1
|
Ha K, Mundt-Machado N, Bisignano P, Pinedo A, Raleigh DR, Loeb G, Reiter JF, Cao E, Delling M. Cilia-enriched oxysterol 7β,27-DHC is required for polycystin ion channel activation. Nat Commun 2024; 15:6468. [PMID: 39085216 PMCID: PMC11291729 DOI: 10.1038/s41467-024-50318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Polycystin-1 (PC-1) and PC-2 form a heteromeric ion channel complex that is abundantly expressed in primary cilia of renal epithelial cells. This complex functions as a non-selective cation channel, and mutations within the polycystin complex cause autosomal dominant polycystic kidney disease (ADPKD). The spatial and temporal regulation of the polycystin complex within the ciliary membrane remains poorly understood. Using both whole-cell and ciliary patch-clamp recordings, we identify a cilia-enriched oxysterol, 7β,27-dihydroxycholesterol (DHC), that serves as a necessary activator of the polycystin complex. We further identify an oxysterol-binding pocket within PC-2 and showed that mutations within this binding pocket disrupt 7β,27-DHC-dependent polycystin activation. Pharmacologic and genetic inhibition of oxysterol synthesis reduces channel activity in primary cilia. In summary, our findings reveal a regulator of the polycystin complex. This oxysterol-binding pocket in PC-2 may provide a specific target for potential ADPKD therapeutics.
Collapse
Affiliation(s)
- Kodaji Ha
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Mundt-Machado
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Aide Pinedo
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Loeb
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Markus Delling
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Schueler J, Kuenzel J, Thuesing A, Pion E, Behncke RY, Haegerling R, Fuchs D, Kraus A, Buchholz B, Huang B, Merhof D, Werner JM, Schmidt KM, Hackl C, Aung T, Haerteis S. Ultra high frequency ultrasound enables real-time visualization of blood supply from chorioallantoic membrane to human autosomal dominant polycystic kidney tissue. Sci Rep 2024; 14:10063. [PMID: 38698187 PMCID: PMC11066115 DOI: 10.1038/s41598-024-60783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.
Collapse
Affiliation(s)
- Jan Schueler
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Jonas Kuenzel
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Anna Thuesing
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Rose Yinghan Behncke
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Rene Haegerling
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
- Research Group 'Development and Disease', Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, 10117, Berlin, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc., 1114 AB, Amsterdam, The Netherlands
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Boqiang Huang
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Dorit Merhof
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katharina M Schmidt
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Ghosh Roy S, Li Z, Guo Z, Long KT, Rehrl S, Tian X, Dong K, Besse W. Dnajb11-Kidney Disease Develops from Reduced Polycystin-1 Dosage but not Unfolded Protein Response in Mice. J Am Soc Nephrol 2023; 34:1521-1534. [PMID: 37332102 PMCID: PMC10482070 DOI: 10.1681/asn.0000000000000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
SIGNIFICANCE STATEMENT Heterozygous DNAJB11 mutation carriers manifest with small cystic kidneys and renal failure in adulthood. Recessive cases with prenatal cystic kidney dysplasia were recently described. Our in vitro and mouse model studies investigate the proposed disease mechanism as an overlap of autosomal-dominant polycystic kidney disease and autosomal-dominant tubulointerstitial kidney disease pathogenesis. We find that DNAJB11 loss impairs cleavage and maturation of the autosomal-dominant polycystic kidney disease protein polycystin-1 (PC1) and results in dosage-dependent cyst formation in mice. We find that Dnajb11 loss does not activate the unfolded protein response, drawing a fundamental contrast with the pathogenesis of autosomal-dominant tubulointerstitial kidney disease. We instead propose that fibrosis in DNAJB11 -kidney disease may represent an exaggerated response to polycystin-dependent cysts. BACKGROUND Patients with heterozygous inactivating mutations in DNAJB11 manifest with cystic but not enlarged kidneys and renal failure in adulthood. Pathogenesis is proposed to resemble an overlap of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-dominant tubulointerstitial kidney disease (ADTKD), but this phenotype has never been modeled in vivo . DNAJB11 encodes an Hsp40 cochaperone in the endoplasmic reticulum: the site of maturation of the ADPKD polycystin-1 (PC1) protein and of unfolded protein response (UPR) activation in ADTKD. We hypothesized that investigation of DNAJB11 would shed light on mechanisms for both diseases. METHODS We used germline and conditional alleles to model Dnajb11 -kidney disease in mice. In complementary experiments, we generated two novel Dnajb11-/- cell lines that allow assessment of PC1 C-terminal fragment and its ratio to the immature full-length protein. RESULTS Dnajb11 loss results in a profound defect in PC1 cleavage but with no effect on other cystoproteins assayed. Dnajb11-/- mice are live-born at below the expected Mendelian ratio and die at a weaning age with cystic kidneys. Conditional loss of Dnajb11 in renal tubular epithelium results in PC1 dosage-dependent kidney cysts, thus defining a shared mechanism with ADPKD. Dnajb11 mouse models show no evidence of UPR activation or cyst-independent fibrosis, which is a fundamental distinction from typical ADTKD pathogenesis. CONCLUSIONS DNAJB11 -kidney disease is on the spectrum of ADPKD phenotypes with a PC1-dependent pathomechanism. The absence of UPR across multiple models suggests that alternative mechanisms, which may be cyst-dependent, explain the renal failure in the absence of kidney enlargement.
Collapse
Affiliation(s)
- Sounak Ghosh Roy
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Camargo JT, González CA, Herrera L, Yomayusa-González N, Ibañez M, Valbuena-García AM, Acuña-Merchán L. Autosomal dominant polycystic kidney disease in Colombia. BMC Nephrol 2023; 24:211. [PMID: 37460967 DOI: 10.1186/s12882-023-03266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of chronic kidney disease (CKD) that requires dialysis. Knowing geographical clusters can be critical for early diagnosis, progression control, and genetic counseling. The objective was to establish the prevalence, geographic location, and ethnic groups of patients with ADPKD who underwent dialysis or kidney transplant in Colombia between 2015 and 2019. METHODS We did a cross-sectional study with data from the National Registry of Chronic Kidney Disease (NRCKD) managed by the High-Cost Diseases Fund (Cuenta de Alto Costo [CAC] in Spanish) between July 1, 2015, and June 30, 2019. We included Colombian population with CKD with or without renal replacement therapy (RRT) due to ADPKD. Crude and adjusted prevalence rates were estimated by state and city. RESULTS 3,339 patients with ADPKD were included, period prevalence was 9.81 per 100,000 population; there were 4.35 cases of RRT per 100,000 population, mean age of 52.58 years (± 13.21), and 52.78% women. Seventy-six patients were Afro-Colombians, six were indigenous, and one Roma people. A total of 46.07% began scheduled dialysis. The highest adjusted prevalence rate was in Valle del Cauca (6.55 cases per 100,000 population), followed by Risaralda, and La Guajira. Regarding cities, Cali had the highest prevalence rate (9.38 cases per 100,000 population), followed by Pasto, Medellin, and Bucaramanga. CONCLUSIONS ADPKD prevalence is lower compared to Europe and US; some states with higher prevalence could be objective to genetic prevalence study.
Collapse
Affiliation(s)
| | - Camilo A González
- Unidad Renal, Clínica Colsanitas, Calle 127 No 20-78 Piso 2, Bogotá, D.C, Colombia.
| | - Lina Herrera
- Cuenta de Alto Costo, Fondo Colombiano de Enfermedades de Alto Costo, Bogotá, D.C, Colombia
| | | | - Milciades Ibañez
- Instituto de Investigación, Fundación Universitaria Sanitas, Bogotá, DC, Colombia
| | - Ana M Valbuena-García
- Cuenta de Alto Costo, Fondo Colombiano de Enfermedades de Alto Costo, Bogotá, D.C, Colombia
| | - Lizbeth Acuña-Merchán
- Cuenta de Alto Costo, Fondo Colombiano de Enfermedades de Alto Costo, Bogotá, D.C, Colombia
| |
Collapse
|
6
|
Pandey AK, Loscalzo J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 2023:10.1038/s41581-023-00705-0. [PMID: 37041415 DOI: 10.1038/s41581-023-00705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.
Collapse
Affiliation(s)
- Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Dagorn PG, Buchholz B, Kraus A, Batchuluun B, Bange H, Blockken L, Steinberg GR, Moller DE, Hallakou-Bozec S. A novel direct adenosine monophosphate kinase activator ameliorates disease progression in preclinical models of Autosomal Dominant Polycystic Kidney Disease. Kidney Int 2023; 103:917-929. [PMID: 36804411 DOI: 10.1016/j.kint.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) mainly results from mutations in the PKD1 gene, which encodes polycystin 1. It is the most common inherited kidney disease and is characterized by a progressive bilateral increase in cyst number and size, often leading to kidney failure. The cellular energy sensor and regulator adenosine monophosphate stimulated protein kinase (AMPK) has been implicated as a promising new therapeutic target. To address this hypothesis, we determined the effects of a potent and selective clinical stage direct allosteric AMPK activator, PXL770, in canine and patient-derived 3D cyst models and an orthologous mouse model of ADPKD. PXL770 induced AMPK activation and dose-dependently reduced cyst growth in principal-like Madin-Darby Canine Kidney cells stimulated with forskolin and kidney epithelial cells derived from patients with ADPKD stimulated with desmopressin. In an inducible, kidney epithelium-specific Pkd1 knockout mouse model, PXL770 produced kidney AMPK pathway engagement, prevented the onset of kidney failure (reducing blood urea by 47%), decreased cystic index by 26% and lowered the kidney weight to body weight ratio by 35% compared to untreated control Pkd1 knockout mice. These effects were accompanied by a reduction of markers of cell proliferation (-48%), macrophage infiltration (-53%) and tissue fibrosis (-37%). Thus, our results show the potential of direct allosteric AMPK activation in the treatment of ADPKD and support the further development of PXL770 for this indication.
Collapse
Affiliation(s)
| | - Bjoern Buchholz
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Kraus
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hester Bange
- Crown Bioscience Netherlands B.V., The Netherlands
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
8
|
Identification and Characterization of Novel Mutations in Chronic Kidney Disease (CKD) and Autosomal Dominant Polycystic Kidney Disease (ADPKD) in Saudi Subjects by Whole-Exome Sequencing. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111657. [PMID: 36422197 PMCID: PMC9692281 DOI: 10.3390/medicina58111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a’a at the 3’UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3’UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.
