1
|
Fodor TA, Schmook MT, Brücke C. Pearls & Oy-sters: Neurologic Involvement in Shiga Toxin-Associated Hemolytic Uremic Syndrome. Neurology 2024; 103:e209881. [PMID: 39378389 DOI: 10.1212/wnl.0000000000209881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is among the most common pathogens that cause bacterial enteritis. They can also lead to extraintestinal manifestations including hemolytic uremic syndrome (HUS), which is defined by the triad of hemolytic anemia, thrombocytopenia, and acute renal dysfunction due to Shiga toxin-mediated damage to the vascular endothelium with a subsequent inflammatory reaction and thrombotic microangiopathy. The thrombotic microangiopathy mainly affects the small blood vessels of the kidneys and brain. Neurologic involvement, especially in adults, is rare but can include nonspecific symptoms such as a decreased consciousness, altered mental status, seizures, and hyperreflexia. Although HUS is often assumed to cause isolated involvement of small vessels, in this case report, a 52-year-old woman with a STEC-HUS-encephalopathy developed multiple craniocervical dissections during the course of her disease in the absence of any trauma or cardiovascular risk factors. This case thus could possibly indicate that Shiga toxin-mediated damages are not limited to the small vessels but can also affect larger vessels.
Collapse
Affiliation(s)
- Tekla A Fodor
- From the Department of Neurology (T.A.F., C.B.), and Department of Biomedical Imaging and Image-guided Therapy (M.T.S.), Medical University of Vienna, Austria
| | - Maria T Schmook
- From the Department of Neurology (T.A.F., C.B.), and Department of Biomedical Imaging and Image-guided Therapy (M.T.S.), Medical University of Vienna, Austria
| | - Christof Brücke
- From the Department of Neurology (T.A.F., C.B.), and Department of Biomedical Imaging and Image-guided Therapy (M.T.S.), Medical University of Vienna, Austria
| |
Collapse
|
2
|
Zaidan L, Novodchuk I, H.Xu A, Nica A, Takaloo S, Lloyd C, Karimi R, Sanderson J, Bajcsy M, Yavuz M. Rapid, Selective, and Ultra-Sensitive Field Effect Transistor-Based Detection of Escherichia coli. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3648. [PMID: 39124311 PMCID: PMC11313016 DOI: 10.3390/ma17153648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Escherichia coli (E. coli) was among the first organisms to have its complete genome published (Genome Sequence of E. coli 1997 Science). It is used as a model system in microbiology research. E. coli can cause life-threatening illnesses, particularly in children and the elderly. Possible contamination by the bacteria also results in product recalls, which, alongside the potential danger posed to individuals, can have significant financial consequences. We report the detection of live Escherichia coli (E. coli) in liquid samples using a biosensor based on a field-effect transistor (FET) biosensor with B/N co-coped reduced graphene oxide (rGO) gel (BN-rGO) as the transducer material. The FET was functionalized with antibodies to detect E. coli K12 O-antigens in phosphate-buffered saline (PBS). The biosensor detected the presence of planktonic E. coli bacterial cells within a mere 2 min. The biosensor exhibited a limit of detection (LOD) of 10 cells per sample, which can be extrapolated to a limit of detection at the level of a single cell per sample and a detection range of at least 10-108 CFU/mL. The selectivity of the biosensor for E. coli was demonstrated using Bacillus thuringiensis (B. thuringiensis) as a sample contaminant. We also present a comparison of our functionalized BN-rGO FET biosensor with established detection methods of E. coli k12 bacteria, as well as with state-of-the-art detection mechanisms.
Collapse
Affiliation(s)
- Liena Zaidan
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Inna Novodchuk
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Biograph Sense Inc., Kitchener, ON N2R 1V1, Canada
| | - Alexander H.Xu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alexandru Nica
- National Institute for Materials Science (NIMS), University of Tsukuba, Tsukuba 305-0044, Ibaraki, Japan
| | - Saeed Takaloo
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Reza Karimi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joe Sanderson
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michal Bajcsy
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Uwatoko R, Kani N, Makino S, Naka T, Okamoto K, Miyakawa H, Hashimoto N, Iio R, Ueda Y, Hayashi T. Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome with recurrent acute cholecystitis: a case report. CEN Case Rep 2024; 13:215-219. [PMID: 37962818 PMCID: PMC11144172 DOI: 10.1007/s13730-023-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) can induce life-threatening complications, including acute kidney injury, encephalopathy, and gastrointestinal complications. On the other hand, there have been few reports of cholecystitis associated with STEC-HUS. In this study, we report the case of an 83-year-old Japanese man who developed recurrent acute cholecystitis associated with STEC-HUS. Prior to establishing a definite diagnosis of STEC-HUS, plasma exchange and hemodialysis were initiated, which resulted in a rapid increase in the platelet count and decrease in lactate dehydrogenase levels. The patient presented an enlarged gallbladder detected by computed tomography during the course of treatment. Due to recurrent flare-ups, the patient had to undergo several rounds of endoscopic retrograde biliary drainage and, ultimately, cholecystectomy to prevent relapse of acute cholecystitis. Since cholecystitis was thought to have been caused by complex mechanisms in this case, we discussed those from multiple perspectives. This case report highlights the need for particular care to be given to the management of pre-existing diseases as well as STEC-HUS, especially in older patients.
Collapse
Affiliation(s)
- Ryuta Uwatoko
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan.
| | - Nao Kani
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Shuzo Makino
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Tomoya Naka
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Kazuhiro Okamoto
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Hiromitsu Miyakawa
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Nobuhiro Hashimoto
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Rei Iio
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Yoshiyasu Ueda
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Terumasa Hayashi
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, 3-1-56 Bandai-Higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| |
Collapse
|
4
|
Wildes DM, Devlin C, Costigan CS, Raftery T, Hensey C, Waldron M, Dolan N, Riordan M, Sweeney C, Stack M, Cotter M, Lynch B, Gorman KM, Awan A. Therapeutic plasma exchange in paediatric nephrology in Ireland. Ir J Med Sci 2024; 193:1589-1594. [PMID: 37940814 DOI: 10.1007/s11845-023-03560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Therapeutic plasma exchange (TPE) is utilised in the management of a limited number of paediatric renal conditions. Despite its widespread acceptance and advancements in the practice of apheresis, there remains a paucity of data pertaining to paediatrics. We present a large retrospective review of our cohort of paediatric patients undergoing TPE for renal indications, outlining their outcomes and complications. METHODS A retrospective chart review was conducted for all patients (under 16 years) undergoing TPE for renal conditions between January 2002 and June 2019 in Ireland. Demographic and clinical data were extracted, with patients anonymised and stratified according to their pathology. RESULTS A total of 58 patients were identified. A total of 1137 exchanges were performed using heparin sodium anticoagulation. The median age was 35.5 months (IQR 18-110 months). The leading indication was neurological involvement in Shiga toxin-producing Escherichia coli haemolytic uraemic syndrome (STEC-HUS) (n = 29). Complications (minor or major) occurred in 65.5% (n = 38) of patients, with most experiencing minor complications 58.6% (n = 34). Asymptomatic hypocalcaemia was the most common complication in 43.1% (n = 25). CONCLUSIONS Our experience of TPE, spanning 1137 exchanges, proved a safe, well-tolerated therapy. Most complications were minor, and with therapy conducted in specialised centres, there are very low levels of adverse events.
Collapse
Affiliation(s)
- Dermot M Wildes
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland.
| | - Conor Devlin
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Caoimhe Suzanne Costigan
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Tara Raftery
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Conor Hensey
- The Department of General Paediatrics, Children's Health Ireland, Dublin, Ireland
| | - Mary Waldron
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Niamh Dolan
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Michael Riordan
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
- The Department of Paediatrics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Clodagh Sweeney
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Maria Stack
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Melanie Cotter
- The Department of Haematology, Children's Health Ireland, Dublin, Ireland
| | - Bryan Lynch
- The Department of Neurology & Clinical Neurophysiology, Children's Health Ireland, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen Mary Gorman
- The Department of Neurology & Clinical Neurophysiology, Children's Health Ireland, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Atif Awan
- The Department for Paediatric Nephrology & Transplantation, Children's Health Ireland, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- The Department of Paediatrics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
5
|
de Zwart PL, Mueller TF, Spartà G, Luyckx VA. Eculizumab in Shiga toxin-producing Escherichia coli hemolytic uremic syndrome: a systematic review. Pediatr Nephrol 2024; 39:1369-1385. [PMID: 38057431 PMCID: PMC10943142 DOI: 10.1007/s00467-023-06216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Infection-associated hemolytic uremic syndrome (IA-HUS), most often due to infection with Shiga toxin-producing bacteria, mainly affects young children. It can be acutely life-threatening, as well as cause long-term kidney and neurological morbidity. Specific treatment with proven efficacy is lacking. Since activation of the alternative complement pathway occurs in HUS, the monoclonal C5 antibody eculizumab is often used off-label once complications, e.g., seizures, occur. Eculizumab is prohibitively expensive and carries risk of infection. Its utility in IA-HUS has not been systematically studied. This systematic review aims to present, summarize, and evaluate all currently available data regarding the effect of eculizumab administration on medium- to long-term outcomes (i.e., outcomes after the acute phase, with a permanent character) in IA-HUS. METHODS PubMed, Embase, and Web of Science were systematically searched for studies reporting the impact of eculizumab on medium- to long-term outcomes in IA-HUS. The final search occurred on March 2, 2022. Studies providing original data regarding medium- to long-term outcomes in at least 5 patients with IA-HUS, treated with at least one dose of eculizumab during the acute illness, were included. No other restrictions were imposed regarding patient population. Studies were excluded if data overlapped substantially with other studies, or if outcomes of IA-HUS patients were not reported separately. Study quality was assessed using the ROBINS-I tool for risk of bias in non-randomized studies of interventions. Data were analyzed descriptively. RESULTS A total of 2944 studies were identified. Of these, 14 studies including 386 eculizumab-treated patients met inclusion criteria. All studies were observational. Shiga toxin-producing E. coli (STEC) was identified as the infectious agent in 381 of 386 patients (98.7%), effectively limiting the interpretation of the data to STEC-HUS patients. Pooling of data across studies was not possible. No study reported a statistically significant positive effect of eculizumab on any medium- to long-term outcome. Most studies were, however, subject to critical risk of bias due to confounding, as more severely ill patients received eculizumab. Three studies attempted to control for confounding through patient matching, although residual bias persisted due to matching limitations. DISCUSSION Current observational evidence does not permit any conclusion regarding the impact of eculizumab in IA-HUS given critical risk of bias. Results of randomized clinical trials are eagerly awaited, as new therapeutic strategies are urgently needed to prevent long-term morbidity in these severely ill patients. SYSTEMATIC REVIEW REGISTRATION NUMBER OSF Registries, MSZY4, Registration DOI https://doi.org/10.17605/OSF.IO/MSZY4 .
