1
|
de Faria Dutra Andrade Karam B, Peres de Medeiros M, Helena Neves Marques L, Maria de Araújo Filho G. Is lateralization concordance between preoperative video-EEG, ictal SPECT, and MRI to be associated with positive psychiatric outcomes after cortico-amygdalohippocampectomy in patients with pharmacoresistant temporal lobe epilepsy associated to mesial temporal sclerosis? A retrospective cohort study. Epilepsy Behav 2024; 161:110115. [PMID: 39486098 DOI: 10.1016/j.yebeh.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The occurrence of comorbid psychiatric disorders (PD) in patients with pharmacoresistant temporal lobe epilepsy (TLE) associated to mesial temporal sclerosis (MTS) can be considered as a result of the complex interaction between biological and psychosocial factors, as well as the effects of antiseizure medications (ASM). Regarding biological aspects, despite the growing amount of knowledge, there is still a scarcity of data in literature clarifying whether a more precise definition of the seizure onset zone (SOZ) could be associated with a more favorable post-surgical psychiatric outcome. In the present study, the clinical and sociodemographic pre-surgical variables, including the results of neurophysiological and neuroimaging exams, were evaluated in patients with pharmacoresistant TLE-MTS aiming to investigate possible risk factors for the presence of PD after cortico-amygdalohippocampectomy (CAH). METHODS A retrospective cohort analysis of medical records from initially 106 pre-surgical patients with pharmacoresistant TLE-MTS with PD (n = 51; 48.1 %) and without PD (n = 55; 51.9 %) proceeded. Pre-surgical clinical and sociodemographic data were compared between both groups and the predictors for the presence of post-surgical PD were characterized up to one and two years after CAH. RESULTS Seventeen patients (16 %) had lost their follow-up in the first year after surgery, and 89 (84 %) had completed the study. No clinical and sociodemographic differences were observed between both groups of patients (p > 0.05), except for a history of previous psychiatric treatment (p = 0.001). Eighteen patients (35.29 %) with pre-surgical history of PD had remission of PD after CAH, while eight (14.5 %) developed de novo PD. The previous history of PD was directly associated with the development of post-surgical PD one year after CAH (p < 0.0001). Previous psychiatric treatment (p < 0.01), previous history of mood (p = 0.002) and anxiety (p = 0.03) disorder, as well as discordance in lateralization between MRI, SPECT, and EEG (p = 0.02), were predictors for the development of PD two years after CAH. Post-surgical psychiatric outcomes were associated to seizure outcome based on the Engel classification (p < 0,0001). CONCLUSION The present data observed an association between lateralization concordance of results of pre-surgical investigative exams and positive postoperative psychiatric outcomes in patients with pharmacoresistant TLE-MTS. These results could suggest that a more precise definition of the SOZ could be associated with a more favorable post-surgical psychiatric outcome after CAH.
Collapse
Affiliation(s)
- Bruna de Faria Dutra Andrade Karam
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Faculdade de Medicina de São Jose do Rio Preto (FAMERP), São Paulo, Brazil.
| | - Michael Peres de Medeiros
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Faculdade de Medicina de São Jose do Rio Preto (FAMERP), São Paulo, Brazil
| | - Lucia Helena Neves Marques
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Faculdade de Medicina de São Jose do Rio Preto (FAMERP), São Paulo, Brazil
| | - Gerardo Maria de Araújo Filho
- Department of Neurological Sciences, Psychiatry, and Medical Psychology, Faculdade de Medicina de São Jose do Rio Preto (FAMERP), São Paulo, Brazil
| |
Collapse
|
2
|
Zhang Q, Hudgins S, Struck AF, Ankeeta A, Javidi SS, Sperling MR, Hermann BP, Tracy JI. Association of Normative and Non-Normative Brain Networks With Cognitive Function in Patients With Temporal Lobe Epilepsy. Neurology 2024; 103:e209800. [PMID: 39250744 PMCID: PMC11385956 DOI: 10.1212/wnl.0000000000209800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Despite their temporal lobe pathology, a significant subgroup of patients with temporal lobe epilepsy (TLE) is able to maintain normative cognitive functioning. In this study, we identify patients with TLE with intact vs impaired neurocognitive profiles and interrogate for the presence of both normative and highly individual intrinsic connectivity networks (ICNs)-all toward understanding the transition from impaired to intact neurocognitive status. METHODS This retrospective cross-sectional study included patients with TLE and matched healthy controls (HCs) from the Thomas Jefferson Comprehensive Epilepsy Center. Functional MRI data were decomposed using independent component analysis to obtain individualized ICNs. In this article, we calculated the degree of match between individualized ICNs and canonical ICNs (e.g., 17 resting-state networks by Yeo et al.) and divided each participant's ICNs into normative or non-normative status based on the degree of match. RESULTS 100 patients with TLE (mean age 42.0 [SD: 13.7] years, 47 women) and 92 HCs were included in this study. We found that the individualized networks matched to the canonical networks less well in the cognitively impaired (n = 24) compared with the cognitively intact (n = 63) patients with TLE by 2-way mixed-measures analysis of variance (impaired vs intact mean difference [MD] -0.165 [-0.317, -0.013], p = 0.028). The cognitively impaired patients showed significant abnormalities in the profiles of both normative (impaired vs intact MD -0.537 [-0.998, -0.076], p = 0.017, intact vs HC MD -0.221 [-0.536, 0.924], p = 0.220, and impaired vs HC MD -0.759 [-1.200, -0.319], p < 0.001) and non-normative networks (impaired vs intact MD 0.484 [0.030, 0.937], p = 0.033, intact vs HC MD 0.369 [0.059, 0.678], p = 0.014, and impaired vs HC MD 0.853 [0.419, 1.286], p < 0.001) while the intact patients showed abnormalities only in non-normative networks. At the same time, we found that normative networks held a strong, positive association with the neuropsychological measures, with this association negative in non-normative networks. DISCUSSION Our data demonstrated that significant cognitive deficits are associated with the status of both canonical and highly individual ICNs, making clear that the transition from intact to impaired cognitive status is not simply the result of disruption to normative brain networks.
Collapse
Affiliation(s)
- Qirui Zhang
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Stacy Hudgins
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Aaron F Struck
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Ankeeta Ankeeta
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Sam S Javidi
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael R Sperling
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Bruce P Hermann
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| | - Joseph I Tracy
- From the Farber Institute for Neuroscience (Q.Z., A.A., S.S.J., M.R.S., J.I.T.), Department of Neurology, Thomas Jefferson University, Philadelphia; Department of Biomedical Engineering (S.H.), Drexel University, Philadelphia, PA; and Department of Neurology (A.F.S., B.P.H.), University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
3
|
Liu J, Binding L, Puntambekar I, Patodia S, Lim YM, Mryzyglod A, Xiao F, Pan S, Mito R, de Tisi J, Duncan JS, Baxendale S, Koepp M, Thom M. Microangiopathy in temporal lobe epilepsy with diffusion MRI alterations and cognitive decline. Acta Neuropathol 2024; 148:49. [PMID: 39377933 PMCID: PMC11461556 DOI: 10.1007/s00401-024-02809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
White matter microvascular alterations in temporal lobe epilepsy (TLE) may be relevant to acquired neurodegenerative processes and cognitive impairments associated with this condition. We quantified microvascular changes, myelin, axonal, glial and extracellular-matrix labelling in the gyral core and deep temporal lobe white matter regions in surgical resections from 44 TLE patients with or without hippocampal sclerosis. We compared this pathology data with in vivo pre-operative MRI diffusion measurements in co-registered regions and neuropsychological measures of cognitive impairment and decline. In resections, increased arteriolosclerosis was observed in TLE compared to non-epilepsy controls (greater sclerotic index, p < 0.001), independent of age. Microvascular changes included increased vascular densities in some regions but uniformly reduced mean vascular size (quantified with collagen-4, p < 0.05-0.0001), and increased pericyte coverage of small vessels and capillaries particularly in deep white matter (quantified with platelet-derived growth factor receptorβ and smooth muscle actin, p < 0.01) which was more marked the longer the duration of epilepsy (p < 0.05). We noted increased glial numbers (Olig2, Iba1) but reduced myelin (MAG, PLP) in TLE compared to controls, particularly prominent in deep white matter. Gene expression analysis showed a greater reduction of myelination genes in HS than non-HS cases and with age and correlation with diffusion MRI alterations. Glial densities and vascular size were increased with increased MRI diffusivity and vascular density with white matter abnormality quantified using fixel-based analysis. Increased perivascular space was associated with reduced fractional anisotropy as well as age-accelerated cognitive decline prior to surgery (p < 0.05). In summary, likely acquired microangiopathic changes in TLE, including vascular sclerosis, increased pericyte coverage and reduced small vessel size, may indicate a functional alteration in contractility of small vessels and haemodynamics that could impact on tissue perfusion. These morphological features correlate with white matter diffusion MRI alterations and might explain cognitive decline in TLE.
