coordinated balance of cell division and cell death. Although apoptosis is prevalent in the proximoventral optic cup, the precise role it plays in eye development needs to be investigated further. In this study, we show that reduced apoptosis in the proximoventral optic cup prevents closure of the optic fissure. We also show that expression of ephrin A5 (Efna5) partially overlaps with Eph receptor B2 (Ephb2) expression in the proximoventral optic cup and that binding of EphB2 to ephrin A5 induces a sustained activation of JNK. This prolonged JNK signal promotes apoptosis and prevents cell proliferation. Thus, we propose that the unique cross-subclass interaction of EphB2 with ephrin A5 has evolved to function upstream of JNK signaling for the purpose of maintaining an adequate pool of progenitor cells to ensure proper closure of the optic fissure.
Collapse
Affiliation(s)
- Hyuna Noh
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Haeryung Lee
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Eunjeong Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Soochul Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| |
Collapse
|
33
|
Catela C, Shin MM, Lee DH, Liu JP, Dasen JS. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes. Cell Rep 2016; 14:1901-15. [PMID: 26904955 DOI: 10.1016/j.celrep.2016.01.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
34
|
A Serotonin Circuit Acts as an Environmental Sensor to Mediate Midline Axon Crossing through EphrinB2. J Neurosci 2016; 35:14794-808. [PMID: 26538650 DOI: 10.1523/jneurosci.1295-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted. We demonstrate that the serotonin receptor htr2a is expressed on these commissural axons and that genetic knock-down of htr2a disrupts crossing. We further show that knock-down of htr2a or ablation of the raphe neurons increases ephrinB2a protein levels in commissural axons. An ephrinB2a mutant can rescue midline crossing when serotonergic signaling is blocked. Furthermore, we found that regulation of serotonin expression in the raphe neurons is modulated in response to the developmental environment. Hypoxia causes the raphe to decrease serotonin levels, leading to a reduction in midline crossing. Increasing serotonin in the setting of hypoxia restored midline crossing. Our findings demonstrate an instructive role for serotonin in axon guidance acting through ephrinB2a and reveal a novel mechanism for developmental interpretation of the environmental milieu in the generation of mature neural circuitry. SIGNIFICANCE STATEMENT We show here that serotonin has a novel role in regulating connectivity in response to the developmental environment. We demonstrate that serotonergic projections from raphe neurons regulate pathfinding of crossing axons. The neurons modulate their serotonin levels, and thus alter crossing, in response to the developmental environment including hypoxia. The findings suggest that modification of the serotonergic system by early exposures may contribute to permanent CNS connectivity alterations. This has important ramifications because of the association between premature birth and accompanying hypoxia, and increased risk of autism and evidence associating in utero exposure to some antidepressants and neurodevelopmental disorders. Finally, this work demonstrates that the vertebrate CNS can modulate its connectivity in response to the external environment.
Collapse
|
35
|
Abstract
Connectivity is not distributed evenly throughout the brain. Instead, it is concentrated on a small number of highly connected neural elements that act as network hubs. Across different species and measurement scales, these hubs show dense interconnectivity, forming a core or "rich club" that integrates information across anatomically distributed neural systems. Here, we show that projections between connectivity hubs of the mouse brain are both central (i.e., they play an important role in neural communication) and costly (i.e., they extend over long anatomical distances) aspects of network organization that carry a distinctive genetic signature. Analyzing the neuronal connectivity of 213 brain regions and the transcriptional coupling, across 17,642 genes, between each pair of regions, we find that coupling is highest for pairs of connected hubs, intermediate for links between hubs and nonhubs, and lowest for connected pairs of nonhubs. The high transcriptional coupling associated with hub connectivity is driven by genes regulating the oxidative synthesis and metabolism of ATP--the primary energetic currency of neuronal communication. This genetic signature contrasts that identified for neuronal connectivity in general, which is driven by genes regulating neuronal, synaptic, and axonal structure and function. Our findings establish a direct link between molecular function and the large-scale topology of neuronal connectivity, showing that brain hubs display a tight coordination of gene expression, often over long anatomical distances, that is intimately related to the metabolic requirements of these highly active network elements.