Collapse
Affiliation(s)
- Paul L de Zwart
- Department of Nephrology, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Thomas F Mueller
- Clinic of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Giuseppina Spartà
- Department of Nephrology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Valerie A Luyckx
- Department of Nephrology, University Children's Hospital Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
- Brigham and Women's Hospital, Renal Division, Harvard Medical School, Boston, MA, USA
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Miwa T, Sato S, Golla M, Song WC. Expansion of Anticomplement Therapy Indications from Rare Genetic Disorders to Common Kidney Diseases. Annu Rev Med 2024; 75:189-204. [PMID: 37669567 DOI: 10.1146/annurev-med-042921-102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Complement constitutes a major part of the innate immune system. The study of complement in human health has historically focused on infection risks associated with complement protein deficiencies; however, recent interest in the field has focused on overactivation of complement as a cause of immune injury and the development of anticomplement therapies to treat human diseases. The kidneys are particularly sensitive to complement injury, and anticomplement therapies for several kidney diseases have been investigated. Overactivation of complement can result from loss-of-function mutations in complement regulators; gain-of-function mutations in key complement proteins such as C3 and factor B; or autoantibody production, infection, or tissue stresses, such as ischemia and reperfusion, that perturb the balance of complement activation and regulation. Here, we provide a high-level review of the status of anticomplement therapies, with an emphasis on the transition from rare diseases to more common kidney diseases.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| |
Collapse
|
7
|
Carroll M, Blake L, Sharma S. Eculizumab in severe Shiga toxin-mediated haemolytic uraemic syndrome. BMJ Case Rep 2024; 17:e256524. [PMID: 38238162 PMCID: PMC10806934 DOI: 10.1136/bcr-2023-256524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli-mediated haemolytic uraemic syndrome is a primary thrombotic microangiopathy, typified by the development of microangiopathic haemolytic anaemia, thrombocytopaenia and acute renal failure. It is a leading cause of acute renal failure in paediatrics, with a second peak in prevalence in adults over the age of 60. Presentations of Stx-producing E. coli-mediated haemolytic uraemic syndrome in young adults are rare. We present the case of a previously well female in her early 30s presenting with Stx-producing E. coli-mediated haemolytic uraemic syndrome with severe renal and neurological manifestations. Eculizumab was administered due to the severity of presentation and disease trajectory refractory to initial supportive therapy. A significant clinical and biochemical improvement was observed following eculizumab.
Collapse
Affiliation(s)
- Mitchell Carroll
- General Medicine, Grampians Health Ballarat, Ballarat, Victoria, Australia
| | - Louise Blake
- General Medicine, Barwon Health, Geelong, Victoria, Australia
| | - Susheel Sharma
- Renal Medicine, Grampians Health Ballarat, Ballarat, Victoria, Australia
| |
Collapse
|
8
|
Brown PI, Ojiakor A, Chemello AJ, Fowler CC. The diverse landscape of AB5-type toxins. ENGINEERING MICROBIOLOGY 2023; 3:100104. [PMID: 39628907 PMCID: PMC11610972 DOI: 10.1016/j.engmic.2023.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 12/06/2024]
Abstract
AB5-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae, Vibrio cholerae, Bordetella pertussis, and certain lineages of pathogenic Escherichia coli and Salmonella enterica. AB5 toxins are composed of an active (A) subunit that manipulates host cell biology in complex with a pentameric binding/delivery (B) subunit that mediates the toxin's entry into host cells and its subsequent intracellular trafficking. Broadly speaking, all known AB5-type toxins adopt similar structural architectures and employ similar mechanisms of binding, entering and trafficking within host cells. Despite this, there is a remarkable amount of diversity amongst AB5-type toxins; this includes different toxin families with unrelated activities, as well as variation within families that can have profound functional consequences. In this review, we discuss the diversity that exists amongst characterized AB5-type toxins, with an emphasis on the genetic and functional variability within AB5 toxin families, how this may have evolved, and its impact on human disease.
Collapse
Affiliation(s)
- Paris I. Brown
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Adaobi Ojiakor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| |
Collapse
|
9
|
Patel D, Hansen M, Lambert C, Hegde S, Jayamohan H, Gale BK, Sant HJ. Characterizing a Silver Nanoparticle-Based Electrochemical Biosensor for Shiga Toxin Detection. ACS OMEGA 2023; 8:40898-40903. [PMID: 37929116 PMCID: PMC10620918 DOI: 10.1021/acsomega.3c06083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Shiga toxins (1, 2) regularly cause outbreaks and food recalls and pose a significant health risk to the infected population. Therefore, new reliable tools are needed to rapidly detect Shiga toxin cost-effectively in food, water, and wastewater before human consumption. Enzyme immunoassay and polymerase chain reaction approaches are the gold standard detection methods for the Shiga toxin. However, these methods require expensive instruments along with expensive reagents, which makes them hard to convert into point-of-use and low-cost systems. This study introduces an electrochemical biosensing method that utilizes silver nanoparticles (AgNPs) as electrochemical tags and commercially available low-cost screen-printed carbon electrodes for detection. This study introduces the modification of reference electrodes on commercially available screen-printed carbon electrodes to detect AgNPs dissolved in nitric acid. This biosensor achieved a 2 ng/mL lowest measured concentration for Shiga toxin-1 in less than 3 h. These biosensor results also showed that the AgNP-based sensor has better linearity (for graph between peak current vs concentration) and lower standard deviation compared to gold nanoparticles (AuNP)-based electrochemical biosensors.
Collapse
Affiliation(s)
- Dhruv Patel
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Madison Hansen
- Department
of Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher Lambert
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Espira
Inc., 825 N 300 W Suite
N-223, Salt Lake City, Utah 84103, United States
| | - Shruti Hegde
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Harikrishnan Jayamohan
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
| | - Bruce K. Gale
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Espira
Inc., 825 N 300 W Suite
N-223, Salt Lake City, Utah 84103, United States
| | - Himanshu Jayant Sant
- Department
of Mechanical Engineering, University of
Utah, Salt Lake
City, Utah 84112, United States
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Stolzer I, Scherer E, Süß P, Rothhammer V, Winner B, Neurath MF, Günther C. Impact of Microbiome-Brain Communication on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2023; 24:14925. [PMID: 37834373 PMCID: PMC10573483 DOI: 10.3390/ijms241914925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiome plays a pivotal role in maintaining human health, with numerous studies demonstrating that alterations in microbial compositions can significantly affect the development and progression of various immune-mediated diseases affecting both the digestive tract and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and the CNS is referred to as the gut-brain axis. The role of the gut microbiota in the pathogenesis of neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests that gut dysbiosis may contribute to disease development and progression. Clinical studies have shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes within the microbial community have been linked to the pathogenesis of Parkinson's disease and Alzheimer's disease. Microbiota-gut-brain communication can impact neurodegenerative diseases through various mechanisms, including the regulation of immune function, the production of microbial metabolites, as well as modulation of host-derived soluble factors. This review describes the current literature on the gut-brain axis and highlights novel communication systems that allow cross-talk between the gut microbiota and the host that might influence the pathogenesis of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eveline Scherer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Ghoshal S. Renal and Electrolyte Disorders and the Nervous System. Continuum (Minneap Minn) 2023; 29:797-825. [PMID: 37341331 DOI: 10.1212/con.0000000000001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Neurologic complications are a major contributor to death and disability in patients with renal disease. Oxidative stress, endothelial dysfunction, accelerated arteriosclerosis, and uremic inflammatory milieu affect both the central and peripheral nervous systems. This article reviews the unique contributions of renal impairment to neurologic disorders and their common clinical manifestations as the prevalence of renal disease increases in a globally aging population. LATEST DEVELOPMENT Advances in the understanding of the pathophysiologic interplay between the kidneys and brain, also referred to as the kidney-brain axis, have led to more widespread recognition of associated changes in neurovascular dynamics, central nervous system acidification, and uremia-associated endothelial dysfunction and inflammation in the central and peripheral nervous systems. Acute kidney injury increases mortality in acute brain injury to nearly 5 times that seen in matched controls. Renal impairment and its associated increased risks of intracerebral hemorrhage and accelerated cognitive decline are developing fields. Dialysis-associated neurovascular injury is increasingly recognized in both continuous and intermittent forms of renal replacement therapy, and treatment strategies for its prevention are evolving. ESSENTIAL POINTS This article summarizes the effects of renal impairment on the central and peripheral nervous systems with special considerations in acute kidney injury, patients requiring dialysis, and conditions that affect both the renal and nervous systems.
Collapse
|
12
|
Mansour MA, Khalil DF, Hasham MA, Youssef A, Rashad M, Awadallah M, Ali H. Hemolytic uremic syndrome with central nervous system manifestations, a case report and literature review. Radiol Case Rep 2023; 18:2268-2273. [PMID: 37128253 PMCID: PMC10147953 DOI: 10.1016/j.radcr.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 05/03/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a multisystem disorder generally seen in children and young adults, manifesting with the symptomatic triad of thrombocytopenia, hemolytic anemia, and acute kidney injury. These symptoms are often preceded by a prodrome of bloody diarrhea, vomiting, fever, and weakness. HUS is an exceedingly rare entity, with less than 1.5 per 100,000 people affected annually. HUS with central nervous system (CNS) manifestations constitutes approximately 20%-50% of cases and often presents with seizures, altered level of consciousness, and brainstem symptoms. CNS involvement in HUS is a major cause of acute morbidity and mortality; therefore, timely diagnosis and treatment are crucial in the management of these cases. Neuroimaging plays a critical role in the diagnosis; however, it might be very challenging in a large number of cases because studies that report the typical neuroradiologic features of brain injury in cases with HUS are not commonly available. Herein, we demonstrate in a case-based approach, the importance of combining clinical suspicion with different radiologic modalities to better characterize HUS cases with CNS involvement, as well as demonstrate how the early start of meticulous supportive therapy can lead to a favorable outcome even when severe brain involvement is evident on acute imaging studies. Furthermore, we provide an illustrated overview of the current theories that explain the neurologic involvement in HUS, as well as the commonly affected brain areas and how this entity can be radiologically differentiated from other potential diagnoses.