Collapse
|
9
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
10
|
Yan Z, Wang Y, Deng W, Zhou Y, Hu Y, Qi K, Liu D, Xia R, Liu R, Zeng W, Zhang W, Xu J, Xiong F, Miao Y. A single-center analysis of genotype–phenotype characteristics of Chinese patients with autosomal dominant polycystic kidney disease by targeted exome sequencing. Front Genet 2022; 13:934463. [PMID: 36186434 PMCID: PMC9520363 DOI: 10.3389/fgene.2022.934463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by PKD1 and PKD2 mutations. However, only a few studies have investigated the genotype and phenotype characteristics of Asian patients with ADPKD. This study aimed to investigate the relationship between the natural course of ADPKD genotype and phenotype. Methods: Genetic studies of PKD1/2 genes of Chinese patients with ADPKD in a single center were performed using targeted exome sequencing and next-generation sequencing on peripheral blood DNA. Results: Among the 140 patients analyzed, 80.00% (n = 112) harbored PKD1 mutations, 11.43% (n = 16) harbored PKD2 mutations, and 8.57% (n = 12) harbored neither PKD1 nor PKD2 mutations. The average age at dialysis was 52.60 ± 11.36, 60.67 ± 5.64, and 52.11 ± 14.63 years, respectively. The renal survival rate of ADPKD patients with PKD1 mutations (77/112) was significantly lower than that of those with PKD2 mutations (9/16), leading to an earlier onset of end-stage renal disease (ESRD). Renal prognosis was poor for those with nonsense mutations, and they required earlier renal replacement therapy. Conclusions: The genotype and phenotype characteristics of ADPKD patients potentially vary across ethnic groups. Our findings supplement the genetic profiles of Chinese ADPKD patients, could serve as a guide for therapy monitoring and prognosis assessment of ADPKD, and may improve the clinical diagnosis.
Collapse
Affiliation(s)
- Ziyan Yan
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Yuchen Wang
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Wenfeng Deng
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Yi Zhou
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Yangcheng Hu
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Ka Qi
- Hemodialysis Center, Qinhuangdao Charity Hospital, Qinhuangdao, China
| | - Ding Liu
- Division of Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Renfei Xia
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Rumin Liu
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Wenli Zeng
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Wei Zhang
- Guangzhou Jiajian Medical Testing Co Ltd, Guangzhou, China
| | - Jian Xu
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Fu Xiong, ; Yun Miao,
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical Univerisity, Guangzhou, China
- *Correspondence: Fu Xiong, ; Yun Miao,
| |
Collapse
|
11
|
Ars E, Bernis C, Fraga G, Furlano M, Martínez V, Martins J, Ortiz A, Pérez-Gómez MV, Rodríguez-Pérez JC, Sans L, Torra R. Consensus document on autosomal dominant polycystic kindey disease from the Spanish Working Group on Inherited Kindey Diseases. Review 2020. Nefrologia 2022; 42:367-389. [PMID: 36404270 DOI: 10.1016/j.nefroe.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/02/2021] [Indexed: 06/16/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent cause of genetic renal disease and accounts for 6-10% of patients on kidney replacement therapy (KRT). Very few prospective, randomized trials or clinical studies address the diagnosis and management of this relatively frequent disorder. No clinical guidelines are available to date. This is a revised consensus statement from the previous 2014 version, presenting the recommendations of the Spanish Working Group on Inherited Kidney Diseases, which were agreed to following a literature search and discussions. Levels of evidence mostly are C and D according to the Centre for Evidence-Based Medicine (University of Oxford). The recommendations relate to, among other topics, the use of imaging and genetic diagnosis, management of hypertension, pain, cyst infections and bleeding, extra-renal involvement including polycystic liver disease and cranial aneurysms, management of chronic kidney disease (CKD) and KRT and management of children with ADPKD. Recommendations on specific ADPKD therapies are provided as well as the recommendation to assess rapid progression.
Collapse
Affiliation(s)
- Elisabet Ars
- Laboratorio de Biología Molecular, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Carmen Bernis
- Servicio de Nefrología, Hospital de la Princesa, REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| | - Gloria Fraga
- Sección de Nefrología Pediátrica, Hospital de la Santa Creu i Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Mónica Furlano
- Enfermedades Renales Hereditarias, Servicio de Nefrología, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universidad Autónoma de Barcelona (Departamento de Medicina), REDinREN, Barcelona, Spain
| | - Víctor Martínez
- Servicio de Nefrología, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Judith Martins
- Servicio de Nefrología, Hospital Universitario de Getafe, Universidad Europea de Madrid, Getafe, Madrid, Spain
| | - Alberto Ortiz
- Servicio de Nefrología, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, IRSIN, REDinREN, Madrid, Spain
| | - Maria Vanessa Pérez-Gómez
- Servicio de Nefrología, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, IRSIN, REDinREN, Madrid, Spain
| | - José Carlos Rodríguez-Pérez
- Servicio de Nefrología, Hospital Universitario de Gran Canaria Dr. Negrín, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Laia Sans
- Servicio de Nefrología, REDinREN, Instituto de Investigación Carlos III, Hospital del Mar, Barcelona, Spain
| | - Roser Torra
- Enfermedades Renales Hereditarias, Servicio de Nefrología, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universidad Autónoma de Barcelona (Departamento de Medicina), REDinREN, Barcelona, Spain.
| |
Collapse
|
12
|
Documento de consenso de poliquistosis renal autosómica dominante del grupo de trabajo de enfermedades hereditarias de la Sociedad Española de Nefrología. Revisión 2020. Nefrologia 2022. [DOI: 10.1016/j.nefro.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Han JH, Jeong SH, Yuk HD, Ku JH, Kwak C, Kim HH, Ahn C, Jeong CW. Safety and feasibility of synchronous unilateral nephrectomy and contralateral heminephrectomy for extremely severe autosomal dominant polycystic kidney disease: Techniques and outcome. Investig Clin Urol 2022; 63:341-349. [PMID: 35437958 PMCID: PMC9091826 DOI: 10.4111/icu.20210461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To demonstrate the safety and feasibility of synchronous unilateral nephrectomy and contralateral heminephrectomy in extremely severe autosomal dominant polycystic kidney disease (ADPKD), which corresponds to the Mayo imaging classification classes 1D and 1E. MATERIALS AND METHODS We retrospectively reviewed patients who underwent unilateral nephrectomy and contralateral heminephrectomy at the Seoul National University Hospital (Seoul, Korea) between May 1, 2016 and August 1, 2021. The preoperative kidney volume was calculated using the ellipsoid equation (length×width×thickness×π/6). The Mayo imaging classification was determined by height-adjusted total kidney volume and age. Using a midline vertical incision, heminephrectomy was performed first by horizontal transection, followed by contralateral nephrectomy. Hilar vessel clamping or resection-bed suturing was not required. RESULTS In all, nine patients with ADPKD of the highest severity (Mayo class 1D/1E) underwent unilateral heminephrectomy and contralateral nephrectomy for the most common cause of severe abdominal discomfort and malnutrition. All nine patients had end-stage renal disease with hypertension and anemia. The median preoperative total kidney volume was 10,905.8 mL (interquartile range [IQR], 8,170.4-16,227.6 mL). The median operation time was 140 minutes (IQR, 125-185 min) and the median estimated blood loss was 250 mL (IQR, 200-425 mL). Eight of the nine patients were discharged without ICU care or any complications. Delayed pseudoaneurysm occurred in one case and was successfully managed by embolization. All patients were symptom-free for a median follow-up period of 2 years. CONCLUSIONS Synchronous unilateral nephrectomy and contralateral heminephrectomy are safe and feasible treatment options for severe bilateral ADPKD.
Collapse
Affiliation(s)
- Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Hyeong Dong Yuk
- Department of Urology, Seoul National University Hospital, Seoul, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Division of Nephrology, National Medical Center, Seoul, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
ADULT DOMINANT POLYCYSTIC KIDNEY DISEASE: A PROTOTYPICAL DISEASE FOR PHARMANUTRITION INTERVENTIONS. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
16
|
Pisani I, Allinovi M, Palazzo V, Zanelli P, Gentile M, Farina MT, Giuliotti S, Cravedi P, Delsante M, Maggiore U, Fiaccadori E, Manenti L. OUP accepted manuscript. Clin Kidney J 2022; 15:1179-1187. [PMID: 35664268 PMCID: PMC9155219 DOI: 10.1093/ckj/sfac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Isabella Pisani
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Paola Zanelli
- Unità di Immunogenetica dei Trapianti, Azienda-Ospedaliero Universitaria di Parma, Parma, Italy
| | - Micaela Gentile
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Maria Teresa Farina
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Sara Giuliotti
- Unità Operativa Radiologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Paolo Cravedi
- Department of Medicine, Renal Division, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Marco Delsante
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Umberto Maggiore
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Unità Operativa Nefrologia, Azienda-Ospedaliero Universitaria di Parma & Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | | |
Collapse
|
17
|
Nielsen ML, Mundt MC, Lildballe DL, Rasmussen M, Sunde L, Torres VE, Harris PC, Birn H. Functional megalin is expressed in renal cysts in a mouse model of adult polycystic kidney disease. Clin Kidney J 2021; 14:2420-2427. [PMID: 34754438 PMCID: PMC8572980 DOI: 10.1093/ckj/sfab088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive growth of cysts and a decline of renal function. The clinical feasibility of the number of potential disease-modifying drugs is limited by systemic adverse effects. We hypothesize that megalin, a multiligand endocytic receptor expressed in the proximal tubule, may be used to facilitate drug uptake into cysts, thereby allowing for greater efficacy and fewer side effects. Methods The cyst expression of various tubular markers, including megalin and aquaporin 2 (AQP2), was analysed by immunohistochemistry (IHC) of kidney sections from the ADPKD mouse model (PKD1RC/RC) at different post-natal ages. The endocytic function of megalin in cysts was examined by IHC of kidney tissue from mice injected with the megalin ligand aprotinin. Results Cyst lining epithelial cells expressing megalin were observed at all ages; however, the proportion decreased with age. Concomitantly, an increasing proportion of cysts revealed expression of AQP2, partial expression of megalin and/or AQP2 or no expression of the examined markers. Endocytic uptake of aprotinin was evident in megalin-positive cysts, but only in those that remained connected to the renal tubular system. Conclusions Megalin-expressing cysts were observed at all ages, but the proportion decreased with age, possibly due to a switch in tubular origin, a merging of cysts of different tubular origin and/or a change in the expression pattern of cyst lining cells. Megalin expressed in cysts was functional, suggesting that megalin-mediated endocytosis is a potential mechanism for drug targeting in ADPKD if initiated early in the disease.
