1
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
2
|
Shao G, Xu J, Hu C, Jia W, Xu X, Gu Y, Zhang L, Zheng Z, Zhong J, Zhu S, Meng S, Zhao Z, Zhang Z, Liu J, Xu Y, Wu H. Podocyte YAP ablation decreases podocyte adhesion and exacerbates FSGS progression through α3β1 integrin. J Pathol 2025; 265:84-98. [PMID: 39668547 DOI: 10.1002/path.6370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 12/14/2024]
Abstract
Severe proteinuria in focal segmental glomerulosclerosis (FSGS) is closely associated with decreased adhesion, and subsequent loss, of podocytes. Yes-associated protein (YAP) is a key transcriptional coactivator that plays a significant role in maintaining cellular homeostasis. However, its role in podocyte adhesion and its specific mechanism in FSGS progression remain unclear. In this study, an adriamycin (ADR)-induced FSGS model was established using podocyte-specific Yap knockout (KO) mice and control mice. These mice were further treated with Pyrintegrin, an agonist of α3β1 integrin, or a vehicle. Additionally, an ADR-induced FSGS model was constructed using podocyte-specific Itga3 KO mice, which were subsequently treated with 1-oleoyl lysophosphatidic acid (LPA), a YAP activator, or a vehicle. Our findings demonstrated that YAP was positively correlated with podocyte adhesion. Podocyte-specific Yap KO mice exhibited reduced levels of α3β1 integrin and podocyte adhesion. Yap KO aggravated the ADR-induced reduction in α3β1 integrin and podocyte adhesion, resulting in significantly increased segmental or global glomerulosclerosis and proteinuria. Notably, treatment with a β1 integrin agonist partially ameliorated the decrease of podocyte adhesion and the worsening FSGS progression caused by Yap KO. Mechanistically, YAP was found to transcriptionally regulate α3- and β1 integrin via transcriptional enhanced associate domain 3 (TEAD3), with TEAD3 binding to the promoter region of Itga3. Furthermore, Itga3 KO or knockdown abolished the beneficial effects of YAP activation on podocyte adhesion and FSGS progression. In conclusion, our results demonstrate that YAP regulates podocyte adhesion and FSGS progression through its transcriptional regulation of α3β1 integrin via TEAD3. This suggests that the YAP-TEAD3-α3β1 integrin axis may serve as a promising therapeutic target for FSGS. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Guangze Shao
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Jitu Xu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Chencheng Hu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Wenyao Jia
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Xitong Xu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Yue Gu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Luming Zhang
- School of Biological Sciences, College of Life Science, Northwest A&F University, Xianyang, PR China
| | - Zhihuang Zheng
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jiayan Zhong
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Siqi Zhu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Shenghao Meng
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Zhonghua Zhao
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Zhigang Zhang
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| | - Jun Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yanyong Xu
- Frontier Innovation Center of School of Basic Medical Sciences, Fudan University, Shanghai, PR China
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Huijuan Wu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Kidney and Dialysis Institute of Shanghai, Shanghai, PR China
| |
Collapse
|
3
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
4
|
Katagiri D, Nagasaka S, Takahashi K, Wang S, Pozzi A, Zent R, Shimizu A, Zhang MZ, Göthert JR, van Kuppevelt TH, Harris RC, Takahashi T. Endothelial eNOS deficiency causes podocyte injury through NFAT2 and heparanase in diabetic mice. Sci Rep 2024; 14:29179. [PMID: 39587144 PMCID: PMC11589149 DOI: 10.1038/s41598-024-79501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The pivotal role of endothelial nitric oxide synthase (eNOS) in diabetic nephropathy (DN) has been demonstrated using global eNOS knockout (eNOSGKO) mice. However, the precise role of endothelially expressed eNOS and how its deficiency advances DN are still unclear. Here, we targeted endothelial eNOS expression (E-eNOSKO) after the onset of diabetes using the floxed eNOS and endSCL-CreERT alleles. Diabetes was induced by low-dose streptozotocin injections. To evaluate the role of nuclear factor of activated T cells-2 (NFAT2) in podocyte injury in this condition, podocyte-specific NFAT2KO mice were also generated on eNOSGKO mice. The mechanisms of podocyte injury were investigated using cultured podocytes. Compared with diabetic wild-type mice, diabetic E-eNOSKO mice showed more advanced DN accompanied by NFAT2 expression in podocytes. NO donor suppressed NFAT2 expression and activation in high-glucose cultured podocytes as well as in diabetic E-eNOSKO mice. Furthermore, podocyte-specific deletion of NFAT2 attenuated DN in diabetic eNOSGKO mice accompanied by decreased heparanase (HPSE) expression in podocytes. Consistent with this finding, HPSE was upregulated by NFAT2 transfection and suppressed by NFAT2 siRNA or NO donor treatment in cultured podocytes. HPSE transfection reduced podocyte attachment to extracellular matrix concurrent with syndecan-4 (SDC4) shedding, and this effect was attenuated by co-transfection of SDC4. Finally, HPSE inhibitor treatment attenuated podocyte injury in diabetic E-eNOSKO mice with increased SDC4 expression in podocytes. Collectively, our data suggest that endothelial eNOS deficiency causes podocyte HPSE expression in diabetic mice through NFAT2, and HPSE promotes podocyte detachment in part through SDC4 shedding, advancing DN.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Shinya Nagasaka
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
| | - Joachim R Göthert
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Nashville, TN, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223, MCN, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Katafuchi E, Hisano S, Kurata S, Muta K, Uesugi N, Miyamoto T, Harada Y, Shimajiri S, Katafuchi R, Nakayama T. Aberrant localization of β1 integrin in podocyte cytoplasm of primary FSGS with cellular lesion. Virchows Arch 2024:10.1007/s00428-024-03919-0. [PMID: 39271482 DOI: 10.1007/s00428-024-03919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Podocyte detachment is a major trigger in pathogenesis of focal segmental glomerulosclerosis (FSGS). Detachment via β1 integrin (ITGB1) endocytosis, associated with endothelial cell injury, has been reported in animal models but remains unknown in human kidneys. The objectives of our study were to examine the difference in ITGB1 dynamics between primary FSGS and minimal change nephrotic syndrome (MCNS), among variants of FSGS, as well as between the presence or absence of cellular lesions (CEL-L) in human kidneys, and to elucidate the pathogenesis of FSGS. Thirty-one patients with primary FSGS and 14 with MCNS were recruited. FSGS cases were categorized into two groups: those with CEL-L, defined by segmental endocapillary hypercellularity occluding lumina, and those without CEL-L. The podocyte cytoplasmic ITGB1 levels, ITGB1 expression, and degrees of podocyte detachment and subendothelial widening were compared between FSGS and MCNS, FSGS variants, and FSGS groups with and without CEL-L (CEL-L( +)/CEL-L( -)). ITGB1 distribution in podocyte cytoplasm was significantly greater in CEL-L( +) group than that in MCNS and CEL-L( -) groups. ITGB1 expression was similar in CEL-L( +) and MCNS, but lower in CEL-L( -) compared with others. Podocyte detachment levels were comparable in CEL-L( +) and CEL-L( -) groups, both exhibiting significantly higher detachment than the MCNS group. Subendothelial widening was significantly greater in CEL-L( +) compared with CEL-L( -) and MCNS groups. The findings of this study imply the existence of distinct pathological mechanisms associated with ITGB1 dynamics between CEL-L( +) and CEL-L( -) groups, and suggest a potential role of endothelial cell injury in the pathogenesis of cellular lesions in FSGS.
Collapse
Affiliation(s)
- Eisuke Katafuchi
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan.