Collapse
Affiliation(s)
- Joan Liu
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Neuroscience, University of Westminster, London, UK
| | - Lawrence Binding
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Isha Puntambekar
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yau Mun Lim
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alicja Mryzyglod
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shengning Pan
- Department of Statistical Science, University College London, Gower St., London, UK
| | - Remika Mito
- Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Department of Neuropathology, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
4
|
Zawar I, Kapur J, Mattos MK, Aldridge CM, Manning C, Quigg M. Association of Seizure Control With Cognition in People With Normal Cognition and Mild Cognitive Impairment. Neurology 2024; 103:e209820. [PMID: 39173101 PMCID: PMC11343585 DOI: 10.1212/wnl.0000000000209820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Seizures are common in dementia and associated with accelerated cognitive decline. However, the impact of active vs remote seizures on cognition remains understudied. This study aimed to investigate the impact of active vs remote seizures on cognition in people with normal cognition and mild cognitive impairment (MCI). METHODS This longitudinal, multicenter cohort is based on National Alzheimer's Coordinating Center data of participants recruited from 39 Alzheimer's Disease Centers in the United States from September 2005 to December 2021. All participants with normal cognition and MCI and at least 2 visits were included. Primary outcome, that is, cognitive decline, was determined using Clinical Dementia Rating (CDR) from (1) normal-to-impaired (CDR ≥0.5) and (2) MCI-to-dementia (CDR ≥1) groups. The effect of active seizures (over the preceding 12 months), remote seizures (previous seizures but none over the preceding 12 months), and no seizures (controls) on cognition was assessed. Subgroups of chronic seizures at enrollment and new-onset seizures were further analyzed. Cox regression models assessed the risk of all-cause MCI and/or dementia. All models were adjusted for age, sex, education, race, hypertension, and diabetes. RESULTS Of the 13,726 participants with normal cognition at enrollment (9,002 [66%] female; median age 71 years), 118 had active seizures and 226 had remote seizures. Of the 11,372 participants with MCI at enrollment (5,605 [49%] female; median age 73 years), 197 had active seizures and 226 had remote seizures. Active seizures were associated with 2.1 times higher risk of cognitive impairment (adjusted hazard ratio [aHR] 2.13, 95% CI 1.60-2.84, p < 0.001) in cognitively healthy adults (median years to decline: active seizures = ∼1, remote seizures = ∼3, no seizures = ∼3) and 1.6 times higher risk of dementia (aHR 1.58, 95% CI 1.24-2.01, p < 0.001) in those with MCI (median years to decline: active seizures = ∼1, remote seizures = ∼2, controls = ∼2). This risk was not observed with remote seizures. DISCUSSION In this study, active seizures but not remote seizures were associated with earlier cognitive decline in both cognitively normal adults and those with MCI, independent of other dementia risk factors. Therefore, early identification and management of seizures may present a path to mitigation of cognitive decline in the aging epileptic population. A limitation is that causality cannot be confirmed in our observational longitudinal study.
Collapse
Affiliation(s)
- Ifrah Zawar
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Jaideep Kapur
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Meghan K Mattos
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Chad M Aldridge
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Carol Manning
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| | - Mark Quigg
- From the Department of Neurology (I.Z., J.K., C.M.A., C.M., M.Q.), and School of Nursing (M.K.M.), University of Virginia, Charlottesville
| |
Collapse
|
5
|
Goodman JH. Closed-loop Low-frequency stimulation: seizure reduction and more. Epilepsy Curr 2024; 24:370-372. [PMID: 39508020 PMCID: PMC11536414 DOI: 10.1177/15357597241280683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Effect of the Closed-Loop Hippocampal Low-Frequency Stimulation on Seizure Severity, Learning, and Memory in Pilocarpine Epilepsy Rat Model Zare M, Rezaei M, Nazari M, Kosarmadar N, Faraz M, Barkley V, Shojaei A, Raoufy MR, Mirnajafi-Zadeh J. Effect of the closed-loop hippocampal low-frequency stimulation on seizure severity, learning, and memory in pilocarpine epilepsy rat model. CNS Neurosci Ther. 2024;30(3):e14656. doi:10.1111/cns.14656 Aims: In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. Methods: Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects’ spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. Results: Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. Conclusion: Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.
Collapse
Affiliation(s)
- Jeffrey H Goodman
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities
| |
Collapse
|
6
|
Qin L, Zhou Q, Sun Y, Pang X, Chen Z, Zheng J. Dynamic functional connectivity and gene expression correlates in temporal lobe epilepsy: insights from hidden markov models. J Transl Med 2024; 22:763. [PMID: 39143498 PMCID: PMC11323657 DOI: 10.1186/s12967-024-05580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUD Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms associated with the dynamic temporal characteristics of TLE. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment (TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database. RESULTS Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in neuronal signaling and synaptic function. CONCLUSIONS This study provides new insights into characterizing dynamic neural activity in TLE. The brain network dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qin Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yuting Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaomin Pang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
7
|
Wheeler L, Worrell SE, Balzekas I, Bilderbeek J, Hermes D, Croarkin P, Messina S, Van Gompel J, Miller KJ, Kremen V, Worrell GA. Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1426743. [PMID: 39175607 PMCID: PMC11338927 DOI: 10.3389/fnetp.2024.1426743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep. Pathology in the mTLE network often manifests as interictal behavioral disturbances and seizures. The limbic circuit is a vital network, and here we review one of the most common focal epilepsies and its comorbidities. We describe two people with drug resistant mTLE implanted with an investigational device enabling continuous hippocampal local field potential sensing and anterior nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced reversible psychosis during continuous high-frequency stimulation. The mechanism(s) of psychosis remain poorly understood and here we speculate that the anti-epileptic effect of high frequency ANT-DBS may provide insights into the physiology of primary disorders associated with psychosis.
Collapse
Affiliation(s)
- Lydia Wheeler
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Samuel E. Worrell
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Irena Balzekas
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jordan Bilderbeek
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Paul Croarkin
- Departments of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Steven Messina
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Jamie Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kai J. Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Vaclav Kremen
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University, Prague, Czechia
| | - Gregory A. Worrell
- Bioelectronic Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Shah U, Rajeshree S, Sahu A, Kalika M, Ravat S, Reyes A, Stasenko A, Busch RM, Hermann BP, McDonald CR. Cross-cultural application of the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE): Cognitive phenotypes in people with temporal lobe epilepsy in India. Epilepsia 2024; 65:2386-2396. [PMID: 38878272 PMCID: PMC11494496 DOI: 10.1111/epi.18043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Efforts to understand the global variability in cognitive profiles in patients with epilepsy have been stymied by the lack of a standardized diagnostic system. This study examined the cross-cultural applicability of the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) in a cohort of patients with temporal lobe epilepsy (TLE) in India that was diverse in language, education, and cultural background. METHODS A cohort of 548 adults with TLE from Mumbai completed a presurgical comprehensive neuropsychological evaluation. The IC-CoDE taxonomy was applied to derive cognitive phenotypes in the sample. Analyses of variance were conducted to examine differences in demographic and clinical characteristics across the phenotypes, and chi-squared tests were used to determine whether the phenotype distribution differed between the Mumbai sample and published data from a multicenter US sample. RESULTS Using the IC-CoDE criteria, 47% of our cohort showed an intact cognitive profile, 31% a single-domain impairment, 16% a bidomain impairment, and 6% a generalized impairment profile. The distribution of cognitive phenotypes was similar between the Indian and US cohorts for the intact and bidomain phenotypes, but differed for the single and generalized domains. There was a larger proportion of patients with single-domain impairment in the Indian cohort and a larger proportion with generalized impairment in the US cohort. Among patients with single-domain impairment, a greater proportion exhibited memory impairment in the Indian cohort, whereas a greater proportion showed language impairment in the US sample, likely reflecting differences in language administration procedures and sample characteristics including a higher rate of mesial temporal sclerosis in the Indian sample. SIGNIFICANCE Our results demonstrate the applicability of IC-CoDE in a group of culturally and linguistically diverse patients from India. This approach enhances our understanding of cognitive variability across cultures and enables harmonized and inclusive research into the neuropsychological aspects of epilepsy.
Collapse
Affiliation(s)
- Urvashi Shah
- Department of Neurology, King Edward Memorial Hospital, Mumbai, India
| | - Shivani Rajeshree
- Department of Neurology, King Edward Memorial Hospital, Mumbai, India
- Department of Physical Medicine and Rehabilitation, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India
| | - Aparna Sahu
- Department of Neurology, King Edward Memorial Hospital, Mumbai, India
| | - Mayuri Kalika
- Department of Neurology, King Edward Memorial Hospital, Mumbai, India
| | - Sangeeta Ravat
- Department of Neurology, King Edward Memorial Hospital, Mumbai, India
| | - Anny Reyes
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, San Diego, California, USA
| | - Robyn M. Busch
- Department of Neurology, Neurological Institute, Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Carrie R. McDonald
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
9
|
Mukaino T. [Memory impairments in temporal lobe epilepsy]. Rinsho Shinkeigaku 2024; 64:453-459. [PMID: 38910118 DOI: 10.5692/clinicalneurol.cn-001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Temporal lobe epilepsy is known to present with various cognitive impairments, among which memory deficits are frequently reported by patients. Memory deficits can be classified into two types: classical hippocampal amnesia, which is characterized by abnormalities detected in neuropsychological assessments, and atypical memory deficits, such as accelerated long-term amnesia and autobiographical memory impairment, which cannot be identified using standard testing methods. These deficits are believed to arise from a complex interplay among structural brain abnormalities, interictal epileptic discharges, pharmacological factors, and psychological states. While fundamental treatments are limited, there are opportunities for interventions such as environmental adjustments and rehabilitation. This review article aims to provide a comprehensive overview of the types, underlying pathophysiology, and intervention methods for memory disorders observed in patients with temporal lobe epilepsy.
Collapse
|
10
|
Cano-López I, Catalán-Aguilar J, Lozano-García A, Hidalgo V, Hampel KG, Tormos-Pons P, Salvador A, Villanueva V, González-Bono E. Cognitive phenotypes in patients with drug-resistant temporal lobe epilepsy: Relationships with cortisol and affectivity. Clin Neuropsychol 2024:1-24. [PMID: 38965831 DOI: 10.1080/13854046.2024.2375605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Drug-resistant temporal lobe epilepsy (TLE) is a neurological disorder characterized by cognitive deficits. This study examined whether patients with TLE and different cognitive phenotypes differ in cortisol levels and affectivity while controlling for demographic and clinical variables. Methods: In this cross-sectional study, 79 adults with TLE underwent neuropsychological evaluation in which memory, language, attention/processing speed, executive function, and affectivity were assessed. Six saliva samples were collected in the afternoon to examine the ability of the hypothalamic-pituitary-adrenal (HPA) axis to descend according to the circadian rhythm (C1 to C6). The cortisol area under the curve concerning ground (AUCg) was computed to examine global cortisol secretion. RESULTS Three cognitive phenotypes were identified: memory impairment, generalized impairment, and no impairment. The memory-impairment phenotype showed higher cortisol levels at C4, C5, and C6 than the other groups (p = 0.03, η2 = 0.06), higher cortisol AUCg than the generalized-impairment phenotype (p = 0.004, η2 = 0.14), and a significant reduction in positive affectivity after the evaluation (p = 0.026, η2 = 0.11). Higher cortisol AUCg and reductions in positive affectivity were significant predictors of the memory-impairment phenotype (p < 0.001; Cox and Snell R2 = 0.47). CONCLUSIONS Patients with memory impairment had a slower decline in cortisol levels in the afternoon, which could be interpreted as an inability of the HPA axis to inhibit itself. Thus, chronic stress may influence hippocampus-dependent cognitive function more than other cognitive functions in patients with TLE.