Collapse
Affiliation(s)
- Moustafa A. Mansour
- Department of Neurology and Neurologic Surgery, Faculty of Medicine, Al-Azhar University, 1 Al-Mokhyam Al-Daem St., Nasr City, Cairo 11884, Egypt
- Department of Neurology and Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Division of Neuro-Intensive Care, Dar Al-Fouad Medical Corporation, Cairo, Egypt
- Department of Emergency Medicine and Critical Care, Faculty of Medicine, Al-Azhar University, 1 Al-Mokhyam Al-Daem St., Nasr City, Cairo 11884, Egypt
- Corresponding author.
| | - Dyana F. Khalil
- Department of Emergency Medicine and Critical Care, Dubai Healthcare City, Dubai, UAE
| | - Mohab A. Hasham
- Department of Emergency Medicine and Critical Care, Faculty of Medicine, Al-Azhar University, 1 Al-Mokhyam Al-Daem St., Nasr City, Cairo 11884, Egypt
| | - Ahmed Youssef
- Department of Emergency Medicine and Critical Care, Faculty of Medicine, Al-Azhar University, 1 Al-Mokhyam Al-Daem St., Nasr City, Cairo 11884, Egypt
| | - Mohamed Rashad
- Department of Pediatrics, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Muhammad Awadallah
- Department of Pediatrics, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Ali
- Department of Pediatrics, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Division of Neurology and Neurodevelopmental Disorders, Department of Pediatrics, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
Li Y, Jiang X, Chen J, Hu Y, Bai Y, Xu W, He L, Wang Y, Chen C, Chen J. Evaluation of the contribution of gut microbiome dysbiosis to cardiac surgery-associated acute kidney injury by comparative metagenome analysis. Front Microbiol 2023; 14:1119959. [PMID: 37065117 PMCID: PMC10091463 DOI: 10.3389/fmicb.2023.1119959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionCardiac surgery-associated acute kidney injury (CSA-AKI) is a common hospital-acquired AKI that carries a grave disease burden. Recently, gut-kidney crosstalk has greatly changed our understanding of the pathogenesis of kidney diseases. However, the relationship between gut microbial dysbiosis and CSA-AKI remains unclear. The purpose of this study was to investigate the possible contributions of gut microbiota alterations in CSA-AKI patientsMethodsPatients undergoing cardiac surgery were enrolled and divided into acute kidney injury (AKI) and Non-AKI groups. Faecal samples were collected before the operation. Shotgun metagenomic sequencing was performed to identify the taxonomic composition of the intestinal microbiome. All groups were statistically compared with alpha- and beta-diversity analysis, and linear discriminant analysis effect size (LEfSe) analysis was performed.ResultsA total of 70 individuals comprising 35 AKI and 35 Non_AKI were enrolled in the study. There was no significant difference between the AKI and Non_AKI groups with respect to the alpha-and beta-diversity of the Shannon index, Simpson or Chao1 index values except with respect to functional pathways (p < 0.05). However, the relative abundance of top 10 gut microbiota in CSA-AKI was different from the Non_AKI group. Interestingly, both LEfSe and multivariate analysis confirmed that the species Escherichia coli, Rothia mucilaginosa, and Clostridium_innocuum were associated with CSA-AKI. Moreover, correlation heat map indicated that altered pathways and disrupted function could be attributed to disturbances of gut microbiota involving Escherichia_coli.ConclusionDysbiosis of the intestinal microbiota in preoperative stool affects susceptibility to CSA-AKI, indicating the crucial role of key microbial players in the development of CSA-AKI. This work provides valuable knowledge for further study of the contribution of gut microbiota in CSA-AKI.
Collapse
Affiliation(s)
- Ying Li
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Xinyi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jingchun Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yali Hu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunpeng Bai
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
| | - Wang Xu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Linling He
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yirong Wang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Emergency, Maoming People’s Hospital, Maoming, China
- Chunbo Chen,
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
- *Correspondence: Jimei Chen,
| |
Collapse
|
14
|
Miyata T, Taniguchi I, Nakamura K, Gotoh Y, Yoshimura D, Itoh T, Hirai S, Yokoyama E, Ohnishi M, Iyoda S, Ogura Y, Hayashi T. Alteration of a Shiga toxin-encoding phage associated with a change in toxin production level and disease severity in Escherichia coli. Microb Genom 2023; 9:mgen000935. [PMID: 36821793 PMCID: PMC9997748 DOI: 10.1099/mgen.0.000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 02/25/2023] Open
Abstract
Among the nine clades of Shiga toxin (Stx)-producing Escherichia coli O157:H7, clade 8 is thought to be highly pathogenic, as it causes severe disease more often than other clades. Two subclades have been proposed, but there are conflicting reports on intersubclade differences in Stx2 levels, although Stx2 production is a risk factor for severe disease development. The global population structure of clade 8 has also yet to be fully elucidated. Here, we present genome analyses of a global clade 8 strain set (n =510), including 147 Japanese strains sequenced in this study. The complete genome sequences of 18 of the 147 strains were determined to perform detailed clade-wide genome analyses together with 17 publicly available closed genomes. Intraclade variations in Stx2 production level and disease severity were also re-evaluated within the phylogenetic context. Based on phylogenomic analysis, clade 8 was divided into four lineages corresponding to the previously proposed SNP genotypes (SGs): SG8_30, SG8_31A, SG8_31B and SG8_32. SG8_30 and the common ancestor of the other SGs were first separated, with SG8_31A and SG8_31B emerging from the latter and SG8_32 emerging from SG8_31B. Comparison of 35 closed genomes revealed the overall structure of chromosomes and pO157 virulence plasmids and the prophage contents to be well conserved. However, Stx2a phages exhibit notable genomic diversity, even though all are integrated into the argW locus, indicating that subtype changes in Stx2a phage occurred from the γ subtype to its variant (γ_v1) in SG8_31A and from γ to δ in SG8_31B and SG8_32 via replacement of parts or almost entire phage genomes, respectively. We further show that SG8_30 strains (all carrying γ Stx2a phages) produce significantly higher levels of Stx2 and cause severe disease more frequently than SG8_32 strains (all carrying δ Stx2a phages). Clear conclusions on SG8_31A and SG8_31B cannot be made due to the small number of strains available, but as SG8_31A (carrying γ_v1 Stx2a phages) contains strains that produce much more Stx2 than SG8_30 strains, attention should also be paid to this SG.
Collapse
Affiliation(s)
- Tatsuya Miyata
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dai Yoshimura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba 260-8715, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba 260-8715, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Wong W, Prestidge C, Dickens A, Ronaldson J. Diarrhoea-associated haemolytic uraemic syndrome and Shiga toxin-producing Escherichia coli infections in New Zealand children: Clinical features and short-term complications from a 23-year cohort study. J Paediatr Child Health 2023; 59:493-498. [PMID: 36655863 DOI: 10.1111/jpc.16332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Diarrhoea-associated haemolytic uraemic syndrome (D+HUS) is an important cause of acute kidney injury (AKI) in young children and it is most commonly associated with Shiga toxin-producing Escherichia coli (STEC). Gastrointestinal infections caused by STEC have been increasing in New Zealand over the past two decades, but little is known regarding the acute and short-term outcomes of New Zealand children who develop D+HUS. AIM To describe the clinical characteristics, complications and short-term outcomes of New Zealand children with D+HUS identified between 1 January 1998 and 31 December 2020. METHODS The New Zealand Paediatric Surveillance Unit sends out a monthly survey to all practising paediatricians regarding conditions under active surveillance. Paediatricians caring for a child aged 0-15 years of age with D+HUS over the prior month were requested to report their patient. Reporting clinicians were then contacted by the principal investigator and sent a questionnaire requesting patient clinical and laboratory information. RESULTS Two hundred and twenty-six children had D+HUS; median age 2.8 years (interquartile range 1.7-4.9). Acute dialysis was required in 128/226 (56.2%) of children for a median of 9 days (range 1-38). Children with shorter diarrhoeal prodrome, higher neutrophil count and haemoglobin had a longer duration of dialysis. Seizures occurred in 31/226 (13.7%) and were not associated with a greater HUS severity score. Acute mortality was 1.3%, all resulting from thrombotic microangiopathic cerebral injury. CONCLUSION D+HUS is a major cause of AKI in previously healthy young children. Earlier recognition of STEC infections in young children may reduce the need for dialysis and other extra-renal complications. The New Zealand incidence of acute dialysis, other major complications and mortality are consistent with other reported studies.
Collapse
Affiliation(s)
- William Wong
- Department of Paediatric Nephrology, Starship Children's Health, Te Whatu Ora Auckland, Auckland, New Zealand
| | - Chanel Prestidge
- Department of Paediatric Nephrology, Starship Children's Health, Te Whatu Ora Auckland, Auckland, New Zealand
| | - Amanda Dickens
- Department of Paediatric Nephrology, Starship Children's Health, Te Whatu Ora Auckland, Auckland, New Zealand
| | - Jane Ronaldson
- Department of Paediatric Nephrology, Starship Children's Health, Te Whatu Ora Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Fang Y, Brückner LL, McMullen LM, Gänzle MG. Transduction of stx2a mediated by phage (Φ11-3088) from Escherichia coli O104:H4 in vitro and in situ during sprouting of mung beans. Int J Food Microbiol 2022; 383:109952. [PMID: 36191491 DOI: 10.1016/j.ijfoodmicro.2022.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022]
Abstract
Escherichia coli O104:H4 strain 11-3088 encoding Stx2a is epidemiologically related to the foodborne outbreak associated with sprouts in Germany, 2011. Sprouting provides suitable conditions for bacterial growth and may lead to transduction of non-pathogenic strains of E. coli with Stx phages. Although transduction of E. coli by Stx phages in food has been documented, data on the phages from E. coli O104:H4 is limited. This study determined the host range of the bacteriophage Φ11-3088 from E. coli O104:H4 using E. coli O104:H4 ∆stx2::gfp::ampr and demonstrated phage transduction during sprouting. The Φ11-3088∆stx transduced 5/45 strains, including generic E. coli, pap-positive E. coli O103:H2, ETEC, and S. sonnei. The expression level of Φ11-3088∆stx differed among lysogens upon induction. Of the 3 highly induced lysogens, the lytic cycle was induced in E. coli O104:H4∆stx2::gfp::ampr and O103:H2 but not in S. sonnei. E. coli DH5α was the only strain susceptible to lytic infection by Φ11-3088∆stx. To explore the effect of drying and rehydration during seed storage and sprouting on phage induction and transduction, mung beans inoculated with the phage donor E. coli O104:H4∆stx2::gfp::ampr (8 log CFU/g) were dried, rehydrated, and incubated with the phage recipient E. coli DH5α (7 log CFU/g) for 96 h. Sprouted seeds harbored about 3 log CFU/g of putative lysogens that acquired ampicillin resistance. At the end of sprouting, 71 % of putative lysogens encoded gfp, confirming phage transduction. Overall, stx transfer by phages may increase the cell counts of STEC during sprouting by converting generic E. coli to STEC.