Collapse
Affiliation(s)
| | - Mia C Mundt
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Dorte L Lildballe
- Department of Molecular Medine, Aarhus University Hospital, Aarhus N, Denmark
| | - Maria Rasmussen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vicente E Torres
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
18
|
Kutky M, Cross E, Treleaven DJ, Alam A, Lanktree MB. The Impact of COVID-19 on Patients With ADPKD. Can J Kidney Health Dis 2021; 8:20543581211056479. [PMID: 34777845 PMCID: PMC8586165 DOI: 10.1177/20543581211056479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE OF REVIEW Patients with autosomal dominant polycystic kidney disease (ADPKD) have kidney cysts and kidney enlargement decades before progressing to advanced chronic kidney disease (CKD), meaning patients live most of their adult life with a chronic medical condition. The coronavirus disease 2019 (COVID-19) pandemic has created common questions among patients with ADPKD. In this review, we discuss COVID-19 concerns centered around a patient with a common clinical vignette. SOURCES OF INFORMATION We performed PubMed and Google scholar searches for English, peer-reviewed studies related to "COVID-19," "ADPKD," "CKD," "tolvaptan," "angiotensin-converting enzyme inhibitors" (ACEi), "angiotensin receptor blockers" (ARB), and "vaccination." We also evaluated transplant data provided by the Ontario Trillium Gift of Life Network. METHODS Following an assessment of available literature, this narrative review addresses common questions of patients with ADPKD in the context of the COVID-19 pandemic. KEY FINDINGS Data regarding the risk of developing COVID-19 and the risk of adverse COVID-19 outcomes in patients with ADPKD remain limited, but patients with ADPKD with impaired estimated glomerular filtration rate (eGFR), kidney transplants, or on dialysis are likely at similar increased risk as those with generally defined CKD. We provide strategies to improve virtual care, which is likely to persist after the pandemic. Current evidence suggests ACEi, ARB, and tolvaptan treatment should be continued unless contraindicated due to severe illness. When available, and in the absence of a severe allergy, vaccination is recommended for all patients with ADPKD. LIMITATIONS This narrative review is limited by a paucity of high-quality data on COVID-19 outcomes in patients specifically with ADPKD. IMPLICATIONS Patients with ADPKD who have developed advanced CKD, require dialysis, or who have received a kidney transplant are at elevated risk of COVID-19 complications.
Collapse
Affiliation(s)
- Meherzad Kutky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Erin Cross
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darin J. Treleaven
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ahsan Alam
- Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Matthew B. Lanktree
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- St. Joseph’s Healthcare Hamilton, ON, Canada
| |
Collapse
|
19
|
Chen S, Huang L, Zhou S, Zhang Q, Ruan M, Fu L, Yang B, Xu D, Mei C, Mao Z. NS398 as a potential drug for autosomal-dominant polycystic kidney disease: Analysis using bioinformatics, and zebrafish and mouse models. J Cell Mol Med 2021; 25:9597-9608. [PMID: 34551202 PMCID: PMC8505825 DOI: 10.1111/jcmm.16903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal‐dominant polycystic kidney disease (ADPKD) is characterized by uncontrolled renal cyst formation, and few treatment options are available. There are many parallels between ADPKD and clear‐cell renal cell carcinoma (ccRCC); however, few studies have addressed the mechanisms linking them. In this study, we aimed to investigate their convergences and divergences based on bioinformatics and explore the potential of compounds commonly used in cancer research to be repurposed for ADPKD. We analysed gene expression datasets of ADPKD and ccRCC to identify the common and disease‐specific differentially expressed genes (DEGs). We then mapped them to the Connectivity Map database to identify small molecular compounds with therapeutic potential. A total of 117 significant DEGs were identified, and enrichment analyses results revealed that they are mainly enriched in arachidonic acid metabolism, p53 signalling pathway and metabolic pathways. In addition, 127 ccRCC‐specific up‐regulated genes were identified as related to the survival of patients with cancer. We focused on the compound NS398 as it targeted DEGs and found that it inhibited the proliferation of Pkd1−/− and 786‐0 cells. Furthermore, its administration curbed cystogenesis in Pkd2 zebrafish and early‐onset Pkd1‐deficient mouse models. In conclusion, NS398 is a potential therapeutic agent for ADPKD.
Collapse
Affiliation(s)
- Sixiu Chen
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Linxi Huang
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China.,Graduate School of Clinical Medicine, Second Military Medical University, Shanghai, China
| | - Shoulian Zhou
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China.,Graduate School of Clinical Medicine, Second Military Medical University, Shanghai, China
| | - Qingzhou Zhang
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mengna Ruan
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lili Fu
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Yang
- Internal Medicine Ⅲ (Nephrology and Endocrinology), Naval Medical Center of PLA, Second Military Medical University, Shanghai, China
| | - Dechao Xu
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Changlin Mei
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Kidney Institute of People's Liberation Army (PLA), Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Yan MT, Chao CT, Lin SH. Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci 2021; 22:ijms221810084. [PMID: 34576247 PMCID: PMC8470895 DOI: 10.3390/ijms221810084] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD), defined as the presence of irreversible structural or functional kidney damages, increases the risk of poor outcomes due to its association with multiple complications, including altered mineral metabolism, anemia, metabolic acidosis, and increased cardiovascular events. The mainstay of treatments for CKD lies in the prevention of the development and progression of CKD as well as its complications. Due to the heterogeneous origins and the uncertainty in the pathogenesis of CKD, efficacious therapies for CKD remain challenging. In this review, we focus on the following four themes: first, a summary of the known factors that contribute to CKD development and progression, with an emphasis on avoiding acute kidney injury (AKI); second, an etiology-based treatment strategy for retarding CKD, including the approaches for the common and under-recognized ones; and third, the recommended approaches for ameliorating CKD complications, and the final section discusses the novel agents for counteracting CKD progression.
Collapse
Affiliation(s)
- Ming-Tso Yan
- Department of Medicine, Division of Nephrology, Cathay General Hospital, School of Medicine, Fu-Jen Catholic University, Taipei 106, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 104, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 104, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- Department of Internal Medicine, Nephrology Division, National Defense Medical Center, Taipei 104, Taiwan
- Correspondence: or
| |
Collapse
|
21
|
He J, Zhang S, Qiu Z, Li X, Huang H, Jin W, Xu Y, Shao G, Wang L, Meng J, Wang S, Geng X, Jia Y, Li M, Yang B, Jenny Lu HA, Zhou H. Inhibiting Focal Adhesion Kinase Ameliorates Cyst Development in Polycystin-1-Deficient Polycystic Kidney Disease in Animal Model. J Am Soc Nephrol 2021; 32:2159-2174. [PMID: 34465607 PMCID: PMC8729842 DOI: 10.1681/asn.2020111560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by numerous cysts originating from renal tubules and is associated with significant tubular epithelial cell proliferation. Focal adhesion kinase (FAK) promotes tumor growth by regulating multiple proliferative pathways. METHODS We established the forskolin (FSK)-induced three-dimensional (3D) Madin-Darby Canine Kidney cystogenesis model and 8-bromoadenosine-3`,5`-cyclic monophosphate-stimulated cyst formation in ex vivo embryonic kidney culture. Cultured human renal cyst-lining cells (OX-161) and normal tubular epithelial cells were treated with FAK inhibitors or transfected with green fluorescent protein-tagged FAK mutant plasmids for proliferation study. Furthermore, we examined the role of FAK in two transgenic ADPKD animal models, the kidney-specific Pkd1 knockout and the collecting duct-specific Pkd1 knockout mouse models. RESULTS FAK activity was significantly elevated in OX-161 cells and in two ADPKD mouse models. Inhibiting FAK activity reduced cell proliferation in OX-161 cells and prevented cyst growth in ex vivo and 3D cyst models. In tissue-specific Pkd1 knockout mouse models, FAK inhibitors retarded cyst development and mitigated renal function decline. Mechanically, FSK stimulated FAK activation in tubular epithelial cells, which was blocked by a protein kinase A (PKA) inhibitor. Inhibition of FAK activation by inhibitors or transfected cells with mutant FAK constructs interrupted FSK-mediated Src activation and upregulation of ERK and mTOR pathways. CONCLUSIONS Our study demonstrates the critical involvement of FAK in renal cyst development, suggests that FAK is a potential therapeutic target in treating patients with ADPKD, and highlights the role of FAK in cAMP-PKA-regulated proliferation.
Collapse
Affiliation(s)
- Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huihui Huang
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts
| | - William Jin
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hua A. Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts,Harvard Medical School, Boston, Massachusetts
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
22
|
Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into Autosomal Dominant Polycystic Kidney Disease from Genetic Studies. Clin J Am Soc Nephrol 2021; 16:790-799. [PMID: 32690722 PMCID: PMC8259493 DOI: 10.2215/cjn.02320220] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic cause of ESKD. Genetic studies from patients and animal models have informed disease pathobiology and strongly support a "threshold model" in which cyst formation is triggered by reduced functional polycystin dosage below a critical threshold within individual tubular epithelial cells due to (1) germline and somatic PKD1 and/or PKD2 mutations, (2) mutations of genes (e.g., SEC63, SEC61B, GANAB, PRKCSH, DNAJB11, ALG8, and ALG9) in the endoplasmic reticulum protein biosynthetic pathway, or (3) somatic mosaicism. Genetic testing has the potential to provide diagnostic and prognostic information in cystic kidney disease. However, mutation screening of PKD1 is challenging due to its large size and complexity, making it both costly and labor intensive. Moreover, conventional Sanger sequencing-based genetic testing is currently limited in elucidating the causes of atypical polycystic kidney disease, such as within-family disease discordance, atypical kidney imaging patterns, and discordant disease severity between total kidney volume and rate of eGFR decline. In addition, environmental factors, genetic modifiers, and somatic mosaicism also contribute to disease variability, further limiting prognostication by mutation class in individual patients. Recent innovations in next-generation sequencing are poised to transform and extend molecular diagnostics at reasonable costs. By comprehensive screening of multiple cystic disease and modifier genes, targeted gene panel, whole-exome, or whole-genome sequencing is expected to improve both diagnostic and prognostic accuracy to advance personalized medicine in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Matthew B. Lanktree
- Division of Nephrology, St. Joseph Healthcare Hamilton and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ighli di Bari
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Chebib FT, Torres VE. Assessing Risk of Rapid Progression in Autosomal Dominant Polycystic Kidney Disease and Special Considerations for Disease-Modifying Therapy. Am J Kidney Dis 2021; 78:282-292. [PMID: 33705818 DOI: 10.1053/j.ajkd.2020.12.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure, accounting for 5%-10% of cases. Predicting which patients with ADPKD will progress rapidly to kidney failure is critical to assess the risk-benefit ratio of any intervention and to consider early initiation of long-term kidney protective measures that will maximize the cumulative benefit of slowing disease progression. Surrogate prognostic biomarkers are required to predict future decline in kidney function. Clinical, genetic, environmental, epigenetic, and radiologic factors have been studied as predictors of progression to kidney failure in ADPKD. A complex interaction of these prognostic factors determines the number of kidney cysts and their growth rates, which affect total kidney volume (TKV). Age-adjusted TKV, represented by the Mayo imaging classification, estimates each patient's unique rate of kidney growth and provides the most individualized approach available clinically so far. Tolvaptan has been approved to slow disease progression in patients at risk of rapidly progressive disease. Several other disease-modifying treatments are being studied in clinical trials. Selection criteria for patients at risk of rapid progression vary widely among countries and are based on a combination of age, baseline glomerular filtration rate (GFR), GFR slope, baseline TKV, and TKV rate of growth. This review details the approach in assessing the risk of disease progression in ADPKD and identifying patients who would benefit from long-term therapy with disease-modifying agents.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN.
