1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Fu SJ, Cheng KM, Hsiao CT, Fang YC, Jeng CJ, Tang CY. Pin1 promotes human Ca V2.1 channel polyubiquitination by RNF138: pathophysiological implication for episodic ataxia type 2. Cell Commun Signal 2024; 22:571. [PMID: 39609819 PMCID: PMC11603662 DOI: 10.1186/s12964-024-01960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Loss-of-function mutations in the human gene encoding the neuron-specific Ca2+ channel CaV2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated CaV2.1 mutants may exhibit defective proteostasis and promote endoplasmic reticulum (ER)-associated degradation of their wild-type (WT) counterpart in a dominant-negative manner. The E3 ubiquitin ligase RNF138 was previously shown to mediate EA2-related aberrant degradation of CaV2.1 at the ER. Herein we aimed to elucidate the ER proteostasis mechanism of CaV2.1. The peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) was identified as a novel neuronal CaV2.1 binding partner that promoted polyubiquitination and proteasomal degradation of CaV2.1. Suppression of endogenous Pin1 level with either shRNA knockdown or the Pin1 inhibitor all-trans retinoic acid (ATRA) enhanced endogenous CaV2.1 protein level in neurons, and attenuated ER-associated degradation of CaV2.1 WT and EA2-causing mutants. Detailed mutation analyses suggested that Pin1 interacted with specific phosphorylated serine/threonine-proline motifs in the intracellular II-III loop and the distal carboxy-terminal region of human CaV2.1. We further generated Pin1-insensitive CaV2.1 constructs and demonstrated that, during ER quality control, Pin1 served as an upstream regulator of CaV2.1 polyubiquitination and degradation by RNF138. Pin1 regulation was required for the dominant-negative effect of EA2 missense mutants, but not nonsense mutants, on CaV2.1 WT protein expression. Our data are consistent with the idea that CaV2.1 proteostasis at the ER, as well as dominant-negative suppression of disease-causing loss-of-function mutants on CaV2.1 WT, entail both Pin1/RNF138-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Cheng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ya-Ching Fang
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Sack AS, Samera GJ, Hissen A, Wester RJ, Garcia E, Adams PJ, Snutch TP. A structural analysis of the splice-specific functional impact of the pathogenic familial hemiplegic migraine type 1 S218L mutation on Ca v2.1 P/Q-type channel gating. Mol Brain 2024; 17:82. [PMID: 39568055 PMCID: PMC11580629 DOI: 10.1186/s13041-024-01152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
P/Q-type (Cav2.1) calcium channels mediate Ca2+ influx essential for neuronal excitability and synaptic transmission. The CACNA1A gene, encoding the Cav2.1 pore forming subunit, is highly expressed throughout the mammalian central nervous system. Alternative splicing of Cav2.1 pre-mRNA generates diverse channel isoforms with distinct biophysical properties and drug affinities, which are differentially expressed in nerve tissues. Splicing variants can also affect channel function under pathological conditions although their phenotypic implication concerning inherited neurological disorders linked to CACNA1A mutations remains unknown. Here, we quantified the expression of Cav2.1 exon 24 (e24) spliced transcripts in human nervous system samples, finding different levels of expression within discrete regions. The corresponding Cav2.1 variants, differing by the presence (+) or absence (Δ) of Ser-Ser-Thr-Arg residues (SSTR) in the domain III S3-S4 linker, were functionally characterized using patch clamp recordings. Further, the + /ΔSSTR isoforms were used to demonstrate the differential impact of the Familial Hemiplegic Migraine Type 1 (FHM-1) S218L mutation, located in the domain I S4-S5 linker, on the molecular structure and electrophysiological properties of Cav2.1 isoforms. S218L has a prominent effect on the voltage-dependence of activation of +SSTR channels when compared to ΔSSTR, indicating a differential effect of the mutation depending on splice-variant context. Structural modeling based upon Cav2.1 cryo-EM data provided further insight reflecting independent contributions of amino acids in distant regions of the channel on gating properties. Our modelling indicates that by increasing hydrophobicity the Leu218 mutation contributes to stabilizing a structural conformation in which the domain I S4-S5 linker is oriented alongside the inner plasma membrane, similar to that occurring when S4 is translocated upon activation.The SSTR insertion appears to exert an influence in the local electric field of domain III due to an change in the distribution of positively charged regions surrounding the voltage sensing domain, which we hypothesize impacts its movement during the transition to the open state. In summary, we reveal molecular changes correlated with distinct functional effects provoked by S218L FHM-1 mutation in hCav2.1 splice isoforms whose differential expression could impact the manifestation of the neurological disorder.
Collapse
Affiliation(s)
- Anne-Sophie Sack
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Gennerick J Samera
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Anna Hissen
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Robert J Wester
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Esperanza Garcia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Paul J Adams
- Applied Genomics Centre, Kwantlen Polytechnic University, 12666 - 72 Ave, Surrey, BC, V3W 2M8, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
4
|
Shi R, Chang X, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot17, MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Holz N, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Gene-environment interactions in the influence of maternal education on adolescent neurodevelopment using ABCD study. SCIENCE ADVANCES 2024; 10:eadp3751. [PMID: 39546599 PMCID: PMC11567010 DOI: 10.1126/sciadv.adp3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Maternal education was strongly correlated with adolescent brain morphology, cognitive performances, and mental health. However, the molecular basis for the effects of maternal education on the structural neurodevelopment remains unknown. Here, we conducted gene-environment-wide interaction study using the Adolescent Brain Cognitive Development cohort. Seven genomic loci with significant gene-environment interactions (G×E) on regional gray matter volumes were identified, with enriched biological functions related to metabolic process, inflammatory process, and synaptic plasticity. Additionally, genetic overlapping results with behavioral and disease-related phenotypes indicated shared biological mechanism between maternal education modified neurodevelopment and related behavioral traits. Finally, by decomposing the multidimensional components of maternal education, we found that socioeconomic status, rather than family environment, played a more important role in modifying the genetic effects on neurodevelopment. In summary, our study provided analytical evidence for G×E effects regarding adolescent neurodevelopment and explored potential biological mechanisms as well as social mechanisms through which maternal education could modify the genetic effects on regional brain development.
Collapse
Affiliation(s)
- Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- School of Data Science, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | | |
Collapse
|
5
|
Indelicato E, Nachbauer W, Amprosi MS, Maier S, Unterberger I, Delazer M, Kaltseis K, Kiechl S, Broessner G, Baumann M, Boesch S. Natural history of non-polyglutamine CACNA1A disease in Austria. J Neurol 2024; 271:6618-6627. [PMID: 39110218 PMCID: PMC11446988 DOI: 10.1007/s00415-024-12602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Non-polyglutamine CACNA1A variants underlie an extremely variable phenotypic spectrum encompassing developmental delay, hemiplegic migraine, epilepsy, psychiatric symptoms, episodic and chronic cerebellar signs. We provide our experience with the long-term follow-up of CACNA1A patients and their response to interval therapy. METHODS Patients with genetically confirmed non-polyglutamine CACNA1A disease were prospectively followed at the Center for Rare Movement Disorders of the Medical University of Innsbruck from 2004 to 2024. RESULTS We recruited 41 subjects with non-polyglutamine CACNA1A disease, of which 38 (93%) familial cases. The mean age at the first examination was 35 ± 22 years. Disease onset was in the childhood/adolescence in 31/41 patients (76%). Developmental delay and episodic symptoms were the first disease manifestation in 9/41 (22%) and 32/41 (78%) patients respectively. Chronic neurological signs encompassed a cerebellar syndrome in 35/41 (85%), which showed almost no progression during the observation period, as well as cognitive deficits in 9/20 (45%, MOCA test score < 26), psychiatric and behavioral symptoms in 11/41(27%). Seizures occurred in two patients concomitant to severe hemiplegic migraine. At the last visit, 27/41 patients (66%) required an interval prophylaxis (including acetazolamide, flunarizine, 4-aminopyridine, topiramate), which was efficacious in reducing the frequency and severity of episodic symptoms in all cases. In one patient in his 70ies with progressively therapy resistant hemiplegic migraine, treatment with the anti-CGRP antibody galcanezumab successfully reduced the frequency of migraine days from 4 to 1/month. CONCLUSIONS Non-polyglutamine CACNA1A disease show an evolving age-dependent presentation. Interval prophylaxis is effective in reducing the burden of episodic symptoms.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias S Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sarah Maier
- Public Health, Health Economics, Medical Statistics and Informatics, Institute of Clinical Epidemiology, Innsbruck, Austria
| | - Iris Unterberger
- Epilepsy Center, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Margarete Delazer
- Neuropsychology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kaltseis
- Headache Outpatient Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- VASCage, Centre on Clinical Stroke Research, Innsbruck, Austria
| | - Gregor Broessner
- Headache Outpatient Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Baumann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Inan SY, Yildirim S, Tanriover G, Ilhan B. P/Q type (Ca v2.1) Calcium Channel Blocker ω-Agatoxin IVA Alters Cleaved Caspase-3 and BDNF Expressions in the Rat Brain and Suppresses Seizure Activity. Mol Neurobiol 2024; 61:1861-1872. [PMID: 37798599 DOI: 10.1007/s12035-023-03678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
High-voltage-gated calcium channels have pivot role in the cellular and molecular mechanisms of various neurological disorders, including epilepsy. Similar to other calcium channels, P/Q-type calcium channels (Cav2.1) are also responsible for vesicle release at synaptic terminals. Up to date, there are very limited reports showing the mechanisms of Cav2.1 in epileptogenesis. In the present study, we investigated the anticonvulsive and neuroprotective effects of ω-agatoxin IVA, a specific Cav2.1 blocker, in a chemical kindling model of epileptogenesis. Righting reflex and inclined plane tests were used to assess motor coordination. Electroencephalography was recorded for electrophysiological monitoring of seizure activity in freely moving rats. Immunohistochemical analyses were performed for brain-derived neurotrophic factor (BDNF) and cleaved caspase-3 expressions in the prefrontal cortex, striatum, hippocampus, and thalamic nucleus. ω-Agatoxin IVA injected into the right lateral ventricle significantly prolonged the onset of seizures in a dose-dependent manner. In addition, repeated intraperitoneal administrations of ω-agatoxin IVA significantly suppressed the development of kindling and epileptic discharges without altering motor coordination. In addition, ω-agatoxin IVA significantly increased BDNF expressions, and decreased cleaved caspase-3 expressions in the brain when compared to PTZ + saline group. Our current study emphasizes the significance of the inhibition of P/Q type calcium channels by ω-agatoxin IVA, which suppresses the development of epileptogenesis and provides a new potential pathway for epilepsy treatment.