Collapse
|
36
|
Custead R, Oh H, Rosner AO, Barlow S. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults. Brain Res 2015; 1622:81-90. [PMID: 26119917 DOI: 10.1016/j.brainres.2015.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Austin Oder Rosner
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
37
|
Russ JB, Kaltschmidt JA. From induction to conduction: how intrinsic transcriptional priming of extrinsic neuronal connectivity shapes neuronal identity. Open Biol 2015; 4:rsob.140144. [PMID: 25297387 PMCID: PMC4221895 DOI: 10.1098/rsob.140144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Every behaviour of an organism relies on an intricate and vastly diverse network of neurons whose identity and connectivity must be specified with extreme precision during development. Intrinsically, specification of neuronal identity depends heavily on the expression of powerful transcription factors that direct numerous features of neuronal identity, including especially properties of neuronal connectivity, such as dendritic morphology, axonal targeting or synaptic specificity, ultimately priming the neuron for incorporation into emerging circuitry. As the neuron's early connectivity is established, extrinsic signals from its pre- and postsynaptic partners feedback on the neuron to further refine its unique characteristics. As a result, disruption of one component of the circuitry during development can have vital consequences for the proper identity specification of its synaptic partners. Recent studies have begun to harness the power of various transcription factors that control neuronal cell fate, including those that specify a neuron's subtype-specific identity, seeking insight for future therapeutic strategies that aim to reconstitute damaged circuitry through neuronal reprogramming.
Collapse
Affiliation(s)
- Jeffrey B Russ
- Weill Cornell/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA Neuroscience Program, Weill Cornell Medical College, New York, NY 10065, USA Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Julia A Kaltschmidt
- Neuroscience Program, Weill Cornell Medical College, New York, NY 10065, USA Cell and Developmental Biology Program, Weill Cornell Medical College, New York, NY 10065, USA Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
38
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
39
|
Transcriptional coordination of synaptogenesis and neurotransmitter signaling. Curr Biol 2015; 25:1282-95. [PMID: 25913400 DOI: 10.1016/j.cub.2015.03.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/10/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
During nervous system development, postmitotic neurons face the challenge of generating and structurally organizing specific synapses with appropriate synaptic partners. An important unexplored question is whether the process of synaptogenesis is coordinated with the adoption of specific signaling properties of a neuron. Such signaling properties are defined by the neurotransmitter system that a neuron uses to communicate with postsynaptic partners, the neurotransmitter receptor type used to receive input from presynaptic neurons, and, potentially, other sensory receptors that activate a neuron. Elucidating the mechanisms that coordinate synaptogenesis, neuronal activation, and neurotransmitter signaling in a postmitotic neuron represents one key approach to understanding how neurons develop as functional units. Using the SAB class of Caenorhabditis elegans motor neurons as a model system, we show here that the phylogenetically conserved COE-type transcription factor UNC-3 is required for synaptogenesis. UNC-3 directly controls the expression of the ADAMTS-like protein MADD-4/Punctin, a presynaptically secreted synapse-organizing molecule that clusters postsynaptic receptors. UNC-3 also controls the assembly of presynaptic specializations and ensures the coordinated expression of enzymes and transporters that define the cholinergic neurotransmitter identity of the SAB neurons. Furthermore, synaptic output properties of the SAB neurons are coordinated with neuronal activation and synaptic input, as evidenced by UNC-3 also regulating the expression of ionotropic neurotransmitter receptors and putative stretch receptors. Our study shows how synaptogenesis and distinct, function-defining signaling features of a postmitotic neuron are hardwired together through coordinated transcriptional control.