Collapse
Affiliation(s)
- Irene Cano-López
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Judit Catalán-Aguilar
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Alejandro Lozano-García
- Faculty of Health Sciences, Valencian International University, Valencia, Spain
- Department of Psychology, Universidad Europea de Valencia, Valencia, Spain
| | - Vanesa Hidalgo
- Department of Psychology and Sociology, Area of Psychobiology, Social and Human Sciences Center, University of Zaragoza, Teruel, Spain
| | - Kevin G Hampel
- Refractory Epilepsy Unit, Neurology Service, Member of ERN EPICARE, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Paula Tormos-Pons
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Alicia Salvador
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Neurology Service, Member of ERN EPICARE, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esperanza González-Bono
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| |
Collapse
|
11
|
Ren Q, Wu H, Zhang Y, Dai J, Chang Z, Nie J, Wang B, Fang Y. Nongenetic Precise Neuromodulation and Spatiotemporal Neuroprotection for Epilepsy Therapy via Rationally Designed Multifunctional Nanotransducer. ACS NANO 2024; 18:16853-16866. [PMID: 38896491 DOI: 10.1021/acsnano.4c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The precise modulation of electrical activity in specific neuronal populations is paramount for rectifying abnormal neurological functions and is a critical element in the therapeutic arsenal for neurological disorders. However, achieving a balance between minimal invasiveness and robust neuroprotection poses a considerable challenge. Herein, we present a nanoneuromodulation strategy integrating neuroprotective features to effectively address epilepsy with minimal invasiveness and enable wireless functionality. Strategically engineered nanotransducer, adorned with platinum (Pt) decoration with titanium disulfide (TiS2) (TiS2/Pt), enables precise modulation of neuronal electrical activity in vitro and in vivo, ensuring exceptional temporal fidelity under millisecond-precision near-infrared (NIR) light pulses irradiation. Concurrently, TiS2/Pt showcase a pronounced enhancement in enzyme-mimicking activity, offering a robust defense against oxidative neurological injury in vitro. Nanotransducer-enabled wireless neuromodulation with biocatalytic neuroprotective capacity is highly effective in alleviating epileptic high-frequency neural activity and diminishing oxidative stress levels, thereby restoring redox equilibrium. This integrated therapeutic approach reduces the severity of epilepsy, demonstrating minimal invasiveness and obviating the requirements for genetic manipulation and optical fiber implantation, while providing an alternative avenue for neurological disorder treatment.
Collapse
Affiliation(s)
- Qinjuan Ren
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Haofan Wu
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Ya Zhang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Jing Dai
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Yin Fang
- Research Center for Translational Medicine, Shanghai East Hospital affiliated to Tongji University School of Medicine; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
12
|
Kaestner E, Stasenko A, Schadler A, Roth R, Hewitt K, Reyes A, Qiu D, Bonilha L, Voets N, Hu R, Willie J, Pedersen N, Shih J, Ben-Haim S, Gross R, Drane D, McDonald CR. Impact of white matter networks on risk for memory decline following resection versus ablation in temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 2024; 95:663-670. [PMID: 38212059 PMCID: PMC11187680 DOI: 10.1136/jnnp-2023-332682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND With expanding neurosurgical options in epilepsy, it is important to characterise each options' risk for postoperative cognitive decline. Here, we characterise how patients' preoperative white matter (WM) networks relates to postoperative memory changes following different epilepsy surgeries. METHODS Eighty-nine patients with temporal lobe epilepsy with T1-weighted and diffusion-weighted imaging as well as preoperative and postoperative verbal memory scores (prose recall) underwent either anterior temporal lobectomy (ATL: n=38) or stereotactic laser amygdalohippocampotomy (SLAH; n=51). We computed laterality indices (ie, asymmetry) for volume of the hippocampus and fractional anisotropy (FA) of two deep WM tracts (uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF)). RESULTS Preoperatively, left-lateralised FA of the ILF was associated with higher prose recall (p<0.01). This pattern was not observed for the UF or hippocampus (ps>0.05). Postoperatively, right-lateralised FA of the UF was associated with less decline following left ATL (p<0.05) but not left SLAH (p>0.05), while right-lateralised hippocampal asymmetry was associated with less decline following both left ATL and SLAH (ps<0.05). After accounting for preoperative memory score, age of onset and hippocampal asymmetry, the association between UF and memory decline in left ATL remained significant (p<0.01). CONCLUSIONS Asymmetry of the hippocampus is an important predictor of risk for memory decline following both surgeries. However, asymmetry of UF integrity, which is only severed during ATL, is an important predictor of memory decline after ATL only. As surgical procedures and pre-surgical mapping evolve, understanding the role of frontal-temporal WM in memory networks could help to guide more targeted surgical approaches to mitigate cognitive decline.
Collapse
Affiliation(s)
- Erik Kaestner
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Alena Stasenko
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Adam Schadler
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Rebecca Roth
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelsey Hewitt
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anny Reyes
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deqiang Qiu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina System, Columbia, South Carolina, USA
| | | | - Ranliang Hu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Jon Willie
- Neurosurgery, Washington University in St Louis, St Louis, Missouri, USA
| | | | - Jerry Shih
- Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Sharona Ben-Haim
- Neurosurgery, University of California, San Diego, La Jolla, California, USA
| | - Robert Gross
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel Drane
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Carrie R McDonald
- Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California, USA
- Psychiatry, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Wang F, Ren J, Cui W, Zhou Y, Yao P, Lai X, Pang Y, Chen Z, Lin Y, Liu H. Verbal memory network mapping in individual patients predicts postoperative functional impairments. Hum Brain Mapp 2024; 45:e26691. [PMID: 38703114 PMCID: PMC11069337 DOI: 10.1002/hbm.26691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Verbal memory decline is a significant concern following temporal lobe surgeries in patients with epilepsy, emphasizing the need for precision presurgical verbal memory mapping to optimize functional outcomes. However, the inter-individual variability in functional networks and brain function-structural dissociations pose challenges when relying solely on group-level atlases or anatomical landmarks for surgical guidance. Here, we aimed to develop and validate a personalized functional mapping technique for verbal memory using precision resting-state functional MRI (rs-fMRI) and neurosurgery. A total of 38 patients with refractory epilepsy scheduled for surgical interventions were enrolled and 28 patients were analyzed in the study. Baseline 30-min rs-fMRI scanning, verbal memory and language assessments were collected for each patient before surgery. Personalized verbal memory networks (PVMN) were delineated based on preoperative rs-fMRI data for each patient. The accuracy of PVMN was assessed by comparing post-operative functional impairments and the overlapping extent between PVMN and surgical lesions. A total of 14 out of 28 patients experienced clinically meaningful declines in verbal memory after surgery. The personalized network and the group-level atlas exhibited 100% and 75.0% accuracy in predicting postoperative verbal memory declines, respectively. Moreover, six patients with extra-temporal lesions that overlapped with PVMN showed selective impairments in verbal memory. Furthermore, the lesioned ratio of the personalized network rather than the group-level atlas was significantly correlated with postoperative declines in verbal memory (personalized networks: r = -0.39, p = .038; group-level atlas: r = -0.19, p = .332). In conclusion, our personalized functional mapping technique, using precision rs-fMRI, offers valuable insights into individual variability in the verbal memory network and holds promise in precision verbal memory network mapping in individuals.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | | | | | | | - Peisen Yao
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xuemiao Lai
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yue Pang
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhili Chen
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research InstituteThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Department of Neurosurgery, Binhai Branch of National Regional Medical CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
- Fujian Provincial Institutes of Brain Disorders and Brain SciencesThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Hesheng Liu
- Changping LaboratoryBeijingChina
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| |
Collapse
|
14
|
Miron G, Müller PM, Hohmann L, Oltmanns F, Holtkamp M, Meisel C, Chien C. Cortical Thickness Patterns of Cognitive Impairment Phenotypes in Drug-Resistant Temporal Lobe Epilepsy. Ann Neurol 2024; 95:984-997. [PMID: 38391006 DOI: 10.1002/ana.26893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE In temporal lobe epilepsy (TLE), a taxonomy classifying patients into 3 cognitive phenotypes has been adopted: minimally, focally, or multidomain cognitively impaired (CI). We examined gray matter (GM) thickness patterns of cognitive phenotypes in drug-resistant TLE and assessed potential use for predicting postsurgical cognitive outcomes. METHODS TLE patients undergoing presurgical evaluation were categorized into cognitive phenotypes. Network edge weights and distances were calculated using type III analysis of variance F-statistics from comparisons of GM regions within each TLE cognitive phenotype and age- and sex-matched healthy participants. In resected patients, logistic regression models (LRMs) based on network analysis results were used for prediction of postsurgical cognitive outcome. RESULTS A total of 124 patients (63 females, mean age ± standard deviation [SD] = 36.0 ± 12.0 years) and 117 healthy controls (63 females, mean age ± SD = 36.1 ± 12.0 years) were analyzed. In the multidomain CI group (n = 66, 53.2%), 28 GM regions were significantly thinner compared to healthy controls. Focally impaired patients (n = 37, 29.8%) showed 13 regions, whereas minimally impaired patients (n = 21, 16.9%) had 2 significantly thinner GM regions. Regions affected in both multidomain and focally impaired patients included the anterior cingulate cortex, medial prefrontal cortex, medial temporal, and lateral temporal regions. In 69 (35 females, mean age ± SD = 33.6 ± 18.0 years) patients who underwent surgery, LRMs based on network-identified GM regions predicted postsurgical verbal memory worsening with a receiver operating curve area under the curve of 0.70 ± 0.15. INTERPRETATION A differential pattern of GM thickness can be found across different cognitive phenotypes in TLE. Including magnetic resonance imaging with clinical measures associated with cognitive profiles has potential in predicting postsurgical cognitive outcomes in drug-resistant TLE. ANN NEUROL 2024;95:984-997.
Collapse
Affiliation(s)
- Gadi Miron
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Manuel Müller
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Louisa Hohmann
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Frank Oltmanns
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Martin Holtkamp
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Epilepsy Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental Clinical and Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Feng Y, Diego KS, Dong Z, Wick ZC, Page-Harley L, Page-Harley V, Schnipper J, Lamsifer SI, Pennington ZT, Vetere LM, Philipsberg PA, Soler I, Jurkowski A, Rosado CJ, Khan NN, Cai DJ, Shuman T. Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584697. [PMID: 38559224 PMCID: PMC10979962 DOI: 10.1101/2024.03.12.584697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within MEC and between HPC-MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.