Collapse
Affiliation(s)
- Yuan Fang
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Luisa Linda Brückner
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Lynn M McMullen
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada.
| |
Collapse
|
18
|
Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol 2022; 13:981375. [PMID: 36189215 PMCID: PMC9515535 DOI: 10.3389/fimmu.2022.981375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system. The crucial step in activating the complement system is the generation and regulation of C3 convertase complexes, which are needed to generate opsonins that promote phagocytosis, to generate C3a that regulates inflammation, and to initiate the lytic terminal pathway through the generation and activity of C5 convertases. A growing body of evidence has highlighted the interplay between the complement system, coagulation system, platelets, neutrophils, and endothelial cells. The kidneys are highly susceptible to complement-mediated injury in several genetic, infectious, and autoimmune diseases. Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both characterized by thrombosis in the glomerular capillaries of the kidneys. In aHUS, congenital or acquired defects in complement regulators may trigger platelet aggregation and activation, resulting in the formation of platelet-rich thrombi in the kidneys. Because glomerular vasculopathy is usually noted with immunoglobulin and complement accumulation in LN, complement-mediated activation of tissue factors could partly explain the autoimmune mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is mediated by complement dysregulation and may also be associated with complement overactivation. Further investigation is required to clarify the interaction between these vascular components and develop specific therapeutic approaches.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
19
|
Abdelhamid AG, Faraone JN, Evans JP, Liu SL, Yousef AE. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens 2022; 11:837. [PMID: 36014958 PMCID: PMC9415055 DOI: 10.3390/pathogens11080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell's membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Julia N. Faraone
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
A unique peptide-based pharmacophore identifies an inhibitory compound against the A-subunit of Shiga toxin. Sci Rep 2022; 12:11443. [PMID: 35794188 PMCID: PMC9259562 DOI: 10.1038/s41598-022-15316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can cause fatal systemic complications. Recently, we identified a potent inhibitory peptide that binds to the catalytic A-subunit of Stx. Here, using biochemical structural analysis and X-ray crystallography, we determined a minimal essential peptide motif that occupies the catalytic cavity and is required for binding to the A-subunit of Stx2a, a highly virulent Stx subtype. Molecular dynamics simulations also identified the same motif and allowed determination of a unique pharmacophore for A-subunit binding. Notably, a series of synthetic peptides containing the motif efficiently inhibit Stx2a. In addition, pharmacophore screening and subsequent docking simulations ultimately identified nine Stx2a-interacting molecules out of a chemical compound database consisting of over 7,400,000 molecules. Critically, one of these molecules markedly inhibits Stx2a both in vitro and in vivo, clearly demonstrating the significance of the pharmacophore for identifying therapeutic agents against EHEC infection.
Collapse
|
21
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
22
|
Azukaitis K, Stankute‐Kolosova A, Burokiene V, Saulyte Trakymiene S, Jankauskiene A. Possible microangiopathic overlap between COVID-19 and Shiga toxin-associated hemolytic uremic syndrome. Pediatr Blood Cancer 2022; 69:e29798. [PMID: 35593662 PMCID: PMC9348490 DOI: 10.1002/pbc.29798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Karolis Azukaitis
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Austeja Stankute‐Kolosova
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Vilmanta Burokiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Sonata Saulyte Trakymiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Augustina Jankauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| |
Collapse
|
23
|
Autoimmune Hemolytic Anemia: Diagnosis and Differential Diagnosis. Hematol Oncol Clin North Am 2022; 36:315-324. [DOI: 10.1016/j.hoc.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Costigan C, Raftery T, Carroll AG, Wildes D, Reynolds C, Cunney R, Dolan N, Drew RJ, Lynch BJ, O’Rourke DJ, Stack M, Sweeney C, Shahwan A, Twomey E, Waldron M, Riordan M, Awan A, Gorman KM. Neurological involvement in children with hemolytic uremic syndrome. Eur J Pediatr 2022; 181:501-512. [PMID: 34378062 PMCID: PMC8821508 DOI: 10.1007/s00431-021-04200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
Our objective was to establish the rate of neurological involvement in Shiga toxin-producing Escherichia coli-hemolytic uremic syndrome (STEC-HUS) and describe the clinical presentation, management and outcome. A retrospective chart review of children aged ≤ 16 years with STEC-HUS in Children's Health Ireland from 2005 to 2018 was conducted. Laboratory confirmation of STEC infection was required for inclusion. Neurological involvement was defined as encephalopathy, focal neurological deficit, and/or seizure activity. Data on clinical presentation, management, and outcome were collected. We identified 240 children with HUS; 202 had confirmed STEC infection. Neurological involvement occurred in 22 (11%). The most common presentation was seizures (73%). In the neurological group, 19 (86%) were treated with plasma exchange and/or eculizumab. Of the 21 surviving children with neurological involvement, 19 (91%) achieved a complete neurological recovery. A higher proportion of children in the neurological group had renal sequelae (27% vs. 12%, P = .031). One patient died from multi-organ failure.Conclusion: We have identified the rate of neurological involvement in a large cohort of children with STEC-HUS as 11%. Neurological involvement in STEC-HUS is associated with good long-term outcome (complete neurological recovery in 91%) and a low case-fatality rate (4.5%) in our cohort. What is Known: • HUS is associated with neurological involvement in up to 30% of cases. • Neurological involvement has been reported as predictor of poor outcome, with associated increased morbidity and mortality. What is New: • The incidence of neurological involvement in STEC-HUS is 11%. • Neurological involvement is associated with predominantly good long-term outcome (90%) and a reduced case-fatality rate (4.5%) compared to older reports.
Collapse
Affiliation(s)
- Caoimhe Costigan
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Tara Raftery
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Anne G. Carroll
- Department of Radiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
| | - Dermot Wildes
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Claire Reynolds
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Robert Cunney
- Department of Clinical Microbiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland At Temple Street, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh Dolan
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Richard J. Drew
- Department of Clinical Microbiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland At Temple Street, Dublin, Ireland
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland
| | - Bryan J. Lynch
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
| | - Declan J. O’Rourke
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Maria Stack
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Clodagh Sweeney
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Amre Shahwan
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
- Department of Pediatrics, Royal College of Surgeons, Dublin, Ireland
| | - Eilish Twomey
- Department of Radiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
| | - Mary Waldron
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
| | - Michael Riordan
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
- Department of Pediatrics, Royal College of Surgeons, Dublin, Ireland
| | - Atif Awan
- Department of Nephrology, Children’s Health Ireland At Temple Street and Crumlin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Pediatrics, Royal College of Surgeons, Dublin, Ireland
| | - Kathleen M. Gorman
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland At Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Tome J, Maselli DB, Im R, Amdahl MB, Pfeifle D, Hagen C, Halland M. A case of hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli after pericardiectomy. Clin J Gastroenterol 2021; 15:123-127. [PMID: 34677733 DOI: 10.1007/s12328-021-01539-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
The majority of cases of Shiga toxin-producing Escherichia coli are self-limited; however, the infection can occasionally be complicated by more severe phenomena, such as thrombotic microangiopathy, with resultant end-organ damage to the kidneys, colon, nervous system, and various other tissues. Shiga toxin-induced hemolytic uremic syndrome (ST-HUS)-the constellation of thrombocytopenia, hemolysis, and renal failure resulting from thrombotic microangiopathy in a subset of infections producing the Shiga toxin-is classically observed in the pediatric population. Nevertheless, the diagnosis should be considered in adults with this presentation, and especially in those with colonic findings suggestive of ischemia. ST-HUS must also be distinguished from other thrombotic microangiopathies and related conditions, such as disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, and complement-mediated HUS, as these diagnoses prompt alternate management strategies. Here, we present a case of ST-HUS in a gentleman following pericardiectomy who was infected with non-O157:H7 E. coli producing Shiga toxin 2.
Collapse
Affiliation(s)
- June Tome
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel Barry Maselli
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Roeun Im
- Division of Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel Pfeifle
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Magnus Halland
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Santangelo L, Netti GS, Torres DD, Piscopo G, Carbone V, Losito L, Milella L, Lasorella ML, Conti P, Gagliardi D, Chironna M, Spadaccino F, Bresin E, Trabacca A, Ranieri E, Giordano M. Peripheral nervous system manifestations of Shiga toxin-producing E. coli-induced haemolytic uremic syndrome in children. Ital J Pediatr 2021; 47:181. [PMID: 34488831 PMCID: PMC8422760 DOI: 10.1186/s13052-021-01133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background The Neurological involvement is the most common extra-renal complication of Shiga toxin-producing E. coli-hemolytic uremic syndrome (HUS) or typical HUS. On brain magnetic resonance examination, main neurological signs encompass acute lesions of the basal ganglia and the white matter, which could usually regress after Eculizumab infusion. In contrast, peripheral nervous system (PNS) manifestations in typical HUS are very rare and, when occurring, they require a careful management of neurological sequelae and an intensive multidisciplinary neuro-rehabilitation program. Case presentation Here, we present two pediatric cases of severe and complicated typical HUS with PNS manifestations who required therapeutic treatment and an intensive multidisciplinary neuro-rehabilitation program. In both cases, PNS manifestations were followed by the recovery from typical HUS-related severe central neurological damage and manifested mainly with marked bilateral motor deficit and hyporeflexia/areflexia in the lower limbs. The peripheral polyneuropathy was treated with immunosuppressive therapy (methylprednisolone boluses, i.v. immunoglobulins, plasma exchange), followed by a prolonged intensive neuro-rehabilitation program. After 8 months of rehabilitation, both patients gained complete functional recovery. Conclusions PNS manifestations during typical HUS are a rare event and potentially leading to severe disability. A timely clinical assessment is mandatory to set up a prompt therapeutic and rehabilitation program and to obtain a complete clinical and functional recovery.