Collapse
|
40
|
Burow DA, Umeh-Garcia MC, True MB, Bakhaj CD, Ardell DH, Cleary MD. Dynamic regulation of mRNA decay during neural development. Neural Dev 2015; 10:11. [PMID: 25896902 PMCID: PMC4413985 DOI: 10.1186/s13064-015-0038-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023] Open
Abstract
Background Gene expression patterns are determined by rates of mRNA transcription and decay. While transcription is known to regulate many developmental processes, the role of mRNA decay is less extensively defined. A critical step toward defining the role of mRNA decay in neural development is to measure genome-wide mRNA decay rates in neural tissue. Such information should reveal the degree to which mRNA decay contributes to differential gene expression and provide a foundation for identifying regulatory mechanisms that affect neural mRNA decay. Results We developed a technique that allows genome-wide mRNA decay measurements in intact Drosophila embryos, across all tissues and specifically in the nervous system. Our approach revealed neural-specific decay kinetics, including stabilization of transcripts encoding regulators of axonogenesis and destabilization of transcripts encoding ribosomal proteins and histones. We also identified correlations between mRNA stability and physiologic properties of mRNAs; mRNAs that are predicted to be translated within axon growth cones or dendrites have long half-lives while mRNAs encoding transcription factors that regulate neurogenesis have short half-lives. A search for candidate cis-regulatory elements identified enrichment of the Pumilio recognition element (PRE) in mRNAs encoding regulators of neurogenesis. We found that decreased expression of the RNA-binding protein Pumilio stabilized predicted neural mRNA targets and that a PRE is necessary to trigger reporter-transcript decay in the nervous system. Conclusions We found that differential mRNA decay contributes to the relative abundance of transcripts involved in cell-fate decisions, axonogenesis, and other critical events during Drosophila neural development. Neural-specific decay kinetics and the functional specificity of mRNA decay suggest the existence of a dynamic neurodevelopmental mRNA decay network. We found that Pumilio is one component of this network, revealing a novel function for this RNA-binding protein. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0038-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dana A Burow
- Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA.
| | - Maxine C Umeh-Garcia
- Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA.
| | - Marie B True
- Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA.
| | - Crystal D Bakhaj
- Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA.
| | - David H Ardell
- Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA.
| | - Michael D Cleary
- Quantitative and Systems Biology Graduate Program, University of California, 5200 N. Lake Rd, Merced, CA, USA.
| |
Collapse
|
41
|
Banerjee S, Hayer K, Hogenesch JB, Granato M. Zebrafish foxc1a drives appendage-specific neural circuit development. Development 2015; 142:753-62. [PMID: 25670796 DOI: 10.1242/dev.115816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural connectivity between the spinal cord and paired appendages is key to the superior locomotion of tetrapods and aquatic vertebrates. In contrast to nerves that innervate axial muscles, those innervating appendages converge at a specialized structure, the plexus, where they topographically reorganize before navigating towards their muscle targets. Despite its importance for providing appendage mobility, the genetic program that drives nerve convergence at the plexus, as well as the functional role of this convergence, are not well understood. Here, we show that in zebrafish the transcription factor foxc1a is dispensable for trunk motor nerve guidance but is required to guide spinal nerves innervating the pectoral fins, equivalent to the tetrapod forelimbs. In foxc1a null mutants, instead of converging with other nerves at the plexus, pectoral fin nerves frequently bypass the plexus. We demonstrate that foxc1a expression in muscle cells delineating the nerve path between the spinal cord and the plexus region restores convergence at the plexus. By labeling individual fin nerves, we show that mutant nerves bypassing the plexus enter the fin at ectopic positions, yet innervate their designated target areas, suggesting that motor axons can select their appropriate fin target area independently of their migration through the plexus. Although foxc1a mutants display topographically correct fin innervation, mutant fin muscles exhibit a reduction in the levels of pre- and postsynaptic structures, concomitant with reduced pectoral fin function. Combined, our results reveal foxc1a as a key player in the development of connectivity between the spinal cord and paired appendages, which is crucial for appendage mobility.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katharina Hayer
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development 2015; 141:4667-80. [PMID: 25468936 DOI: 10.1242/dev.110817] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcription factors establish the tremendous diversity of cell types in the nervous system by regulating the expression of genes that give a cell its morphological and functional properties. Although many studies have identified requirements for specific transcription factors during the different steps of neural circuit assembly, few have identified the downstream effectors by which they control neuronal morphology. In this Review, we highlight recent work that has elucidated the functional relationships between transcription factors and the downstream effectors through which they regulate neural connectivity in multiple model systems, with a focus on axon guidance and dendrite morphogenesis.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Liu D, Wei N, Man HY, Lu Y, Zhu LQ, Wang JZ. The MT2 receptor stimulates axonogenesis and enhances synaptic transmission by activating Akt signaling. Cell Death Differ 2014; 22:583-96. [PMID: 25501601 DOI: 10.1038/cdd.2014.195] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 10/26/2014] [Accepted: 10/30/2014] [Indexed: 12/15/2022] Open
Abstract
The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer's disease, the most common cause of dementia in the elderly, suggesting that preservation of the MT2 receptor may be beneficial to these neurological disorders. However, direct evidence linking the MT2 receptor to cognition-related synaptic plasticity remains to be established. Here, we report that the MT2 receptor, but not the MT1 receptor, is essential for axonogenesis both in vitro and in vivo. We find that axon formation is retarded in MT2 receptor knockout mice, MT2-shRNA electroporated brain slices or primary neurons treated with an MT2 receptor selective antagonist. Activation of the MT2 receptor promotes axonogenesis that is associated with an enhancement in excitatory synaptic transmission in central neurons. The signaling components downstream of the MT2 receptor consist of the Akt/GSK-3β/CRMP-2 cascade. The MT2 receptor C-terminal motif binds to Akt directly. Either inhibition of the MT2 receptor or disruption of MT2 receptor-Akt binding reduces axonogenesis and synaptic transmission. Our data suggest that the MT2 receptor activates Akt/GSK-3β/CRMP-2 signaling and is necessary and sufficient to mediate functional axonogenesis and synaptic formation in central neurons.