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
24
|
El Chediak A, Degheili JA, Khauli RB. Genitourinary Interventions in Autosomal Dominant Polycystic Kidney Disease: Clinical Recommendations for Urologic and Transplant Surgeons. EXP CLIN TRANSPLANT 2021; 19:95-103. [PMID: 33494664 DOI: 10.6002/ect.2020.0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autosomal dominant polycystic kidney disease is the fourth most common single cause of end-stage renal disease worldwide with both renal and extrarenal manifestations, resulting in significant morbidity. Approaches to the management of this disease vary widely, with no broadly accepted practice guidelines. Herein, we reviewed the various surgical and interventional management options that are targeted toward treating the symptoms or addressing the resulting kidney failure. Novel treatment modalities such as celiac plexus blockade and renal denervation appear to be promising in pain relief; however, further studies are lacking. Renal cyst decortication seems to have a higher success rate in targeting cyst-related pain compared with aspiration only. In terms of requiring major surgical intervention, such as need and timing of native nephrectomy, there are several considerations when deciding on transplantation with or without a pretransplant native nephrectomy. Patients who are not candidates for native nephrectomy may consider transcatheter arterial embolization. Based on our review of the contemporary indications for genitourinary interventions in the management of autosomal dominant polycystic kidney disease, we propose an algorithm that depicts the decision-making process on assessing the indications and timing of native nephrectomy in patients with end-stage renal disease awaiting transplant.
Collapse
Affiliation(s)
- Alissar El Chediak
- From the Department of Nephrology, Vanderbilt University Medical Center, Nashville, USA
| | - Jad A Degheili
- From the Division of Pediatric Urology, Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada.,From the Division of Urology and Renal Transplantation, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | | |
Collapse
|
25
|
Hamzaoui M, Lamy G, Bellien J, Guerrot D. [Cardiovascular disorders in autosomal dominant polycystic kidney disease]. Nephrol Ther 2021; 17:18-29. [PMID: 33431311 DOI: 10.1016/j.nephro.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease is the most frequent genetic kidney disease. Cardiovascular disorders associated with autosomal dominant polycystic kidney disease are multiple and may occur early in life. In autosomal dominant polycystic kidney disease cardiovascular morbidity and mortality are related both to the nonspecific consequences of chronic kidney disease and to the particular phenotype of autosomal dominant polycystic kidney disease. Compared to the general population, patients with autosomal dominant polycystic kidney disease present an increased prevalence of hypertension, left ventricular hypertrophy, atrial fibrillation, valvular diseases, aneurisms and arterial dissections. This review article provides an update on cardiovascular disorders associated with autosomal dominant polycystic kidney disease and recent pathophysiological developments.
Collapse
Affiliation(s)
- Mouad Hamzaoui
- Inserm U1096, FHU REMOD-VHF, UniRouen, Normandie Université, 76000 Rouen, France; Service de néphrologie, CHU de Rouen, 76000 Rouen, France
| | - Gaspard Lamy
- Inserm U1096, FHU REMOD-VHF, UniRouen, Normandie Université, 76000 Rouen, France; Service de néphrologie, CHU de Rouen, 76000 Rouen, France
| | - Jérémy Bellien
- Inserm U1096, FHU REMOD-VHF, UniRouen, Normandie Université, 76000 Rouen, France; Service de pharmacologie clinique, CHU de Rouen, 76000 Rouen, France
| | - Dominique Guerrot
- Inserm U1096, FHU REMOD-VHF, UniRouen, Normandie Université, 76000 Rouen, France; Service de néphrologie, CHU de Rouen, 76000 Rouen, France.
| |
Collapse
|
26
|
Xu Z, Wu J, Xu G, Luo H. Abdominal ultrasonographic manifestations in pediatric patients with tuberous sclerosis complex. Transl Pediatr 2020; 9:757-767. [PMID: 33457297 PMCID: PMC7804489 DOI: 10.21037/tp-20-150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare genetic disease which leads to formation of benign tumors in the brain and other organs of the body. Ultrasound (US) can detect the location, quantity, size and internal echo of TSC-associated renal diseases, liver angiomyolipoma (AML), and co-existing lesions, providing important diagnostic basis for clinical diagnosis. The aim of the present study was to investigate the abdominal ultrasonographic features of pediatric TSC and explore the advantages of abdominal ultrasonography in clinical practice. METHODS Data of children with TSC, who presented to the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, between January 2016 and November 2018, were analyzed by a retrospective chart review. The cases were identified from electronic medical records (EMR) system and underwent ultrasonography, we yielded a total of 12 patients. RESULTS The 12 pediatric patients, including 5 boys and 7 girls, ranged in age from 9 months to 13 years old. And they all had a history of epilepsy. All the patients underwent brain magnetic resonance imaging (MRI) or computed tomography (CT) examination, which revealed a scattered distribution of multiple hyperintense nodules. Of the 12 patients, 10 had TSC-associated bilateral renal AMLs, 5 had hepatic AML, and 4 had renal cysts. CONCLUSIONS US is a useful and non-invasive tool for the detection of TSC-associated renal and liver lesions and for clinical follow-up among pediatric patients.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junbo Wu
- Department of Ultrasound Imaging, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guimin Xu
- Department of Anesthesia, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongxia Luo
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Yi TW, Levin A, Bevilacqua M, Canney M. A Provincial Survey of the Contemporary Management of Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2020; 7:2054358120948294. [PMID: 32953126 PMCID: PMC7476332 DOI: 10.1177/2054358120948294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Recent years have witnessed an encouraging expansion of knowledge and management tools in the care of patients with autosomal dominant polycystic kidney disease (ADPKD), including measurement of total kidney volume as a biomarker of disease progression, stringent blood pressure targets to slow cyst growth, and targeted treatments such as tolvaptan. Objectives: We sought to evaluate clinicians’ familiarity with, and usage of, novel evidence-based management tools for ADPKD. Design: On-line survey. Setting: British Columbia, Canada. Participants: Nephrologists in academic and community practice (excluding clinicians who practice exclusively in transplantation). Measurements: Participants answered multiple-choice questions in 6 domains: sources of information, self-identified needs for optimal care delivery, prognostication, imaging tests, blood pressure targets, and use of tolvaptan. Methods: An online survey was developed and disseminated via email to 65 nephrologists engaged in current clinical practice in British Columbia. Results: A total of 29 nephrologists (45%) completed the questionnaire. The most popular source of information was the primary literature (83% of respondents). While 86% of respondents reported assessing the risk of disease progression before the onset of kidney function decline, most were using traditional metrics such as blood pressure and proteinuria rather than validated prediction tools such as the Mayo Classification. Although 90% of respondents obtained additional imaging after diagnosis in some or all of their ADPKD patients, only 1 in 5 reported being confident in their ability to interpret kidney size. The recommended blood pressure (BP) target of <110/75 mmHg was sought by 17% of respondents. All respondents reported being familiar with the literature regarding tolvaptan; however, only half were confident in their ability to identify suitable patients for treatment. The top 3 needs identified by clinicians were better access to medications (69%), clear management protocols (66%), and easier access to imaging tests (59%). Limitations: Funding mechanisms for tolvaptan can vary; therefore, clinicians’ experience with the drug may not be generalizable. Although the response rate was acceptable, the survey is nonetheless subject to responder bias. Conclusion: This survey indicates that there is substantial variability in the usage of, and familiarity with, evidence-based ADPKD management tools among contemporary nephrologists, contributing to incomplete translation of evidence into clinical practice. Providing greater access to tolvaptan or imaging tests is unlikely to improve patient care without enhancing knowledge translation and education. Trial Registration: Not applicable as this was a survey.
Collapse
Affiliation(s)
- Tae Won Yi
- Division of Nephrology, The University of British Columbia, Vancouver, Canada
| | - Adeera Levin
- Division of Nephrology, The University of British Columbia, Vancouver, Canada.,BC Provincial Renal Agency, Vancouver, Canada
| | - Micheli Bevilacqua
- Division of Nephrology, The University of British Columbia, Vancouver, Canada.,BC Provincial Renal Agency, Vancouver, Canada
| | - Mark Canney
- Division of Nephrology, The University of British Columbia, Vancouver, Canada.,BC Provincial Renal Agency, Vancouver, Canada
| |
Collapse
|
28
|
Ganoderic acid A is the effective ingredient of Ganoderma triterpenes in retarding renal cyst development in polycystic kidney disease. Acta Pharmacol Sin 2020; 41:782-790. [PMID: 31911637 PMCID: PMC7468358 DOI: 10.1038/s41401-019-0329-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-threatening monogenetic diseases characterized by progressive enlargement of fluid-filled renal cysts. Our previous study has shown that Ganoderma triterpenes (GT) retards PKD renal cyst development. In the present study we identified the effective ingredient of GT in suppression of kidney cyst development. Using an in vitro MDCK cystogenesis model, we identified ganoderic acid A (GA-A) as the most promising candidate among the 12 ganoderic acid (GA) monomers. We further showed that GA-A (6.25−100 μM) significantly inhibited cyst growth in MDCK cyst model and embryonic kidney cyst model in vitro, and the inhibitory effect was reversible. In kidney-specific Pkd1 knockout (kPKD) mice displaying severe cystic kidney disease, administration of GA-A (50 mg· kg−1 ·d−1, sc) significantly attenuated renal cyst development. In both MDCK cells and kidney of kPKD mice, we revealed that GA-A dose-dependently downregulated the Ras/MAPK signaling pathway. The expression of proliferating cell nuclear antigen (PCNA) was also suppressed, suggesting a possible effect of GA-A on cell proliferation. These experimental data suggest that GA-A may be the main ingredient of GT as a potential therapeutic reagent for treating ADPKD.