Collapse
Affiliation(s)
- Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Zhe Dong
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | - Ivan Soler
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Nadia N Khan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
16
|
Aljishi A, Sherman BE, Huberdeau DM, Obaid S, Khan K, Lamsam L, Zibly Z, Sivaraju A, Turk-Browne NB, Damisah EC. Statistical learning in epilepsy: Behavioral and anatomical mechanisms in the human brain. Epilepsia 2024; 65:753-765. [PMID: 38116686 PMCID: PMC10948305 DOI: 10.1111/epi.17871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Statistical learning, the fundamental cognitive ability of humans to extract regularities across experiences over time, engages the medial temporal lobe (MTL) in the healthy brain. This leads to the hypothesis that statistical learning (SL) may be impaired in patients with epilepsy (PWE) involving the temporal lobe, and that this impairment could contribute to their varied memory deficits. In turn, studies done in collaboration with PWE, that evaluate the necessity of MTL circuitry through disease and causal perturbations, provide an opportunity to advance basic understanding of SL. METHODS We implemented behavioral testing, volumetric analysis of the MTL substructures, and direct electrical brain stimulation to examine SL across a cohort of 61 PWE and 28 healthy controls. RESULTS We found that behavioral performance in an SL task was negatively associated with seizure frequency irrespective of seizure origin. The volume of hippocampal subfields CA1 and CA2/3 correlated with SL performance, suggesting a more specific role of the hippocampus. Transient direct electrical stimulation of the hippocampus disrupted SL. Furthermore, the relationship between SL and seizure frequency was selective, as behavioral performance in an episodic memory task was not impacted by seizure frequency. SIGNIFICANCE Overall, these results suggest that SL may be hippocampally dependent and that the SL task could serve as a clinically useful behavioral assay of seizure frequency that may complement existing approaches such as seizure diaries. Simple and short SL tasks may thus provide patient-centered endpoints for evaluating the efficacy of novel treatments in epilepsy.
Collapse
Affiliation(s)
- Ayman Aljishi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
| | - Brynn E. Sherman
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Sami Obaid
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kamren Khan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Layton Lamsam
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zion Zibly
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicholas B. Turk-Browne
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - Eyiyemisi C. Damisah
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Lin CW, Yu HY, Chou CC, Li RH, Lu YJ, Wang WH. Development and construction of the Multidimensional Self-Efficacy Scale for Epilepsy (MSESE) and its psychometric properties. Epilepsy Behav 2024; 152:109667. [PMID: 38301456 DOI: 10.1016/j.yebeh.2024.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE It has become evident that patients with epilepsy require strong self-efficacy support in various domains, including work, social interaction, and academic performance, to ensure their complete social functioning. Nevertheless, previous studies have predominantly assessed the self-efficacy of individuals with epilepsy from a singular perspective of disease management. This study aimed to develop the Multidimensional Self-Efficacy Scale for Epilepsy (MSESE) to assess multiple dimensions and establish its psychometric properties. METHODS We compiled a total of 25 questions for the initial version of the questionnaire based on a review of the literature and insights from experts, patients, and family members. The study included 180 adult patients with epilepsy who met the research criteria, with 126 of them serving as pre-test samples. All participants completed the MSESE, Brief Symptom Rating Scale-50 (BSRS-50), Rosenberg Self-Esteem Scale-Chinese version (RSES-C), and General Self-Efficacy Scale (GSES). RESULTS The final scale consisted of 12 items across four dimensions, with item factor loadings ranging from .51 to .90. Most of the fit indices indicated a good fit. Construct validity was established through significant correlations with the BSRS-50, RSES-C, and GSES (r = -0.51 to 0.69, p < 0.01). Internal consistency coefficients for the MSESE were strong at .90, with individual dimensions ranging from 0.71 to 0.89. The MSESE also demonstrated a satisfactory test-retest reliability of 0.72. CONCLUSIONS The MSESE is a convenient, multidimensional, and easy-to-use scale with good psychometric properties, making it suitable for both clinical assessments and research purposes.
Collapse
Affiliation(s)
- Che-Wei Lin
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Yu Yu
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Chen Chou
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ren-Hau Li
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Jiun Lu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Han Wang
- Department of Psychology, Kaohsiung Medical University and Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan.
| |
Collapse
|
18
|
Li HT, Viskaitis P, Bracey E, Peleg-Raibstein D, Burdakov D. Transient targeting of hypothalamic orexin neurons alleviates seizures in a mouse model of epilepsy. Nat Commun 2024; 15:1249. [PMID: 38341419 PMCID: PMC10858876 DOI: 10.1038/s41467-024-45515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Lateral hypothalamic (LH) hypocretin/orexin neurons (HONs) control brain-wide electrical excitation. Abnormally high excitation produces epileptic seizures, which affect millions of people and need better treatments. HON population activity spikes from minute to minute, but the role of this in seizures is unknown. Here, we describe correlative and causal links between HON activity spikes and seizures. Applying temporally-targeted HON recordings and optogenetic silencing to a male mouse model of acute epilepsy, we found that pre-seizure HON activity predicts and controls the electrophysiology and behavioral pathology of subsequent seizures. No such links were detected for HON activity during seizures. Having thus defined the time window where HONs influence seizures, we targeted it with LH deep brain stimulation (DBS), which inhibited HON population activity, and produced seizure protection. Collectively, these results uncover a feature of brain activity linked to seizures, and demonstrate a proof-of-concept treatment that controls this feature and alleviates epilepsy.
Collapse
Affiliation(s)
- Han-Tao Li
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center and Chang Gung University College of Medicine, 333, Taoyuan, Taiwan
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Eva Bracey
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology | ETH Zurich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
19
|
Cairós-González M, Verche E, Hernández S, Alonso MÁ. Cognitive flexibility impairment in temporal lobe epilepsy: The impact of epileptic foci lateralization on executive functions. Epilepsy Behav 2024; 151:109587. [PMID: 38159506 DOI: 10.1016/j.yebeh.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Temporal Lobe Epilepsy (TLE) has been associated with memory impairments, which are typically linked to hippocampal and mesial temporal cortex lesions. Considering the presence of extensive bidirectional frontotemporal connections, it can be hypothesized that executive dysfunction in TLE is modulated by the lateralization of the epileptic foci. MATERIAL AND METHODS A comprehensive neuropsychological executive functions protocol was administered to 63 participants, including 42 individuals with temporal lobe epilepsy (20 with right-TLE and 22 with left-TLE) and 21 healthy controls aged 20-49. RESULTS The results indicate that TLE patients exhibit poorer executive performance compared to healthy controls in working memory (F(2,60) = 4.18, p <.01), planning (F(2,60) = 4.71, p <.05), set shifting (F(2,60) = 10.1, p <.001), phonetic verbal fluency (F(2,60) = 11.71, p <.01) and semantic verbal fluency (F(2,60) = 9.61, p <.001. No significant differences were found in cognitive inhibition. Furthermore, right-TLE patients showed lower performance than left-TLE in set shifting (F(1,61) = 6.45, p <.05), while no significant differences were observed in working memory, planning, inhibition, and verbal fluency. CONCLUSIONS This research emphasize the importance of considering the lateralization of the temporal lobe focus to achieve a more accurate neuropsychological characterization. The cognitive differences between left and right TLE patients highlight the need for individualized approaches in their treatment and care.
Collapse
Affiliation(s)
- Mariana Cairós-González
- Faculty of Health Sciences, Valencian International University, Pintor Sorolla St., 21, 46002, Valencia, Spain.
| | - Emilio Verche
- Department of Psychobiology and Methodology in Behavioural Sciences, University Complutense de Madrid, Rector Royo Villanova St., 1, 28040, Madrid, Spain
| | - Sergio Hernández
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Psychology and Language Therapy, University of La Laguna, Campus de Guajara, 456, 38200, San Cristóbal de La Laguna, Spain
| | - María Ángeles Alonso
- Department of Cognitive Psychology, Social and Organizational Faculty of Psychology and Language Therapy, University of La Laguna, Campus de Guajara, 456, 38200, San Cristóbal de La Laguna, Spain
| |
Collapse
|
20
|
Hernández G, Sala-Padró J, Adell V, Rico I, Gasa-Roqué A, Morandeira F, Campdelacreu J, Gascon J, Falip M. Cognitive decline in adult-onset temporal lobe epilepsy: Insights from aetiology. Clin Neurol Neurosurg 2024; 237:108159. [PMID: 38354426 DOI: 10.1016/j.clineuro.2024.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE To identify patients with adult-onset temporal lobe epilepsy (TLE) at risk of developing cognitive decline. Detecting which patients, aetiologies, or factors are most closely related with memory decline would allow us to identify patients that would eventually benefit from more specific treatment. METHODS Single centre, retrospective analysis of a prospectively followed-up cohort study, including all patients with the diagnosis of adult-onset TLE during 2013, with a minimum follow-up of five years. Memory and cognitive decline were analysed at 5 years and at last follow-up. RESULTS Of 89 initially selected patients, 71 were included. After 5 years, 11/71 (15.5%) patients suffered cognitive decline, of which 1/71 (4%) developed dementia. At last follow-up (range 65-596 m) a total of 34/71 (47.8%) patients were diagnosed with cognitive decline, specifically either memory decline or dementia. Cognitive decline at 5 years was related to: 1. Age at onset: 62.65 years (SD 9.04) in the group with cognitive decline vs 50.33 y. (SD 13.02 in the group without cognitive decline; p=0.004); 2. Onset as status epilepticus (3/6 in patients with memory decline vs 8/65 in patients without cognitive decline; p=0.04); 3. Immune aetiology: 42% compared with unknown (10%) and structural (10%) aetiologies; p=0.036; 4. Hippocampal sclerosis on MRI: 5/11 patients with cognitive decline vs 9/51 patients without cognitive decline; p=0.035. Cognitive decline was not related to seizure frequency, sex, or age (p=0.78; p=0.40; p=0.95, respectively). CONCLUSIONS Older age at epilepsy onset, onset as status epilepticus, immune aetiology, and hippocampal sclerosis are risk factors for developing cognitive decline in patients with adult-onset temporal lobe epilepsy.