Collapse
Affiliation(s)
- D Liu
- 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [3] The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - N Wei
- 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [3] The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - H-Y Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Y Lu
- 1] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - L-Q Zhu
- 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [3] The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - J-Z Wang
- 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [3] The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
44
|
Mentink RA, Middelkoop TC, Rella L, Ji N, Tang CY, Betist MC, van Oudenaarden A, Korswagen HC. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans. Dev Cell 2014; 31:188-201. [PMID: 25373777 DOI: 10.1016/j.devcel.2014.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/11/2014] [Accepted: 08/07/2014] [Indexed: 01/25/2023]
Abstract
Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/β-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.
Collapse
Affiliation(s)
- Remco A Mentink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Teije C Middelkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Lorenzo Rella
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ni Ji
- Department of Physics and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chung Yin Tang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Physics and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
45
|
Using Pluripotent Stem Cells and Their Progeny as an In VitroModel to Assess (Developmental) Neurotoxicity. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Moreno RL, Ribera AB. Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability. Neural Dev 2014; 9:19. [PMID: 25149090 PMCID: PMC4153448 DOI: 10.1186/1749-8104-9-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the spinal cord, stereotypic patterns of transcription factor expression uniquely identify neuronal subtypes. These transcription factors function combinatorially to regulate gene expression. Consequently, a single transcription factor may regulate divergent development programs by participation in different combinatorial codes. One such factor, the LIM-homeodomain transcription factor Islet1, is expressed in the vertebrate spinal cord. In mouse, chick and zebrafish, motor and sensory neurons require Islet1 for specification of biochemical and morphological signatures. Little is known, however, about the role that Islet1 might play for development of electrical membrane properties in vertebrates. Here we test for a role of Islet1 in differentiation of excitable membrane properties of zebrafish spinal neurons. RESULTS We focus our studies on the role of Islet1 in two populations of early born zebrafish spinal neurons: ventral caudal primary motor neurons (CaPs) and dorsal sensory Rohon-Beard cells (RBs). We take advantage of transgenic lines that express green fluorescent protein (GFP) to identify CaPs, RBs and several classes of interneurons for electrophysiological study. Upon knock-down of Islet1, cells occupying CaP-like and RB-like positions continue to express GFP. With respect to voltage-dependent currents, CaP-like and RB-like neurons have novel repertoires that distinguish them from control CaPs and RBs, and, in some respects, resemble those of neighboring interneurons. The action potentials fired by CaP-like and RB-like neurons also have significantly different properties compared to those elicited from control CaPs and RBs. CONCLUSIONS Overall, our findings suggest that, for both ventral motor and dorsal sensory neurons, Islet1 directs differentiation programs that ultimately specify electrical membrane as well as morphological properties that act together to sculpt neuron identity.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology, University of Colorado Anschutz Medical Campus, RC-1 North, 7403A, Mailstop 8307, 12800 E 19th Ave,, 80045 Aurora, CO, USA.