Collapse
|
29
|
Colbert GB, Elrggal ME, Gaur L, Lerma EV. Update and review of adult polycystic kidney disease. Dis Mon 2020; 66:100887. [DOI: 10.1016/j.disamonth.2019.100887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
He J, Zhou H, Meng J, Zhang S, Li X, Wang S, Shao G, Jin W, Geng X, Zhu S, Yang B. Cardamonin retards progression of autosomal dominant polycystic kidney disease via inhibiting renal cyst growth and interstitial fibrosis. Pharmacol Res 2020; 155:104751. [PMID: 32151678 DOI: 10.1016/j.phrs.2020.104751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic inherited kidney disease characterized by renal progressive fluid-filled cysts and interstitial fibrosis. Inhibiting renal cyst development and interstitial fibrosis has been proven effective in delaying the progression of ADPKD. The purpose of this study was to discover effective drugs from natural products for preventing and treating ADPKD. Candidate compounds were screened from a natural product library by virtual screening. The Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model, and orthologous mouse model of ADPKD were utilized to determine the pharmacological activities of the candidate compounds. Western blot and morphological analysis were used to investigate underlying mechanisms. The experimental results showed that 0.625, 2.5, and 10 μM cardamonin dose-dependently reduced formation and enlargement in MDCK cyst model. Cardamonin also significantly attenuated renal cyst enlargement in ex vivo mouse embryonic kidneys and PKD mouse kidneys. We found that cardamonin inhibited renal cyst development and interstitial fibrosis by downregulating the MAPK, Wnt, mTOR, and transforming growth factor-β/Smad2/3 signaling pathways. Cardamonin significantly inhibits renal cyst development and interstitial fibrosis, suggesting that cardamonin shows promise as a potential therapeutic drug for preventing and treating ADPKD.
Collapse
Affiliation(s)
- Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - William Jin
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
31
|
Zhang Z, Hu K, Yang J, Zhou Y, Wang Z, Huang Y. Severe polycystic liver diseases: hepatectomy or waiting for liver transplantation?: Two case reports. Medicine (Baltimore) 2019; 98:e18176. [PMID: 31804334 PMCID: PMC6919518 DOI: 10.1097/md.0000000000018176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Choice of treatment in patients with symptomatic polycystic liver diseases (PLD) remains controversial. Various surgical procedures aiming at eliminating symptomatic cysts are widely used in mild and advanced PLD patients, but liver transplantation is currently recommended as the only curative treatment especially in severe cases. PATIENT CONCERNS Case 1: A 51-year-old male was admitted for severe eating disorder and dyspnea for 2 months. He had been diagnosed as PLD, PKD, and hypertension for 9 years, with only antihypertensive drug therapy. No significant family history could be traced.Case 2: A 54-year-old female was admitted to our hospital for ventosity during nearly 5 years. She had been diagnosed as PLD and hypertension for 22 years, for which only aspiration-sclerotherapy therapy was performed for multiple times. Both her mother and sister were diagnosed with PLD previously. DIAGNOSIS They were diagnosed as PLD by medical history, family history, and computed tomography scan (multiple cysts dispersively presenting in the liver). INTERVENTIONS The 2 patients underwent hepatectomy with fenestration, and were well recovered with no mortality. OUTCOMES While case 1 only experienced relief of symptoms, case 2 experienced massive growth of hepatic parenchyma, which indicated positive prognosis and showed the possibility to avoid or at least postpone liver transplantation for a long time, considering the lack of liver parenchyma is one of the main reason for urgency of liver transplantation. CONCLUSION Here we described subradical polycystic hepatectomy, a special form of hepatectomy with fenestration modified by us, as a safe and effective treatment to potentially achieve long-term effects in PLD patients.
Collapse
|
32
|
Onuchic L, Sato VAH, de Menezes Neves PDM, Balbo BEP, Portela-Neto AA, Ferreira FT, Watanabe EH, Watanabe A, de Almeida MCS, de Abreu Testagrossa L, Chocair PR, Onuchic LF. Two cases of fungal cyst infection in ADPKD: is this really a rare complication? BMC Infect Dis 2019; 19:911. [PMID: 31664917 PMCID: PMC6819534 DOI: 10.1186/s12879-019-4444-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cyst infection is a prevalent complication in autosomal dominant polycystic kidney disease (ADPKD) patients, however therapeutic and diagnostic approaches towards this condition remain unclear. The confirmation of a likely episode of cyst infection by isolating the pathogenic microorganism in a clinical scenario is possible only in the minority of cases. The available antimicrobial treatment guidelines, therefore, might not be appropriate to some patients. Case presentation We describe two unique cases of kidney cyst infection by Candida albicans, a condition that has not been previously described in literature. Both cases presented clear risk factors for Candida spp. infection. However, since there was no initial indication of cyst aspiration and culture, antifungal therapy was not immediately started and empirical treatment was initiated as recommended by the current guidelines. Antifungal treatment was instituted in both cases along the clinical course, according to their specificities. Conclusion Our report highlights the possibility of Candida spp. cyst infection. Failure of clinical improvement with antibiotics should raise the suspicion of a fungal infection. Identification of infected cysts should be pursued in such cases, particularly with PET-CT, and when technically possible followed by cyst aspiration and culture to guide treatment. Risk factors for this condition, such as Candida spp. colonization, previous antimicrobial therapy, hemodialysis, necrotizing pancreatitis, gastrointestinal/hepatobiliary surgical procedure, central venous catheter, total parenteral nutrition, diabetes mellitus and immunodeficiency (neutropenia < 500 neutrophils/mL, hematologic malignancy, chemotherapy, immunosuppressant drugs), should be also considered accepted criteria for empirical antifungal therapy.
Collapse
Affiliation(s)
- Laura Onuchic
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | | | - Precil Diego Miranda de Menezes Neves
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Bruno Eduardo Pedroso Balbo
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Antônio Abel Portela-Neto
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Fernanda Trani Ferreira
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Elieser Hitoshi Watanabe
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Andreia Watanabe
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | | | | | - Pedro Renato Chocair
- Nephrology and Internal Medicine Service, Oswaldo Cruz German Hospital, São Paulo, Brazil
| | - Luiz Fernando Onuchic
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, Avenida Doutor Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
33
|
Lin CH, Chao CT, Wu MY, Lo WC, Lin TC, Wu MS. Use of mammalian target of rapamycin inhibitors in patient with autosomal dominant polycystic kidney disease: an updated meta-analysis. Int Urol Nephrol 2019; 51:2015-2025. [PMID: 31578673 DOI: 10.1007/s11255-019-02292-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) inhibitors were previously considered a potential therapy for autosomal dominant polycystic kidney disease (ADPKD), but prior studies remained controversial about their efficacy. We performed an updated meta-analysis regarding the therapeutic and adverse effects of mTOR inhibitors in patients with ADPKD. METHODS We systematically searched Cochrane Library, PubMed, EMBASE, and Medline for randomized controlled trials (RCTs) comparing mTOR inhibitors to placebo in ADPKD patients up to August 2019. We calculated weighted mean differences (WMDs) for total kidney volume (TKV), estimated glomerular filtration rates (eGFRs), and weighted odds ratios (ORs) for treatment-related complications between the treatment and the placebo groups, using the random effects model. RESULTS We retrieved a total of 9 RCTs enrolling 784 ADPKD patients receiving rapamycin, sirolimus, or everolimus between 2009 and 2016. The WMDs of TKV and eGFR from baseline to the last measurement were - 31.54 mL (95% confidence interval [CI] - 76.79 to 13.71 mL) and 2.81 mL/min/1.73 m2 (95% CI - 1.85 to 7.46 mL/min/1.73 m2), respectively. Patients receiving mTOR inhibitors had a significantly increased risk of any adverse effects (OR 5.92, 95% CI 3.53-9.94), with the most common ones being aphthous stomatitis (OR 15.45, 95% CI 9.68-24.66) and peripheral edema (OR 3.49, 95% CI 1.31-9.27) compared to placebo users. CONCLUSIONS mTOR inhibitors did not significantly influence renal progression in patients with ADPKD, but were associated with a higher risk of complications. Whether mTOR inhibitors can be an add-on option or second-line agents remain undetermined.
Collapse
Affiliation(s)
- Chun-Hung Lin
- Department of Orthopedics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Toxicology, National Taiwan University College of Medicine, No. 1, Section 1 Jen-Ai Rd., Taipei, 10051, Taiwan.