Collapse
Affiliation(s)
- G Hernández
- Epilepsy Unit, Neurology Service, Hospital Universitari de Bellvitge, Neurological Disease and Neurogenetics group, Neuroscience Area, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - J Sala-Padró
- Epilepsy Unit, Neurology Service, Hospital Universitari de Bellvitge, Neurological Disease and Neurogenetics group, Neuroscience Area, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - V Adell
- Hospital Consorci Sanitari Alt Penedès i Garraf, Barcelona, Spain
| | - I Rico
- Neuropsychology Department, Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - A Gasa-Roqué
- Neuropsychology Department, Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - F Morandeira
- Immunology Department, Biochemistry Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - J Campdelacreu
- Dementia Unit, Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - J Gascon
- Dementia Unit, Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - M Falip
- Epilepsy Unit, Neurology Service, Hospital Universitari de Bellvitge, Neurological Disease and Neurogenetics group, Neuroscience Area, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| |
Collapse
|
21
|
Paschen E, Kleis P, Vieira DM, Heining K, Boehler C, Egert U, Häussler U, Haas CA. On-demand low-frequency stimulation for seizure control: efficacy and behavioural implications. Brain 2024; 147:505-520. [PMID: 37675644 DOI: 10.1093/brain/awad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults, is often refractory to medication and associated with hippocampal sclerosis. Deep brain stimulation represents an alternative treatment option for drug-resistant patients who are ineligible for resective brain surgery. In clinical practice, closed-loop stimulation at high frequencies is applied to interrupt ongoing seizures, yet has (i) a high incidence of false detections; (ii) the drawback of delayed seizure-suppressive intervention; and (iii) limited success in sclerotic tissue. As an alternative, low-frequency stimulation (LFS) has been explored recently in patients with focal epilepsies. In preclinical epilepsy models, hippocampal LFS successfully prevented seizures when applied continuously. Since it would be advantageous to reduce the stimulation load, we developed a protocol for on-demand LFS. Given the importance of the hippocampus for navigation and memory, we investigated potential consequences of LFS on hippocampal function. To this end, we used the intrahippocampal kainate mouse model, which recapitulates the key features of MTLE, including spontaneous seizure activity and hippocampal sclerosis. Specifically, our online detection algorithm monitored epileptiform activity in hippocampal local field potential recordings and identified short epileptiform bursts preceding focal seizure clusters, triggering hippocampal LFS to stabilize the network state. To probe behavioural performance, we tested the acute influence of LFS on anxiety-like behaviour in the light-dark box test, spatial and non-spatial memory in the object location memory and novel object recognition test, as well as spatial navigation and long-term memory in the Barnes maze. On-demand LFS was almost as effective as continuous LFS in preventing focal seizure clusters but with a significantly lower stimulation load. When we compared the behavioural performance of chronically epileptic mice to healthy controls, we found that both groups were equally mobile, but epileptic mice displayed an increased anxiety level, altered spatial learning strategy and impaired memory performance. Most importantly, with the application of hippocampal LFS before behavioural training and test sessions, we could rule out deleterious effects on cognition and even show an alleviation of deficits in long-term memory recall in chronically epileptic mice. Taken together, our findings may provide a promising alternative to current therapies, overcoming some of their major limitations, and inspire further investigation of LFS for seizure control in focal epilepsy syndromes.
Collapse
Affiliation(s)
- Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Piret Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Diego M Vieira
- Biomicrotechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Freiburg 79108, Germany
| | - Katharina Heining
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK), Bioelectronic Microtechnology (BEMT), University of Freiburg, Freiburg 79108, Germany
| | - Ulrich Egert
- Biomicrotechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Freiburg 79108, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
22
|
Fu CH, You JC, Mohila C, Rissman RA, Yoshor D, Viaene AN, Chin J. Hippocampal ΔFosB expression is associated with cognitive impairment in a subgroup of patients with childhood epilepsies. Front Neurol 2024; 14:1331194. [PMID: 38274865 PMCID: PMC10808715 DOI: 10.3389/fneur.2023.1331194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is often comorbid with other neurological and neurodegenerative diseases, such as Alzheimer's disease (AD). Patients with recurrent seizures often present with cognitive impairment. However, it is unclear how seizures, even when infrequent, produce long-lasting deficits in cognition. One mechanism may be seizure-induced expression of ΔFosB, a long-lived transcription factor that persistently regulates expression of plasticity-related genes and drives cognitive dysfunction. We previously found that, compared with cognitively-intact subjects, the activity-dependent expression of ΔFosB in the hippocampal dentate gyrus (DG) was increased in individuals with mild cognitive impairment (MCI) and in individuals with AD. In MCI patients, higher ΔFosB expression corresponded to lower Mini-Mental State Examination scores. Surgically resected DG tissue from patients with temporal lobe epilepsy also showed robust ΔFosB expression; however, it is unclear whether ΔFosB expression also corresponds to cognitive dysfunction in non-AD-related epilepsy. To test whether DG ΔFosB expression is indicative of cognitive impairment in epilepsies with different etiologies, we assessed ΔFosB expression in surgically-resected hippocampal tissue from 33 patients with childhood epilepsies who had undergone Wechsler Intelligence Scale for Children (WISC) testing prior to surgery. We found that ΔFosB expression is inversely correlated with Full-Scale Intelligence Quotient (FSIQ) in patients with mild to severe intellectual disability (FSIQ < 85). Our data indicate that ΔFosB expression corresponds to cognitive impairment in epilepsies with different etiologies, supporting the hypothesis that ΔFosB may epigenetically regulate gene expression and impair cognition across a wide range of epilepsy syndromes.
Collapse
Affiliation(s)
- Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. You
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Carrie Mohila
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- Veteran's Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Kokkinos V, Seimenis I. Concordance of verbal memory and language fMRI lateralization in people with epilepsy. J Neuroimaging 2024; 34:95-107. [PMID: 37968766 DOI: 10.1111/jon.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND AND PURPOSE This work investigates verbal memory functional MRI (fMRI) versus language fMRI in terms of lateralization, and assesses the validity of performing word recognition during the functional scan. METHODS Thirty patients with a diagnosis of epilepsy underwent verbal memory, visuospatial memory, and language fMRI. We used word encoding, word recognition, image encoding, and image recognition memory tasks, and semantic description, reading comprehension, and listening comprehension language tasks. We used three common lateralization metrics: network spatial distribution, maximum statistical value, and laterality index (LI). RESULTS Lateralization of signal spatial distribution resulted in poor similarity between verbal memory and language fMRI tasks. Signal maximum lateralization showed significant (>.8) but not perfect (1) similarity. Word encoding LI showed significant correlation only with listening comprehension LI (p = .016). Word recognition LI was significantly correlated with expressive language semantic description LI (p = .024) and receptive language reading and listening comprehension LIs (p = .015 and p = .019, respectively). There was no correlation between LIs of the visuospatial tasks and LIs of the language tasks. CONCLUSIONS Our results support the association between language and verbal memory lateralization, optimally determined by LI quantification, and the introduction of quantitative means for language fMRI interpretation in clinical settings where verbal memory lateralization is imperative.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Comprehensive Epilepsy Center, Northwestern Memorial Hospital, Chicago, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupoli, Greece
| | - Ioannis Seimenis
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupoli, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Mo J, Guo Z, Wang X, Zhang J, Hu W, Shao X, Sang L, Zheng Z, Zhang C, Zhang K. Magnetic resonance-guided laser interstitial thermal therapy vs. open surgery for drug-resistant mesial temporal lobe epilepsy: a propensity score matched retrospective cohort study. Int J Surg 2024; 110:306-314. [PMID: 37800596 PMCID: PMC10793731 DOI: 10.1097/js9.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) and traditional open surgery (OS) are effective and safe options for patients with drug-resistant mesial temporal lobe epilepsy (DR-mTLE). However, their superiority in seizure control and preservation of functional abilities remains unclear. This study aimed to compare the surgical outcomes of MRgLITT and OS. MATERIALS AND METHODS This multicenter retrospective cohort study included patients with DR-mTLE who underwent MRgLITT or OS at three centres between 2015 and 2023. The data on patient demographics, presurgical non-invasive evaluation, stereoelectroencephalography (SEEG) implantation, memory alteration, and seizure outcomes were collected. Propensity score matching (PSM) analysis was conducted for the comparison of seizure control and functional preservation between two surgical approaches. RESULTS Of the 244 individuals who met the study criteria, 33 underwent MRgLITT and 211 OS. The median (interquartile range) age at seizure onset was 22.0 (13.0) and 12.3 (10.0) years in the MRgLITT and OS groups, respectively. The first PSM, based on demographic and non-invasive information, resulted in 26 matched pairs for the primary analysis. There were no significant differences in memory preservation ( P = 0.95) or surgical outcomes ( P = 0.96) between the groups. The second PSM, based on demographics and SEEG implantation, yielded 32 matched pairs for the sensitivity analysis, showing similar results. Subset analysis of early and late MRgLITT cases revealed no statistically significant differences in the proportion of patients with memory decline ( P = 0.42) or seizure control ( P = 1.00). Patients who underwent SEEG implantation were 96% less likely to achieve seizure freedom after MRgLITT ( P = 0.02). CONCLUSION Minimally invasive MRgLITT is associated with memory preservation and seizure control, similar to traditional OS. MRgLITT is effective and safe for DR-mTLE and is relevant for future prospective randomized trials on dominant-side mTLE, providing practical implications for guiding neurosurgeons in the selection of surgical approaches.
Collapse
Affiliation(s)
- Jiajie Mo
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Zhihao Guo
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Xiu Wang
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Jianguo Zhang
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Wenhan Hu
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Xiaoqiu Shao
- Neurology, Beijing Tiantan Hospital
- China National Clinical Research Center for Neurological Disease, NCRC-ND
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Zhong Zheng
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Chao Zhang
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Kai Zhang
- Departments ofNeurosurgery
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| |
Collapse
|
25
|
Gangemi A, Picciotto G, Mento C, Cardile S, Fabio RA. Neurophysiological and neuropsychological parameters in patients with temporal lobe epilepsy. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-7. [PMID: 38147434 DOI: 10.1080/23279095.2023.2297296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of localization-related epilepsy (LRE) and has been extensively studied in the field of neuropsychology due to its significant association with cognitive impairments. Cognitive decline has long been recognized as a consequence of this form of epilepsy, with previous studies primarily focusing on neurophysiological measures. In this study, both neurophysiological and neuropsychological factors were analyzed in TLE patients compared to healthy control subjects. The Montreal Cognitive Assessment (MoCA) and Mini Mental State Examination (MMSE) tests were used to assess neuropsychological processes, while cognitive event-related potential (ERPs), particularly P300, were employed to analyze neurophysiological parameters. The study involved 21 TLE patients (mean age = 61.43) and 21 healthy control subjects. The results revealing that TLE patients scored significantly lower, indicating deficits in specific cognitive areas. The study also observed abnormalities in the ERPs, particularly in the assessment of P300 amplitude and latency, that may be indicative of underlying neural dysfunction related to attention and cognitive processing. In conclusion, the study provides compelling evidence of the association between TLE and a high incidence of cognitive deficits and decline. By considering both neurophysiological and neuropsychological factors, the study sheds light on the comprehensive impact of TLE on various cognitive domains and emphasizes the importance of early identification and management of cognitive impairments in TLE patients.