Collapse
Affiliation(s)
- Salim Yalcin Inan
- Department of Medical Pharmacology, Meram Faculty of Medicine, University of Konya-NE, 42080 Akyokus, Meram, Konya, Turkey.
| | - Sendegul Yildirim
- Department of Histology and Embryology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
| | - Gamze Tanriover
- Department of Histology and Embryology, Faculty of Medicine, University of Akdeniz, Antalya, Turkey
- Department of Medical Biotechnology, University of Akdeniz, Antalya, Turkey
| | - Barkin Ilhan
- Department of Biophysics, Meram Faculty of Medicine, University of Konya-NE, Konya, Turkey
| |
Collapse
|
7
|
Lazar SM, Abid F. Pearls & Oy-sters: CACNA1A-Related Paroxysmal Tonic Upgaze With Ataxia Responsive to Acetazolamide. Neurology 2024; 102:e207992. [PMID: 38175838 PMCID: PMC10834120 DOI: 10.1212/wnl.0000000000207992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/20/2023] [Indexed: 01/06/2024] Open
Abstract
A 9-month-old male infant was evaluated for sudden onset of paroxysmal episodes of forced, conjugate upward eye deviation. Extensive in-hospital evaluation including electrophysiology and neuroimaging studies were reassuring against seizures or a structural abnormality. Given the clinical presentation of sudden onset intermittent upward eye deviations, downbeating saccades, associated ataxia, and typical development, a clinical diagnosis of paroxysmal tonic upgaze (PTU) with ataxia was made. Targeted genetic testing of CACNA1A was performed, which revealed a variant of undetermined significance, which was later classified as a de novo pathogenic variant after protein modeling and parental testing performed. Off-label use of oral acetazolamide was prescribed, which led to dose-responsive decrease in the frequency and intensity of eye movement episodes. After 6 months of episode freedom at 2 years of age, acetazolamide was discontinued without return of episodes. Neurodevelopmental assessments revealed continued typical development. This case is presented to describe the diagnostic formulation, etiologic evaluation, and symptomatic treatment of CACNA1A-related PTU with ataxia.
Collapse
Affiliation(s)
- Steven M Lazar
- From the Section of Pediatric Neurology and Developmental Neuroscience (S.M.L., F.A.), Baylor College of Medicine, Houston, TX; and Meyer Center for Developmental Pediatrics & Autism (S.M.L.), Texas Children's Hospital, Houston
| | - Farida Abid
- From the Section of Pediatric Neurology and Developmental Neuroscience (S.M.L., F.A.), Baylor College of Medicine, Houston, TX; and Meyer Center for Developmental Pediatrics & Autism (S.M.L.), Texas Children's Hospital, Houston
| |
Collapse
|
8
|
Dahimene S, Page KM, Nieto-Rostro M, Pratt WS, Dolphin AC. The Interplay Between Splicing of Two Exon Combinations Differentially Affects Membrane Targeting and Function of Human Ca V2.2. FUNCTION 2023; 5:zqad060. [PMID: 38020068 PMCID: PMC10666670 DOI: 10.1093/function/zqad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
N-type calcium channels (CaV2.2) are predominantly localized in presynaptic terminals, and are particularly important for pain transmission in the spinal cord. Furthermore, they have multiple isoforms, conferred by alternatively spliced or cassette exons, which are differentially expressed. Here, we have examined alternatively spliced exon47 variants that encode a long or short C-terminus in human CaV2.2. In the Ensembl database, all short exon47-containing transcripts were associated with the absence of exon18a, therefore, we also examined the effect of inclusion or absence of exon18a, combinatorially with the exon47 splice variants. We found that long exon47, only in the additional presence of exon18a, results in CaV2.2 currents that have a 3.6-fold greater maximum conductance than the other three combinations. In contrast, cell-surface expression of CaV2.2 in both tsA-201 cells and hippocampal neurons is increased ∼4-fold by long exon47, relative to short exon47, in either the presence or the absence of exon18a. This surprising discrepancy between trafficking and function indicates that cell-surface expression is enhanced by long exon47, independently of exon18a. However, in the presence of long exon47, exon18a mediates an additional permissive effect on CaV2.2 gating. We also investigated the single-nucleotide polymorphism in exon47 that has been linked to schizophrenia and Parkinson's disease, which we found is only non-synonymous in the short exon47 C-terminal isoform, resulting in two minor alleles. This study highlights the importance of investigating the combinatorial effects of exon inclusion, rather than each in isolation, in order to increase our understanding of calcium channel function.
Collapse
Affiliation(s)
- Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Lu X, Xie X. EA2 and temporal lobe epilepsy associated with a novel variant in CACNA1A. Seizure 2023; 108:10-12. [PMID: 37059034 DOI: 10.1016/j.seizure.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023] Open
|
10
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
11
|
Gray MM, Naik A, Ebner TJ, Carter RE. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. DYSTONIA 2023; 2:10974. [PMID: 37800168 PMCID: PMC10554815 DOI: 10.3389/dyst.2023.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.
Collapse
Affiliation(s)
- Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
12
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Zajac M, Modi S, Krishnan Y. The evolution of organellar calcium mapping technologies. Cell Calcium 2022; 108:102658. [PMID: 36274564 PMCID: PMC10224794 DOI: 10.1016/j.ceca.2022.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ fluxes are dynamically controlled by the co-involvement of multiple organellar pools of stored Ca2+. Endolysosomes are emerging as physiologically critical, yet underexplored, sources and sinks of intracellular Ca2+. Delineating the role of organelles in Ca2+ signaling has relied on chemical fluorescent probes and electrophysiological strategies. However, the acidic endolysosomal environment presents unique issues, which preclude the use of traditional chemical reporter strategies to map lumenal Ca2+. Here, we broadly address the current state of knowledge about organellar Ca2+ pools. We then outline the application of traditional probes, and their sensing paradigms. We then discuss how a new generation of probes overcomes the limitations of traditional Ca2+probes, emphasizing their ability to offer critical insights into endolysosomal Ca2+, and its feedback with other organellar pools.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Souvik Modi
- Esya Labs, Translation and Innovation Hub, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
14
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
15
|
Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022; 72:1500-1515. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.