| | - Satoshi Hisano
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Satoko Kurata
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Japan
| | - Kumiko Muta
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Noriko Uesugi
- Department of Pathology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tetsu Miyamoto
- Kidney Center, Hospital of the University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshikazu Harada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Shohei Shimajiri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Ritsuko Katafuchi
- Kidney Unit, National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
- Kidney Unit, Medical Corporation Houshikai Kano Hospital, 1-2-1, Chuoekimae, Sjingu-Machi, Kasuya-Gun, Fukuoka, 811-0120, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
7
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Farach-Carson MC, Wu D, França CM. Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology. PROTEOGLYCAN RESEARCH 2024; 2:e21. [PMID: 39584146 PMCID: PMC11584024 DOI: 10.1002/pgr2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 11/26/2024]
Abstract
Proteoglycans (PGs) are a diverse class of glycoconjugates that serve critical functions in normal mechanobiology and mechanopathology. Both the protein cores and attached glycosaminoglycan (GAG) chains function in mechanically-sensitive processes, and loss of either can contribute to development of pathological conditions. PGs function as key components of the extracellular matrix (ECM) where they can serve as mechanosensors in mechanosensitive tissues including bone, cartilage, tendon, blood vessels and soft organs. The mechanical properties of these tissues depend on the presence and function of PGs, which play important roles in tissue elasticity, osmolarity and pressure sensing, and response to physical activity. Tissue responses depend on cell surface mechanoreceptors that include integrins, CD44, voltage sensitive ion channels, transient receptor potential (TRP) and piezo channels. PGs contribute to cell and molecular interplay in wound healing, fibrosis, and cancer, where they transduce the mechanical properties of the ECM and influence the progression of various context-specific conditions and diseases. The PGs that are most important in mechanobiology vary depending on the tissue and its functions and functional needs. Perlecan, for example, is important in the mechanobiology of basement membranes, cardiac and skeletal muscle, while aggrecan plays a primary role in the mechanical properties of cartilage and joints. A variety of techniques have been used to study the mechanobiology of PGs, including atomic force microscopy, mouse knockout models, and in vitro cell culture experiments with 3D organoid models. These studies have helped to elucidate the tissue-specific roles that PGs play in cell-level mechanosensing and tissue mechanics. Overall, the study of PGs in mechanobiology is yielding fundamental new concepts in the molecular basis of mechanosensing that can open the door to the development of new treatments for a host of conditions related to mechanopathology.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Cristiane Miranda França
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, 97201
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201
| |
Collapse
|
9
|
Cybulsky AV, Papillon J, Bryan C, Navarro‐Betancourt JR, Sabourin LA. Role of the Ste20-like kinase SLK in podocyte adhesion. Physiol Rep 2024; 12:e15897. [PMID: 38163671 PMCID: PMC10758337 DOI: 10.14814/phy2.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Joan Papillon
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Craig Bryan
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - José R. Navarro‐Betancourt
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Luc A. Sabourin
- Ottawa Hospital Research Institute, Cancer TherapeuticsOttawaOntarioCanada
| |
Collapse
|
10
|
Bosquetti B, Santana AA, Gregório PC, da Cunha RS, Miniskiskosky G, Budag J, Franco CRC, Ramos EADS, Barreto FC, Stinghen AEM. The Role of α3β1 Integrin Modulation on Fabry Disease Podocyte Injury and Kidney Impairment. Toxins (Basel) 2023; 15:700. [PMID: 38133204 PMCID: PMC10748128 DOI: 10.3390/toxins15120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Podocyte dysfunction plays a crucial role in renal injury and is identified as a key contributor to proteinuria in Fabry disease (FD), primarily impacting glomerular filtration function (GFF). The α3β1 integrins are important for podocyte adhesion to the glomerular basement membrane, and disturbances in these integrins can lead to podocyte injury. Therefore, this study aimed to assess the effects of chloroquine (CQ) on podocytes, as this drug can be used to obtain an in vitro condition analogous to the FD. Murine podocytes were employed in our experiments. The results revealed a dose-dependent reduction in cell viability. CQ at a sub-lethal concentration (1.0 µg/mL) induced lysosomal accumulation significantly (p < 0.0001). Morphological changes were evident through scanning electron microscopy and immunofluorescence, highlighting alterations in F-actin and nucleus morphology. No significant changes were observed in the gene expression of α3β1 integrins via RT-qPCR. Protein expression of α3 integrin was evaluated with Western Blotting and immunofluorescence, demonstrating its lower detection in podocytes exposed to CQ. Our findings propose a novel in vitro model for exploring secondary Fabry nephropathy, indicating a modulation of α3β1 integrin and morphological alterations in podocytes under the influence of CQ.
Collapse
Affiliation(s)
- Bruna Bosquetti
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Aline Aparecida Santana
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Paulo Cézar Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Guilherme Miniskiskosky
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Julia Budag
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Célia Regina Cavichiolo Franco
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Edneia Amancio de Souza Ramos
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| | - Fellype Carvalho Barreto
- Internal Medicine Department, Division of Nephrology, Universidade Federal do Paraná, Curitiba 80060-900, Brazil;
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (B.B.); (A.A.S.); (P.C.G.); (R.S.d.C.); (G.M.); (J.B.); (C.R.C.F.); (E.A.d.S.R.)
| |
Collapse
|
11
|
Tong J, Zheng Q, Gu X, Weng Q, Yu S, Fang Z, Jafar Hussain HM, Xu J, Ren H, Chen N, Xie J. COL4A3 Mutation Induced Podocyte Apoptosis by Dysregulation of NADPH Oxidase 4 and MMP-2. Kidney Int Rep 2023; 8:1864-1874. [PMID: 37705901 PMCID: PMC10496016 DOI: 10.1016/j.ekir.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Podocyte apoptosis is a common mechanism driving progression in Alport syndrome (AS). This study aimed to investigate the mechanism of podocyte apoptosis caused by COL4A3 mutations. Methods We recruited patients with autosomal dominant AS (ADAS). Patients with minimal change disease (MCD) were recruited as controls. Microarray analysis was carried out on isolated glomeruli from the patients and validated. Then, corresponding mutant human podocytes (p.C1616Y) and 129 mice (p.C1615Y, the murine homolog to the human p.C1616Y) were constructed. The highest differentially expressed genes (DEGs) from microarray analysis were validated in transgenic mice and podocytes before and after administration of MMP-2 inhibitor (SB-3CT) and NOX4 inhibitor (GKT137831). We further validated NOX4/MMP-2/apoptosis pathway by real-time polymerase chain reaction (PCR), immunohistochemistry, and western blot in renal tissues from the ADAS patients. Results Using microarray analysis, we observed that DEGs, including NOX4/H2O2, MMP-2, and podocyte apoptosis-related genes were significantly upregulated. These genes were validated by real-time PCR, histologic analysis, and western blot in corresponding mutant human podocyte (p.C1616Y) and/or mice models (p.C1615Y). Moreover, we found podocyte apoptosis was abrogated and MMP-2 expression was down-regulated both in vivo and in vitro by NOX4 inhibition, urinary albumin-to-creatinine ratio, 24-hour proteinuria; and renal pathologic lesion was attenuated by NOX4 inhibition in vivo. Furthermore, podocyte apoptosis was attenuated whereas NOX4 expression remained the same by inhibition of MMP-2 both in vivo and in vitro. Conclusion These results indicated that NOX4 might induce podocyte apoptosis through the regulation of MMP-2 in patients with COL4A3 mutations. Our findings provided new insights into the mechanism of ADAS.
Collapse
Affiliation(s)
- Jun Tong
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qimin Zheng
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qinjie Weng
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shuwen Yu
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhengying Fang
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hafiz Muhammad Jafar Hussain
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hong Ren
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Feng L, Shu HP, Sun LL, Tu YC, Liao QQ, Yao LJ. Role of the SLIT-ROBO signaling pathway in renal pathophysiology and various renal diseases. Front Physiol 2023; 14:1226341. [PMID: 37497439 PMCID: PMC10366692 DOI: 10.3389/fphys.2023.1226341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
SLIT ligand and its receptor ROBO were initially recognized for their role in axon guidance in central nervous system development. In recent years, as research has advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded from axonal repulsion to cell migration, tumor development, angiogenesis, and bone metabolism. As a secreted protein, SLIT regulates various pathophysiological processes in the kidney, such as proinflammatory responses and fibrosis progression. Many studies have shown that SLIT-ROBO is extensively involved in various aspects of kidney development and maintenance of structure and function. The SLIT-ROBO signaling pathway also plays an important role in different types of kidney disease. This article reviews the advances in the study of the SLIT-ROBO pathway in various renal pathophysiological and kidney disorders and proposes new directions for further research in this field.
Collapse
|
13
|
Rogg M, Maier JI, Helmstädter M, Sammarco A, Kliewe F, Kretz O, Weißer L, Van Wymersch C, Findeisen K, Koessinger AL, Tsoy O, Baumbach J, Grabbert M, Werner M, Huber TB, Endlich N, Schilling O, Schell C. A YAP/TAZ-ARHGAP29-RhoA Signaling Axis Regulates Podocyte Protrusions and Integrin Adhesions. Cells 2023; 12:1795. [PMID: 37443829 PMCID: PMC10340513 DOI: 10.3390/cells12131795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Glomerular disease due to podocyte malfunction is a major factor in the pathogenesis of chronic kidney disease. Identification of podocyte-specific signaling pathways is therefore a prerequisite to characterizing relevant disease pathways and developing novel treatment approaches. Here, we employed loss of function studies for EPB41L5 (Yurt) as a central podocyte gene to generate a cell type-specific disease model. Loss of Yurt in fly nephrocytes caused protein uptake and slit diaphragm defects. Transcriptomic and proteomic analysis of human EPB41L5 knockout podocytes demonstrated impaired mechanotransduction via the YAP/TAZ signaling pathway. Further analysis of specific inhibition of the YAP/TAZ-TEAD transcription factor complex by TEADi led to the identification of ARGHAP29 as an EPB41L5 and YAP/TAZ-dependently expressed podocyte RhoGAP. Knockdown of ARHGAP29 caused increased RhoA activation, defective lamellipodia formation, and increased maturation of integrin adhesion complexes, explaining similar phenotypes caused by loss of EPB41L5 and TEADi expression in podocytes. Detection of increased levels of ARHGAP29 in early disease stages of human glomerular disease implies a novel negative feedback loop for mechanotransductive RhoA-YAP/TAZ signaling in podocyte physiology and disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany (N.E.)
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lisa Weißer
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karla Findeisen
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna L. Koessinger
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany; (O.T.)
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany; (O.T.)
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Markus Grabbert
- Department of Urology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany (N.E.)