Collapse
Affiliation(s)
| | - Giulia Picciotto
- Department of Clinical and Experimental Medicine, University of Messina
| | - Carmela Mento
- Department of Biomedical and Dental Sciences and of Morphological and Functional images, university of Messina, Sicily, Italy
| | - Silvia Cardile
- Department of Economics, University of Messina, Sicily, Italy
| | | |
Collapse
|
26
|
Castro‐Lima H, Passarelli V, Ribeiro ES, Adda CC, Preturlon‐Santos APP, Jorge CL, Valério R, Tzu WH, Boa‐Sorte N, Pipek LZ, Castro LHM. Bilateral ictal EEG is associated with better memory outcome after hippocampal sclerosis surgery. Epilepsia Open 2023; 8:1532-1540. [PMID: 37750472 PMCID: PMC10690677 DOI: 10.1002/epi4.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE To compare memory outcomes after surgery for unilateral hippocampal sclerosis (HS)-associated epilepsy in patients with unilateral and bilateral ictal electrographic involvement. METHODS We prospectively evaluated HS patients, aged 18-55 years and IQ ≥70. Left (L) and right (R) surgical groups underwent noninvasive video-EEG monitoring and Wada test. We classified patients as Ipsilateral if ictal EEG was restricted to the HS side, or Bilateral, if at least one seizure onset occurred contralaterally to the HS, or if ictal discharge evolved to the opposite temporal region. Patients who declined surgery served as controls. Memory was evaluated on two occasions with Rey Auditory-Verbal Learning Test and Rey Visual-Design Learning Test. Baseline neuropsychological test scores were compared between groups. Pre- and postoperative scores were compared within each group. Reliable change index Z-scores (RCI) were obtained using controls as references, and compared between surgical groups. RESULTS We evaluated 64 patients. Patients were classified as: L-Ipsilateral (9), L-Bilateral (15), L-Control (9), R-Ipsilateral (10), R-Bilateral (9), and R-Control (12). On preoperative evaluation, memory performance did not differ among surgical groups. Right HS patients did not present postoperative memory decline. L-Ipsilateral group presented postoperative decline on immediate (P = 0.036) and delayed verbal recall (P = 0.011), while L-Bilateral did not decline. L-Ipsilateral had lower RCI Z-scores, indicating delayed verbal memory decline compared to L-Bilateral (P = 0.012). SIGNIFICANCE Dominant HS patients with bilateral ictal involvement presented less pronounced postoperative verbal memory decline compared to patients with exclusive ipsilateral ictal activity. Surgery was indicated in these patients regardless of memory impairment on neuropsychological testing, since resection of the left sclerotic hippocampus could result in cessation of contralateral epileptiform activity, and, therefore, improved memory function.
Collapse
Affiliation(s)
| | - Valmir Passarelli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Elyse S Ribeiro
- Division of Psychology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Carla C Adda
- Division of Psychology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Ana Paula P Preturlon‐Santos
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Carmen L Jorge
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Rosa Valério
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Wen Hung Tzu
- Department of Neurosurgery, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Ney Boa‐Sorte
- Bahiana School of Medicine and Public HealthSalvadorBrazil
| | - Leonardo Zumerkorn Pipek
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| | - Luiz Henrique M Castro
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de MedicinaUniversity of Sao PauloSão PauloBrazil
| |
Collapse
|
27
|
Lu O, Kouser T, Skylar-Scott IA. Alzheimer's disease and epilepsy: shared neuropathology guides current and future treatment strategies. Front Neurol 2023; 14:1241339. [PMID: 37936917 PMCID: PMC10626492 DOI: 10.3389/fneur.2023.1241339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Epilepsy is a cause of profound disability in patients with Alzheimer's disease (AD). The risk of being diagnosed with AD increases the risk for epilepsy, and in parallel, a history of epilepsy increases the likelihood of the development of AD. This bi-directional relationship may be due to underlying shared pathophysiologic hallmarks, including decreased cerebrospinal fluid amyloid beta 42 (Aβ42), increased hyperphosphorylated tau protein, and hippocampal hyperexcitability. Additionally, there are practical treatment considerations in patients with co-morbid AD and epilepsy-namely, there is a higher risk of seizures associated with medications commonly prescribed for Alzheimer's disease patients, including antidepressants and antipsychotics such as trazodone, serotonin norepinephrine reuptake inhibitors (SNRIs), and first-generation neuroleptics. Anti-amyloid antibodies like aducanumab and lecanemab present new and unique considerations in patients with co-morbid AD and epilepsy given the risk of seizures associated with amyloid-related imaging abnormalities (ARIA) seen with this drug class. Finally, we identify and detail five active studies, including two clinical trials of levetiracetam in the respective treatment of cognition and neuropsychiatric features of AD, a study characterizing the prevalence of epilepsy in AD via prolonged EEG monitoring, a study characterizing AD biomarkers in late-onset epilepsy, and a study evaluating hyperexcitability in AD. These ongoing trials may guide future clinical decision-making and the development of novel therapeutics.
Collapse
Affiliation(s)
- Olivia Lu
- Stanford Neuroscience Clinical Research Group, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Taimur Kouser
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Irina A. Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
28
|
Xi Y, Lan Z, Chen Y, Zhang Q, Wu Z, Li G. Patients with epilepsy without cognitive impairment show altered brain networks in multiple frequency bands in an audiovisual integration task. Neurophysiol Clin 2023; 53:102888. [PMID: 37660635 DOI: 10.1016/j.neucli.2023.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES Comorbid cognitive and behavioral deficits are often observed in patients with epilepsy. It is not clear whether the brain networks of patients with epilepsy without cognitive decline differs from that of healthy controls in different frequency bands in the task-state. The purpose of our study was to explore whether epilepsy affects the structure of brain networks associated with cognitive processing, even when patients with epilepsy do not have cognitive impairment. METHODS We designed an audiovisual discrimination task and recorded electroencephalogram (EEG) data from healthy controls and patients with epilepsy. We established constructed time-varying brain networks across the delta, theta, alpha, and beta bands on the task-state EEG data during audiovisual integration processing. RESULTS The results showed changes in the structure of the brain networks in the theta, alpha, and beta bands in patients with epilepsy who had no cognitive deficit. No significant difference in the connectivity strength, clustering coefficient, characteristic path length, or global efficiency was noted between patients and healthy controls. Moreover, the structure of brain networks in patients showed no correlation with the behavioral performance. CONCLUSION The repeated abnormal firing of neurons in the brain of patients with epilepsy may inhibit it from optimizing networks into more efficient structures. Epilepsy might affect decision-making ability by damaging the neural activity in the beta band and preventing its correlation with decision-making behaviors.
Collapse
Affiliation(s)
- Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China.
| | - Zhu Lan
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China
| | - Ying Chen
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin 132012, P.R. China
| | - Zhenyu Wu
- Department of Orthopedics of Affiliated Hospital of Beihua University, Beihua University, Jilin 132012, P.R. China
| | - Guangjian Li
- Department of Neurology of First Affiliated Hospital of Jilin University, Jilin University, Changchun 130022, P.R. China
| |
Collapse
|
29
|
Allebone J, Kanaan RA, Rayner G, Maller J, O'Brien TJ, Mullen SA, Cook M, Adams SJ, Vogrin S, Vaughan DN, Kwan P, Berkovic SF, D'Souza WJ, Jackson G, Velakoulis D, Wilson SJ. Neuropsychological function in psychosis of epilepsy. Epilepsy Res 2023; 196:107222. [PMID: 37717505 DOI: 10.1016/j.eplepsyres.2023.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE The neuropsychological profile of patients with psychosis of epilepsy (POE) has received limited research attention. Recent neuroimaging work in POE has identified structural network pathology in the default mode network and the cognitive control network. This study examined the neuropsychological profile of POE focusing on cognitive domains subserved by these networks. METHODS Twelve consecutive patients with a diagnosis of POE were prospectively recruited from the Comprehensive Epilepsy Programmes at The Royal Melbourne, Austin and St Vincent's Hospitals, Melbourne, Australia between January 2015 and February 2017. They were compared to 12 matched patients with epilepsy but no psychosis and 42 healthy controls on standardised neuropsychological tests of memory and executive functioning in a case-control design. RESULTS Mean scores across all cognitive tasks showed a graded pattern of impairment, with the POE group showing the poorest performance, followed by the epilepsy without psychosis and the healthy control groups. This was associated with significant group-level differences on measures of working memory (p = < 0.01); immediate (p = < 0.01) and delayed verbal recall (p = < 0.01); visual memory (p < 0.001); and verbal fluency (p = 0.02). In particular, patients with POE performed significantly worse than the healthy control group on measures of both cognitive control (p = .005) and memory (p < .001), whereas the epilepsy without psychosis group showed only memory difficulties (delayed verbal recall) compared to healthy controls (p = .001). CONCLUSION People with POE show reduced performance in neuropsychological functions supported by the default mode and cognitive control networks, when compared to both healthy participants and people with epilepsy without psychosis.