Collapse
|
16
|
Niu X, Yang Y, Chen Y, Cheng M, Liu M, Ding C, Tian X, Yang Z, Jiang Y, Zhang Y. Genotype-phenotype correlation of CACNA1A variants in children with epilepsy. Dev Med Child Neurol 2022; 64:105-111. [PMID: 34263451 DOI: 10.1111/dmcn.14985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 01/12/2023]
Abstract
AIM To explore the genotypes and phenotypes of CACNA1A variants in children with epilepsy. METHOD Eighteen children (six males, 12 females) with CACNA1A variants were identified using next-generation sequencing. RESULTS There were 14 missense variants, two nonsense variants, one frameshift variant, and one splice site variant. Sixteen variants were de novo. Age at seizure onset ranged from 1 day to 8 years; median age was 8 months. Multiple seizure types were observed, including focal, generalized tonic-clonic, myoclonic, and absence seizures, as well as epileptic spasms and tonic seizures. Focal motor status epilepticus occurred in 10 individuals and generalized motor status epilepticus occurred in two individuals. All 18 children showed developmental delay. Focal motor status epilepticus resulted in cerebral atrophy in five individuals, mainly on the contralateral side. Interictal electroencephalogram showed focal discharges in 12 individuals, whereas five individuals had generalized discharges. Three individuals were seizure-free, whereas 15 still had seizures and five had recurrent status epilepticus at last follow-up. INTERPRETATION Most children with epilepsy and CACNA1A variants had early seizure onset and developmental delay. Focal seizure was the most common seizure type. Most patients experienced status epilepticus. Unilateral cerebral atrophy could occur after focal motor status epilepticus. Patients with CACNA1A variants located in the transmembrane region may be at high risk of status epilepticus.
Collapse
Affiliation(s)
- Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ming Liu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Li XL, Li ZJ, Liang XY, Liu DT, Jiang M, Gao LD, Li H, Tang XQ, Shi YW, Li BM, He N, Li B, Bian WJ, Yi YH, Cheng CF, Wang J. CACNA1A Mutations Associated With Epilepsies and Their Molecular Sub-Regional Implications. Front Mol Neurosci 2022; 15:860662. [PMID: 35600082 PMCID: PMC9116572 DOI: 10.3389/fnmol.2022.860662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Previously, mutations in the voltage-gated calcium channel subunit alpha1 A (CACNA1A) gene have been reported to be associated with paroxysmal disorders, typically as episodic ataxia type 2. To determine the relationship between CACNA1A and epilepsies and the role of molecular sub-regional on the phenotypic heterogeneity. METHODS Trio-based whole-exome sequencing was performed in 318 cases with partial epilepsy and 150 cases with generalized epilepsy. We then reviewed all previously reported CACNA1A mutations and analyzed the genotype-phenotype correlations with molecular sub-regional implications. RESULTS We identified 12 CACNA1A mutations in ten unrelated cases of epilepsy, including four de novo null mutations (c.2963_2964insG/p.Gly989Argfs*78, c.3089 + 1G > A, c.4755 + 1G > T, and c.6340-1G > A), four de novo missense mutations (c.203G > T/p.Arg68Leu, c.3965G > A/p.Gly1322Glu, c.5032C > T/p.Arg1678Cys, and c.5393C > T/p.Ser1798Leu), and two pairs of compound heterozygous missense mutations (c.4891A > G/p.Ile1631Val& c.5978C > T/p.Pro1993Leu and c.3233C > T/p.Ser1078Leu&c.6061G > A/p.Glu2021Lys). The eight de novo mutations were evaluated as pathogenic or likely pathogenic mutations according to the criteria of American College of Medical Genetics and Genomics (ACMG). The frequencies of the compound heterozygous CACNA1A mutations identified in this cohort were significantly higher than that in the controls of East Asian and all populations (P = 7.30 × 10-4, P = 2.53 × 10-4). All of the ten cases were ultimately seizure-free after antiepileptic treatment, although frequent epileptic seizures were observed in four cases. Further analysis revealed that episodic ataxia type 2 (EA2) had a tendency of higher frequency of null mutations than epilepsies. The missense mutations in severe epileptic phenotypes were more frequently located in the pore region than those in milder epileptic phenotypes (P = 1.67 × 10-4); de novo mutations in the epilepsy with intellectual disability (ID) had a higher percentage than those in the epilepsy without ID (P = 1.92 × 10-3). CONCLUSION This study suggested that CACNA1A mutations were potentially associated with pure epilepsy and the spectrum of epileptic phenotypes potentially ranged from the mild form of epilepsies such as absence epilepsy or partial epilepsy, to the severe form of developmental epileptic encephalopathy. The clinical phenotypes variability is potentially associated with the molecular sub-regional of the mutations.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, China
| | - Zong-Jun Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De-Tian Liu
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mi Jiang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue-Qing Tang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Wu Shi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na He
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Bian
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuan-Fang Cheng,
| | - Jie Wang
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Jie Wang,
| |
Collapse
|
18
|
Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-associated neurodevelopment disorders. Mol Psychiatry 2021; 26:7225-7246. [PMID: 34127816 DOI: 10.1038/s41380-021-01175-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
CACNA1A deletions cause epilepsy, ataxia, and a range of neurocognitive deficits, including inattention, impulsivity, intellectual deficiency and autism. To investigate the underlying mechanisms, we generated mice carrying a targeted Cacna1a deletion restricted to parvalbumin-expressing (PV) neurons (PVCre;Cacna1ac/+) or to cortical pyramidal cells (PC) (Emx1Cre;Cacna1ac/+). GABA release from PV-expressing GABAergic interneurons (PV-INs) is reduced in PVCre;Cacna1ac/+ mutants, resulting in impulsivity, cognitive rigidity and inattention. By contrast, the deletion of Cacna1a in PCs does not impact cortical excitability or behaviour in Emx1Cre;Cacna1ac/+ mutants. A targeted Cacna1a deletion in the orbitofrontal cortex (OFC) results in reversal learning deficits while a medial prefrontal cortex (mPFC) deletion impairs selective attention. These deficits can be rescued by the selective chemogenetic activation of cortical PV-INs in the OFC or mPFC of PVCre;Cacna1ac/+ mutants. Thus, Cacna1a haploinsufficiency disrupts perisomatic inhibition in frontal cortical circuits, leading to a range of potentially reversible neurocognitive deficits.
Collapse
|
19
|
Alehabib E, Esmaeilizadeh Z, Ranji-Burachaloo S, Tafakhori A, Darvish H, Movafagh A. Clinical and molecular spectrum of P/Q type calcium channel Cav2.1 in epileptic patients. Orphanet J Rare Dis 2021; 16:461. [PMID: 34727962 PMCID: PMC8562004 DOI: 10.1186/s13023-021-02101-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022] Open
Abstract
Background Epilepsy is a neurological disorder characterized by the potential to induce seizure and accompanied by cognitive, psychological, and social consequences. CACNA1A gene is a voltage-gated P/Q-type Cav2.1 channel that is broadly expressed in the central nervous system, and the pathogenic variants within this gene may be associated with the epileptic phenotype. In the present study, we collected clinical and molecular data related to epileptic patients with CACNA1A pathogenic variants and investigated possible meaningful relationship between age at onset, neurodevelopmental disorders, type of seizures, brain imaging abnormalities, genotype, and protein domains. Results In our retrospective literature studies, from among 890 articles reviewed, a total of 90 individuals were related to epilepsy phenotype. Our findings showed that about 90 percent of patients have shown the first symptoms in childhood and teenage years and different types of neurodevelopmental disorders, such as intellectual disability, developmental arrest, and behavioral disorders, have been common findings for these patients. Further, a wide range of abnormalities have been observed in their brain imaging, and generalized seizures have been the most type of seizures in these patients. However, our data showed no specific genotype–phenotype correlation in epileptic patients with CACNA1A pathogenic alterations. Conclusions Our study focused on epileptic phenotype in patients with CACNA1A pathogenic variants and showed a wide range of clinical and molecular heterogeneity with no specific genotype–phenotype correlation. It seems that incomplete penetrance, de-novo variants, and modifier genes are obstacles in predicting the clinical outcome. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02101-y.