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
14
|
Marcos González S, Rodrigo Calabia E, Varela I, Červienka M, Freire Salinas J, Gómez Román JJ. High Rate of Mutations of Adhesion Molecules and Extracellular Matrix Glycoproteins in Patients with Adult-Onset Focal and Segmental Glomerulosclerosis. Biomedicines 2023; 11:1764. [PMID: 37371859 DOI: 10.3390/biomedicines11061764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Focal and segmental glomerulosclerosis (FSGS) is a pattern of injury that results from podocyte loss in the setting of a wide variety of injurious mechanisms. These include both acquired and genetic as well as primary and secondary causes, or a combination thereof, without optimal therapy, and a high rate of patients develop end-stage renal disease (ESRD). Genetic studies have helped improve the global understanding of FSGS syndrome; thus, we hypothesize that patients with primary FSGS may have underlying alterations in adhesion molecules or extracellular matrix glycoproteins related to previously unreported mutations that may be studied through next-generation sequencing (NGS). (2) Methods: We developed an NGS panel with 29 genes related to adhesion and extracellular matrix glycoproteins. DNA was extracted from twenty-three FSGS patients diagnosed by renal biopsy; (3) Results: The average number of accumulated variants in FSGS patients was high. We describe the missense variant ITGB3c.1199G>A, which is considered pathogenic; in addition, we discovered the nonsense variant CDH1c.499G>T, which lacks a Reference SNP (rs) Report and is considered likely pathogenic. (4) Conclusions: To the best of our knowledge, this is the first account of a high rate of change in extracellular matrix glycoproteins and adhesion molecules in individuals with adult-onset FSGS. The combined effect of all these variations may result in a genotype that is vulnerable to the pathogenesis of glomerulopathy.
Collapse
Affiliation(s)
- Sara Marcos González
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Emilio Rodrigo Calabia
- Nephrology Department, Marqués de Valdecilla University Hospital, 39008, University of Cantabria, 39005 Santander, Spain
| | - Ignacio Varela
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), 39011, University of Cantabria-CSIC, 39005 Santander, Spain
| | - Michal Červienka
- Nephrology Department, Rio Carrion General Hospital, 34005 Palencia, Spain
| | - Javier Freire Salinas
- Anatomic Pathology, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José Javier Gómez Román
- Pathology Department, Marqués de Valdecilla University Hospital, Institute of Research Valdecilla (IDIVAL), School of Medicine, University of Cantabria, 39008 Santander, Spain
| |
Collapse
|
15
|
Mason WJ, Vasilopoulou E. The Pathophysiological Role of Thymosin β4 in the Kidney Glomerulus. Int J Mol Sci 2023; 24:ijms24097684. [PMID: 37175390 PMCID: PMC10177875 DOI: 10.3390/ijms24097684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diseases affecting the glomerulus, the filtration unit of the kidney, are a major cause of chronic kidney disease. Glomerular disease is characterised by injury of glomerular cells and is often accompanied by an inflammatory response that drives disease progression. New strategies are needed to slow the progression to end-stage kidney disease, which requires dialysis or transplantation. Thymosin β4 (Tβ4), an endogenous peptide that sequesters G-actin, has shown potent anti-inflammatory function in experimental models of heart, kidney, liver, lung, and eye injury. In this review, we discuss the role of endogenous and exogenous Tβ4 in glomerular disease progression and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- William J Mason
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | |
Collapse
|
16
|
Boi R, Bergwall L, Ebefors K, Bergö MO, Nyström J, Buvall L. Podocyte Geranylgeranyl Transferase Type-I Is Essential for Maintenance of the Glomerular Filtration Barrier. J Am Soc Nephrol 2023; 34:641-655. [PMID: 36735952 PMCID: PMC10103324 DOI: 10.1681/asn.0000000000000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT A tightly regulated actin cytoskeleton attained through balanced activity of RhoGTPases is crucial to maintaining podocyte function. However, how RhoGTPases are regulated by geranylgeranylation, a post-translational modification, has been unexplored. The authors found that loss of the geranylgeranylation enzyme geranylgeranyl transferase type-I (GGTase-I) in podocytes led to progressive albuminuria and foot process effacement in podocyte-specific GGTase-I knockout mice. In cultured podocytes, the absence of geranylgeranylation resulted in altered activity of its downstream substrates Rac1, RhoA, Cdc42, and Rap1, leading to alterations of β1-integrins and actin cytoskeleton structural changes. These findings highlight the importance of geranylgeranylation in the dynamic management of RhoGTPases and Rap1 to control podocyte function, providing new knowledge about podocyte biology and glomerular filtration barrier function. BACKGROUND Impairment of the glomerular filtration barrier is in part attributed to podocyte foot process effacement (FPE), entailing disruption of the actin cytoskeleton and the slit diaphragm. Maintenance of the actin cytoskeleton, which contains a complex signaling network through its connections to slit diaphragm and focal adhesion proteins, is thus considered crucial to preserving podocyte structure and function. A dynamic yet tightly regulated cytoskeleton is attained through balanced activity of RhoGTPases. Most RhoGTPases are post-translationally modified by the enzyme geranylgeranyl transferase type-I (GGTase-I). Although geranylgeranylation has been shown to regulate activities of RhoGTPases and RasGTPase Rap1, its significance in podocytes is unknown. METHODS We used immunofluorescence to localize GGTase-I, which was expressed mainly by podocytes in the glomeruli. To define geranylgeranylation's role in podocytes, we generated podocyte-specific GGTase-I knockout mice. We used transmission electron microscopy to evaluate FPE and measurements of urinary albumin excretion to analyze filtration barrier function. Geranylgeranylation's effects on RhoGTPases and Rap1 function were studied in vitro by knockdown or inhibition of GGTase-I. We used immunocytochemistry to study structural modifications of the actin cytoskeleton and β1 integrins. RESULTS Depletion of GGTase-I in podocytes in vivo resulted in FPE and concomitant early-onset progressive albuminuria. A reduction of GGTase-I activity in cultured podocytes disrupted RhoGTPase balance by markedly increasing activity of RhoA, Rac1, and Cdc42 together with Rap1, resulting in dysregulation of the actin cytoskeleton and altered distribution of β1 integrins. CONCLUSIONS These findings indicate that geranylgeranylation is of crucial importance for the maintenance of the delicate equilibrium of RhoGTPases and Rap1 in podocytes and consequently for the maintenance of glomerular integrity and function.
Collapse
Affiliation(s)
- Roberto Boi
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergö
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Buvall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
17
|
Frommherz LH, Sayar SB, Wang Y, Trefzer LK, He Y, Leppert J, Eßer P, Has C. Integrin α3 negative podocytes: A gene expression study. Matrix Biol Plus 2022; 16:100119. [PMID: 36060790 PMCID: PMC9429797 DOI: 10.1016/j.mbplus.2022.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
New cell model to investigate the impact of loss of integrin α3 in podocytes. In this novel model, genes of the extracellular matrix and adhesome are mostly downregulated. Loss of integrin α3 results in changes of cell adhesion and spreading.
Integrin α3β1 is a cell adhesion receptor widely expressed in epithelial cells. Pathogenic variants in the gene encoding the integrin α3 subunit ITGA3 lead to a syndrome including interstitial lung disease, nephrotic syndrome, and epidermolysis bullosa (ILNEB). Renal involvement mainly consists of glomerular disease caused by loss of adhesion between podocytes and the glomerular basement membrane. The aim of this study was to characterize the impact of loss of integrin α3 on human podocytes. ITGA3 was stably knocked-out in the human podocyte cell line AB8/13, designated as PodoA3−, and in human proximal tubule epithelial cell line HK2 using the targeted genome editing technique CRISPR/Cas9. Cell clones were characterized by Sanger sequencing, quantitative PCR, Western Blot and immunofluorescence staining. RNASeq of integrin α3 negative cells and controls was performed to identify differential gene expression patterns. Differentiated PodoA3− did not substantially change morphology and adhesion under standard culture conditions, but displayed significantly reduced spreading and adhesion when seed on laminin 511 in serum free medium. Gene expression studies demonstrated a distinct dysregulation of the adhesion network with downregulation of most integrin α3 interaction partners. In agreement with this, biological processes such as “extracellular matrix organization” and “cell differentiation” as well as KEGG pathways such as “ECM-receptor interaction”, “focal adhesion” and the “PI3K-Akt signaling pathway” were significantly downregulated in human podocytes lacking the integrin α3 subunit.
Collapse
Affiliation(s)
- L H Frommherz
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, University Hospital, LMU Munich, Germany
| | - S B Sayar
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Y Wang
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - L K Trefzer
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Y He
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - J Leppert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - P Eßer
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - C Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
CdGAP maintains podocyte function and modulates focal adhesions in a Src kinase-dependent manner. Sci Rep 2022; 12:18657. [PMID: 36333327 PMCID: PMC9636259 DOI: 10.1038/s41598-022-21634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and β-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with β-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired β-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.