Collapse
Affiliation(s)
- James Allebone
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Richard A Kanaan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Psychiatry, University of Melbourne, Austin Health, Melbourne, Australia.
| | - Genevieve Rayner
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Jerome Maller
- ANU College of Health and Medicine, Australian National University, Canberra, Victoria, Australia; Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Terence J O'Brien
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Saul A Mullen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Mark Cook
- Graeme Clark Institute, University of Melbourne, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Sophia J Adams
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Simon Vogrin
- St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Patrick Kwan
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Samuel F Berkovic
- Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne, Health, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
30
|
Villa BR, Bhatt D, Wolff MD, Addo-Osafo K, Epp JR, Teskey GC. Repeated episodes of postictal hypoxia are a mechanism for interictal cognitive impairments. Sci Rep 2023; 13:15474. [PMID: 37726428 PMCID: PMC10509159 DOI: 10.1038/s41598-023-42741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Comorbidities during the period between seizures present a significant challenge for individuals with epilepsy. Despite their clinical relevance, the pathophysiology of the interictal symptomatology is largely unknown. Postictal severe hypoxia (PIH) in those brain regions participating in the seizure has been indicated as a mechanism underlying several negative postictal manifestations. It is unknown how repeated episodes of PIH affect interictal symptoms in epilepsy. Using a rat model, we observed that repeated seizures consistently induced episodes of PIH that become increasingly severe with each seizure occurrence. Additionally, recurrent seizure activity led to decreased levels of oxygen in the hippocampus during the interictal period. However, these reductions were prevented when we repeatedly blocked PIH using either the COX-inhibitor acetaminophen or the L-type calcium channel antagonist nifedipine. Moreover, we found that interictal cognitive deficits caused by seizures were completely alleviated by repeated attenuation of PIH events. Lastly, mitochondrial dysfunction may contribute to the observed pathological outcomes during the interictal period. These findings provide evidence that seizure-induced hypoxia may play a crucial role in several aspects of epilepsy. Consequently, developing and implementing treatments that specifically target and prevent PIH could potentially offer significant benefits for individuals with refractory epilepsy.
Collapse
Affiliation(s)
- Bianca R Villa
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Dhyey Bhatt
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kwaku Addo-Osafo
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jonathan R Epp
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
31
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
32
|
Jiang JW, Narasimhan S, Johnson GW, González HFJ, Doss DJ, Shless JS, Paulo DL, Terry DP, Chang C, Morgan VL, Englot DJ. Abnormal functional connectivity of the posterior hypothalamus and other arousal regions in surgical temporal lobe epilepsy. J Neurosurg 2023; 139:640-650. [PMID: 36807210 PMCID: PMC10432570 DOI: 10.3171/2023.1.jns221452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance. METHODS The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests. RESULTS The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations. CONCLUSIONS This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.
Collapse
Affiliation(s)
- Jasmine W. Jiang
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Saramati Narasimhan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Graham W. Johnson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Hernán F. J. González
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Derek J. Doss
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jared S. Shless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Danika L. Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Douglas P. Terry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Victoria L. Morgan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
33
|
Erdei C, Bell KA, Garvey AA, Blaschke C, Belfort MB, Inder TE. Novel metrics to characterize temporal lobe of very preterm infants on term-equivalent brain MRI. Pediatr Res 2023; 94:979-986. [PMID: 36934213 DOI: 10.1038/s41390-023-02567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND Preterm birth adversely impacts brain development and contributes to neurodevelopmental impairment; the temporal lobe may be particularly vulnerable to the impact of very preterm (VP) birth. Yet, no prior magnetic resonance imaging (MRI) scoring system incorporated a method to quantify temporal lobe size in VP infants. METHODS We developed and applied three metrics (temporal lobe length, extra-axial space, and temporal horn width) to quantify temporal lobe structure on term-equivalent brain MRIs obtained from 74 VP and 16 term infants. We compared metrics between VP and term infants and explored associations of each metric with perinatal risk factors. RESULTS All metrics had excellent reliability (intra-class correlation coefficient 0.62-0.98). VP infants had lower mean temporal lobe length (76.8 mm versus 79.2 mm, p = 0.02); however, the difference attenuated after correction for postmenstrual age. VP infants had larger temporal horn widths compared with term infants (2.6 mm versus 1.8 mm, p < 0.001). Temporal lobe length was positively associated with gestational age, birth weight, and male sex, and negatively associated with the duration of parenteral nutrition. CONCLUSIONS The proposed metrics are reliable and sensitive in distinguishing differences in temporal lobe development between VP and full-term infants. IMPACT We developed a novel method for quantifying temporal lobe size among very preterm infants at term equivalent using simple metrics performed on brain MRI. Temporal lobe metrics were reliable, correlated with brain volume from volumetric analysis, and were sensitive in identifying differences in temporal lobe development among preterm compared with term infants, specifically larger temporal horn size in preterm infants. This temporal lobe metric system will enable future work to delineate the perinatal and postnatal factors that impact temporal lobe growth, and better understand the relationship between temporal lobe disturbance and neurodevelopment in very preterm infants.
Collapse
Affiliation(s)
- Carmina Erdei
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Katherine A Bell
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aisling A Garvey
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Clementine Blaschke
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Neonatology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 2023; 146:3923-3937. [PMID: 37082950 PMCID: PMC10473569 DOI: 10.1093/brain/awad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Casey Paquola
- Multiscale Neuroanatomy Lab, INM-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, MA 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
35
|
Zanao TA, Seitz‐Holland J, O'Donnell LJ, Zhang F, Rathi Y, Lopes TM, Pimentel‐Silva LR, Yassuda CL, Makris N, Shenton ME, Bouix S, Lyall AE, Cendes F. Exploring the impact of hippocampal sclerosis on white matter tracts and memory in individuals with mesial temporal lobe epilepsy. Epilepsia Open 2023; 8:1111-1122. [PMID: 37469213 PMCID: PMC10472386 DOI: 10.1002/epi4.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE To investigate how the presence/side of hippocampal sclerosis (HS) are related to the white matter structure of cingulum bundle (CB), arcuate fasciculus (AF), and inferior longitudinal fasciculus (ILF) in mesial temporal lobe epilepsy (MTLE). METHODS We acquired diffusion-weighted magnetic resonance imaging (MRI) from 86 healthy and 71 individuals with MTLE (22 righ-HS; right-HS, 34 left-HS; left-HS, and 15 nonlesional MTLE). We utilized two-tensor tractography and fiber clustering to compare fractional anisotropy (FA) of each side/tract between groups. Additionally, we examined the association between FA and nonverbal (WMS-R) and verbal (WMS-R, RAVLT codification) memory performance for MTLE individuals. RESULTS White matter abnormalities depended on the side and presence of HS. The left-HS demonstrated widespread abnormalities for all tracts, the right-HS showed lower FA for ipsilateral tracts and the nonlesional MTLE group did not differ from healthy individuals. Results indicate no differences in verbal/nonverbal memory performance between the groups, but trend-level associations between higher FA of visual memory and the left CB (r = 0.286, P = 0.018), verbal memory (RAVLT) and -left CB (r = 0.335, P = 0.005), -right CB (r = 0.286, P = 0.016), and -left AF (r = 0.287, P = 0.017). SIGNIFICANCE Our results highlight that the presence and side of HS are crucial to understand the pathophysiology of MTLE. Specifically, left-sided HS seems to be related to widespread bilateral white matter abnormalities. Future longitudinal studies should focus on developing diagnostic and treatment strategies dependent on HS's presence/side.
Collapse
Affiliation(s)
- Tamires A. Zanao
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Neuroimaging Laboratory, School of Medical SciencesUniversity of CampinasCampinasSão PauloBrazil
| | - Johanna Seitz‐Holland
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tátila M. Lopes
- Neuroimaging Laboratory, School of Medical SciencesUniversity of CampinasCampinasSão PauloBrazil
| | | | - Clarissa L. Yassuda
- Neuroimaging Laboratory, School of Medical SciencesUniversity of CampinasCampinasSão PauloBrazil
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sylvain Bouix
- Département de génie logiciel et TI, École de technologie supérieureUniversité du QuébecMontrealQuebecCanada
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fernando Cendes
- Neuroimaging Laboratory, School of Medical SciencesUniversity of CampinasCampinasSão PauloBrazil
| |
Collapse
|
36
|
Sullivan KA, Vitko I, Blair K, Gaykema RP, Failor MJ, San Pietro JM, Dey D, Williamson JM, Stornetta RL, Kapur J, Perez-Reyes E. Drug-Inducible Gene Therapy Effectively Reduces Spontaneous Seizures in Kindled Rats but Creates Off-Target Side Effects in Inhibitory Neurons. Int J Mol Sci 2023; 24:11347. [PMID: 37511107 PMCID: PMC10379297 DOI: 10.3390/ijms241411347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Over a third of patients with temporal lobe epilepsy (TLE) are not effectively treated with current anti-seizure drugs, spurring the development of gene therapies. The injection of adeno-associated viral vectors (AAV) into the brain has been shown to be a safe and viable approach. However, to date, AAV expression of therapeutic genes has not been regulated. Moreover, a common property of antiepileptic drugs is a narrow therapeutic window between seizure control and side effects. Therefore, a long-term goal is to develop drug-inducible gene therapies that can be regulated by clinically relevant drugs. In this study, a first-generation doxycycline-regulated gene therapy that delivered an engineered version of the leak potassium channel Kcnk2 (TREK-M) was injected into the hippocampus of male rats. Rats were electrically stimulated until kindled. EEG was monitored 24/7. Electrical kindling revealed an important side effect, as even low expression of TREK M in the absence of doxycycline was sufficient to cause rats to develop spontaneous recurring seizures. Treating the epileptic rats with doxycycline successfully reduced spontaneous seizures. Localization studies of infected neurons suggest seizures were caused by expression in GABAergic inhibitory neurons. In contrast, doxycycline increased the expression of TREK-M in excitatory neurons, thereby reducing seizures through net inhibition of firing. These studies demonstrate that drug-inducible gene therapies are effective in reducing spontaneous seizures and highlight the importance of testing for side effects with pro-epileptic stressors such as electrical kindling. These studies also show the importance of evaluating the location and spread of AAV-based gene therapies in preclinical studies.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Madison J Failor
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | | | - Deblina Dey
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - John M Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22980, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22980, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22980, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22980, USA
| |
Collapse
|
37
|
Hoxhaj P, Habiya SK, Sayabugari R, Balaji R, Xavier R, Ahmad A, Khanam M, Kachhadia MP, Patel T, Abdin ZU, Haider A, Nazir Z. Investigating the Impact of Epilepsy on Cognitive Function: A Narrative Review. Cureus 2023; 15:e41223. [PMID: 37525802 PMCID: PMC10387362 DOI: 10.7759/cureus.41223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
It has been noted that people who have epilepsy have an increased propensity for cognitive dysfunction. We explored 25 relevant articles on PubMed and Cochrane Library after implementing inclusion criteria. Different factors have been postulated and studied that may cause cognitive dysfunction in these patients; structural brain abnormalities, polypharmacy of antiepileptic medication, and neuropsychiatric disorders are the most common causes. Cognitive assessments such as Montreal Cognitive Assessment (MOCA) and Mini-Mental State Exam (MMSE) are the mainstay tools used to diagnose the degree of cognitive decline, and alterations in EEG (electroencephalogram) parameters have also been noted in people with cognitive decline. The mechanisms and treatments for cognitive decline are still being studied, while attention has also been directed toward preventive and predictive methods. Early detection and treatment of cognitive impairment can help minimize its impact on the patient's quality of life. Regular cognitive assessments are essential for epileptic patients, particularly those on multiple antiepileptic drugs. While proper management of epilepsy and related comorbidities would reduce cognitive decline and improve the overall quality of life for people with epilepsy.