| | - Mei-Yi Wu
- Department of Nephrology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Primary Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Cheng Lo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsu-Chen Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Department of Nephrology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Al-Muhanna FA, Al-Rubaish AM, Vatte C, Mohiuddin SS, Cyrus C, Ahmad A, Shakil Akhtar M, Albezra MA, Alali RA, Almuhanna AF, Huang K, Wang L, Al-Kuwaiti F, Elsalamouni TSA, Al Hwiesh A, Huang X, Keating B, Li J, Lanktree MB, Al-Ali AK. Exome sequencing of Saudi Arabian patients with ADPKD. Ren Fail 2019; 41:842-849. [PMID: 31488014 PMCID: PMC6735335 DOI: 10.1080/0886022x.2019.1655453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive development of kidney cysts and enlargement and dysfunction of the kidneys. The Consortium of Radiologic Imaging Studies of the Polycystic Kidney Disease (CRISP) cohort revealed that 89.1% had either a PKD1 or PKD2 mutation. Of the CRISP patients with a genetic cause detected, mutations in PKD1 accounted for 85%, while mutations in the PKD2 accounted for the remaining 15%. Here, we report exome sequencing of 16 Saudi patients diagnosed with ADPKD and 16 ethnically matched controls. Methods: Exome sequencing was performed using combinatorial probe-anchor synthesis and improved DNA Nanoballs technology on BGISEQ-500 sequencers (BGI, China) using the BGI Exome V4 (59 Mb) Kit. Identified variants were validated with Sanger sequencing. Results: With the exception of GC-rich exon 1, we obtained excellent coverage of PKD1 (mean read depth = 88) including both duplicated and non-duplicated regions. Of nine patients with typical ADPKD presentations (bilateral symmetrical kidney involvement, positive family history, concordant imaging, and kidney function), four had protein truncating PKD1 mutations, one had a PKD1 missense mutation, and one had a PKD2 mutation. These variants have not been previously observed in the Saudi population. In seven clinically diagnosed ADPKD cases but with atypical features, no PKD1 or PKD2 mutations were identified, but rare predicted pathogenic heterozygous variants were found in cystogenic candidate genes including PKHD1, PKD1L3, EGF, CFTR, and TSC2. Conclusions: Mutations in PKD1 and PKD2 are the most common cause of ADPKD in Saudi patients with typical ADPKD. Abbreviations: ADPKD: Autosomal dominant polycystic kidney disease; CFTR: Cystic fibrosis transmembrane conductance regulator; EGF: Epidermal growth factor; MCIC: Mayo Clinic Imaging Classification; PKD: Polycystic kidney disease; TSC2: Tuberous sclerosis complex 2
Collapse
Affiliation(s)
- Fahad A Al-Muhanna
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Abdullah M Al-Rubaish
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Chittibabu Vatte
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Shamim Shaikh Mohiuddin
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Cyril Cyrus
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Arafat Ahmad
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Mohammed Shakil Akhtar
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | | | - Rudaynah A Alali
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Afnan F Almuhanna
- Department of Radiology, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Kai Huang
- BGI-Shenzhen , Shenzhen , China.,BGI-Shenzhen, China National GeneBank , Shenzhen , China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong , Hong Kong
| | - Feras Al-Kuwaiti
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Tamer S Ahmed Elsalamouni
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Abdullah Al Hwiesh
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Xiaoyan Huang
- BGI-Shenzhen , Shenzhen , China.,BGI-Shenzhen, China National GeneBank , Shenzhen , China
| | - Brendan Keating
- Cardiovascular Institute, University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Jiankang Li
- BGI-Shenzhen , Shenzhen , China.,BGI-Shenzhen, China National GeneBank , Shenzhen , China.,Department of Computer Science, City University of Hong Kong , Hong Kong , Hong Kong
| | | | - Amein K Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| |
Collapse
|
35
|
The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nat Rev Nephrol 2019; 15:735-749. [PMID: 31488901 DOI: 10.1038/s41581-019-0183-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects an estimated 1 in 1,000 people and slowly progresses to end-stage renal disease (ESRD) in about half of these individuals. Tolvaptan, a vasopressin 2 receptor blocker, has been approved by regulatory authorities in many countries as a therapy to slow cyst growth, but additional treatments that target dysregulated signalling pathways in cystic kidney and liver are needed. Metabolic reprogramming is a prominent feature of cystic cells and a potentially important contributor to the pathophysiology of ADPKD. A number of pathways previously implicated in the pathogenesis of the disease, such as dysregulated mTOR and primary ciliary signalling, have roles in metabolic regulation and may exert their effects through this mechanism. Some of these pathways are amenable to manipulation through dietary modifications or drug therapies. Studies suggest that polycystin-1 and polycystin-2, which are encoded by PKD1 and PKD2, respectively (the genes that are mutated in >99% of patients with ADPKD), may in part affect cellular metabolism through direct effects on mitochondrial function. Mitochondrial dysfunction could alter the redox state and cellular levels of acetyl-CoA, resulting in altered histone acetylation, gene expression, cytoskeletal architecture and response to cellular stress, and in an immunological response that further promotes cyst growth and fibrosis.
Collapse
|
36
|
Rastogi A, Ameen KM, Al-Baghdadi M, Shaffer K, Nobakht N, Kamgar M, Lerma EV. Autosomal dominant polycystic kidney disease: updated perspectives. Ther Clin Risk Manag 2019; 15:1041-1052. [PMID: 31692482 PMCID: PMC6716585 DOI: 10.2147/tcrm.s196244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited multisystem disorder, characterized by renal and extra-renal fluid-filled cyst formation and increased kidney volume that eventually leads to end-stage renal disease. ADPKD is considered the fourth leading cause of end-stage renal disease in the United States and globally. Care of patients with ADPKD was, for a long time, limited to supportive lifestyle measures, due to the lack of therapeutic strategies targeting the main pathways involved in the pathophysiology of ADPKD. As the first FDA approved treatment of ADPKD, Vasopressin (V2) receptor blocking agent, tolvaptan, is an urgently awaited advance for ADPKD patients. In our review, we also shed some lights on what is beyond Tolvaptan as there are other medications in the pipeline and many medications have been or are currently being studied in clinical trials such as Tesevatinib, Metformin and Pravastatin, with the goal of slowing the rate of progression of ADPKD by reducing the increase in total kidney volume or maintaining eGFR. Here, we review updates in the perspectives and management of ADPKD.
Collapse
Affiliation(s)
- Anjay Rastogi
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Khalid Mohammed Ameen
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Maha Al-Baghdadi
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kelly Shaffer
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Niloofar Nobakht
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mohammad Kamgar
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Edgar V Lerma
- Department of Medicine, Divison of Nephrology, University of Illinois at Chicago/Advocate Christ Medical Center, Section of Nephrology, Oak Lawn, IL, USA
| |
Collapse
|
37
|
Sorohan BM, Ismail G, Andronesi A, Micu G, Obrișcă B, Jurubiță R, Sinescu I, Baston C. A single-arm pilot study of metformin in patients with autosomal dominant polycystic kidney disease. BMC Nephrol 2019; 20:276. [PMID: 31337351 PMCID: PMC6651959 DOI: 10.1186/s12882-019-1463-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Metformin has shown promising results regarding cystogenesis inhibition in preclinical studies with autosomal dominant polycystic kidney disease (ADPKD) models. We designed a prospective, preliminary, single-arm study to evaluate the tolerability, safety and the effect of Metformin on kidney function and body mass index (BMI) in Romanian patients with ADPKD. Methods We enrolled 34 adult patients with ADPKD, chronic kidney disease (CKD) stages 1–5 not on dialysis and without diabetes mellitus. The primary endpoint was to assess the tolerability and safety of Metformin. The secondary endpoints evaluated changes in estimated glomerular filtration rate (eGFR), body mass index (BMI) and renal replacement therapy (RRT) necessity. Patients received an initial dose of Metformin of 500 mg/day within the first month that was increased to 1000 mg/day thereafter according to tolerability. Change in eGFR and BMI was expressed as mean difference with the corresponding 95% confidence intervals and as a percentage. For the primary endpoint, we included all 34 enrolled patients. To assess the secondary endpoint, intention-to-treat (ITT) and per-protocol (PP) analysis was performed. Results Sixteen patients out of 34 completed the follow-up period at 24 months. Eighteen patients developed adverse events and 63.6% of these events were gastrointestinal related. Nausea was the most common adverse event (17.6%). Two patients (5.8%) permanently discontinued medication due to adverse events. We recorded no case of hypoglycemia, lactic acidosis or death. Mean eGFR changed by − 1.57 ml/min/1.73m2 (95%CI:-22.28 to 19.14, P = 0.87) in ITT and by − 4.57 ml/min/1.73m2 (95%CI:-28.03 to 18.89, P = 0.69) in PP population. Mean BMI change was − 1.10 kg/m2 (95%CI:-3.22 to 1.02, P = 0.30) in ITT population and − 0.80 kg/m2 (95%CI:-3.27 to 1.67, P = 0.51) in PP analysis. Three patients (8.8%) needed RRT. Conclusions Metformin was well tolerated, had a good safety profile even in ADPKD patients with advanced CKD and it was not associated with change in eGFR or BMI across the follow-up period. Trial registration The study was retrospectively registered on https://www.isrctn.com (number ISRCTN 93749377); date registered: 02/25/2019.
Collapse
Affiliation(s)
- Bogdan Marian Sorohan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Gener Ismail
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. .,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania.
| | - Andreea Andronesi
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Georgia Micu
- Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Bogdan Obrișcă
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Roxana Jurubiță
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Nephrology Department, Fundeni Clinical Institute, Fundeni Street No. 258, ZIP Code 022328, District No.2, Bucharest, Romania
| | - Ioanel Sinescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Center of Uronephrology and Renal Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Cătălin Baston
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Center of Uronephrology and Renal Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
38
|
Liu D, Huo Y, Chen S, Xu D, Yang B, Xue C, Fu L, Bu L, Song S, Mei C. Identification of Key Genes and Candidated Pathways in Human Autosomal Dominant Polycystic Kidney Disease by Bioinformatics Analysis. Kidney Blood Press Res 2019; 44:533-552. [DOI: 10.1159/000500458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic form of kidney disease. High-throughput microarray analysis has been applied for elucidating key genes and pathways associated with ADPKD. Most genetic profiling data from ADPKD patients have been uploaded to public databases but not thoroughly analyzed. This study integrated 2 human microarray profile datasets to elucidate the potential pathways and protein-protein interactions (PPIs) involved in ADPKD via bioinformatics analysis in order to identify possible therapeutic targets. Methods: The kidney tissue microarray data of ADPKD patients and normal individuals were searched and obtained from NCBI Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and enriched pathways and central node genes were elucidated using related websites and software according to bioinformatics analysis protocols. Seven DEGs were validated between polycystic kidney disease and control kidney samples by quantitative real-time polymerase chain reaction. Results: Two original human microarray datasets, GSE7869 and GSE35831, were integrated and thoroughly analyzed. In total, 6,422 and 1,152 DEGs were extracted from GSE7869 and GSE35831, respectively, and of these, 561 DEGs were consistent between the databases (291 upregulated genes and 270 downregulated genes). From 421 nodes, 34 central node genes were obtained from a PPI network complex of DEGs. Two significant modules were selected from the PPI network complex by using Cytotype MCODE. Most of the identified genes are involved in protein binding, extracellular region or space, platelet degranulation, mitochondrion, and metabolic pathways. Conclusions: The DEGs and related enriched pathways in ADPKD identified through this integrated bioinformatics analysis provide insights into the molecular mechanisms of ADPKD and potential therapeutic strategies. Specifically, abnormal decorin expression in different stages of ADPKD may represent a new therapeutic target in ADPKD, and regulation of metabolism and mitochondrial function in ADPKD may become a focus of future research.
Collapse
|
39
|
Reyna-Fabián ME, Alcántara-Ortigoza MA, Hernández-Martínez NL, Berumen J, Jiménez-García R, Gómez-Garza G, González-Del Angel A. TSC2/PKD1 contiguous gene syndrome, with emphasis on a case with an atypical mild polycystic kidney phenotype and a novel genetic variant. Nefrologia 2019; 40:91-98. [PMID: 31176519 DOI: 10.1016/j.nefro.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/06/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
About 80% of patients with tuberous sclerosis complex (TSC) present renal involvement, usually as angiomyolipomas followed by cystic disease. An early diagnosis of polycystic kidney disease (PKD) in such patients is frequently related to the TSC2/PKD1 contiguous gene syndrome (PKDTS). Molecular confirmation of PKDTS is important for a prompt diagnosis, which can be complicated by the phenotypic heterogeneity of PKD and the absence of a clear phenotype-genotype correlation. Herein, we report three PKDTS pediatric patients. The case 3 did not present a classic PKDTS phenotype, having only one observable cyst on renal ultrasound at age 4 and multiple small cysts on magnetic resonance imaging at age 15. In this patient, chromosomal microarray analysis showed a gross deletion of 230.8kb that involved TSC2, PKD1 and 13 other protein-coding genes, plus a heterozygous duplication of a previously undescribed copy number variant of 242.9kb that involved six protein-coding genes, including SSTR5, in the 16p13.3 region. Given the observations that the case 3 presented the mildest renal phenotype, harbored three copies of SSTR5, and the reported inhibition of cystogenesis (specially in liver) observed with somatostatin analogs in some patients with autosomal dominant PKD, it can be hypothesized that other genetic factors as the gene dosage of SSTR5 may influence the PKD phenotype and the progression of the disease; however, future work is needed to examine this possibility.