Collapse
|
19
|
Yamamoto K, Okabe M, Tanaka K, Yokoo T, Pastan I, Araoka T, Osafune K, Udagawa T, Koizumi M, Matsusaka T. Podocytes are lost from glomeruli before completing apoptosis. Am J Physiol Renal Physiol 2022; 323:F515-F526. [PMID: 36049065 PMCID: PMC9602714 DOI: 10.1152/ajprenal.00080.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although apoptosis of podocytes has been widely reported in in vitro studies, it has been less frequently and less definitively documented in in vivo situations. To investigate this discrepancy, we analyzed the dying process of podocytes in vitro and in vivo using LMB2, a human (h)CD25-directed immunotoxin. LMB2 induced cell death within 2 days in 56.8 ± 13.6% of cultured podocytes expressing hCD25 in a caspase-3, Bak1, and Bax-dependent manner. LMB2 induced typical apoptotic features, including TUNEL staining and fragmented nuclei without lactate dehydrogenase leakage. In vivo, LMB2 effectively eliminated hCD25-expressing podocytes in NEP25 mice. Podocytes injured by LMB2 were occasionally stained for cleaved caspase-3 and cleaved lamin A but never for TUNEL. Urinary sediment contained TUNEL-positive podocytes. To examine the effect of glomerular filtration, we performed unilateral ureteral obstruction in NEP25 mice treated with LMB2 1 day before euthanasia. In the obstructed kidney, glomeruli contained significantly more cleaved lamin A-positive podocytes than those in the contralateral kidney (50.1 ± 5.4% vs. 29.3 ± 4.1%, P < 0.001). To further examine the dying process without glomerular filtration, we treated kidney organoids generated from nephron progenitor cells of NEP25 mice with LMB2. Podocytes showed TUNEL staining and nuclear fragmentation. These results indicate that on activation of apoptotic caspases, podocytes are detached and lost in the urine before nuclear fragmentation and that the physical force of glomerular filtration facilitates detachment. This phenomenon may be the reason why definitive apoptosis is not observed in podocytes in vivo.NEW & NOTEWORTHY This report clarifies why morphologically definitive apoptosis is not observed in podocytes in vivo. When caspase-3 is activated in podocytes, these cells are immediately detached from the glomerulus and lost in the urine before DNA fragmentation occurs. Detachment is facilitated by glomerular filtration. This phenomenon explains why podocytes in vivo rarely show TUNEL staining and never apoptotic bodies.
Collapse
Affiliation(s)
- Kazuyoshi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Keiko Tanaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tomohiro Udagawa
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masahiro Koizumi
- Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
20
|
Tseng CC, Zheng RH, Lin TW, Chou CC, Shih YC, Liang SW, Lee HH. α-Actinin-4 recruits Shp2 into focal adhesions to potentiate ROCK2 activation in podocytes. Life Sci Alliance 2022; 5:5/11/e202201557. [PMID: 36096674 PMCID: PMC9468603 DOI: 10.26508/lsa.202201557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
α-Actinin-4 is crucial in the regulation of Shp2 FA targeting to enhance ROCK2-mediated actomyosin contractility and thereby strengthening cell adhesion and cytoskeletal architecture in podocytes. Cell–matrix adhesions are mainly provided by integrin-mediated focal adhesions (FAs). We previously found that Shp2 is essential for FA maturation by promoting ROCK2 activation at FAs. In this study, we further delineated the role of α-actinin-4 in the FA recruitment and activation of Shp2. We used the conditional immortalized mouse podocytes to examine the role of α-actinin-4 in the regulation of Shp2 and ROCK2 signaling. After the induction of podocyte differentiation, Shp2 and ROCK2 were strongly activated, concomitant with the formation of matured FAs, stress fibers, and interdigitating intracellular junctions in a ROCK-dependent manner. Gene knockout of α-actinin-4 abolished the Shp2 activation and subsequently reduced matured FAs in podocytes. We also demonstrated that gene knockout of ROCK2 impaired the generation of contractility and interdigitating intercellular junctions. Our results reveal the role of α-actinin-4 in the recruitment of Shp2 at FAs to potentiate ROCK2 activation for the maintenance of cellular contractility and cytoskeletal architecture in the cultured podocytes.
Collapse
Affiliation(s)
- Chien-Chun Tseng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ru-Hsuan Zheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Wei Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chia Shih
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shao-Wei Liang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
21
|
Mason WJ, Jafree DJ, Pomeranz G, Kolatsi-Joannou M, Rottner AK, Pacheco S, Moulding DA, Wolf A, Kupatt C, Peppiatt-Wildman C, Papakrivopoulou E, Riley PR, Long DA, Vasilopoulou E. Systemic gene therapy with thymosin β4 alleviates glomerular injury in mice. Sci Rep 2022; 12:12172. [PMID: 35842494 PMCID: PMC9288454 DOI: 10.1038/s41598-022-16287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin β4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.
Collapse
Affiliation(s)
- William J Mason
- Division of Natural Sciences, Medway School of Pharmacy, University of Kent, Chatham, Kent, UK.,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,UCL MB/PhD Programme, Faculty of Medical Science, University College London, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Antje K Rottner
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sabrina Pacheco
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale A Moulding
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anja Wolf
- Medizinische Klinik und Poliklinik I, University Clinic Rechts der Isar, TUM Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Kupatt
- Medizinische Klinik und Poliklinik I, University Clinic Rechts der Isar, TUM Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Internal Medicine and Nephrology, Clinique Saint Jean, Brussels, Belgium
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Elisavet Vasilopoulou
- Division of Natural Sciences, Medway School of Pharmacy, University of Kent, Chatham, Kent, UK. .,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK. .,Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
22
|
Maywald ML, Picciotto C, Lepa C, Bertgen L, Yousaf FS, Ricker A, Klingauf J, Krahn MP, Pavenstädt H, George B. Rap1 Activity Is Essential for Focal Adhesion and Slit Diaphragm Integrity. Front Cell Dev Biol 2022; 10:790365. [PMID: 35372328 PMCID: PMC8972170 DOI: 10.3389/fcell.2022.790365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Glomerular podocytes build, with their intercellular junctions, part of the kidney filter. The podocyte cell adhesion protein, nephrin, is essential for developing and maintaining slit diaphragms as functional loss in humans results in heavy proteinuria. Nephrin expression and function are also altered in many adult-onset glomerulopathies. Nephrin signals from the slit diaphragm to the actin cytoskeleton and integrin β1 at focal adhesions by recruiting Crk family proteins, which can interact with the Rap guanine nucleotide exchange factor 1 C3G. As Rap1 activity affects focal adhesion formation, we hypothesize that nephrin signals via Rap1 to integrin β. To address this issue, we combined Drosophila in vivo and mammalian cell culture experiments. We find that Rap1 is necessary for correct targeting of integrin β to focal adhesions in Drosophila nephrocytes, which also form slit diaphragm-like structures. In the fly, the Rap1 activity is important for signaling of the nephrin ortholog to integrin β, as well as for nephrin-dependent slit diaphragm integrity. We show by genetic interaction experiments that Rap1 functions downstream of nephrin signaling to integrin β and downstream of nephrin signaling necessary for slit diaphragm integrity. Similarly, in human podocyte culture, nephrin activation results in increased activation of Rap1. Thus, Rap1 is necessary for downstream signal transduction of nephrin to integrin β.
Collapse
Affiliation(s)
- Mee-Ling Maywald
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Cara Picciotto
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Carolin Lepa
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | - Luisa Bertgen
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
| | | | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael P. Krahn
- Medizinische Klinik D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | | | - Britta George
- Medizinische Klinik D, University Hospital Münster, Münster, Germany
- *Correspondence: Britta George,
| |
Collapse
|
23
|
Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction. Int J Oral Sci 2022; 14:15. [PMID: 35277477 PMCID: PMC8917190 DOI: 10.1038/s41368-022-00165-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractMicroenvironmental biophysical factors play a fundamental role in controlling cell behaviors including cell morphology, proliferation, adhesion and differentiation, and even determining the cell fate. Cells are able to actively sense the surrounding mechanical microenvironment and change their cellular morphology to adapt to it. Although cell morphological changes have been considered to be the first and most important step in the interaction between cells and their mechanical microenvironment, their regulatory network is not completely clear. In the current study, we generated silicon-based elastomer polydimethylsiloxane (PDMS) substrates with stiff (15:1, PDMS elastomer vs. curing agent) and soft (45:1) stiffnesses, which showed the Young’s moduli of ~450 kPa and 46 kPa, respectively, and elucidated a new path in cytoskeleton re-organization in chondrocytes in response to changed substrate stiffnesses by characterizing the axis shift from the secreted extracellular protein laminin β1, focal adhesion complex protein FAK to microfilament bundling. We first showed the cellular cytoskeleton changes in chondrocytes by characterizing the cell spreading area and cellular synapses. We then found the changes of secreted extracellular linkage protein, laminin β1, and focal adhesion complex protein, FAK, in chondrocytes in response to different substrate stiffnesses. These two proteins were shown to be directly interacted by Co-IP and colocalization. We next showed that impact of FAK on the cytoskeleton organization by showing the changes of microfilament bundles and found the potential intermediate regulators. Taking together, this modulation axis of laminin β1-FAK-microfilament could enlarge our understanding about the interdependence among mechanosensing, mechanotransduction, and cytoskeleton re-organization.