Collapse
Affiliation(s)
- Luisa Santangelo
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| | - Giuseppe Stefano Netti
- Department of Medical and Surgical Sciences, Clinical Pathology Unit and Center for Molecular Medicine, University of Foggia, Viale Luigi Pinto -, 71122, Foggia, Italy.
| | | | - Giovanni Piscopo
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| | - Vincenza Carbone
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| | - Luciana Losito
- Scientific Institute I.R.C.C.S. "E. Medea"- Unit for Severe disabilities in developmental age and young adults (Developmental Neurology and Neurorehabilitation), Brindisi, Italy
| | - Leonardo Milella
- Intensive Care Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy
| | | | - Pasquale Conti
- Pediatric Neurology Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy
| | - Delio Gagliardi
- Pediatric Neurology Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, Hygiene Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Spadaccino
- Department of Medical and Surgical Sciences, Clinical Pathology Unit and Center for Molecular Medicine, University of Foggia, Viale Luigi Pinto -, 71122, Foggia, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Antonio Trabacca
- Scientific Institute I.R.C.C.S. "E. Medea"- Unit for Severe disabilities in developmental age and young adults (Developmental Neurology and Neurorehabilitation), Brindisi, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, Clinical Pathology Unit and Center for Molecular Medicine, University of Foggia, Viale Luigi Pinto -, 71122, Foggia, Italy
| | - Mario Giordano
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| |
Collapse
|
27
|
Muff-Luett M, Sanderson KR, Engen RM, Zahr RS, Wenderfer SE, Tran CL, Sharma S, Cai Y, Ingraham S, Winnicki E, Weaver DJ, Hunley TE, Kiessling SG, Seamon M, Woroniecki R, Miyashita Y, Xiao N, Omoloja AA, Kizilbash SJ, Mansuri A, Kallash M, Yu Y, Sherman AK, Srivastava T, Nester CM. Eculizumab exposure in children and young adults: indications, practice patterns, and outcomes-a Pediatric Nephrology Research Consortium study. Pediatr Nephrol 2021; 36:2349-2360. [PMID: 33693990 PMCID: PMC8263513 DOI: 10.1007/s00467-021-04965-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Eculizumab is approved for the treatment of atypical hemolytic uremic syndrome (aHUS). Its use off-label is frequently reported. The aim of this study was to describe the broader use and outcomes of a cohort of pediatric patients exposed to eculizumab. METHODS A retrospective, cohort analysis was performed on the clinical and biomarker characteristics of eculizumab-exposed patients < 25 years of age seen across 21 centers of the Pediatric Nephrology Research Consortium. Patients were included if they received at least one dose of eculizumab between 2008 and 2015. Traditional summary statistics were applied to demographic and clinical data. RESULTS A total of 152 patients were identified, mean age 9.1 (+/-6.8) years. Eculizumab was used "off-label" in 44% of cases. The most common diagnoses were aHUS (47.4%), Shiga toxin-producing Escherichia coli HUS (12%), unspecified thrombotic microangiopathies (9%), and glomerulonephritis (9%). Genetic testing was available for 60% of patients; 20% had gene variants. Dosing regimens were variable. Kidney outcomes tended to vary according to diagnosis. Infectious adverse events were the most common adverse event (33.5%). No cases of meningitis were reported. Nine patients died of noninfectious causes while on therapy. CONCLUSIONS This multi-center retrospective cohort analysis indicates that a significant number of children and young adults are being exposed to C5 blockade for off-label indications. Dosing schedules were highly variable, limiting outcome conclusions. Attributable adverse events appeared to be low. Cohort mortality (6.6%) was not insignificant. Prospective studies in homogenous disease cohorts are needed to support the role of C5 blockade in kidney outcomes.
Collapse
Affiliation(s)
- Melissa Muff-Luett
- Department of Pediatrics, Pediatric Nephrology, University of Nebraska Medical School, Children's Hospital and Medical Center, 8200 Dodge St., Omaha, NE, 68114-4113, USA.
| | - Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Rachel M Engen
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott E Wenderfer
- Pediatric Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Cheryl L Tran
- Division of Pediatric Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Sheena Sharma
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi Cai
- Division of Nephrology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Susan Ingraham
- Kapi'olani Medical Center for Women and Children, Honolulu, HI, USA
| | - Erica Winnicki
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Donald J Weaver
- Division of Pediatric Nephrology and Hypertension, Atrium Health Levine Children's Hospital, Charlotte, NC, USA
| | - Tracy E Hunley
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stefan G Kiessling
- Division of Pediatric Nephrology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | | | - Robert Woroniecki
- Pediatric Nephrology and Hypertension, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | - Yosuke Miyashita
- Department of Pediatrics, Division of Pediatric Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Abiodun A Omoloja
- Nephrology Department, The Children's Medical Center, Dayton, OH, USA
| | - Sarah J Kizilbash
- Department of Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
| | - Asif Mansuri
- Children's Hospital of Georgia, Augusta University, Augusta, GA, USA
| | - Mahmoud Kallash
- Division of Nephrology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yichun Yu
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA
| | - Ashley K Sherman
- Division of Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tarak Srivastava
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Carla M Nester
- Departments of Internal Medicine and Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
28
|
Tavasoli A, Zafaranloo N, Hoseini R, Otukesh H, Nakhaiee S. Frequency of neurological involvement in patients with/without diarrhea hemolytic uremic syndrome: A Systematic review and meta-analysis. Med J Islam Repub Iran 2021; 35:91. [PMID: 34956937 PMCID: PMC8683803 DOI: 10.47176/mjiri.35.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Diarrhea-associated-hemolytic-uremic-syndrome (D+HUS) is a common from of HUS. Central-nervous-system (CNS) involvement is one of the most common extrarenal organ involvements in children with D+HUS. This systematic review and meta-analysis aim to recognize the frequency of neurological complications in pts with HUS. Methods: Databases of PubMed, Embase, and Web of Science were searched systematically to find the papers on neurological involvement in HUS pts. Two researchers independently assessed the papers' quality and extracted data. CMA v. 2.2.064. was used for data analysis. Heterogeneity was evaluated using the I-squared (I2) test, and a fixed/random-effects model was used when appropriate. Results: In this review, 21 studies including 2,189 participants with a median age between 1.3-40-year-old, entered the meta-analysis. The meta-analysis in D+HUS patients indicated 27.0% with neurological complications (95% CI, 22.0%-32.6%), 25.5% of symptoms weren't categorized (95% CI, 15.9%-38.3%), 20.8% of them developed the seizures (95% CI, 2.3%-74.4%). In D-HUS pts, 20.8% of them were presented neurological symptoms (95% CI, 17.9%-24.0%), of which 29.0% weren't categorized (95% CI, 19.2%-41.2%), 17.5% of pts got into coma (95% CI, 9.6%-29.7%), 5.6 % showed hemiparesis (95% CI, 2.8%-10.9%), 17.2% experienced lethargy (95% CI, 5.2%-44.1%), 30.5% developed the seizures (95% CI, 18.2%-46.2%), 7.4% manifested speech abnormalities (95% CI, 0.2%-7.22%), 6.4% of D-HUS pts presented visual-disturbances (95% CI, 3.4%-11.6%). Conclusion: This systematic review and meta-analysis indicated more than one-fourth of both D+HUS and D-HUS patients were presented with neurological symptoms, and the most prevalent symptoms were seizures, which can lead to an epilepsy sequel.
Collapse
Affiliation(s)
- Azita Tavasoli
- Ali-Asghar Children Hospital, Iran University of Medical and Sciences, Tehran, Iran
| | - Nazanin Zafaranloo
- Ali-Asghar Children Hospital, Iran University of Medical and Sciences, Tehran, Iran
| | - Rozita Hoseini
- Ali-Asghar Children Hospital, Iran University of Medical and Sciences, Tehran, Iran
| | - Hasan Otukesh
- Ali-Asghar Children Hospital, Iran University of Medical and Sciences, Tehran, Iran
| | - Shahrbanoo Nakhaiee
- Ali-Asghar Children Hospital, Iran University of Medical and Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mounier S, Gavotto A, Tenenbaum J, Meyer P, Fila M, Baleine J. Hemolytic uremic syndrome related to Shiga-like toxin-producing Escherichia coli with encephalitis hiding a human herpesvirus-6 infection: a case report. J Med Case Rep 2021; 15:300. [PMID: 34034812 PMCID: PMC8152054 DOI: 10.1186/s13256-021-02873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cardiac and neurological involvement in hemolytic uremic syndrome are life-threatening complications. The most frequent complications of cardiac involvement in hemolytic uremic syndrome are myocarditis and cardiac dysfunction due to fluid overload. Pericarditis remains very rare in hemolytic uremic syndrome. To our knowledge, only five cases of cardiac tamponade associated with hemolytic uremic syndrome have been described in literature. A 27-month-old Caucasian girl presented with symptoms of nonbloody diarrhea and tonic-clonic seizures. The diagnosis of Shiga-like toxin-producing Escherichia coli hemolytic uremic syndrome with central nervous system involvement was made, and stool examination revealed infection with a Shiga-like toxin-producing Escherichia coli. She did not need renal replacement therapy but had severe neurological impairment. The patient's course was complicated by pericardial effusion. A pericardiocentesis was performed via an apical approach because the pericardial effusion was predominantly surrounding the left ventricle. Effusion analysis showed an exudate and positivity for human herpesvirus-6B on polymerase chain reaction with viremia. This finding was consistent with primary human herpesvirus-6 infection with encephalitis. CONCLUSION We report this uncommon case of Shiga-like toxin-producing Escherichia coli hemolytic uremic syndrome associated with a severe human herpesvirus-6 infection. Secondary isolated pericardial effusion and atypical neurological involvement are uncommon in Shiga-like toxin-producing Escherichia coli hemolytic uremic syndrome and should lead the physician to perform additional investigations.
Collapse
Affiliation(s)
- Sophie Mounier
- Department of Neonatal Medicine and Pediatric Intensive Care, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France.
| | - Arthur Gavotto
- Department of Pediatric Cardiology, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France
- CNRS, INSERM, University of Montpellier, PhyMedExpMontpellier, France
| | - Julie Tenenbaum
- Department of Pediatric Nephrology, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France
| | - Pierre Meyer
- CNRS, INSERM, University of Montpellier, PhyMedExpMontpellier, France
- Department of Pediatric Neurology, Gui de Chauliac Hospital, Montpellier University Hospital Center, 80 Avenue Augustin Fliche, 34090, Montpellier, France
| | - Marc Fila
- Department of Pediatric Nephrology, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France
| | - Julien Baleine
- Department of Neonatal Medicine and Pediatric Intensive Care, Arnaud de Villeneuve Hospital, Montpellier University Hospital Center, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France
| |
Collapse
|
30
|
Identification of a peptide motif that potently inhibits two functionally distinct subunits of Shiga toxin. Commun Biol 2021; 4:538. [PMID: 33972673 PMCID: PMC8111002 DOI: 10.1038/s42003-021-02068-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli, which causes fatal systemic complications. Here, we identified a tetravalent peptide that inhibited Stx by targeting its receptor-binding, B-subunit pentamer through a multivalent interaction. A monomeric peptide with the same motif, however, did not bind to the B-subunit pentamer. Instead, the monomer inhibited cytotoxicity with remarkable potency by binding to the catalytic A-subunit. An X-ray crystal structure analysis to 1.6 Å resolution revealed that the monomeric peptide fully occupied the catalytic cavity, interacting with Glu167 and Arg170, both of which are essential for catalytic activity. Thus, the peptide motif demonstrated potent inhibition of two functionally distinct subunits of Stx.