Collapse
Affiliation(s)
- Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeilizadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Ranji-Burachaloo
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
21
|
Zhu F, Miao Y, Cheng M, Ye X, Chen A, Zheng G, Tian X. The CACNA1A Mutant Disrupts Lysosome Calcium Homeostasis in Cerebellar Neurons and the Resulting Endo-Lysosomal Fusion Defect Can be Improved by Calcium Modulation. Neurochem Res 2021; 47:249-263. [PMID: 34476720 DOI: 10.1007/s11064-021-03438-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
Mutations in P/Q type voltage gated calcium channel (VGCC) lead severe human neurological diseases such as episodic ataxia 2, familial hemiplegic migraine 1, absence epilepsy, progressive ataxia and spinocerebellar ataxia 6. The pathogenesis of these diseases remains unclear. Mice with spontaneous mutation in the Cacna1a gene encoding the pore-forming subunit of P/Q type VGCC also exhibit ataxia, epilepsy and neurodegeneration. Based on the previous work showing that the P/Q type VGCC in neurons regulates lysosomal fusion through its calcium channel activity on lysosomes, we utilized CACNA1A mutant mice to further investigate the mechanism by which P/Q-type VGCCs regulate lysosomal function and neuronal homeostasis. We found CACNA1A mutant neurons have reduced lysosomal calcium storage without changing the resting calcium concentration in cytoplasm and the acidification of lysosomes. Immunohistochemistry and transmission electron microscopy reveal axonal degeneration due to lysosome dysfunction in the CACNA1A mutant cerebella. The calcium modulating drug thapsigargin, by depleting the ER calcium store, which locally increases the calcium concentration can alleviate the defective lysosomal fusion in mutant neurons. We propose a model that in cerebellar neurons, P/Q-type VGCC maintains the integrity of the nervous system by regulating lysosomal calcium homeostasis to affect lysosomal fusion, which in turn regulates multiple important cellular processes such as autophagy and endocytosis. This study helps us to better understand the pathogenesis of P/Q-type VGCC related neurodegenerative diseases and provides a feasible direction for future pharmacological treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yunping Miao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Cheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xiaodi Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Aiying Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China.,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Gaoli Zheng
- National Zhejiang Center for Safety Evaluation of New Drugs, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China
| | - Xuejun Tian
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, 310013, China. .,Department of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China. .,Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Pu S, Thomas PJ. Resolving molecular contributions of ion channel noise to interspike interval variability through stochastic shielding. BIOLOGICAL CYBERNETICS 2021; 115:267-302. [PMID: 34021802 DOI: 10.1007/s00422-021-00877-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Molecular fluctuations can lead to macroscopically observable effects. The random gating of ion channels in the membrane of a nerve cell provides an important example. The contributions of independent noise sources to the variability of action potential timing have not previously been studied at the level of molecular transitions within a conductance-based model ion-state graph. Here we study a stochastic Langevin model for the Hodgkin-Huxley (HH) system based on a detailed representation of the underlying channel state Markov process, the "[Formula: see text]D model" introduced in (Pu and Thomas in Neural Computation 32(10):1775-1835, 2020). We show how to resolve the individual contributions that each transition in the ion channel graph makes to the variance of the interspike interval (ISI). We extend the mean return time (MRT) phase reduction developed in (Cao et al. in SIAM J Appl Math 80(1):422-447, 2020) to the second moment of the return time from an MRT isochron to itself. Because fixed-voltage spike detection triggers do not correspond to MRT isochrons, the inter-phase interval (IPI) variance only approximates the ISI variance. We find the IPI variance and ISI variance agree to within a few percent when both can be computed. Moreover, we prove rigorously, and show numerically, that our expression for the IPI variance is accurate in the small noise (large system size) regime; our theory is exact in the limit of small noise. By selectively including the noise associated with only those few transitions responsible for most of the ISI variance, our analysis extends the stochastic shielding (SS) paradigm (Schmandt and Galán in Phys Rev Lett 109(11):118101, 2012) from the stationary voltage clamp case to the current clamp case. We show numerically that the SS approximation has a high degree of accuracy even for larger, physiologically relevant noise levels. Finally, we demonstrate that the ISI variance is not an unambiguously defined quantity, but depends on the choice of voltage level set as the spike detection threshold. We find a small but significant increase in ISI variance, the higher the spike detection voltage, both for simulated stochastic HH data and for voltage traces recorded in in vitro experiments. In contrast, the IPI variance is invariant with respect to the choice of isochron used as a trigger for counting "spikes."
Collapse
Affiliation(s)
- Shusen Pu
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Cognitive Science, Case Western Reserve University, Cleveland, OH, USA
- Department of Data and Computer Science, Case Western Reserve University, Cleveland, OH, USA
- Department of Electrical, Control, and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
24
|
Pulvirenti G, Caccamo M, Lo Bianco M, Mazzurco M, Praticò ER, Giallongo A, Gangi G, Zanghì A, Falsaperla R. Calcium Channels Genes and Their Epilepsy Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractCalcium (Ca2+) channel gene mutations play an important role in the pathogenesis of neurological episodic disorders like epilepsy. CACNA1A and CACNA1H genes are involved in the synthesis of calcium channels. Mutations in the α1A subunit of the P/Q type voltage-gated calcium channel gene (CACNA1A) located in 19p13.13, which encodes for the transmembrane pore-forming subunit of CAV2.1 voltage-dependent calcium channel, have been correlated to a large clinical spectrum of epilepsy such as idiopathic genetic epilepsy, early infantile epilepsy, and febrile seizures. Moreover, CACNA1A mutations have been demonstrated to be involved in spinocerebellar ataxia type 6, familiar hemiplegic migraine, episodic ataxia type 2, early-onset encephalopathy, and hemiconvulsion–hemiplegia epilepsy syndrome. This wide phenotype heterogeneity associated with CACNA1A mutations is correlated to different clinical and electrophysiological manifestations. CACNA1H gene, located in 16p13.3, encodes the α1H subunit of T-type calcium channel, expressing the transmembrane pore-forming subunit Cav3.2. Despite data still remain controversial, it has been identified as an important gene whose mutations seem strictly related to the pathogenesis of childhood absence epilepsy and other generalized epilepsies. The studied variants are mainly gain-of-function, hence responsible for an increase in neuronal susceptibility to seizures. CACNA1H mutations have also been associated with autism spectrum disorder and other behavior disorders. More recently, also amyotrophic lateral sclerosis has been related to CACNA1H alterations. The aim of this review, other than describe the CACNA1A and CACNA1H gene functions, is to identify mutations reported in literature and to analyze their possible correlations with specific epileptic disorders, purposing to guide an appropriate medical treatment recommendation.
Collapse
Affiliation(s)
- Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | - Alessandro Giallongo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gloria Gangi
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
25
|
Functional evaluation of human ion channel variants using automated electrophysiology. Methods Enzymol 2021; 654:383-405. [PMID: 34120723 DOI: 10.1016/bs.mie.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Patch clamp recording enabled a revolution in cellular electrophysiology, and is useful for evaluating the functional consequences of ion channel gene mutations or variants associated with human disorders called channelopathies. However, due to massive growth of genetic testing in medical practice and research, the number of known ion channel variants has exploded into the thousands. Fortunately, automated methods for performing patch clamp recording have emerged as important tools to address the explosion in ion channel variants. In this chapter, we present our approach to harnessing automated electrophysiology to study a human voltage-gated potassium channel gene (KCNQ1), which harbors hundreds of mutations associated with genetic disorders of heart rhythm including the congenital long-QT syndrome. We include protocols for performing high efficiency electroporation of heterologous cells with recombinant KCNQ1 plasmid DNA and for automated planar patch recording including data analysis. These methods can be adapted for studying other voltage-gated ion channels.
Collapse
|
26
|
Mönkäre S, Kuuluvainen L, Kun-Rodrigues C, Carmona S, Schleutker J, Bras J, Pöyhönen M, Guerreiro R, Myllykangas L. Whole-exome sequencing of Finnish patients with vascular cognitive impairment. Eur J Hum Genet 2021; 29:663-671. [PMID: 33268848 PMCID: PMC8115269 DOI: 10.1038/s41431-020-00775-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is the most important cause of vascular cognitive impairment (VCI). Most CSVD cases are sporadic but familial monogenic forms of the disorder have also been described. Despite the variants identified, many CSVD cases remain unexplained genetically. We used whole-exome sequencing in an attempt to identify novel gene variants underlying CSVD. A cohort of 35 Finnish patients with suspected CSVD was analyzed. Patients were screened negative for the most common variants affecting function in NOTCH3 in Finland (p.Arg133Cys and p.Arg182Cys). Whole-exome sequencing was performed to search for a genetic cause of CSVD. Our study resulted in the detection of possibly pathogenic variants or variants of unknown significance in genes known to associate with CSVD in six patients, accounting for 17% of cases. Those genes included NOTCH3, HTRA1, COL4A1, and COL4A2. We also identified variants with predicted pathogenic effect in genes associated with other neurological or stroke-related conditions in seven patients, accounting for 20% of cases. This study supports pathogenic roles of variants in COL4A1, COL4A2, and HTRA1 in CSVD and VCI. Our results also suggest that vascular pathogenic mechanisms are linked to neurodegenerative conditions and provide novel insights into the molecular basis of VCI.