Collapse
|
24
|
Margioula-Siarkou G, Margioula-Siarkou C, Petousis S, Margaritis K, Vavoulidis E, Gullo G, Alexandratou M, Dinas K, Sotiriadis A, Mavromatidis G. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol Cell Biochem 2022; 477:479-491. [PMID: 34783962 DOI: 10.1007/s11010-021-04294-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia remains till today a leading cause of maternal and fetal morbidity and mortality. Pathophysiology of the disease is not yet fully elucidated, though it is evident that it revolves around placenta. Cellular ischemia in the preeclamptic placenta creates an imbalance between angiogenic and anti-angiogenic factors in maternal circulation. Endoglin, a transmembrane co-receptor of transforming growth factor β (TGF-β) demonstrating angiogenic effects, is involved in a variety of angiogenesis-dependent diseases with endothelial dysfunction, including preeclampsia. Endoglin expression is up-regulated in preeclamptic placentas, through mechanisms mainly induced by hypoxia, oxidative stress and oxysterol-mediated activation of liver X receptors. Overexpression of endoglin results in an increase of its soluble form in maternal circulation. Soluble endoglin represents the extracellular domain of membrane endoglin, cleaved by the action of metalloproteinases, predominantly matrix metalloproteinase-14. Released in circulation, soluble endoglin interferes in TGF-β1 and activin receptor-like kinase 1 signaling pathways and inhibits endothelial nitric oxide synthase activation, consequently deranging angiogenesis and promoting vasoconstriction. Due to these properties, soluble endoglin actively contributes to the impaired placentation observed in preeclampsia, as well as to the pathogenesis and manifestation of its clinical signs and symptoms, especially hypertension and proteinuria. The significant role of endoglin and soluble endoglin in pathophysiology of preeclampsia could have prognostic, diagnostic and therapeutic perspectives. Further research is essential to extensively explore the potential use of these molecules in the management of preeclampsia in clinical settings.
Collapse
Affiliation(s)
- Georgia Margioula-Siarkou
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece.
| | - Chrysoula Margioula-Siarkou
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Kosmas Margaritis
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Vavoulidis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, IVF Unit, Villa Sofia Cervello Hospital, University of Palermo, Palermo, Italy
| | - Maria Alexandratou
- Department of Radiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Alexandros Sotiriadis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| | - Georgios Mavromatidis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54624, Thessaloniki, Greece
| |
Collapse
|
25
|
Jiao H, Zhang M, Zhang Y, Wang Y, Li WD. Pathway Association Studies Reveal Gene Loci and Pathway Networks that Associated With Plasma Cystatin C Levels. Front Genet 2021; 12:711155. [PMID: 34899825 PMCID: PMC8656399 DOI: 10.3389/fgene.2021.711155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
As a marker for glomerular filtration, plasma cystatin C level is used to evaluate kidney function. To decipher genetic factors that control the plasma cystatin C level, we performed genome-wide association and pathway association studies using United Kingdom Biobank data. One hundred fifteen loci yielded p values less than 1 × 10−100, three genes (clusters) showed the most significant associations, including the CST8-CST9 cluster on chromosome 20, the SH2B3-ATXN2 gene region on chromosome 12, and the SHROOM3-CCDC158 gene region on chromosome 4. In pathway association studies, forty significant pathways had FDR (false discovery rate) and or FWER (family-wise error rate) ≤ 0.001: spermatogenesis, leukocyte trans-endothelial migration, cell adhesion, glycoprotein, membrane lipid, steroid metabolic process, and insulin signaling pathways were among the most significant pathways that associated with the plasma cystatin C levels. We also performed Genome-wide association studies for eGFR, top associated genes were largely overlapped with those for cystatin C.
Collapse
Affiliation(s)
- Hongxiao Jiao
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Miaomiao Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,College of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaogang Wang
- College of Public Health, Tianjin Medical University, Tianjin, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines 2021; 9:biomedicines9121808. [PMID: 34944624 PMCID: PMC8698597 DOI: 10.3390/biomedicines9121808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
No effective treatments are available for familial steroid-resistant Focal Segmental Glomerulosclerosis (FSGS), characterized by proteinuria due to ultrastructural abnormalities in glomerular podocytes. Here, we studied a private PAX2 mutation identified in a patient who developed FSGS in adulthood. By generating adult podocytes using patient-specific induced pluripotent stem cells (iPSC), we developed an in vitro model to dissect the role of this mutation in the onset of FSGS. Despite the PAX2 mutation, patient iPSC properly differentiated into podocytes that exhibited a normal structure and function when compared to control podocytes. However, when exposed to an environmental trigger, patient podocytes were less viable and more susceptible to cell injury. Fixing the mutation improved their phenotype and functionality. Using a branching morphogenesis assay, we documented developmental defects in patient-derived ureteric bud-like tubules that were totally rescued by fixing the mutation. These data strongly support the hypothesis that the PAX2 mutation has a dual effect, first in renal organogenesis, which could account for a suboptimal nephron number at birth, and second in adult podocytes, which are more susceptible to cell death caused by environmental triggers. These abnormalities might translate into the development of proteinuria in vivo, with a progressive decline in renal function, leading to FSGS.
Collapse
|
27
|
Abstract
Renal injury resulting from obesity is a growing concern caused by the global obesity epidemic. We discuss the glomerular structure, obesity-related glomerular changes, and diagnostic pathologic criteria for obesity-related glomerulopathy. The three main hypothesized mechanisms of podocyte injury are mechanical stress on the podocytes, metabolic derangement, and genetic/molecular factors. Weight loss, renin-angiotensin-aldosterone system inhibitors, and improved insulin resistance may slow the progression. A more comprehensive understanding of obesity-related glomerulopathy will help in developing more effective therapies.
Collapse
Affiliation(s)
- Gabriel Giannini
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD; Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
28
|
Afsar B, Afsar RE, Demiray A, Covic A, Kanbay M. Deciphering nutritional interventions for podocyte structure and function. Pharmacol Res 2021; 172:105852. [PMID: 34450318 DOI: 10.1016/j.phrs.2021.105852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Despite increasing awareness and therapeutic options chronic kidney disease (CKD) is still and important health problem and glomerular diseases constitute and important percentage of CKD. Proteinuria/albuminuria is not just a marker; but it also plays a direct pathogenic role in renal disease progression of CKD. Glomerular filtration barrier (GFB) which consists of fenestrated endothelial cells, fused basal membrane and interdigitating podocyte foot process and filtration slits between foot process is the major barrier for proteinuria/albuminuria. Many glomerular diseases are characterized by disruption of GFB podocytes, foot process and slit diaphragm. Many proteinuric diseases are non-specifically targeted by therapeutic agents such as steroids and calcineurin inhibitors with systemic side effects. Thus, there is unmet need for more efficient and less toxic therapeutic options to treat glomerular diseases. In recent years, modification of dietary intake, has been gained to treat pathologic processes introducing the concept of 'food as a medicine'. The effect of various nutritional products on podocyte function and structure is also trending, especially in recent years. In the current review, we summarized the effect of nutritional interventions on podocyte function and structure.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
29
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
30
|
Zhou K, He S, Yu H, Pei F, Zhou Z. Inhibition of syndecan-4 reduces cartilage degradation in murine models of osteoarthritis through the downregulation of HIF-2α by miR-96-5p. J Transl Med 2021; 101:1060-1070. [PMID: 33850295 PMCID: PMC8292145 DOI: 10.1038/s41374-021-00595-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
The membranous receptor syndecan-4 (SDC-4) and the nuclear transcription factor hypoxia-induced factor-2α (HIF-2α) play critical roles in the pathogenesis of osteoarthritis (OA). The aim of this study was to determine whether SDC-4 inhibition downregulates HIF-2a expression by microRNA-96-5p (miR-96-5p) in murine chondrocyte and cartilage tissue. The OA model was induced surgically in mice, and SDC-4 polyclonal antibody, HIF-2α small interfering RNA (siRNA) and its control, miR-96-5p mimics and its scrambled controls or anti-miR-96-5p and its control were then injected into the knee joints. At 2 and 4 weeks after surgery, OA progression was evaluated microscopically, histologically, radiographically and immunohistochemically in these mice. Real-time polymerase chain reaction (RT-PCR) and western blotting were performed after treating with antibody and transfecting with miRNA mimic or siRNA to determine their effects on OA-related mediators. The potential miRNAs related to OA development were identified by using miRNA microarray analysis. Whether miRNAs play a pivotal role in OA development in vivo or in vitro was also investigated. MiR-96-5p expression was upregulated by SDC-4-specific antibodies in chondrocytes and cartilage tissue, and miR-96-5p directly targeted the 3'-UTR of HIF-2α to inhibit HIF-2α signaling in murine chondrocytes. Moreover, we demonstrated that anti-SDC-4-attenuated IL-1β-induced chondrocyte hypertrophy and cartilage degradation by inhibiting HIF-2α signaling by a miR-96-5p-dependent mechanism. Our study revealed that the inhibition of SDC-4 exerts its effects on both cartilage homeostasis and the chondrocyte hypertrophy phenotype by inducing miR-96-5p expression, which results in targeting HIF-2α 3'-UTR sequences and inhibiting HIF-2α in murine cartilage tissue and chondrocytes.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Sirong He
- Department of Immunology, Chongqing Medical University, Chongqing, PR China
| | - Haoda Yu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fuxing Pei
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
31
|
Role of Rho GTPase Interacting Proteins in Subcellular Compartments of Podocytes. Int J Mol Sci 2021; 22:ijms22073656. [PMID: 33915776 PMCID: PMC8037304 DOI: 10.3390/ijms22073656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The first step of urine formation is the selective filtration of the plasma into the urinary space at the kidney structure called the glomerulus. The filtration barrier of the glomerulus allows blood cells and large proteins such as albumin to be retained while eliminating the waste products of the body. The filtration barrier consists of three layers: fenestrated endothelial cells, glomerular basement membrane, and podocytes. Podocytes are specialized epithelial cells featured by numerous, actin-based projections called foot processes. Proteins on the foot process membrane are connected to the well-organized intracellular actin network. The Rho family of small GTPases (Rho GTPases) act as intracellular molecular switches. They tightly regulate actin dynamics and subsequent diverse cellular functions such as adhesion, migration, and spreading. Previous studies using podocyte-specific transgenic or knockout animal models have established that Rho GTPases are crucial for the podocyte health and barrier function. However, little attention has been paid regarding subcellular locations where distinct Rho GTPases contribute to specific functions. In the current review, we discuss cellular events involving the prototypical Rho GTPases (RhoA, Rac1, and Cdc42) in podocytes, with particular focus on the subcellular compartments where the signaling events occur. We also provide our synthesized views of the current understanding and propose future research directions.