| | | |
Collapse
|
47
|
Plasticity versus specificity in RTK signalling modalities for distinct biological outcomes in motor neurons. BMC Biol 2014; 12:56. [PMID: 25124859 PMCID: PMC4169644 DOI: 10.1186/s12915-014-0056-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple growth factors are known to control several aspects of neuronal biology, consecutively acting as morphogens to diversify neuronal fates, as guidance cues for axonal growth, and as modulators of survival or death to regulate neuronal numbers. The multiplicity of neuronal types is permitted by the combinatorial usage of growth factor receptors, each of which is expressed in distinct and overlapping subsets of neurons, and by the multitasking role of growth factor receptors, which recruit multiple signalling cascades differentially required for distinct biological outcomes. We have explored signalling robustness in cells where a given receptor tyrosine kinase (RTK) elicits qualitatively distinct outcomes. As the HGF/Met system regulates several biological responses in motor neurons (MN) during neuromuscular development, we have investigated the signalling modalities through which the HGF/Met system impacts on MN biology, and the degree of robustness of each of these functions, when challenged with substitutions of signalling pathways. RESULTS Using a set of mouse lines carrying signalling mutations that change the Met phosphotyrosine binding preferences, we have asked whether distinct functions of Met in several MN subtypes require specific signalling pathways, and to which extent signalling plasticity allows a pleiotropic system to exert distinct developmental outcomes. The differential ability of signalling mutants to promote muscle migration versus axonal growth allowed us to uncouple an indirect effect of HGF/Met signalling on nerve growth through the regulation of muscle size from a direct regulation of motor growth via the PI3 kinase (PI3K), but not Src kinase, pathway. Furthermore, we found that HGF/Met-triggered expansion of Pea3 expression domain in the spinal cord can be accomplished through several alternative signalling cascades, differentially sensitive to the Pea3 dosage. Finally, we show that the regulation of MN survival by HGF/Met can equally be achieved in vitro and in vivo by alternative signalling cascades involving either PI3K-Akt or Src and Mek pathways. CONCLUSIONS Our findings distinguish MN survival and fate specification, as RTK-triggered responses allowing substitutions of the downstream signalling routes, from nerve growth patterning, which depends on a selective, non-substitutable pathway.
Collapse
|
48
|
Ueno M, Fujiki R, Yamashita T. A selector orchestrates cortical function. Nat Neurosci 2014; 17:1016-7. [PMID: 25065435 DOI: 10.1038/nn.3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masaki Ueno
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA, and at Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Ryosuke Fujiki
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan, and at Core Research for Evolutional Science and Technology (CREST), JST, Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan, and at Core Research for Evolutional Science and Technology (CREST), JST, Tokyo, Japan
| |
Collapse
|
49
|
Kandemir B, Caglayan B, Hausott B, Erdogan B, Dag U, Demir O, Sogut MS, Klimaschewski L, Kurnaz IA. Pea3 transcription factor promotes neurite outgrowth. Front Mol Neurosci 2014; 7:59. [PMID: 25018694 PMCID: PMC4072091 DOI: 10.3389/fnmol.2014.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/08/2014] [Indexed: 01/13/2023] Open
Abstract
Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3.
Collapse
Affiliation(s)
- Basak Kandemir
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Berrak Caglayan
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey ; Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Barbara Hausott
- Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Burcu Erdogan
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Ugur Dag
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Ozlem Demir
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Melis S Sogut
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Lars Klimaschewski
- Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Isil A Kurnaz
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| |
Collapse
|
50
|
ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant Sema3A. Nat Commun 2014; 5:4058. [PMID: 24898499 DOI: 10.1038/ncomms5058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/06/2014] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, axons can gain and lose sensitivity to guidance cues, and this flexibility is essential for the correct wiring of the nervous system. Yet, the underlying molecular mechanisms are largely unknown. Here we show that receptor cleavage by ADAM (A Disintegrin And Metalloprotease) metalloproteases promotes murine sensory axons loss of responsiveness to the chemorepellant Sema3A. Genetic ablation of ADAM10 and ADAM17 disrupts the developmental downregulation of Neuropilin-1 (Nrp1), the receptor for Sema3A, in sensory axons. Moreover, this is correlated with gain of repulsive response to Sema3A. Overexpression of Nrp1 in neurons reverses axonal desensitization to Sema3A, but this is hampered in a mutant Nrp1 with high susceptibility to cleavage. Lastly, we detect guidance errors of proprioceptive axons in ADAM knockouts that are consistent with enhanced response to Sema3A. Our results provide the first evidence for involvement of ADAMs in regulating developmental switch in responsiveness to axonal guidance cues.
Collapse
|