Collapse
Affiliation(s)
- Saana Mönkäre
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
| | - Liina Kuuluvainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Susana Carmona
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Johanna Schleutker
- Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Minna Pöyhönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland.
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
27
|
Indelicato E, Boesch S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front Neurol 2021; 12:639994. [PMID: 33737904 PMCID: PMC7960780 DOI: 10.3389/fneur.2021.639994] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.
Collapse
Affiliation(s)
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Indelicato E, Unterberger I, Nachbauer W, Eigentler A, Amprosi M, Zeiner F, Haberlandt E, Kaml M, Gizewski E, Boesch S. The electrophysiological footprint of CACNA1A disorders. J Neurol 2021; 268:2493-2505. [PMID: 33544220 PMCID: PMC8217028 DOI: 10.1007/s00415-021-10415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/14/2022]
Abstract
Objectives CACNA1A variants underlie three neurological disorders: familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). EEG is applied to study their episodic manifestations, but findings in the intervals did not gain attention up to date. Methods We analyzed repeated EEG recordings performed between 1994 and 2019 in a large cohort of genetically confirmed CACNA1A patients. EEG findings were compared with those of CACNA1A-negative phenocopies. A review of the related literature was performed. Results 85 EEG recordings from 38 patients (19 EA2, 14 FHM1, 5 SCA6) were analyzed. Baseline EEG was abnormal in 55% of cases (12 EA2, 9 FHM1). The most common finding was a lateralized intermittent slowing, mainly affecting the temporal region. Slowing was more pronounced after a recent attack but was consistently detected in the majority of patients also during the follow-up. Interictal epileptic discharges (IEDs) were detected in eight patients (7 EA2,1 FHM1). EEG abnormalities and especially IEDs were significantly associated with younger age at examination (16 ± 9 vs 43 ± 21 years in those without epileptic changes, p = 0.003) and with earlier onset of disease (1 (1–2) vs 12 (5–45) years, p = 0.0009). EEG findings in CACNA1A-negative phenocopies (n = 15) were largely unremarkable (p = 0.03 in the comparison with CACNA1A patients). Conclusions EEG abnormalities between attacks are highly prevalent in episodic CACNA1A disorders and especially associated with younger age at examination and earlier disease onset. Our findings underpin an age-dependent effect of CACNA1A variants, with a more severe impairment when P/Q channel dysfunction manifests early in life.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Iris Unterberger
- Epileptology Division, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andreas Eigentler
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Fiona Zeiner
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Edda Haberlandt
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pediatrics, City Hospital, Dornbirn, Austria
| | - Manuela Kaml
- Epileptology Division, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
29
|
Gur-Hartman T, Berkowitz O, Yosovich K, Roubertie A, Zanni G, Macaya A, Heimer G, Dueñas BP, Sival DA, Pode-Shakked B, López-Laso E, Humbertclaude V, Riant F, Bosco L, Cayron LB, Nissenkorn A, Nicita F, Bertini E, Hassin S, Ben Zeev B, Zerem A, Libzon S, Lev D, Linder I, Lerman-Sagie T, Blumkin L. Clinical phenotypes of infantile onset CACNA1A-related disorder. Eur J Paediatr Neurol 2021; 30:144-154. [PMID: 33349592 DOI: 10.1016/j.ejpn.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND CACNA1A-related disorders present with persistent progressive and non-progressive cerebellar ataxia and paroxysmal events: epileptic seizures and non-epileptic attacks. These phenotypes overlap and co-exist in the majority of patients. OBJECTIVE To describe phenotypes in infantile onset CACNA1A-related disorder and to explore intra-familial variations and genotype-phenotype correlations. MATERIAL AND METHODS This study was a multicenter international collaboration. A retrospective chart review of CACNA1A patients was performed. Clinical, radiological, and genetic data were collected and analyzed in 47 patients with infantile-onset disorder. RESULTS Paroxysmal non-epileptic events (PNEE) were observed in 68% of infants, with paroxysmal tonic upward gaze (PTU) noticed in 47% of infants. Congenital cerebellar ataxia (CCA) was diagnosed in 51% of patients including four patients with developmental delay and only one neurological sign. PNEEs were found in 63% of patients at follow-up, with episodic ataxia (EA) in 40% of the sample. Cerebellar ataxia was found in 58% of the patients at follow-up. Four patients had epilepsy in infancy and nine in childhood. Seven infants had febrile convulsions, three of which developed epilepsy later; all three patients had CCA. Cognitive difficulties were demonstrated in 70% of the children. Cerebellar atrophy was found in only one infant but was depicted in 64% of MRIs after age two. CONCLUSIONS Nearly all of the infants had CCA, PNEE or both. Cognitive difficulties were frequent and appeared to be associated with CCA. Epilepsy was more frequent after age two. Febrile convulsions in association with CCA may indicate risk of epilepsy in later childhood. Brain MRI was normal in infancy. There were no genotype-phenotype correlations found.
Collapse
Affiliation(s)
- Tamar Gur-Hartman
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Pediatric Movement Disorders Service, Wolfson Medical Center, Holon, Israel; School of Psychological Sciences, Tel-Aviv University, Israel
| | - Oren Berkowitz
- Department of Health Systems Management, Ariel University, Ariel, Israel
| | - Keren Yosovich
- Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Agathe Roubertie
- Departement de Neuropediatrie, CHU Gui de Chauliac, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | - Alfons Macaya
- Vall d'Hebron Research Institute, Pediatric Neurology Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Gali Heimer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Belén Pérez Dueñas
- Vall d'Hebron Research Institute, Pediatric Neurology Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Deborah A Sival
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital; Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel
| | - Eduardo López-Laso
- University Hospital Reina Sofía, Pediatric Neurology Unit, IMIBIC and CIBERER, Córdoba, Spain
| | - Véronique Humbertclaude
- Service de Médecine Psychologique Enfants et Adolescents, CHU Saint Eloi, Montpellier, France
| | - Florence Riant
- AP-HP, GH Saint Louis-Lariboisière-Fernand Widal, Service de Génétique Moléculaire Neurovasculaire, Paris, France
| | - Luca Bosco
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | | | - Andreea Nissenkorn
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | - Sharon Hassin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Bruria Ben Zeev
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ayelet Zerem
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit TASMC, Tel-Aviv University, Israel
| | | | - Dorit Lev
- Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Ilan Linder
- Pediatric Epilepsy & Neurology Service, Barzilay Medical Center, Ashkelon, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lubov Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Pediatric Movement Disorders Service, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
30
|
Duque KR, Marsili L, Sturchio A, Mahajan A, Merola A, Espay AJ, Kauffman MA. Progressive Ataxia with Hemiplegic Migraines: a Phenotype of CACNA1A Missense Mutations, Not CAG Repeat Expansions. THE CEREBELLUM 2020; 20:134-139. [PMID: 32888184 DOI: 10.1007/s12311-020-01185-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 11/28/2022]
Abstract
We report a 52-year-old woman presenting with autosomal dominant progressive cerebellar ataxia and familial hemiplegic migraine type 1 whose genetic evaluation, negative for spinocerebellar ataxia (SCA) types 1, 2, 3, and 6, revealed instead a heterozygous pathogenic missense mutation in CACNA1A (NM_001127221:c.1748G > A:p.Arg583Gln). A systematic literature review showed that Arg583Gln is associated predominantly with progressive ataxia combined with episodic disorders (overwhelmingly hemiplegic migraine) whereas Thr666Met, the other most common CACNA1A missense mutation, with a combination of progressive ataxia and episodic disorders in half the cases and episodic disorders only in the other half. While uncertainties remain in the genotype-phenotype correlation of all CACNA1A mutations, the accumulated evidence suggests that that the co-occurrence of hemiplegic migraine and autosomal dominant progressive cerebellar ataxia should guide the clinician to test for CACNA1A missense mutation rather than CAG expansions or truncating mutations.