Collapse
|
32
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
33
|
NPHS2 gene polymorphism aggravates renal damage caused by focal segmental glomerulosclerosis with COL4A3 mutation. Biosci Rep 2021; 41:227260. [PMID: 33305316 PMCID: PMC7786326 DOI: 10.1042/bsr20203248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS), a type of primary glomerular disease, is the leading cause of end-stage renal disease (ESRD). Several studies have revealed that certain single-gene mutations are involved in the pathogenesis of FSGS; however, the main cause of FSGS has not been fully elucidated. Homozygous mutations in the glomerular basement membrane gene can lead to early renal failure, while heterozygous carriers develop renal failure symptoms late. Here, molecular genetic analysis of clinical information collected from clinical reports and medical records was performed. Results revealed that nephrosis 2 (NPHS2) gene polymorphism aggravated renal damage in three FSGS families with heterozygous COL4A3 mutation, leading to early renal failure in index patients. Our findings suggest that COL4A3 and NPHS2 may have a synergistic effect on renal injury caused by FSGS. Further analysis of the glomerular filtration barrier could help assess the cause of kidney damage. Moreover, a detailed analysis of the glomerular basement membrane-related genes and podocyte structural proteins may help us better understand FSGS pathogenesis and provide insights into the prognosis and treatment of hereditary glomerulonephropathy.
Collapse
|
34
|
Wang Y, Pedigo CE, Inoue K, Tian X, Cross E, Ebenezer K, Li W, Wang Z, Shin JW, Schwartze E, Groener M, Ishibe S. Murine Epsins Play an Integral Role in Podocyte Function. J Am Soc Nephrol 2020; 31:2870-2886. [PMID: 33051360 PMCID: PMC7790213 DOI: 10.1681/asn.2020050691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/30/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epsins, a family of evolutionarily conserved membrane proteins, play an essential role in endocytosis and signaling in podocytes. METHODS Podocyte-specific Epn1, Epn2, Epn3 triple-knockout mice were generated to examine downstream regulation of serum response factor (SRF) by cell division control protein 42 homolog (Cdc42). RESULTS Podocyte-specific loss of epsins resulted in increased albuminuria and foot process effacement. Primary podocytes isolated from these knockout mice exhibited abnormalities in cell adhesion and spreading, which may be attributed to reduced activation of cell division control protein Cdc42 and SRF, resulting in diminished β1 integrin expression. In addition, podocyte-specific loss of Srf resulted in severe albuminuria and foot process effacement, and defects in cell adhesion and spreading, along with decreased β1 integrin expression. CONCLUSIONS Epsins play an indispensable role in maintaining properly functioning podocytes through the regulation of Cdc42 and SRF-dependent β1 integrin expression.
Collapse
Affiliation(s)
- Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Christopher E Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Zhen Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jee Won Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Eike Schwartze
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Trimarchi H, Ortiz A, Sánchez-Niño MD. Lyso-Gb3 Increases αvβ3 Integrin Gene Expression in Cultured Human Podocytes in Fabry Nephropathy. J Clin Med 2020; 9:jcm9113659. [PMID: 33203029 PMCID: PMC7696179 DOI: 10.3390/jcm9113659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Podocyturia in Fabry nephropathy leads to glomerulosclerosis and kidney disease progression. Integrins are involved in podocyte attachment to the glomerular basement membrane. We hypothesized that in Fabry nephropathy, lyso-Gb3 could modulate αvβ3 expression in podocytes. Together with UPAR, the αvβ3 integrin is a key mechanism involved in podocyte detachment and podocyturia. Methods: In cultured human podocytes stimulated with lyso-Gb3, the mRNA expression of the ITGAV and ITGB3 genes encoding integrins αv and β3, respectively, was analyzed by RT-qPCR. Results: In cultured human podocytes, lyso-Gb3 at concentrations encountered in the serum of Fabry patients increased ITGAV and ITGB3 mRNA levels within 3 to 6 h. This pattern of gene expression is similar to that previously observed for PLAUR (UPAR) gene expression but is in contrast to the delayed (24 h) upregulation of other markers of podocyte stress and mediators of injury, such as CD80, TGFβ1, CD74, Notch1, and HES. Conclusions: Human podocyte stress in response to glycolipid overload in Fabry nephropathy, exemplified by lyso-Gb3, is characterized by an early increase in the expression of components of the αvβ3/UPAR system, which contrasts with the delayed rise in the expression of other mediators of podocyte injury. This suggests that the αvβ3/UPAR system may be a therapeutic target in Fabry nephropathy.
Collapse
Affiliation(s)
- Hernán Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, 1280 Buenos Aires, Argentina
- Correspondence: ; Tel.: +1280-5411-4309-6400
| | - Alberto Ortiz
- IIS-Fundación Jimenez Díaz, School of Medicine, UAM, 28040 Madrid, Spain; (A.O.); (M.D.S.-N.)
- Spanish Renal Research Network (REDINREN), 28004 Madrid, Spain
| | - Maria Dolores Sánchez-Niño
- IIS-Fundación Jimenez Díaz, School of Medicine, UAM, 28040 Madrid, Spain; (A.O.); (M.D.S.-N.)
- Spanish Renal Research Network (REDINREN), 28004 Madrid, Spain
- Pharmacology and Therapeutics Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
36
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
37
|
A different perspective on the filtration barrier after kidney stone formation: An immunohistochemical and biochemical study. Urolithiasis 2020; 49:201-210. [PMID: 33155094 DOI: 10.1007/s00240-020-01227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study is to investigate whether the filtration barrier is affected by experimental kidney stone formation. Thirty-two rats divided into 4 equally groups (n = 8) at random. Group I control; Group II 1% ethylene glycol; Group III 1% Ethylene glycol + 0.25% Ammonium chloride; Group IV 1% Ethylene glycol + 0.5% Ammonium chloride group. Tissues applied hematoxylin-eosin, periodic-acid-Schiff, Pizzolato's staining. Immunohistochemically stained with integrin α3β1, type IV collagen, laminin, nephrin, CD2-associated protein (CD2AP) and podocin to show the filtration barrier structure. The TUNEL method was used for apoptosis. The amount of calcium, magnesium, creatinine and uric acid in urine and blood samples, also urine microprotein determined. Stones were formed in all experimental groups. Urine calcium, creatinine, uric acid levels decreased, magnesium levels were not changed. No statistically significant change was observed in blood serum results and TUNEL analysis. Immunohistochemical results showed an increase in nephrin, podocin, CD2AP, laminin and a decrease in integrin α3β1 and type IV collagen. Consequently, there is an increase in the expression densities of the proteins incorporated in the structure to prevent loss of functionality in the cellular part supporting the structure against a weakening of the basement membrane structure in the glomerular structure in which urine is filtered.
Collapse
|
38
|
Randles MJ, Lausecker F, Humphries JD, Byron A, Clark SJ, Miner JH, Zent R, Humphries MJ, Lennon R. Basement membrane ligands initiate distinct signalling networks to direct cell shape. Matrix Biol 2020; 90:61-78. [PMID: 32147508 PMCID: PMC7327512 DOI: 10.1016/j.matbio.2020.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 01/09/2023]
Abstract
Cells have evolved mechanisms to sense the composition of their adhesive microenvironment. Although much is known about general mechanisms employed by adhesion receptors to relay signals between the extracellular environment and the cytoskeleton, the nuances of ligand-specific signalling remain undefined. Here, we investigated how glomerular podocytes, and four other basement membrane-associated cell types, respond morphologically to different basement membrane ligands. We defined the composition of the respective adhesion complexes using mass spectrometry-based proteomics. On type IV collagen, all epithelial cell types adopted a round morphology, with a single lamellipodium and large adhesion complexes rich in actin-binding proteins. On laminin (511 or 521), all cell types attached to a similar degree but were polygonal in shape with small adhesion complexes enriched in endocytic and microtubule-binding proteins. Consistent with their distinctive morphologies, cells on type IV collagen exhibited high Rac1 activity, while those on laminin had elevated PKCα. Perturbation of PKCα was able to interchange morphology consistent with a key role for this pathway in matrix ligand-specific signalling. Therefore, this study defines the switchable basement membrane adhesome and highlights two key signalling pathways within the systems that determine distinct cell morphologies. Proteomic data are availableviaProteomeXchange with identifier PXD017913.