Collapse
Affiliation(s)
- Miriam E Reyna-Fabián
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
| | - Miguel A Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
| | - Nancy L Hernández-Martínez
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
| | - Jaime Berumen
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Unidad de Medicina Genómica, Hospital General de México, Ciudad de México, México
| | - Raquel Jiménez-García
- Servicio de Nefrología, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
| | - Gilberto Gómez-Garza
- Resonancia Magnética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
| | - Ariadna González-Del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México.
| |
Collapse
|
40
|
Andries A, Daenen K, Jouret F, Bammens B, Mekahli D, Van Schepdael A. Oxidative stress in autosomal dominant polycystic kidney disease: player and/or early predictor for disease progression? Pediatr Nephrol 2019; 34:993-1008. [PMID: 30105413 DOI: 10.1007/s00467-018-4004-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in PKD1 or PKD2 genes, is the most common hereditary renal disease. Renal manifestations of ADPKD are gradual cyst development and kidney enlargement ultimately leading to end-stage renal disease. ADPKD also causes extrarenal manifestations, including endothelial dysfunction and hypertension. Both of these complications are linked with reduced nitric oxide levels related to excessive oxidative stress (OS). OS, defined as disturbances in the prooxidant/antioxidant balance, is harmful to cells due to the excessive generation of highly reactive oxygen and nitrogen free radicals. Next to endothelial dysfunction and hypertension, there is cumulative evidence that OS occurs in the early stages of ADPKD. In the current review, we aim to summarize the cardiovascular complications and the relevance of OS in ADPKD and, more specifically, in the early stages of the disease. First, we will briefly introduce the link between ADPKD and the early cardiovascular complications including hypertension. Secondly, we will describe the potential role of OS in the early stages of ADPKD and its possible importance beyond the chronic kidney disease (CKD) effect. Finally, we will discuss some pharmacological agents capable of reducing reactive oxygen species and OS, which might represent potential treatment targets for ADPKD.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Kristien Daenen
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium.,Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| | - François Jouret
- Department of Internal Medicine, Division of Nephrology, University of Liège Hospital (ULg CHU), Liège, Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Science, University of Liège, Liège, Belgium
| | - Bert Bammens
- Department of Microbiology and Immunology, Laboratory of Nephrology, KU Leuven - University of Leuven, 3000, Leuven, Belgium.,Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD Group, KU Leuven - University of Leuven, 3000, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| |
Collapse
|
41
|
Lanktree MB, Guiard E, Li W, Akbari P, Haghighi A, Iliuta IA, Shi B, Chen C, He N, Song X, Margetts PJ, Ingram AJ, Khalili K, Paterson AD, Pei Y. Intrafamilial Variability of ADPKD. Kidney Int Rep 2019; 4:995-1003. [PMID: 31317121 PMCID: PMC6611955 DOI: 10.1016/j.ekir.2019.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction Discordance in kidney disease severity between affected relatives is a recognized feature of autosomal dominant polycystic kidney disease (ADPKD). Here, we report a systematic study of a large cohort of families to define the prevalence and clinical features of intrafamilial discordance in ADPKD. Methods The extended Toronto Genetic Epidemiology Study of Polycystic Kidney Disease (eTGESP) cohort includes 1390 patients from 612 unrelated families with ADPKD ascertained in a regional polycystic kidney disease center. All probands underwent comprehensive PKD1 and PKD2 mutation screening. Total kidney volume by magnetic resonance imaging (MRI) was available in 500 study patients. Results Based on (i) rate of estimated glomerular filtration rate (eGFR) decline, (ii) age at onset of end-stage renal disease (ESRD), and (iii) Mayo Clinic Imaging Classification (MCIC), 20% of patients were classified as having mild disease, and 33% as having severe disease. Intrafamilial ADPKD discordance with at least 1 mild and 1 severe case was observed in 43 of 371 (12%) families, at a similar frequency regardless of the responsible gene (PKD1/PKD2/no mutation detected) or mutation type (protein-truncating versus nontruncating). Intrafamilial discordance was more common in larger families and was present in 30% of families with more than 5 affected members. The heritability of age at onset of ESRD was similar between different mutation types. Conclusion Extreme kidney disease discordance is present in at least 12% of families with ADPKD, regardless of the underlying mutated gene or mutation class. Delineating genetic and environmental modifiers underlying the observed intrafamilial ADPKD variability will provide novel insights into the mechanisms of progression in ADPKD.
Collapse
Affiliation(s)
- Matthew B. Lanktree
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Elsa Guiard
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Weili Li
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pedram Akbari
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Ioan-Andrei Iliuta
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Belili Shi
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Chen Chen
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Ning He
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Margetts
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | - Korosh Khalili
- Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Epidemiology & Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Correspondence: York Pei, Toronto General Hospital, University Health Network, University of Toronto, 585 University Avenue, 8N838, Toronto, Ontario, Canada M5G2N2.
| |
Collapse
|
42
|
Smith KA, Thompson AM, Baron DA, Broadbent ST, Lundstrom GH, Perrone RD. Addressing the Need for Clinical Trial End Points in Autosomal Dominant Polycystic Kidney Disease: A Report From the Polycystic Kidney Disease Outcomes Consortium (PKDOC). Am J Kidney Dis 2019; 73:533-541. [DOI: 10.1053/j.ajkd.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/09/2018] [Indexed: 11/11/2022]
|
43
|
Aquaporins in Renal Diseases. Int J Mol Sci 2019; 20:ijms20020366. [PMID: 30654539 PMCID: PMC6359174 DOI: 10.3390/ijms20020366] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Aquaporins (AQPs) are a family of highly selective transmembrane channels that mainly transport water across the cell and some facilitate low-molecular-weight solutes. Eight AQPs, including AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP11, are expressed in different segments and various cells in the kidney to maintain normal urine concentration function. AQP2 is critical in regulating urine concentrating ability. The expression and function of AQP2 are regulated by a series of transcriptional factors and post-transcriptional phosphorylation, ubiquitination, and glycosylation. Mutation or functional deficiency of AQP2 leads to severe nephrogenic diabetes insipidus. Studies with animal models show AQPs are related to acute kidney injury and various chronic kidney diseases, such as diabetic nephropathy, polycystic kidney disease, and renal cell carcinoma. Experimental data suggest ideal prospects for AQPs as biomarkers and therapeutic targets in clinic. This review article mainly focuses on recent advances in studying AQPs in renal diseases.
Collapse
|
44
|
Chou LF, Cheng YL, Hsieh CY, Lin CY, Yang HY, Chen YC, Hung CC, Tian YC, Yang CW, Chang MY. Effect of Trehalose Supplementation on Autophagy and Cystogenesis in a Mouse Model of Polycystic Kidney Disease. Nutrients 2018; 11:nu11010042. [PMID: 30585217 PMCID: PMC6356442 DOI: 10.3390/nu11010042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Autophagy impairment has been demonstrated in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) and could be a new target of treatment. Trehalose is a natural, nonreducing disaccharide that has been shown to enhance autophagy. Therefore, we investigated whether trehalose treatment reduces renal cyst formation in a Pkd1-hypomorphic mouse model. Pkd1 miRNA transgenic (Pkd1 miR Tg) mice and wild-type littermates were given drinking water supplemented with 2% trehalose from postnatal day 35 to postnatal day 91. The control groups received pure water or 2% sucrose for the control of hyperosmolarity. The effect on kidney weights, cystic indices, renal function, cell proliferation, and autophagic activities was determined. We found that Pkd1 miR Tg mice had a significantly lower renal mRNA expression of autophagy-related genes, including atg5, atg12, ulk1, beclin1, and p62, compared with wild-type control mice. Furthermore, immunohistochemical analysis showed that cystic lining cells had strong positive staining for the p62 protein, indicating impaired degradation of the protein by the autophagy-lysosome pathway. However, trehalose treatment did not improve reduced autophagy activities, nor did it reduce relative kidney weights, plasma blood urea nitrogen levels, or cystatin C levels in Pkd1 miR Tg mice. Histomorphological analysis revealed no significant differences in the renal cyst index, fibrosis score, or proliferative score among trehalose-, sucrose-, and water-treated groups. Our results demonstrate that adding trehalose to drinking water does not modulate autophagy activities and renal cystogenesis in Pkd1-deficient mice, suggesting that an oral supplement of trehalose may not affect the progression of ADPKD.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ya-Lien Cheng
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chun-Yih Hsieh
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chan-Yu Lin
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Cheng-Chieh Hung
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
45
|
Hamanoue S, Suwabe T, Ubara Y, Kikuchi K, Hazue R, Mise K, Ueno T, Takaichi K, Matsumoto K, Morita K. Cyst infection in autosomal dominant polycystic kidney disease: penetration of meropenem into infected cysts. BMC Nephrol 2018; 19:272. [PMID: 30340529 PMCID: PMC6194587 DOI: 10.1186/s12882-018-1067-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
Background Cyst infection is a common and serious complication of autosomal dominant polycystic kidney disease (ADPKD) that is often refractory. Carbapenems are frequently needed to treat to patients with refractory cyst infection, but little is known about the penetration of newer water-soluble carbapenems into cysts. This study investigated the penetration of meropenem (MEPM) into infected cysts in patients with ADPKD. Methods Between August 2013 and January 2014, 10 ADPKD patients (14 infected cysts) receiving MEPM at Toranomon Hospital underwent drainage of infected cysts and definite cyst infection was confirmed through detection of neutrophils by cyst fluid analysis. The serum concentration of MEPM was measured just after intravenous administration and was compared with that in fluid aspirated from infected cysts. Results In the patients undergoing cyst drainage, the mean serum MEPM concentration was 35.2 ± 12.2 μg/mL (range: 19.7 to 59.2 μg/mL, while the mean cyst fluid concentration of MEPM in the drained liver cysts (n = 12) or kidney cysts (n = 2) was 3.03 ± 2.6 μg/mL (range: 0 to 7.3 μg/mL). In addition, the mean cyst fluid/serum MEPM concentration ratio was 9.46 ± 7.19% (range: 0 to 18.8%). There was no relationship between the cyst fluid concentration of MEPM and the time until drainage after MEPM administration or between the cyst fluid/serum MEPM concentration ratio and the time until drainage. Conclusion These findings suggest that MEPM shows poor penetration into infected cysts in ADPKD patients. Trial registration This study was registered with the University Hospital Medical Information Network (UMIN) as “Penetration of meropenem into cysts in patients with autosomal dominant polycystic kidney disease (ADPKD)”, UMIN ID 000011292 on July 26th, 2013. Electronic supplementary material The online version of this article (10.1186/s12882-018-1067-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satoshi Hamanoue
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Tatsuya Suwabe
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan.