Collapse
Affiliation(s)
- Kevin R Duque
- Department of Neurology and Rehabilitation Medicine, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219, USA
| | - Luca Marsili
- Department of Neurology and Rehabilitation Medicine, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219, USA.
| | - Andrea Sturchio
- Department of Neurology and Rehabilitation Medicine, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219, USA
| | - Abhimanyu Mahajan
- Department of Neurology and Rehabilitation Medicine, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219, USA
| | - Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alberto J Espay
- Department of Neurology and Rehabilitation Medicine, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, 260 Stetson Street, Cincinnati, OH, 45219, USA
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| |
Collapse
|
31
|
Gavrilovici C, Jiang Y, Kiroski I, Teskey GC, Rho JM, Nguyen MD. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cereb Cortex Commun 2020; 1:tgaa024. [PMID: 32864616 PMCID: PMC7446231 DOI: 10.1093/texcom/tgaa024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| |
Collapse
|
32
|
Rare CACNA1A mutations leading to congenital ataxia. Pflugers Arch 2020; 472:791-809. [DOI: 10.1007/s00424-020-02396-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
|
33
|
Reduced Function of the Glutathione S-Transferase S1 Suppresses Behavioral Hyperexcitability in Drosophila Expressing Mutant Voltage-Gated Sodium Channels. G3-GENES GENOMES GENETICS 2020; 10:1327-1340. [PMID: 32054635 PMCID: PMC7144092 DOI: 10.1534/g3.119.401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium (Nav) channels play a central role in the generation and propagation of action potentials in excitable cells such as neurons and muscles. To determine how the phenotypes of Nav-channel mutants are affected by other genes, we performed a forward genetic screen for dominant modifiers of the seizure-prone, gain-of-function Drosophila melanogaster Nav-channel mutant, paraShu. Our analyses using chromosome deficiencies, gene-specific RNA interference, and single-gene mutants revealed that a null allele of glutathione S-transferase S1 (GstS1) dominantly suppresses paraShu phenotypes. Reduced GstS1 function also suppressed phenotypes of other seizure-prone Nav-channel mutants, paraGEFS+ and parabss. Notably, paraShu mutants expressed 50% less GstS1 than wild-type flies, further supporting the notion that paraShu and GstS1 interact functionally. Introduction of a loss-of-function GstS1 mutation into a paraShu background led to up- and down-regulation of various genes, with those encoding cytochrome P450 (CYP) enzymes most significantly over-represented in this group. Because GstS1 is a fly ortholog of mammalian hematopoietic prostaglandin D synthase, and in mammals CYPs are involved in the oxygenation of polyunsaturated fatty acids including prostaglandins, our results raise the intriguing possibility that bioactive lipids play a role in GstS1-mediated suppression of paraShu phenotypes.
Collapse
|
34
|
Tyagi S, Ribera AB, Bannister RA. Zebrafish as a Model System for the Study of Severe Ca V2.1 (α 1A) Channelopathies. Front Mol Neurosci 2020; 12:329. [PMID: 32116539 PMCID: PMC7018710 DOI: 10.3389/fnmol.2019.00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roger A Bannister
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Kawakami N, Kobayashi K, Nishimura A, Ohmori I. Poor mother-offspring relationships in rats with <i>Cacna1a</i> mutation. Exp Anim 2020; 69:153-160. [PMID: 31723085 PMCID: PMC7220709 DOI: 10.1538/expanim.19-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Homozygous Groggy dams, which carry a Cacna1a missense mutation, often
show no interest in their offspring, leading to frequent offspring deaths due to lack of
nurturing. The present study aimed to clarify whether the Cacna1a
mutation contributes to impaired attachment behaviors between dam and offspring. The open
field test showed that homozygous female rats exhibited markedly short travel distance,
whereas no difference was found between the motor activity of heterozygous females and
that of wild types (WT). A series of behavioral tests was performed to compare the
mother–offspring relationship between WT and heterozygous rats. Performance in the pup
retrieval test was significantly less successful in heterozygous than WT dams. During the
experiment, heterozygous dams spent significantly less time licking and crouching than WT
dams. The offspring dam-seeking behavior test revealed that heterozygous pups’
vocalizations were significantly less frequent and shorter than those of WT pups. Although
no significant difference was found between WT and heterozygous offspring in the olfactory
sense test, using a piece of chocolate, heterozygous pups took significantly longer to
reach a sample of the dam’s bedding. Taken together, these findings suggest that the
Cacna1a mutation impairs both the dam’s maternal behavior and the
offspring’s attachment behavior toward the dam.
Collapse
Affiliation(s)
- Nozomi Kawakami
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Kiyoka Kobayashi
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Ayumu Nishimura
- Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Iori Ohmori
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
- Graduate School of Education, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
- Department of Child Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1 Tsushimanaka 3-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
36
|
Zhang L, Wen Y, Zhang Q, Chen Y, Wang J, Shi K, Du L, Bao X. CACNA1A Gene Variants in Eight Chinese Patients With a Wide Range of Phenotypes. Front Pediatr 2020; 8:577544. [PMID: 33425808 PMCID: PMC7793878 DOI: 10.3389/fped.2020.577544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The CACNA1A gene encodes the voltage-dependent P/Q-type calcium channel subunit alpha-1A, which is widely expressed throughout the CNS. The biological roles of the P/Q channel are diverse and the phenotypic spectrum caused by CACNA1A mutations is wide. The aim of this study is to demonstrate its phenotypic diversity and analyze the genotype-phenotype correlations in a cohort of Chinese patients. Methods: Patients with hemiplegic migraine, cerebellar ataxia, developmental delay, or epilepsy without known causes were tested by trios whole-exome sequencing. Patients with pathogenic CACNA1A gene variants were recruited. The clinical information of the patients was collected, and the association between the genotype and the phenotype was investigated. Results: In total, eight patients (six females and two males) were found to have CACNA1A gene variants. All the variants were de novo including six missense variants and one frameshift variant. Four de novo missense variants were found in five patients located in the S4, S5, or S6 transmembrane segments of Domain II and III (p.R1352Q, p.G701V, p.A713T, p.V1393M). All of them were correlated with severe phenotypes, including three with sporadic hemiplegic migraine type 1 and epilepsy, and two with developmental and epileptic encephalopathy. The other two missense variants, p.Y62C and p.F1814L, located in the cytoplasmic side of the N-terminus and C-terminus, respectively. The variant p.Y62C was associated with severe hemiconvulsion-hemiplegia-epilepsy syndrome, and p.F1814L was associated with relatively mild phenotypes. All the missense variants were speculated as gain-of-function (GOF) mutations. The only frameshift variant, p.Q681Rfs*100, a lose-of-function (LOF) mutation, was found in a patient with episodic ataxia type 2. Meanwhile, all the patients had developmental delay ranging from mild to severe, as well as cerebellar ataxia including one with congenital ataxia, one with episodic ataxia, and six with non-progressive ataxia. Conclusions: CACNA1A variants could lead to a wide spectrum of neurological disorders including epileptic or non-epileptic paroxysmal events, cerebellar ataxia, and developmental delay. The variants could be both GOF and LOF mutations. There appeared to be some correlations between genotypes and phenotypes.
Collapse
Affiliation(s)
- Linxia Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China.,Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Yongxin Wen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Qingping Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yan Chen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Jiaping Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Kaili Shi
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Lijun Du
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Xinhua Bao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Calcium Dyshomeostasis and Lysosomal Ca 2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101216. [PMID: 31597311 PMCID: PMC6829585 DOI: 10.3390/cells8101216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recent findings in the understanding of amyotrophic lateral sclerosis (ALS) revealed that alteration in calcium (Ca2+) homeostasis may largely contribute to motor neuron demise. A large part of these alterations is due to dysfunctional Ca2+-storing organelles, including the endoplasmic reticulum (ER) and mitochondria. Very recently, lysosomal Ca2+ dysfunction has emerged as an important pathological change leading to neuronal loss in ALS. Remarkably, the Ca2+-storing organelles are interacting with each other at specialized domains controlling mitochondrial dynamics, ER/lysosomal function, and autophagy. This occurs as a result of interaction between specific ionic channels and Ca2+-dependent proteins located in each structure. Therefore, the dysregulation of these ionic mechanisms could be considered as a key element in the neurodegenerative process. This review will focus on the possible role of lysosomal Ca2+ dysfunction in the pathogenesis of several neurodegenerative diseases, including ALS and shed light on the possibility that specific lysosomal Ca2+ channels might represent new promising targets for preventing or at least delaying neurodegeneration in ALS.