Collapse
Affiliation(s)
- Michael J Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon J Clark
- Universitäts-Augenklinik Tübingen, Eberhard Karls University of Tübingen, Germany; The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
39
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
40
|
tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7826763. [PMID: 32685525 PMCID: PMC7330628 DOI: 10.1155/2020/7826763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Idiopathic nephrotic syndrome (INS) is a disease involving injury to podocytes in the glomerular filtration barrier, and its specific causes have not been elucidated. Transfer RNA-derived fragments (tRFs), products of precise tRNA cleavage, have been indicated to play critical roles in various diseases. Currently, there is no relevant research on the role of tRFs in INS. This study intends to explore the changes in and importance of tRFs during podocyte injury in vitro and to further analyze the potential mechanism of INS. Differentially expressed tRFs in the adriamycin-treated group were identified by high-throughput sequencing and further verified by quantitative RT-PCR. In total, 203 tRFs with significant differential expression were identified, namely, 102 upregulated tRFs and 101 downregulated tRFs (q < 0.05, ∣log2FC | ≥2). In particular, AS-tDR-008924, AS-tDR-011690, tDR-003634, AS-tDR-013354, tDR-011031, AS-tDR-001008, and AS-tDR-007319 were predicted to be involved in podocyte injury by targeting the Gpr, Wnt, Rac1, and other genes. Furthermore, gene ontology analysis showed that these differential tRFs were strongly associated with podocyte injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton, and insulin-activate receptor activity. KEGG pathway analysis predicted that they participated in the PI3K-Akt signaling pathway, Wnt signaling pathway, and Ras signaling pathway. It was reported that these pathways contribute to podocyte injury. In conclusion, our study revealed that changes in the expression levels of tRFs might be involved in INS. Seven of the differentially expressed tRFs might play important roles in the process of podocyte injury and are worthy of further study.
Collapse
|
41
|
Jin D, Zhang R, Chen H, Li C. Aberrantly glycosylated integrin α3β1 is a unique urinary biomarker for the diagnosis of bladder cancer. Aging (Albany NY) 2020; 12:10844-10862. [PMID: 32534450 PMCID: PMC7346044 DOI: 10.18632/aging.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/03/2022]
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary tract. We developed a new and ELISA kit for detecting aberrantly glycosylated integrin α3β1 (AG31) in human urine. We analysed urine samples (n=408) of patients with BC, renal cell carcinoma (RCC), prostate cancer (PC), cystitis, nephritis, and prostatitis from two centres in China. The subjects in the validation groups (n=2317) were recruited from other centres in China between July 2012 and September 2013. Receiver operating characteristic (ROC) curves were used to determine diagnostic accuracy. AG31 levels in urine samples were significantly higher in patients with BC than in any of the control subjects. Moreover, elevated levels of AG31 in urine could distinguish BC from benign inflammatory diseases. Finally, the urinary AG31 test was much more sensitive and specific than the NMP22 test. Therefore, the urinary AG31 test will provide an ideal and assay for the detection of BCs.
Collapse
Affiliation(s)
- Di Jin
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruiyun Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haige Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Jianlan Institute of Medicine, Beijing 100190, China
| |
Collapse
|
42
|
Pisarek-Horowitz A, Fan X, Kumar S, Rasouly HM, Sharma R, Chen H, Coser K, Bluette CT, Hirenallur-Shanthappa D, Anderson SR, Yang H, Beck LH, Bonegio RG, Henderson JM, Berasi SP, Salant DJ, Lu W. Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot Process Structure. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:799-816. [PMID: 32220420 PMCID: PMC7217334 DOI: 10.1016/j.ajpath.2019.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.
Collapse
Affiliation(s)
- Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Hila M Rasouly
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Kathryn Coser
- Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts
| | | | | | - Sarah R Anderson
- Global Pathology, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Hongying Yang
- Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts
| | - Laurence H Beck
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts
| | - David J Salant
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
43
|
Bukosza EN, Kornauth C, Hummel K, Schachner H, Huttary N, Krieger S, Nöbauer K, Oszwald A, Razzazi Fazeli E, Kratochwill K, Aufricht C, Szénási G, Hamar P, Gebeshuber CA. ECM Characterization Reveals a Massive Activation of Acute Phase Response during FSGS. Int J Mol Sci 2020; 21:ijms21062095. [PMID: 32197499 PMCID: PMC7139641 DOI: 10.3390/ijms21062095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
The glomerular basement membrane (GBM) and extra-cellular matrix (ECM) are essential to maintain a functional interaction between the glomerular podocytes and the fenestrated endothelial cells in the formation of the slit diaphragm for the filtration of blood. Dysregulation of ECM homeostasis can cause Focal segmental glomerulosclerosis (FSGS). Despite this central role, alterations in ECM composition during FSGS have not been analyzed in detail yet. Here, we characterized the ECM proteome changes in miR-193a-overexpressing mice, which suffer from FSGS due to suppression of Wilms' tumor 1 (WT1). By mass spectrometry we identified a massive activation of the acute phase response, especially the complement and fibrinogen pathways. Several protease inhibitors (ITIH1, SERPINA1, SERPINA3) were also strongly increased. Complementary analysis of RNA expression data from both miR-193a mice and human FSGS patients identified additional candidate genes also mainly involved in the acute phase response. In total, we identified more than 60 dysregulated, ECM-associated genes with potential relevance for FSGS progression. Our comprehensive analysis of a murine FSGS model and translational comparison with human data offers novel targets for FSGS therapy.
Collapse
Affiliation(s)
- Eva Nora Bukosza
- Institute of Translational Medicine, Semmelweis University Budapest, Tűzoltó u 37-47, 1094 Budapest, Hungary; (E.N.B.); (G.S.); (P.H.)
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
| | - Christoph Kornauth
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
- Clinical Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Karin Hummel
- Vetcore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (K.H.); (K.N.); (E.R.F.)
| | - Helga Schachner
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
| | - Nicole Huttary
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
| | - Sigurd Krieger
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
| | - Katharina Nöbauer
- Vetcore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (K.H.); (K.N.); (E.R.F.)
| | - André Oszwald
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
| | - Ebrahim Razzazi Fazeli
- Vetcore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (K.H.); (K.N.); (E.R.F.)
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1210 Vienna, Austria;
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1210 Vienna, Austria;
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1210 Vienna, Austria;
| | - Gabor Szénási
- Institute of Translational Medicine, Semmelweis University Budapest, Tűzoltó u 37-47, 1094 Budapest, Hungary; (E.N.B.); (G.S.); (P.H.)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University Budapest, Tűzoltó u 37-47, 1094 Budapest, Hungary; (E.N.B.); (G.S.); (P.H.)
| | - Christoph A. Gebeshuber
- Clinical Institute for Pathology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (C.K.); (H.S.); (N.H.); (S.K.); (A.O.)
- Correspondence: ; Tel.: +43-1-40400-51840
| |
Collapse
|
44
|
Fang X, Wu H, Lu M, Cao Y, Wang R, Wang M, Gao C, Xia Z. Urinary proteomics of Henoch-Schönlein purpura nephritis in children using liquid chromatography-tandem mass spectrometry. Clin Proteomics 2020; 17:10. [PMID: 32190014 PMCID: PMC7066733 DOI: 10.1186/s12014-020-09274-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Henoch-Schönlein purpura nephritis (HSPN) is the principal cause of morbidity and mortality in children with Henoch-Schönlein purpura (HSP). However, the criteria for risk assessment currently used is not satisfactory. The urine proteome may provide important clues to indicate the development of HSPN. METHODS Here, we detected and compared the urine proteome of patients with HSPN and healthy controls by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the data-independent acquisition (DIA) mode. The differentially expressed proteins were analysed by gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. For validation, enzyme-linked immunosorbent assay (ELISA) was used to analyse the selected proteins. RESULTS A total of 125 proteins (29 upregulated and 96 downregulated) were found to be differentially expressed in children with HSPN compared with the controls. Forty-one proteins were predicted to have direct interactions. The enriched pathways mainly included focal adhesion, cell adhesion molecules, the PI3K-Akt signalling pathway, ECM-receptor interactions and so on. Cell adhesion related to the pathogenesis of HSPN was the main biological process identified in this study. The decrease in two proteins (integrin beta-1 and tenascin) was validated by ELISA. CONCLUSIONS Our study provides new insights into the assessment of HSPN progression in children, as well as new potential biomarkers. The data confirm the value of the urinary proteome in capturing the emergence of HSPN.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
- Department of Clinical Medicine, Anqing Medical College, Anqing, 246052 Anhui China
| | - Heyan Wu
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
| | - Mei Lu
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004 Jiangsu China
| | - Ren Wang
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
| | - Meiqiu Wang
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, No. 305 Zhongshan East Road, Nanjing, 210002 Jiangsu China
| |
Collapse
|
45
|
Lei Y, Ye H, Xiang S, Huang Y, Zhu C, Zhang W, Chen Y, Cao Y. Pipette-like action of a reusable and NIR light-responsive film for the aspiration and removal of viable cancer cells. NEW J CHEM 2020. [DOI: 10.1039/c9nj05449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable and NIR light-responsive composite membrane is developed to capture/release viable cancer cells.