| | - Yoshifumi Ubara
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Koichi Kikuchi
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Ryo Hazue
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Koki Mise
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Toshiharu Ueno
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Kenmei Takaichi
- Department of Nephrology, Toranomon Hospital Kajigaya, Kawasaki, Japan.,Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kunihiko Morita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| |
Collapse
|
46
|
Soroka S, Alam A, Bevilacqua M, Girard LP, Komenda P, Loertscher R, McFarlane P, Pandeya S, Tam P, Bichet DG. Updated Canadian Expert Consensus on Assessing Risk of Disease Progression and Pharmacological Management of Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2018; 5:2054358118801589. [PMID: 30345064 PMCID: PMC6187423 DOI: 10.1177/2054358118801589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purpose of this article is to update the previously published consensus recommendations from March 2017 discussing the optimal management of adult patients with autosomal dominant polycystic kidney disease (ADPKD). This document focuses on recent developments in genetic testing, renal imaging, assessment of risk regarding disease progression, and pharmacological treatment options for ADPKD. SOURCES OF INFORMATION Published literature was searched in PubMed, the Cochrane Library, and Google Scholar to identify the latest evidence related to the treatment and management of ADPKD. METHODS All pertinent articles were reviewed by the authors to determine if a new recommendation was required, or if the previous recommendation needed updating. The consensus recommendations were developed by the authors based on discussion and review of the evidence. KEY FINDINGS The genetics of ADPKD are becoming more complex with the identification of new and rarer genetic variants such as GANAB. Magnetic resonance imaging (MRI) and computed tomography (CT) continue to be the main imaging modalities used to evaluate ADPKD. Total kidney volume (TKV) continues to be the most validated and most used measure to assess disease progression. Since the publication of the previous consensus recommendations, the use of the Mayo Clinic Classification for prognostication purposes has been validated in patients with class 1 ADPKD. Recent evidence supports the benefits of a low-osmolar diet and dietary sodium restriction in patients with ADPKD. Evidence from the Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and Efficacy in ADPKD (REPRISE) trial supports the use of ADH (antidiuretic hormone) receptor antagonism in patients with ADPKD 18 to 55 years of age with eGFR (estimated glomerular filtration rate) of 25 to 65 mL/min/1.73 m2 or 56 to 65 years of age with eGFR of 25 to 44 mL/min/1.73 m2 with historical evidence of a decline in eGFR >2.0 mL/min/1.73 m2/year. LIMITATIONS Available literature was limited to English language publications and to publications indexed in PubMed, the Cochrane Library, and Google Scholar. IMPLICATIONS Advances in the assessment of the risk of disease progression include the validation of the Mayo Clinic Classification for patients with class 1 ADPKD. Advances in the pharmacological management of ADPKD include the expansion of the use of ADH receptor antagonism in patients 18 to 55 years of age with eGFR of 25 to 65 mL/min/1.73 m2 or 56 to 65 years of age with eGFR of 25 to 44 mL/min/1.73 m2 with historical evidence of a decline in eGFR >2.0 mL/min/1.73 m2/year, as per the results of the REPRISE study.
Collapse
Affiliation(s)
- Steven Soroka
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Ahsan Alam
- Division of Nephrology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
| | - Micheli Bevilacqua
- Division of Nephrology, The University of British Columbia, Vancouver, Canada
| | | | - Paul Komenda
- Division of Nephrology, Seven Oaks General Hospital, University of Manitoba, Winnipeg, Canada
| | - Rolf Loertscher
- Division of Nephrology, Lakeshore General Hospital, McGill University, Pointe-Claire, QC, Canada
| | - Philip McFarlane
- Division of Nephrology, St. Michael’s Hospital, University of Toronto, ON, Canada
| | - Sanjaya Pandeya
- Division of Nephrology, Halton Healthcare, Oakville, ON, Canada
| | - Paul Tam
- Division of Nephrology, Scarborough and Rouge Hospital, ON, Canada
| | - Daniel G. Bichet
- Division of Nephrology, Département de Médecine, Pharmacologie et Physiologie, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, QC, Canada
| |
Collapse
|
47
|
Lin C, Happé H, Veraar K, Scharpfenecker M, Peters DJ. The expression of somatostatin receptor 2 decreases during cyst growth in mice with polycystic kidney disease. Exp Biol Med (Maywood) 2018; 243:1092-1098. [PMID: 30261745 DOI: 10.1177/1535370218803893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Somatostatin (SST) analogs have been shown to halt cyst growth and progression of autosomal dominant polycystic kidney disease by several clinical trials. However, two studies suggest that the effect of the SST analog octreotide on kidney growth during the first year of treatment is reduced in the subsequent follow-ups and the kidney enlargement resumes. This biphasic change in kidney growth during octreotide treatment may be partially explained by alterations in SSTR2 expression. Here, we found that SSTR2 is mainly expressed in distal tubules and collecting ducts in murine kidneys, and the expression of SSTR2 decreases during cyst growth in two PKD mouse models. Our data may thus provide possible explanations for the lack of efficacy in long-term treatment with SST analogs.
Collapse
Affiliation(s)
- Cong Lin
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Hester Happé
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Kimberley Veraar
- 2 Department of Pathology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Marion Scharpfenecker
- 2 Department of Pathology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Dorien Jm Peters
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
48
|
Guided tissue organization and disease modeling in a kidney tubule array. Biomaterials 2018; 183:295-305. [PMID: 30189357 DOI: 10.1016/j.biomaterials.2018.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/09/2018] [Accepted: 07/29/2018] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) in vitro kidney tubule models have either largely relied on the self-morphogenetic properties of the mammalian cells or used an engineered microfluidic platform with a monolayer of cells cultured on an extracellular matrix (ECM) protein coated porous membrane. These systems are used to understand critical processes during kidney development and transport properties of renal tubules. However, high variability and lack of kidney tubule-relevant geometries among engineered structures limit their utility in disease research and pre-clinical drug testing. Here, we report a novel bioengineered guided kidney tubule (gKT) array system that incorporates in vivo-like physicochemical cues in 3D culture to reproducibly generate homogeneous kidney tubules. The system utilizes a unique 3D micro-molded ECM platform in human physiology-scale dimensions (50-μm diameter) and relevant shapes to guide cells towards formation of mature tubule structures. The guided kidney tubules in our array system display enhanced tubule homogeneity with in vivo-like structural and functional features as evaluated by marker protein localization and epithelial transport analysis. Furthermore, the response of gKT structures to forskolin treatment exhibits characteristic tissue transformations from tubules to expanding cysts. Moreover, acute cisplatin injury causes induction of Kidney Injury Molecule-1 (KIM-1) expression as well as tubular necrosis and apoptosis. Thus the gKT array system offers enhanced structural uniformity with accurate in vivo-like tissue architecture, and will have broad applications in kidney tubule disease pathophysiology (including ciliopathies and drug-induced acute kidney injury), and will enhance pre-clinical drug screening studies.
Collapse
|
49
|
Kalatharan V, Lemaire M, Lanktree MB. Opportunities and Challenges for Genetic Studies of End-Stage Renal Disease in Canada. Can J Kidney Health Dis 2018; 5:2054358118789368. [PMID: 30046452 PMCID: PMC6056781 DOI: 10.1177/2054358118789368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022] Open
Abstract
Purpose of review: Genetic testing can improve diagnostic precision in some patients with
end-stage renal disease (ESRD) providing the potential for targeted therapy
and improved patient outcomes. We sought to describe the genetic
architecture of ESRD and Canadian data sources available for further genetic
investigation into ESRD. Sources of information: We performed PubMed searches of English, peer-reviewed articles using
keywords “chronic kidney disease,” “ESRD,” “genetics,” “sequencing,” and
“administrative databases,” and searched for nephrology-related Mendelian
diseases on the Online Mendelian Inheritance in Man database. Methods: In this narrative review, we discuss our evolving understanding of the
genetic architecture of kidney disease and ESRD, the risks and benefits of
using genetic data to help diagnose and manage patients with ESRD, existing
public Canadian biobanks and databases, and a vision for future genetic
studies of ESRD in Canada. Key findings: ESRD has a polygenic architecture including rare Mendelian mutations and
common small effect genetic polymorphism contributors. Genetic testing will
improve diagnostic accuracy and contribute to a precision medicine approach
in nephrology. However, the risk and benefits of genetic testing needs to be
considered from an individual and societal perspective, and further research
is required. Merging existing health data, linking biobanks and
administrative databases, and forming Canadian collaborations hold great
potential for genetic research into ESRD. Large sample sizes are necessary
to perform the suitably powered investigations required to bring this vision
to reality. Limitations: This is a narrative review of the literature discussing future directions and
opportunities. It reflects the views and academic biases of the authors. Implications: National collaborations will be required to obtain sample sizes required for
impactful, robust research. Merging established datasets may be one approach
to obtain adequate samples. Patient education and engagement will improve
the value of knowledge gained.
Collapse
Affiliation(s)
- Vinusha Kalatharan
- Department of Epidemiology & Biostatistics, Western University, London, ON, Canada
| | - Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, University of Toronto, ON, Canada.,Cell Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | - Matthew B Lanktree
- Division of Nephrology, University Health Network, Toronto, ON, Canada.,University of Toronto, ON, Canada.,Division of Nephrology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
50
|
Chung EJ, Hallows KR. "First do no harm": kidney drug targeting to avoid toxicity in ADPKD. Am J Physiol Renal Physiol 2018; 315:F535-F536. [PMID: 29846111 DOI: 10.1152/ajprenal.00242.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California , Los Angeles, California.,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California.,Norris Comprehensive Cancer Center, University of Southern California , Los Angeles, California.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California , Los Angeles, California
| | - Kenneth R Hallows
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California.,University of Southern California/University Kidney Research Organization Kidney Research Center, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|