Collapse
|
38
|
Bertero A, Fields PA, Smith AST, Leonard A, Beussman K, Sniadecki NJ, Kim DH, Tse HF, Pabon L, Shendure J, Noble WS, Murry CE. Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. J Cell Biol 2019; 218:2919-2944. [PMID: 31395619 PMCID: PMC6719452 DOI: 10.1083/jcb.201902117] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023] Open
Abstract
Mutations in A-type nuclear lamins cause dilated cardiomyopathy, which is postulated to result from dysregulated gene expression due to changes in chromatin organization into active and inactive compartments. To test this, we performed genome-wide chromosome conformation analyses in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with a haploinsufficient mutation for lamin A/C. Compared with gene-corrected cells, mutant hiPSC-CMs have marked electrophysiological and contractile alterations, with modest gene expression changes. While large-scale changes in chromosomal topology are evident, differences in chromatin compartmentalization are limited to a few hotspots that escape segregation to the nuclear lamina and inactivation during cardiogenesis. These regions exhibit up-regulation of multiple noncardiac genes including CACNA1A, encoding for neuronal P/Q-type calcium channels. Pharmacological inhibition of the resulting current partially mitigates the electrical alterations. However, chromatin compartment changes do not explain most gene expression alterations in mutant hiPSC-CMs. Thus, global errors in chromosomal compartmentation are not the primary pathogenic mechanism in heart failure due to lamin A/C haploinsufficiency.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Paul A Fields
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Alec S T Smith
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Andrea Leonard
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Kevin Beussman
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Nathan J Sniadecki
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Deok-Ho Kim
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA
| |
Collapse
|
39
|
Jinnah H, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019; 129:159-168. [DOI: 10.1016/j.nbd.2019.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
|
40
|
Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice. Proc Natl Acad Sci U S A 2019; 116:16062-16067. [PMID: 31337678 DOI: 10.1073/pnas.1906774116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.
Collapse
|
41
|
Chen J, Sun Y, Liu X, Li J. Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia. BMC Neurol 2019; 19:157. [PMID: 31291898 PMCID: PMC6617910 DOI: 10.1186/s12883-019-1381-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. METHODS A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. RESULTS The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. CONCLUSIONS The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.
Collapse
Affiliation(s)
- Jiajun Chen
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| | - Yajuan Sun
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| | - Xiaoyang Liu
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| | - Jia Li
- Department of Neurology, China–Japan Union Hospital of Jilin University, No 126, Xiantai Street, Changchun, Jilin, 130033 China
| |
Collapse
|
42
|
Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, Prestigio C, Giansante G, Sartorelli J, Rossi P, Rubio A, Gambardella A, Nieus T, Broccoli V, Fassio A, Baldelli P, Corradi A, Zara F, Benfenati F. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 2019; 141:1000-1016. [PMID: 29554219 PMCID: PMC5888929 DOI: 10.1093/brain/awy051] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/29/2018] [Indexed: 01/13/2023] Open
Abstract
See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article. Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.
Collapse
Affiliation(s)
- Floriana Fruscione
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessandra Romei
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Simona Baldassari
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Manuela Fadda
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Giorgia Giansante
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Jacopo Sartorelli
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Pia Rossi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Alicia Rubio
- San Raffaele Scientific Institute and National Research Council (CNR), Institute of Neuroscience, Via Olgettina 58, 20132 Milano, Italy
| | - Antonio Gambardella
- Institute of Neurology, University Magna Graecia, Viale Europa, 88100 Catanzaro, Italy
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milano, Italy
| | - Vania Broccoli
- San Raffaele Scientific Institute and National Research Council (CNR), Institute of Neuroscience, Via Olgettina 58, 20132 Milano, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, 16148 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
43
|
Humbertclaude V, Krams B, Nogue E, Nagot N, Annequin D, Tourniaire B, Tournier-Lasserve E, Riant F, Roubertie A. Benign paroxysmal torticollis, benign paroxysmal vertigo, and benign tonic upward gaze are not benign disorders. Dev Med Child Neurol 2018; 60:1256-1263. [PMID: 29926469 DOI: 10.1111/dmcn.13935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
AIM Benign paroxysmal torticollis (BPT), benign paroxysmal vertigo (BPV), and benign tonic upward gaze (BTU) are characterized by transient and recurrent episodes of neurological manifestations. The purpose of this study was to analyse the clinical relationships between these syndromes, associated comorbidities, and genetic bases. METHOD In this cross-sectional study, clinical data of patients with BPT, BPV, or BTU were collected with a focus on developmental achievements, learning abilities, and rehabilitation. Neuropsychological assessment and genetic testing were performed. RESULTS Fifty patients (median age at inclusion 6y) were enrolled. Psychomotor delay, abnormal neurological examination, and low or borderline IQ were found in 19%, 32%, and 26% of the patients respectively. Cognitive dysfunction was present in 27% of the patients. CACNA1A gene mutation was identified in eight families, and KCNA1 and FGF14 mutation in one family respectively. The identification of a CACNA1A mutation was significantly associated with BTU (p=0.03) and with cognitive dysfunction (p=0.01). Patients with BPV were less likely to have cognitive dysfunction. INTERPRETATION Children with BPT, BPV, or BTU are at high risk of impaired psychomotor and cognitive development. These syndromes should not be regarded as benign and should be considered as part of the spectrum of a neurodevelopmental disorder. WHAT THIS PAPER ADDS OK Patients with benign paroxysmal torticollis (BPT), benign paroxysmal vertigo (BPV), and benign tonic upward gaze (BTU) have an increased risk of psychomotor delay. These patients also have an increased risk of abnormal neurological examination and cognitive dysfunction. Gene mutations, especially in CACNA1A, were identified in 21% of the families. BPT, BTU, and BPV should not be regarded as benign. BPT, BTU, and BPV should be considered as part of the spectrum of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Véronique Humbertclaude
- Service de Médecine Psychologique Enfants et Adolescents, CHU Saint Eloi, Montpellier, France
| | - Benjamin Krams
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Erika Nogue
- Centre d'Investigation Clinique, CHU Montpellier, Montpellier, France
| | - Nicolas Nagot
- Centre d'Investigation Clinique, CHU Montpellier, Montpellier, France
| | - Daniel Annequin
- Centre de la Migraine de l'Enfant, Hôpital Trousseau, AP-HP, Paris, France
| | - Barbara Tourniaire
- Centre de la Migraine de l'Enfant, Hôpital Trousseau, AP-HP, Paris, France
| | - Elisabeth Tournier-Lasserve
- Laboratoire de Génétique, Groupe Hospitalier Lariboisière-Fernand Widal AP-HP, Paris, France.,INSERM, UMR-S740, Université Paris 7 Denis Diderot, Paris, France
| | - Florence Riant
- Laboratoire de Génétique, Groupe Hospitalier Lariboisière-Fernand Widal AP-HP, Paris, France.,INSERM, UMR-S740, Université Paris 7 Denis Diderot, Paris, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,INSERM U 1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | | |
Collapse
|
44
|
Helbig KL, Lauerer RJ, Bahr JC, Souza IA, Myers CT, Uysal B, Schwarz N, Gandini MA, Huang S, Keren B, Mignot C, Afenjar A, Billette de Villemeur T, Héron D, Nava C, Valence S, Buratti J, Fagerberg CR, Soerensen KP, Kibaek M, Kamsteeg EJ, Koolen DA, Gunning B, Schelhaas HJ, Kruer MC, Fox J, Bakhtiari S, Jarrar R, Padilla-Lopez S, Lindstrom K, Jin SC, Zeng X, Bilguvar K, Papavasileiou A, Xing Q, Zhu C, Boysen K, Vairo F, Lanpher BC, Klee EW, Tillema JM, Payne ET, Cousin MA, Kruisselbrink TM, Wick MJ, Baker J, Haan E, Smith N, Sadeghpour A, Davis EE, Katsanis N, Corbett MA, MacLennan AH, Gecz J, Biskup S, Goldmann E, Rodan LH, Kichula E, Segal E, Jackson KE, Asamoah A, Dimmock D, McCarrier J, Botto LD, Filloux F, Tvrdik T, Cascino GD, Klingerman S, Neumann C, Wang R, Jacobsen JC, Nolan MA, Snell RG, Lehnert K, Sadleir LG, Anderlid BM, Kvarnung M, Guerrini R, Friez MJ, Lyons MJ, Leonhard J, Kringlen G, Casas K, El Achkar CM, Smith LA, Rotenberg A, Poduri A, Sanchis-Juan A, Carss KJ, Rankin J, Zeman A, Raymond FL, Blyth M, Kerr B, Ruiz K, Urquhart J, Hughes I, Banka S, Hedrich UB, Scheffer IE, Helbig I, Zamponi GW, Lerche H, Mefford HC, Allori A, Angrist M, Ashley P, Bidegain M, Boyd B, Chambers E, Cope H, Cotten CM, Curington T, Davis EE, Ellestad S, Fisher K, French A, Gallentine W, Goldberg R, Hill K, Kansagra S, Katsanis N, Katsanis S, Kurtzberg J, Marcus J, McDonald M, Mikati M, Miller S, Murtha A, Perilla Y, Pizoli C, Purves T, Ross S, Sadeghpour A, Smith E, Wiener J. De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. Am J Hum Genet 2018; 103:666-678. [PMID: 30343943 DOI: 10.1016/j.ajhg.2018.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