Collapse
Affiliation(s)
- Yang Lei
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Haixia Ye
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Siqi Xiang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Yuan Huang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Chao Zhu
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Weiying Zhang
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| | - Yong Chen
- Département de Chimie
- Ecole Normale Supérieure
- F-75231 Paris Cedex 05
- France
| | - Yiping Cao
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- Jianghan University
- Wuhan 430056
- China
| |
Collapse
|
46
|
Braun DA, Warejko JK, Ashraf S, Tan W, Daga A, Schneider R, Hermle T, Jobst-Schwan T, Widmeier E, Majmundar AJ, Nakayama M, Schapiro D, Rao J, Schmidt JM, Hoogstraten CA, Hugo H, Bakkaloglu SA, Kari JA, El Desoky S, Daouk G, Mane S, Lifton RP, Shril S, Hildebrandt F. Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome. Nephrol Dial Transplant 2019. [PMID: 29534211 DOI: 10.1093/ndt/gfy028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS), a chronic kidney disease, is characterized by significant loss of protein in the urine causing hypoalbuminemia and edema. In general, ∼15% of childhood-onset cases do not respond to steroid therapy and are classified as steroid-resistant NS (SRNS). In ∼30% of cases with SRNS, a causative mutation can be detected in one of 44 monogenic SRNS genes. The gene LAMA5 encodes laminin-α5, an essential component of the glomerular basement membrane. Mice with a hypomorphic mutation in the orthologous gene Lama5 develop proteinuria and hematuria. METHODS To identify additional monogenic causes of NS, we performed whole exome sequencing in 300 families with pediatric NS. In consanguineous families we applied homozygosity mapping to identify genomic candidate loci for the underlying recessive mutation. RESULTS In three families, in whom mutations in known NS genes were excluded, but in whom a recessive, monogenic cause of NS was strongly suspected based on pedigree information, we identified homozygous variants of unknown significance (VUS) in the gene LAMA5. While all affected individuals had nonsyndromic NS with an early onset of disease, their clinical outcome and response to immunosuppressive therapy differed notably. CONCLUSION We here identify recessive VUS in the gene LAMA5 in patients with partially treatment-responsive NS. More data will be needed to determine the impact of these VUS in disease management. However, familial occurrence of disease, data from genetic mapping and a mouse model that recapitulates the NS phenotypes suggest that these genetic variants may be inherited factors that contribute to the development of NS in pediatric patients.
Collapse
Affiliation(s)
- Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian K Warejko
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ankana Daga
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Hermle
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tilman Jobst-Schwan
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Schapiro
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Rao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Hannah Hugo
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jameela A Kari
- Pediatric Nephrology Center of Excellence and Pediatrics Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Pediatric Nephrology Center of Excellence and Pediatrics Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghaleb Daouk
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Cinà DP, Ketela T, Brown KR, Chandrashekhar M, Mero P, Li C, Onay T, Fu Y, Han Z, Saleem M, Moffat J, Quaggin SE. Forward genetic screen in human podocytes identifies diphthamide biosynthesis genes as regulators of adhesion. Am J Physiol Renal Physiol 2019; 317:F1593-F1604. [PMID: 31566424 PMCID: PMC6962514 DOI: 10.1152/ajprenal.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Podocyte function is tightly linked to the complex organization of its cytoskeleton and adhesion to the underlying glomerular basement membrane. Adhesion of cultured podocytes to a variety of substrates is reported to correlate with podocyte health. To identify novel genes that are important for podocyte function, we designed an in vitro genetic screen based on podocyte adhesion to plates coated with either fibronectin or soluble Fms-like tyrosine kinase-1 (sFLT1)/Fc. A genome-scale pooled RNA interference screen on immortalized human podocytes identified 77 genes that increased adhesion to fibronectin, 101 genes that increased adhesion to sFLT1/Fc, and 44 genes that increased adhesion to both substrates when knocked down. Multiple shRNAs against diphthamide biosynthesis protein 1-4 (DPH1-DPH4) were top hits for increased adhesion. Immortalized human podocyte cells stably expressing these hairpins displayed increased adhesion to both substrates. We then used CRISPR-Cas9 to generate podocyte knockout cells for DPH1, DPH2, or DPH3, which also displayed increased adhesion to both fibronectin and sFLT1/Fc, as well as a spreading defect. Finally, we showed that Drosophila nephrocyte-specific knockdown of Dph1, Dph2, and Dph4 resulted in altered nephrocyte function. In summary, we report here a novel high-throughput method to identify genes important for podocyte function. Given the central role of podocyte adhesion as a marker of podocyte health, these data are a rich source of candidate regulators of glomerular disease.
Collapse
Affiliation(s)
- Davide P Cinà
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Troy Ketela
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Megha Chandrashekhar
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Mero
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Chengjin Li
- Tanenbaum-Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System, Washington, District of Columbia
| | - Moin Saleem
- School of Clinical Sciences, Children's Renal Unit and Academic Renal Unit, University of Bristol, Bristol, United Kingdom
| | - Jason Moffat
- Donnelly Centre, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
48
|
Kidney Injury by Variants in the COL4A5 Gene Aggravated by Polymorphisms in Slit Diaphragm Genes Causes Focal Segmental Glomerulosclerosis. Int J Mol Sci 2019; 20:ijms20030519. [PMID: 30691124 PMCID: PMC6386959 DOI: 10.3390/ijms20030519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Kidney injury due to focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disorder causing end-stage renal disease. Homozygous mutations in either glomerular basement membrane or slit diaphragm genes cause early renal failure. Heterozygous carriers develop renal symptoms late, if at all. In contrast to mutations in slit diaphragm genes, hetero- or hemizygous mutations in the X-chromosomal COL4A5 Alport gene have not yet been recognized as a major cause of kidney injury by FSGS. We identified cases of FSGS that were unexpectedly diagnosed: In addition to mutations in the X-chromosomal COL4A5 type IV collagen gene, nephrin and podocin polymorphisms aggravated kidney damage, leading to FSGS with ruptures of the basement membrane in a toddler and early renal failure in heterozygous girls. The results of our case series study suggest a synergistic role for genes encoding basement membrane and slit diaphragm proteins as a cause of kidney injury due to FSGS. Our results demonstrate that the molecular genetics of different players in the glomerular filtration barrier can be used to evaluate causes of kidney injury. Given the high frequency of X-chromosomal carriers of Alport genes, the analysis of genes involved in the organization of podocyte architecture, the glomerular basement membrane, and the slit diaphragm will further improve our understanding of the pathogenesis of FSGS and guide prognosis of and therapy for hereditary glomerular kidney diseases.
Collapse
|
49
|
Zhai R, Jian G, Chen T, Xie L, Xue R, Gao C, Wang N, Xu Y, Gui D. Astragalus membranaceus and Panax notoginseng, the Novel Renoprotective Compound, Synergistically Protect against Podocyte Injury in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2019; 2019:1602892. [PMID: 31179338 PMCID: PMC6501154 DOI: 10.1155/2019/1602892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
This study was aimed at investigating the synergistical protective effects of Astragalus membranaceus (AG) and Panax notoginseng (NG) on podocyte injury in diabetic rats. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin at 55 mg/kg. Diabetic rats were then orally administrated with losartan, AG, NG, and AG plus NG (2 : 1) for 12 weeks. Albuminuria, biochemical markers, renal histopathology, and podocyte number per glomerulus were measured. Podocyte apoptosis was determined by triple immunofluorescence labeling including TUNEL assay, WT1, and DAPI. Renal expression of nephrin, α-dystroglycan, Bax, Bcl-xl, and Nox4 was evaluated by immunohistochemistry, western blot, and RT-PCR. AG plus NG ameliorated albuminuria, renal histopathology, and podocyte foot process effacement to a greater degree than did AG or NG alone. The number of podocytes per glomerulus, as well as renal expression of nephrin, α-dystroglycan, and Bcl-xl, was decreased, while podocyte apoptosis, as well as renal expression of Bax and Nox4, was increased in diabetic rats. All of these abnormalities were partially restored by AG plus NG to a greater degree than did AG or NG alone. In conclusion, AG and NG synergistically ameliorated diabetic podocyte injury partly through upregulation of nephrin, α-dystroglycan, and Bcl-xl, as well as downregulation of Bax and Nox4. These findings might provide a novel treatment combination for DN.
Collapse
Affiliation(s)
- Ruonan Zhai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guihua Jian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Teng Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Xie
- Shanghai Ocean University, Shanghai 201306, China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chongting Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
50
|
Chen CA, Chang JM, Chang EE, Chen HC, Yang YL. TGF-β1 modulates podocyte migration by regulating the expression of integrin-β1 and -β3 through different signaling pathways. Biomed Pharmacother 2018; 105:974-980. [DOI: 10.1016/j.biopha.2018.06.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
|