Collapse
|
31
|
Hua Y, Chromek M, Frykman A, Jernberg C, Georgieva V, Hansson S, Zhang J, Marits AK, Wan C, Matussek A, Bai X. Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden. Virulence 2021; 12:1296-1305. [PMID: 33939581 PMCID: PMC8096335 DOI: 10.1080/21505594.2021.1922010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli, a foodborne bacterial pathogen, has been linked to a broad spectrum of clinical outcomes ranging from asymptomatic carriage to fatal hemolytic uremic syndrome (HUS). Here, we collected clinical data and STEC strains from HUS patients from 1994 through 2018, whole-genome sequencing was performed to molecularly characterize HUS-associated STEC strains, statistical analysis was conducted to identify bacterial genetic factors associated with severe outcomes in HUS patients. O157:H7 was the most predominant serotype (57%) among 54 HUS-associated STEC strains, followed by O121:H19 (19%) and O26:H11 (7%). Notably, some non-predominant serotypes such as O59:H17 (2%) and O109:H21 (2%) also caused HUS. All O157:H7 strains with one exception belonged to clade 8. During follow-up at a median of 4 years, 41% of the patients had renal sequelae. Fifty-nine virulence genes were found to be statistically associated with severe renal sequelae, these genes encoded type II and type III secretion system effectors, chaperones, and other factors. Notably, virulence genes associated with severe clinical outcomes were significantly more prevalent in O157:H7 strains. In contrast, genes related to mild symptoms were evenly distributed across all serotypes. The whole-genome phylogeny indicated high genomic diversity among HUS-STEC strains. No distinct cluster was found between HUS and non-HUS STEC strains. The current study showed that O157:H7 remains the main cause of STEC-associated HUS, despite the rising importance of other non-O157 serotypes. Besides, O157:H7 is associated with severe renal sequelae in the follow-up, which could be a risk factor for long-term prognosis in HUS patients.
Collapse
Affiliation(s)
- Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Milan Chromek
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anne Frykman
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Valya Georgieva
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sverker Hansson
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ji Zhang
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Ann Katrine Marits
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden.,Oslo University Hospital, Oslo, Norway.,Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
Pirolli NH, Bentley WE, Jay SM. Bacterial Extracellular Vesicles and the Gut-Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Adv Biol (Weinh) 2021; 5:e2000540. [PMID: 33857347 DOI: 10.1002/adbi.202000540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as candidate signaling vectors for long-distance interkingdom communication within the gut-microbiota brain axis. Most bacteria release these nanosized vesicles, capable of signaling to the brain via their abundant protein and small RNA cargo, possibly directly via crossing the blood-brain barrier. BEVs have been shown to regulate brain gene expression and induce pathology at most stages of neuroinflammation and neurodegeneration, and thus they may play a causal role in diseases such as Alzheimer's, Parkinson's, and depression/anxiety. On the other hand, BEVs have intrinsic therapeutic properties that may be relevant to probiotic therapy and can also be engineered to function as drug delivery vehicles and vaccines. Thus, BEVs may be both a cause of and solution to neuropathological conditions. In this review, current knowledge of the physiological roles of BEVs as well as state of the art pertaining to the development of therapeutic BEVs in the context of the microbiome-gut-brain axis are summarized.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD, 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, Robert E. Fischell Institute, and Institute for Bioscience and Biotechnology Research, University of Maryland, 5120A A. James Clark Hall, College Park, MD, 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and Cell Biology, University of Maryland, 3116 A. James Clark Hall, College Park, MD, 20742, USA
| |
Collapse
|
33
|
Monet-Didailler C, Chevallier A, Godron-Dubrasquet A, Allard L, Delmas Y, Contin-Bordes C, Brissaud O, Llanas B, Harambat J. Outcome of children with Shiga toxin-associated haemolytic uraemic syndrome treated with eculizumab: a matched cohort study. Nephrol Dial Transplant 2021; 35:2147-2153. [PMID: 31411695 DOI: 10.1093/ndt/gfz158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/27/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Treatment with eculizumab in Shiga toxin-associated haemolytic and uraemic syndrome (STEC-HUS) remains controversial despite its increasing utilization. The aim of our study was to evaluate the outcomes of children treated with eculizumab for STEC-HUS in a single-centre matched cohort study. METHODS Data were retrospectively collected from medical records of children diagnosed with STEC-HUS. The outcomes of patients treated with eculizumab for STEC-HUS were compared with those of a control group of untreated patients matched for age, sex and severity of acute kidney injury with a 1:2 matching scheme. RESULTS Eighteen children (median age 40.6 months) with STEC-HUS treated with eculizumab were compared with 36 matched control patients (median age 36.4 months) who did not receive eculizumab. All patients survived in the two groups. Within 1 month of HUS onset, the evolution of haematological and renal parameters did not differ between the two groups. At 12 months of follow-up, renal outcome was not significantly different between the two groups. At the last follow-up, the prevalence of decreased glomerular filtration rate in the eculizumab group (27%) was not statistically different from that in controls (38%), as was the prevalence of proteinuria and high blood pressure. Children who received eculizumab more often had extrarenal sequelae during follow-up. Eculizumab treatment appeared to be safe in children with STEC-HUS. CONCLUSION The benefit of eculizumab on renal and extrarenal outcomes in STEC-HUS could not be established based on our findings. However, efficacy and safety are not best assessed by the observational design and small sample size of our study. Randomized controlled trials are thus required to determine the efficacy of eculizumab in this indication.
Collapse
Affiliation(s)
- Catherine Monet-Didailler
- Service de Pédiatrie, Unité de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Audrey Chevallier
- Service de Pédiatrie, Unité de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Astrid Godron-Dubrasquet
- Service de Pédiatrie, Unité de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Lise Allard
- Service de Pédiatrie, Unité de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Yahsou Delmas
- Service de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Cécile Contin-Bordes
- Laboratoire d'Immunologie et Immunogénétique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Olivier Brissaud
- Service de Réanimation Pédiatrique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Brigitte Llanas
- Service de Pédiatrie, Unité de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jérôme Harambat
- Service de Pédiatrie, Unité de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.,Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| |
Collapse
|
34
|
Brown CC, Garcia X, Bhakta RT, Sanders E, Prodhan P. Severe Acute Neurologic Involvement in Children With Hemolytic-Uremic Syndrome. Pediatrics 2021; 147:peds.2020-013631. [PMID: 33579812 PMCID: PMC7919116 DOI: 10.1542/peds.2020-013631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Acute severe neurologic involvement is the most threatening complication in children with hemolytic-uremic syndrome (HUS). Our primary study objectives were to describe the association between acute neurologic manifestations (ANMs) and in-hospital mortality among children with HUS. METHODS Using the Pediatric Health Information System database, in this retrospective multicenter cohort study, we identified the first HUS-related inpatient visit among children ≤18 years (years 2004-2018). Frequency of selected ANMs and combinations of ANMs, as well as the rate of mortality, was calculated. Multivariate logistic regression was used to identify the association of ANMs and the risk of in-hospital mortality. RESULTS Among 3915 patients included in the analysis, an ANM was noted in 10.4% (n = 409) patients. Encephalopathy was the most common ANM (n = 245). Mortality was significantly higher among patients with an ANM compared with patients without an ANM (13.9% vs 1.8%; P < .001). Individuals with any ANM had increased odds of mortality (odds ratio [OR]: 2.25; 95% confidence interval [CI]: 1.29-3.93; P = .004), with greater risk (OR: 2.60; 95% CI: 1.34-5.06; P = .005) among patients with ≥2 manifestations. Brain hemorrhage (OR: 3.09; 95% CI: 1.40-6.82; P = .005), brain infarction (OR: 2.64; 95% CI: 1.10-6.34; P = .03), anoxic brain injury (OR: 3.92; 95% CI: 1.49-10.31; P = .006), and brain edema (OR: 4.81; 95% CI: 1.82-12.71; P = .002) were independently associated with mortality. CONCLUSIONS In this study, the largest systematic assessment of ANMs among children with HUS to date, we identify differences in in-hospital mortality based on the type of ANM, with increased risk observed for patients with multiple ANMs.
Collapse
Affiliation(s)
- Clare C. Brown
- Health Policy and Management Department, Fay W. Boozman College of Public Health and
| | - Xiomara Garcia
- Pediatric Cardiology, and Pediatric Critical Care, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Rupal T. Bhakta
- Pediatric Cardiology, and Pediatric Critical Care, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, Arkansas
| | | | - Parthak Prodhan
- Pediatric Cardiology, and Pediatric Critical Care, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Arkansas
| |
Collapse
|
35
|
Detzner J, Krojnewski E, Pohlentz G, Steil D, Humpf HU, Mellmann A, Karch H, Müthing J. Shiga Toxin (Stx)-Binding Glycosphingolipids of Primary Human Renal Cortical Epithelial Cells (pHRCEpiCs) and Stx-Mediated Cytotoxicity. Toxins (Basel) 2021; 13:toxins13020139. [PMID: 33673393 PMCID: PMC7918848 DOI: 10.3390/toxins13020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic–uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Elisabeth Krojnewski
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Daniel Steil
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, D-48149 Münster, Germany;
| | - Alexander Mellmann
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Helge Karch
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany; (J.D.); (E.K.); (G.P.); (D.S.); (A.M.); (H.K.)