Collapse
|
45
|
Nedumaran B, Pineda RH, Rudra P, Lee S, Malykhina AP. Association of genetic polymorphisms in the pore domains of mechano-gated TREK-1 channel with overactive lower urinary tract symptoms in humans. Neurourol Urodyn 2018; 38:144-150. [PMID: 30350878 DOI: 10.1002/nau.23862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
AIMS Mechanosensitivity of the urinary bladder is regulated by many factors including mechano-gated two-pore domain (K2 P, KCNK) potassium channels. TWIK-related K+ channel, TREK-1, is a predominantly expressed member of K2 P channel family in the human detrusor, and its expression and function are diminished in patients with overactive lower urinary tract symptoms (LUTS). The changes in channel activity may result from spontaneously occurring gene mutations. The aim of this study was to compare single nucleotide polymorphisms (SNPs) in TREK-1 channel between patients with LUTS and healthy donors. METHODS Six SNPs (rs370266806, rs373919966, rs758937019, rs769301539, rs772497750, and rs775158737) in two pore domains of human TREK-1 gene were analyzed using TaqMan SNP genotyping assay with manufacturer-designed primers and allele-specific probes. The screening was done in control bladders and detrusor specimens from patients with overactive LUTS. Statistical analyses were performed using R, Fisher's exact test and Hardy-Weinberg Equilibrium. RESULTS Six SNPs in two pore domains of the human TREK-1 gene were analyzed in human bladder specimens. The frequencies of rs758937019-CT genotype (P = 0.0016) and rs758937019-T allele (P = 0.0022) were significantly higher in the group with overactive LUTS. There was no significant association of rs775158737-GA genotype and rs775158737-A allele with the overactive LUTS, though they were present only in the overactive LUTS group. CONCLUSIONS Our results provide evidence that altered expression and function of TREK-1 channel in patients with overactive LUTS could be due to genetic polymorphisms in the pore domains of TREK-1 channel (rs758937019).
Collapse
Affiliation(s)
- Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado.,Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, California
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
46
|
Indelicato E, Nachbauer W, Karner E, Eigentler A, Wagner M, Unterberger I, Poewe W, Delazer M, Boesch S. The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur J Neurol 2018; 26:66-e7. [PMID: 30063100 DOI: 10.1111/ene.13765] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE CACNA1A encodes the α1 subunit of the neuronal calcium channel P/Q. CACNA1A mutations underlie three allelic disorders: familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). A clear-cut genotype-phenotype correlation is often lacking since clinical manifestations may overlap. Several case reports have described cognitive and behavioral features in CACNA1A disorders, but studies in larger case series are lacking. METHODS Genetically confirmed CACNA1A cases were retrieved from the database of the ataxia outpatient clinic of the Department of Neurology at Innsbruck Medical University. Clinical charts and neuropsychological test results were retrospectively analyzed. In addition, a review of the literature including only genetically confirmed cases was performed. RESULTS Forty-four CACNA1A cases were identified in our database. Delayed psychomotor milestones and poor school performance were described in seven (four FHM1, three EA2) and eight (three FHM1, five EA2) patients, respectively. Psychiatric comorbidities were diagnosed in eight patients (two FHM1, six EA2). Neuropsychological testing was available for 23 patients (11 FHM1, 10 EA2, two SCA6). Various cognitive deficits were documented in 21 cases (all patients except one SCA6). Impairments were predominantly seen in figural memory, visuoconstructive abilities and verbal fluency. In the literature, an early psychomotor delay is described in several children with EA2 and FHM1, whilst reports of cognitive and psychiatric findings from adult cases are scarce. CONCLUSIONS Neuropsychiatric manifestations are common in episodic CACNA1A disorders. In the case of otherwise unexplained developmental delay and a positive family history, CACNA1A mutations should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- E Indelicato
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - W Nachbauer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - E Karner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - A Eigentler
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - M Wagner
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria
| | - I Unterberger
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - W Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - M Delazer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - S Boesch
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
47
|
Association of single nucleotide polymorphisms in CACNA 1A/CACNA 1C/CACNA 1H calcium channel genes with diabetic peripheral neuropathy in Chinese population. Biosci Rep 2018; 38:BSR20171670. [PMID: 29581247 PMCID: PMC6435562 DOI: 10.1042/bsr20171670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
The present study was conducted to explore the correlations between single nucleotide polymorphisms (SNPs) in the calcium channel CACNA 1A, CACNA 1C, and CACNA 1H genes and diabetic peripheral neuropathy (DPN) amongst the Chinese population. In total, 281 patients diagnosed with type 2 diabetes participated in the present study. These patients were divided into the case group, which was subdivided into the DPN (143 cases) and the non-DPN groups (138 cases). Subsequently, 180 healthy individuals that had undergone routine health examinations were also recruited and assigned to the control group. PCR-restriction fragment length polymorphism (PCR-RFLP) was used to detect the genotype and allele frequencies of CACNA 1A, CACNA 1C, and CACNA 1H genes; logistic regression analysis to investigate the association of gene polymorphisms with DNP. Gene–gene interactions were then detected by generalized multifactor dimensionality reduction (GMDR). The results revealed that CACNA 1A rs2248069 and rsl6030, CACNA 1C rs216008 and rs2239050, and CACNA 1H rs3794619, and rs7191246 SNPs were all associated with DPN, while rs2248069, rsl6030, rs2239050, and rs7191246 polymorphisms were attributed to the susceptibility to DPN. It was also observed that the optimal models were three-, four- and five-dimensional models with a prediction accuracy of 61.05% and the greatest consistency of cross-validation was 10/10. In summary, these findings demonstrated that the SNPs in the CACNA 1A, CACNA 1C, and CACNA 1H genes were involved in the pathophysiology of DPN. In addition, polymorphisms in the CACNA 1A, CACNA 1C, and CACNA 1H genes and their interactions also had effects on DPN.
Collapse
|
48
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Hörtenhuber M, Toledo EM, Smedler E, Arenas E, Malmersjö S, Louhivuori L, Uhlén P. Mapping genes for calcium signaling and their associated human genetic disorders. Bioinformatics 2018; 33:2547-2554. [PMID: 28430858 PMCID: PMC5870714 DOI: 10.1093/bioinformatics/btx225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
Motivation Signal transduction via calcium ions (Ca2+) represents a fundamental signaling pathway in all eukaryotic cells. A large portion of the human genome encodes proteins used to assemble signaling systems that can transduce signals with diverse spatial and temporal dynamics. Results Here, we provide a map of all of the genes involved in Ca2+ signaling and link these genes to human genetic disorders. Using Gene Ontology terms and genome databases, 1805 genes were identified as regulators or targets of intracellular Ca2+ signals. Associating these 1805 genes with human genetic disorders uncovered 1470 diseases with mutated ‘Ca2+ genes’. A network with scale-free properties appeared when the Ca2+ genes were mapped to their associated genetic disorders. Availability and Implementation The Ca2+ genome database is freely available at http://cagedb.uhlenlab.org and will foster studies of gene functions and genetic disorders associated with Ca2+ signaling. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matthias Hörtenhuber
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Enrique M Toledo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Erik Smedler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
50
|
Guterman EL, Yurgionas B, Nelson AB. Pearls & Oy-sters: Episodic ataxia type 2: Case report and review of the literature. Neurology 2018; 86:e239-41. [PMID: 27272039 DOI: 10.1212/wnl.0000000000002743] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Elan L Guterman
- From the Department of Neurology, University of California, San Francisco.
| | - Brian Yurgionas
- From the Department of Neurology, University of California, San Francisco
| | - Alexandra B Nelson
- From the Department of Neurology, University of California, San Francisco
| |
Collapse
|