- Correspondence:
| |
Collapse
|
36
|
Naïli I, Gardette M, Garrivier A, Daniel J, Desvaux M, Pizza M, Gobert A, Marchal T, Loukiadis E, Jubelin G. Interplay between enterohaemorrhagic Escherichia coli and nitric oxide during the infectious process. Emerg Microbes Infect 2021; 9:1065-1076. [PMID: 32459575 PMCID: PMC7336997 DOI: 10.1080/22221751.2020.1768804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are bacterial pathogens responsible for life-threatening diseases in humans such as bloody diarrhoea and the hemolytic and uremic syndrome. To date, no specific therapy is available and treatments remain essentially symptomatic. In recent years, we demonstrated in vitro that nitric oxide (NO), a major mediator of the intestinal immune response, strongly represses the synthesis of the two cardinal virulence factors in EHEC, namely Shiga toxins (Stx) and the type III secretion system, suggesting NO has a great potential to protect against EHEC infection. In this study, we investigated the interplay between NO and EHEC in vivo using mouse models of infection. Using a NO-sensing reporter strain, we determined that EHEC sense NO in the gut of infected mice. Treatment of infected mice with a specific NOS inhibitor increased EHEC adhesion to the colonic mucosa but unexpectedly decreased Stx activity in the gastrointestinal tract, protecting mice from renal failure. Taken together, our data indicate that NO can have both beneficial and detrimental consequences on the outcome of an EHEC infection, and underline the importance of in vivo studies to increase our knowledge in host–pathogen interactions.
Collapse
Affiliation(s)
- Ilham Naïli
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Siena, Italy
| | - Marion Gardette
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Université de Lyon, CNRS, INRAE, Université Claude Bernard Lyon 1, VetAgro Sup, Laboratoire d'Ecologie Microbienne, F-63280 Marcy l'Etoile, France
| | - Annie Garrivier
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Julien Daniel
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | | | - Alain Gobert
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Thierry Marchal
- VetAgro Sup, Laboratoire vétérinaire d'histopathologie, F-63280 Marcy-l'Etoile, France
| | - Estelle Loukiadis
- Université de Lyon, CNRS, INRAE, Université Claude Bernard Lyon 1, VetAgro Sup, Laboratoire d'Ecologie Microbienne, F-63280 Marcy l'Etoile, France.,VetAgro Sup, Laboratoire national de référence des E. coli, F-63280 Marcy-l'Etoile, France
| | - Grégory Jubelin
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
McCarthy SC, Burgess CM, Fanning S, Duffy G. An Overview of Shiga-Toxin Producing Escherichia coli Carriage and Prevalence in the Ovine Meat Production Chain. Foodborne Pathog Dis 2021; 18:147-168. [PMID: 33395551 DOI: 10.1089/fpd.2020.2861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) are zoonotic foodborne pathogens that are capable of causing serious human illness. Ovine ruminants are recognized as an important source of STEC and a notable contributor to contamination within the food industry. This review examined the prevalence of STEC in the ovine food production chain from farm-to-fork, reporting carriage in sheep herds, during abattoir processing, and in raw and ready-to-eat meats and meat products. Factors affecting the prevalence of STEC, including seasonality and animal age, were also examined. A relative prevalence can be obtained by calculating the mean prevalence observed over multiple surveys, weighted by sample number. A relative mean prevalence was obtained for STEC O157 and all STEC serogroups at multiple points along the ovine production chain by using suitable published surveys. A relative mean prevalence (and range) for STEC O157 was calculated: for feces 4.4% (0.2-28.1%), fleece 7.6% (0.8-12.8%), carcass 2.1% (0.2-9.8%), and raw ovine meat 1.9% (0.2-6.3%). For all STEC independent of serotype, a relative mean prevalence was calculated: for feces 33.3% (0.9-90.0%), carcass 58.7% (2.0-81.6%), and raw ovine meat 15.4% (2.7-35.5%). The prevalence of STEC in ovine fleece was reported in only one earlier survey, which recorded a prevalence of 86.2%. Animal age was reported to affect shedding in many surveys, with younger animals typically reported as having a higher prevalence of the pathogen. The prevalence of STEC decreases significantly along the ovine production chain after the application of postharvest interventions. Ovine products pose a small risk of potential STEC contamination to the food supply chain.
Collapse
Affiliation(s)
- Siobhán C McCarthy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Geraldine Duffy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
38
|
Ruano-Gallego D, Fernández LÁ. Identification of Nanobodies Blocking Intimate Adherence of Shiga Toxin-Producing Escherichia coli to Epithelial Cells. Methods Mol Biol 2021; 2291:253-272. [PMID: 33704757 DOI: 10.1007/978-1-0716-1339-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Therapeutic antibodies (Abs) inhibiting bacterial adhesion to host epithelia are an attractive option to reduce the load of Shiga toxin-producing E. coli (STEC) in the intestine of the patient and also in the bovine reservoir, thereby minimizing the risk of STEC contamination in the food chain. Of particular interest are recombinant single-domain Ab fragments called nanobodies (Nbs) derived from the variable domain of camelid heavy chain-only antibodies (VHH). The outer membrane adhesin intimin and the translocated intimin receptor (Tir) are essential for the attachment of STEC to host epithelia. In addition, EspA filaments of the bacterial type III protein secretion system are needed for Tir translocation into the host cell. Given their importance for bacterial adhesion and colonization, we developed Nbs against intimin, Tir and EspA proteins of STEC serotype O157:H7. Here, we report the screening methods used to isolate inhibitory Nbs blocking intimin-Tir protein-protein interaction, actin-pedestal formation, and intimate adhesion of STEC to epithelial cells in vitro. First, we describe how VHH gene repertoires can be produced as Nbs secreted by E. coli using the α-hemolysin (HlyA) protein secretion system. Next, we report the methods for identification of inhibitors of intimin-Tir protein-protein interaction and of STEC intimate adhesion to HeLa cells in culture. These methods can be adapted for the screening of Nbs against different adhesin-receptor complexes to block the adhesion of other pathogens to host cells.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
39
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
40
|
Abstract
Thrombocytopenia-associated multiple organ failure is a clinical phenotype encompassing a spectrum of syndromes associated with disseminated microvascular thromboses. Autopsies performed in patients that died with thrombotic thrombocytopenic purpura, hemolytic uremic syndrome, or disseminated intravascular coagulation reveal specific findings that can differentiate these 3 entities. Significant advancements have been made in our understanding of the pathologic mechanisms of these syndromes. Von Willebrand factor and ADAMTS-13 play a central role in thrombotic thrombocytopenic purpura. Shiga toxins and the complement pathway drive the hemolytic uremic syndrome pathology. Tissue factor activity is vital in the development of disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Trung C Nguyen
- Department of Pediatrics, Critical Care Medicine Section, Texas Children's Hospital/Baylor College of Medicine, 6651 Main Street, MC: E 1420, Houston, TX 77030, USA; The Center for Translational Research on Inflammatory Diseases (CTRID), The Michael E. DeBakey Veteran Administration Medical Center, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Wijnsma KL, Veissi ST, de Wijs S, van der Velden T, Volokhina EB, Wagener FADTG, van de Kar NCAJ, van den Heuvel LP. Heme as Possible Contributing Factor in the Evolvement of Shiga-Toxin Escherichia coli Induced Hemolytic-Uremic Syndrome. Front Immunol 2020; 11:547406. [PMID: 33414780 PMCID: PMC7783363 DOI: 10.3389/fimmu.2020.547406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Shiga-toxin (Stx)-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) is one of the most common causes of acute kidney injury in children. Stx-mediated endothelial injury initiates the cascade leading to thrombotic microangiopathy (TMA), still the exact pathogenesis remains elusive. Interestingly, there is wide variability in clinical presentation and outcome. One explanation for this could be the enhancement of TMA through other factors. We hypothesize that heme, as released during extensive hemolysis, contributes to the etiology of TMA. Plasma levels of heme and its scavenger hemopexin and degrading enzyme heme-oxygenase-1 (HO-1) were measured in 48 STEC-HUS patients. Subsequently, the effect of these disease-specific heme concentrations, in combination with Stx, was assessed on primary human glomerular microvascular endothelial cells (HGMVECs). Significantly elevated plasma heme levels up to 21.2 µM were found in STEC-HUS patients compared to controls and were inversely correlated with low or depleted plasma hemopexin levels (R2 −0.74). Plasma levels of HO-1 are significantly elevated compared to controls. Interestingly, especially patients with high heme levels (n = 12, heme levels above 75 quartile range) had high plasma HO-1 levels with median of 332.5 (86–720) ng/ml (p = 0.008). Furthermore, heme is internalized leading to a significant increase in reactive oxygen species production and stimulated both nuclear translocation of NF-κB and increased levels of its target gene (tissue factor). In conclusion, we are the first to show elevated heme levels in patients with STEC-HUS. These increased heme levels mediate endothelial injury by promoting oxidative stress and a pro-inflammatory and pro-thrombotic state. Hence, heme may be a contributing and driving factor in the pathogenesis of STEC-HUS and could potentially amplify the cascade leading to TMA.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Susan T Veissi
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sem de Wijs
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Thea van der Velden
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena B Volokhina
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - L P van den Heuvel
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Development and Regeneration, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Quintela IA, Wu VCH. A sandwich-type bacteriophage-based amperometric biosensor for the detection of Shiga toxin-producing Escherichia coli serogroups in complex matrices. RSC Adv 2020; 10:35765-35775. [PMID: 35517084 PMCID: PMC9056931 DOI: 10.1039/d0ra06223e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Immuno-based biosensors are a popular tool designed for pathogen screening and detection. The current antibody-based biosensors employ direct, indirect, or sandwich detection approaches; however, instability, cross-reactivity, and high-cost render them unreliable and impractical. To circumvent these drawbacks, here we report a portable sandwich-type bacteriophage-based amperometric biosensor, which is highly-specific to various Shiga toxin-producing Escherichia coli (STEC) serogroups. Environmentally isolated and biotinylated bacteriophages were directly immobilized onto a streptavidin-coated screen-printed carbon electrode (SPCE), which recognized and captured viable target cells. Samples (50 μL) were transferred to these bacteriophage-functionalized SPCEs (12 min, room temp) before sequentially adding a bacteriophage-gold nanoparticle solution (20 μL), H2O2 (40 mM), and 1,1'-ferrocenedicarboxylic acid for amperometric tests (100 mV s-1) and analysis (ANOVA and LSD, P < 0.05). The optimum biotin concentration (10 mM) retained 94.47% bacteriophage viability. Non-target bacteria (Listeria monocytogenes and Salmonella Typhimurium) had delta currents below the threshold of a positive detection. With less than 1 h turn-around time, the amperometric biosensor had a detection limit of 10-102 CFU mL-1 for STEC O157, O26, and O179 strains and R 2 values of 0.97, 0.99, and 0.87, respectively, and a similar detection limit was observed in complex matrices, 10-102 CFU g-1 or mL-1 with R 2 values of 0.98, 0.95, and 0.76, respectively. The newly developed portable amperometric biosensor was able to rapidly detect viable target cells at low inoculum levels, thus providing an inexpensive and improved alternative to the current immuno- and laboratory-based STEC screening methods.
Collapse
Affiliation(s)
- Irwin A Quintela
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Services, Western Regional Research Center Albany California USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Services, Western Regional Research Center Albany California USA
| |
Collapse
|
43
|
Shi C, Li C, Ye W, Ye WL, Li MX. Nephrotic-range proteinuria and central nervous involvement in typical hemolytic uremic syndrome: a case report. BMC Nephrol 2020; 21:319. [PMID: 32736529 PMCID: PMC7395335 DOI: 10.1186/s12882-020-01979-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hemolytic uremic syndrome (HUS), a common subtype of thrombotic microangiopathy (TMA), is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Shiga toxin-producing Escherichia coli infection is the most common cause of post-diarrheal HUS. Kidney and central nervous system are the primary target organs. Case presentation A 64-year-old male presented with HUS following bloody diarrhea. Nephrotic-range proteinuria and hypoalbuminemia were present at the acute stage and renal histology revealed common TMA features. Neurological involvement presented as confusion and impaired cognitive function. Cranial magnetic resonance imaging demonstrated bilateral T2 hyperintensities in the brainstem and insula. The patient received plasma exchange and supportive care. Both the renal and neurological impairments were completely recovered 3 months after the onset. Conclusion We report an adult patient presenting with nephrotic-range proteinuria and central nervous system involvement at the acute phase of post-diarrheal HUS. The reversibility of the organ damages might predict a favorable outcome.
Collapse
Affiliation(s)
- Chuan Shi
- Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Chao Li
- Department of Nephrology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China.
| | - Wei Ye
- Department of Nephrology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Wen-Ling Ye
- Department of Nephrology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Ming-Xi Li
- Department of Nephrology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| |
Collapse
|
44
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
45
|
Kehl A, Kuhn R, Detzner J, Steil D, Müthing J, Karch H, Mellmann A. Modeling Native EHEC Outer Membrane Vesicles by Creating Synthetic Surrogates. Microorganisms 2020; 8:microorganisms8050673. [PMID: 32384757 PMCID: PMC7284840 DOI: 10.3390/microorganisms8050673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a zoonotic pathogen responsible for life-threating diseases such as hemolytic uremic syndrome. While its major virulence factor, the Shiga toxin (Stx), is known to exert its cytotoxic effect on various endothelial and epithelial cells when in its free, soluble form, Stx was also recently found to be associated with EHEC outer membrane vesicles (OMVs). However, depending on the strain background, other toxins can also be associated with native OMVs (nOMVs), and nOMVs are also made up of immunomodulatory agents such as lipopolysaccharides and flagellin. Thus, it is difficult to determine to which extent a single virulence factor in nOMVs, such as Stx, contributes to the molecular pathogenesis of EHEC. To reduce this complexity, we successfully developed a protocol for the preparation of synthetic OMVs (sOMVs) with a defined lipid composition resembling the E. coli outer membrane and loaded with specific proteins, i.e., bovine serum albumin (BSA) as a proxy for functional Stx2a. Using BSA for parameter evaluation, we found that (1) functional sOMVs can be prepared at room temperature instead of potentially detrimental higher temperatures (e.g., 45 °C), (2) a 1:10 ratio of protein to lipid, i.e., 100 µg protein with 1 mg of lipid mixture, yields homogenously sized sOMVs, and (3) long-term storage for up to one year at 4 °C is possible without losing structural integrity. Accordingly, we reproducibly generated Stx2a-loaded sOMVs with an average diameter of 132.4 ± 9.6 nm that preserve Stx2a’s injuring activity, as determined by cytotoxicity assays with Vero cells. Overall, we successfully created sOMVs and loaded them with an EHEC toxin, which opens the door for future studies on the degree of virulence associated with individual toxins from EHEC and other bacterial pathogens.
Collapse
Affiliation(s)
- Alexander Kehl
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
- Correspondence: (A.K.); (A.M.); Tel.: +49-(0)251-83-55233 (A.K.); +49-(0)251-83-55361 (A.M.)
| | - Ronja Kuhn
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
| | - Johanna Detzner
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
| | - Daniel Steil
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
| | - Helge Karch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
- National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), University of Münster, 48149 Münster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University of Münster, 48149 Münster, Germany; (R.K.); (J.D.); (D.S.); (J.M.); (H.K.)
- National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), University of Münster, 48149 Münster, Germany
- Correspondence: (A.K.); (A.M.); Tel.: +49-(0)251-83-55233 (A.K.); +49-(0)251-83-55361 (A.M.)
| |
Collapse
|
46
|
Lingwood C. Verotoxin Receptor-Based Pathology and Therapies. Front Cell Infect Microbiol 2020; 10:123. [PMID: 32296648 PMCID: PMC7136409 DOI: 10.3389/fcimb.2020.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Verotoxin, VT (aka Shiga toxin,Stx) is produced by enterohemorrhagic E. coli (EHEC) and is the key pathogenic factor in EHEC-induced hemolytic uremic syndrome (eHUS-hemolytic anemia/thrombocytopenia/glomerular infarct) which can follow gastrointestinal EHEC infection, particularly in children. This AB5 subunit toxin family bind target cell globotriaosyl ceramide (Gb3), a glycosphingolipid (GSL) (aka CD77, pk blood group antigen) of the globoseries of neutral GSLs, initiating lipid raft-dependent plasma membrane Gb3 clustering, membrane curvature, invagination, scission, endosomal trafficking, and retrograde traffic via the TGN to the Golgi, and ER. In the ER, A/B subunits separate and the A subunit hijacks the ER reverse translocon (dislocon-used to eliminate misfolded proteins-ER associated degradation-ERAD) for cytosolic access. This property has been used to devise toxoid-based therapy to temporarily block ERAD and rescue the mutant phenotype of several genetic protein misfolding diseases. The A subunit avoids cytosolic proteosomal degradation, to block protein synthesis via its RNA glycanase activity. In humans, Gb3 is primarily expressed in the kidney, particularly in the glomerular endothelial cells. Here, Gb3 is in lipid rafts (more ordered membrane domains which accumulate GSLs/cholesterol) whereas renal tubular Gb3 is in the non-raft membrane fraction, explaining the basic pathology of eHUS (glomerular endothelial infarct). Females are more susceptible and this correlates with higher renal Gb3 expression. HUS can be associated with encephalopathy, more commonly following verotoxin 2 exposure. Gb3 is expressed in the microvasculature of the brain. All members of the VT family bind Gb3, but with varying affinity. VT2e (pig edema toxin) binds Gb4 preferentially. Verotoxin-specific therapeutics based on chemical analogs of Gb3, though effective in vitro, have failed in vivo. While some analogs are effective in animal models, there are no good rodent models of eHUS since Gb3 is not expressed in rodent glomeruli. However, the mouse mimics the neurological symptoms more closely and provides an excellent tool to assess therapeutics. In addition to direct cytotoxicity, other factors including VT–induced cytokine release and aberrant complement cascade, are now appreciated as important in eHUS. Based on atypical HUS therapy, treatment of eHUS patients with anticomplement antibodies has proven effective in some cases. A recent switch using stem cells to try to reverse, rather than prevent VT induced pathology may prove a more effective methodology.
Collapse
Affiliation(s)
- Clifford Lingwood
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
47
|
RAB5A and TRAPPC6B are novel targets for Shiga toxin 2a inactivation in kidney epithelial cells. Sci Rep 2020; 10:4945. [PMID: 32188865 PMCID: PMC7080763 DOI: 10.1038/s41598-020-59694-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells’ Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure.
Collapse
|
48
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
49
|
Harkins VJ, McAllister DA, Reynolds BC. Shiga-Toxin E. coli Hemolytic Uremic Syndrome: Review of Management and Long-term Outcome. CURRENT PEDIATRICS REPORTS 2020. [DOI: 10.1007/s40124-020-00208-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Purpose of Review
We review the pathophysiology of Shiga-Toxin Enteropathogenic–Hemolytic Uremic Syndrome (STEC-HUS), strategies to ameliorate or prevent evolution of STEC-HUS, management and the improved recognition of long-term adverse outcomes.
Recent Findings
Following on from the preclinical evidence of a role for the complement system in STEC-HUS, the use of complement blocking agents has been the major focus of most recent clinical research. Novel therapies to prevent or lessen HUS have yet to enter the clinical arena. The long-term outcomes of STEC-HUS, similarly to other causes of AKI, are not as benign as previously thought.
Summary
Optimizing supportive care in STEC-HUS is the only current recommended treatment. The administration of early isotonic fluids may reduce the severity and duration of STEC-HUS. The role of complement blockade in the management of STEC-HUS remains unclear. The long-term sequelae from STEC-HUS are significant and patients with apparent full renal recovery remain at risk.
Collapse
|
50
|
Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli in children: incidence, risk factors, and clinical outcome. Pediatr Nephrol 2020; 35:1749-1759. [PMID: 32323005 PMCID: PMC7385025 DOI: 10.1007/s00467-020-04560-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is a multisystemic disease. In a nationwide study, we characterized the incidence, clinical course, and prognosis of HUS caused by Shiga toxin (Stx)-producing Escherichia coli (STEC) strains with emphasis on risk factors, disease severity, and long-term outcome. METHODS The data on pediatric HUS patients from 2000 to 2016 were collected from the medical records. STEC isolates from fecal cultures of HUS and non-HUS patients were collected from the same time period and characterized by whole genome sequencing analysis. RESULTS Fifty-eight out of 262 culture-positive cases developed verified (n = 58, 22%) STEC-HUS. Another 29 cases had probable STEC-HUS, the annual incidence of STEC-HUS being 0.5 per 100,000 children. Eleven different serogroups were detected, O157 being the most common (n = 37, 66%). Age under 3 years (OR 2.4), stx2 (OR 9.7), and stx2a (OR 16.6) were found to be risk factors for HUS. Fifty-five patients (63%) needed dialysis. Twenty-nine patients (33%) developed major neurological symptoms. Complete renal recovery was observed in 57 patients after a median 4.0 years of follow-up. Age under 3 years, leukocyte count over 20 × 109/L, and need for dialysis were predictive factors for poor renal outcome. CONCLUSIONS Age under 3 years, stx2, and stx2a were risk factors for HUS in STEC-positive children. However, serogroup or stx types did not predict the renal outcome or major CNS symptoms.
Collapse
|