Collapse
Affiliation(s)
- Pranvera Hoxhaj
- Medicine, University of Medicine, Tirana, Tirana, ALB
- Obstetrics and Gynaecology, Scher & Kerenyi MDS, New York, USA
| | - Sana K Habiya
- Internal Medicine, Indian Institute of Medical Science and Research, Jalna, IND
- Public Health, Northeastern Illinois University, Chicago, USA
| | | | - Roghan Balaji
- Neurology, Ponjesly Super Speciality Hospital, Nagercoil, IND
- Neurology, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry, IND
| | - Roshni Xavier
- Internal Medicine, Rajagiri Hospital, Aluva, IND
- Internal Medicine, Carewell Hospital, Malappuram, IND
| | - Arghal Ahmad
- Internal Medicine, Ziauddin University, Karachi, PAK
| | | | | | - Tirath Patel
- Internal Medicine, American University of Antigua, St John, ATG
| | - Zain U Abdin
- Internal Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | - Ali Haider
- Internal Medicine, Quetta Institute of Medical Sciences, Quetta, PAK
| | - Zahra Nazir
- Internal Medicine Clinical Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
38
|
Zhang W, Duan Y, Qi L, Li Z, Ren J, Nangale N, Yang C. Distinguishing Patients with MRI-Negative Temporal Lobe Epilepsy from Normal Controls Based on Individual Morphological Brain Network. Brain Topogr 2023:10.1007/s10548-023-00962-z. [PMID: 37204610 DOI: 10.1007/s10548-023-00962-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Temporal Lobe Epilepsy (TLE) is the most common subtype of focal epilepsy and the most refractory to drug treatment. Roughly 30% of patients do not have easily identifiable structural abnormalities. In other words, MRI-negative TLE has normal MRI scans on visual inspection. Thus, MRI-negative TLE is a diagnostic and therapeutic challenge. In this study, we investigate the cortical morphological brain network to identify MRI-negative TLE. The 210 cortical ROIs based on the Brainnetome atlas were used to define the network nodes. The least absolute shrinkage and selection operator (LASSO) algorithm and Pearson correlation methods were used to calculate the inter-regional morphometric features vector correlation respectively. As a result, two types of networks were constructed. The topological characteristics of networks were calculated by graph theory. Then after, a two-stage feature selection strategy, including a two-sample t-test and support vector machine-based recursive feature elimination (SVM-RFE), was performed in feature selection. Finally, classification with support vector machine (SVM) and leave-one-out cross-validation (LOOCV) was employed for the training and evaluation of the classifiers. The performance of two constructed brain networks was compared in MRI-negative TLE classification. The results indicated that the LASSO algorithm achieved better performance than the Pearson pairwise correlation method. The LASSO algorithm provides a robust method of individual morphological network construction for distinguishing patients with MRI-negative TLE from normal controls.
Collapse
Affiliation(s)
- Wenxiu Zhang
- Department of Environment and Life Sciences, Beijing University of Technology, Beijing, China
| | - Ying Duan
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| | - Lei Qi
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| | - Zhimei Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiechuan Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Chunlan Yang
- Department of Environment and Life Sciences, Beijing University of Technology, Beijing, China.
| |
Collapse
|
39
|
Aljishi A, Sherman BE, Huberdeau DM, Obaid S, Sivaraju A, Turk-Browne NB, Damisah EC. Statistical learning in epilepsy: Behavioral, anatomical, and causal mechanisms in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538321. [PMID: 37162937 PMCID: PMC10168289 DOI: 10.1101/2023.04.25.538321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Statistical learning, the fundamental cognitive ability of humans to extract regularities across experiences over time, engages the medial temporal lobe in the healthy brain. This leads to the hypothesis that statistical learning may be impaired in epilepsy patients, and that this impairment could contribute to their varied memory deficits. In turn, epilepsy patients provide a platform to advance basic understanding of statistical learning by helping to evaluate the necessity of medial temporal lobe circuitry through disease and causal perturbations. We implemented behavioral testing, volumetric analysis of the medial temporal lobe substructures, and direct electrical brain stimulation to examine statistical learning across a cohort of 61 epilepsy patients and 28 healthy controls. Behavioral performance in a statistical learning task was negatively associated with seizure frequency, irrespective of where seizures originated in the brain. The volume of hippocampal subfields CA1 and CA2/3 correlated with statistical learning performance, suggesting a more specific role of the hippocampus. Indeed, transient direct electrical stimulation of the hippocampus disrupted statistical learning. Furthermore, the relationship between statistical learning and seizure frequency was selective: behavioral performance in an episodic memory task was impacted by structural lesions in the medial temporal lobe and by antiseizure medications, but not by seizure frequency. Overall, these results suggest that statistical learning may be hippocampally dependent and that this task could serve as a clinically useful behavioral assay of seizure frequency distinct from existing neuropsychological tests. Simple and short statistical learning tasks may thus provide patient-centered endpoints for evaluating the efficacy of novel treatments in epilepsy.
Collapse
Affiliation(s)
- Ayman Aljishi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brynn E. Sherman
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Sami Obaid
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicholas B. Turk-Browne
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - Eyiyemisi C. Damisah
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
40
|
Mock N, Balzer C, Gutbrod K, Jäncke L, Wandel J, Bonati L, Trost W. Nonverbal memory tests revisited: Neuroanatomical correlates and differential influence of biasing cognitive functions. Cortex 2023; 164:63-76. [PMID: 37201378 DOI: 10.1016/j.cortex.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/20/2023]
Abstract
The detection of right temporal lobe dysfunction with nonverbal memory tests has remained difficult in the past. Reasons for this might be the potential influence of other biasing cognitive functions such as executive functions or the verbalisability of nonverbal material. The aim of this study was to investigate three classic nonverbal memory tests by identifying their neuroanatomical correlates with lesion-symptom mapping (LSM) and by probing their independence from verbal encoding abilities and executive functions. In a cohort of 119 patients with first-time cerebrovascular accident, memory performance was assessed in the Nonverbal Learning and Memory Test for Routes (NLMTR), the Rey Complex Figure Test (RCFT), and the Visual Design Learning Test (VDLT). Calculating multivariate LSM, we identified crucial brain structures for these three nonverbal memory tests. Behavioural analyses were performed to assess the impact of executive functions and verbal encoding abilities with regression analyses and likelihood-ratio tests. LSM revealed for the RCFT mainly right-hemispheric frontal, insular, subcortical, and white matter structures and for the NLMTR right-hemispheric temporal (hippocampus), insular, subcortical, and white matter structures. The VDLT did not reach significance in LSM analyses. Behavioural results showed that amongst the three nonverbal memory tests the impact of executive functions was most pronounced for RCFT, and the impact of verbal encoding abilities was most important in VDLT. Likelihood-ratio tests confirmed that only for NLMTR did the goodness of fit not significantly improve by adding executive functions or verbal encoding abilities. These results suggest that amongst the three nonverbal memory tests the NLMTR, as a spatial navigation test, could serve as the most suitable marker of right-hemispheric temporal lobe functioning, with the right hippocampus being involved only in this test. In addition, the behavioural results propose that only NLMTR seems mostly unaffected by executive functions and verbal encoding abilities.
Collapse
Affiliation(s)
- Nadia Mock
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland; Department of Psychology, University of Zurich, Zurich, Switzerland; Department of Neurology, Zurich University Hospital, Zurich, Switzerland.
| | | | - Klemens Gutbrod
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Neurozentrum Bern, Switzerland
| | - Lutz Jäncke
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jasmin Wandel
- Institute for Optimisation and Data Analysis, Bern University of Applied Sciences, Switzerland
| | - Leo Bonati
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland; Department of Neurology, Department of Clinical Research, Basel University Hospital, Switzerland
| | - Wiebke Trost
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
| |
Collapse
|
41
|
Chaari N, Akdağ HC, Rekik I. Comparative survey of multigraph integration methods for holistic brain connectivity mapping. Med Image Anal 2023; 85:102741. [PMID: 36638747 DOI: 10.1016/j.media.2023.102741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
One of the greatest scientific challenges in network neuroscience is to create a representative map of a population of heterogeneous brain networks, which acts as a connectional fingerprint. The connectional brain template (CBT), also named network atlas, presents a powerful tool for capturing the most representative and discriminative traits of a given population while preserving its topological patterns. The idea of a CBT is to integrate a population of heterogeneous brain connectivity networks, derived from different neuroimaging modalities or brain views (e.g., structural and functional), into a unified holistic representation. Here we review current state-of-the-art methods designed to estimate well-centered and representative CBT for populations of single-view and multi-view brain networks. We start by reviewing each CBT learning method, then we introduce the evaluation measures to compare CBT representativeness of populations generated by single-view and multigraph integration methods, separately, based on the following criteria: Centeredness, biomarker-reproducibility, node-level similarity, global-level similarity, and distance-based similarity. We demonstrate that the deep graph normalizer (DGN) method significantly outperforms other multi-graph and all single-view integration methods for estimating CBTs using a variety of healthy and disordered datasets in terms of centeredness, reproducibility (i.e., graph-derived biomarkers reproducibility that disentangle the typical from the atypical connectivity variability), and preserving the topological traits at both local and global graph-levels.
Collapse
Affiliation(s)
- Nada Chaari
- BASIRA lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey; Faculty of Management, Istanbul Technical University, Istanbul, Turkey
| | | | - Islem Rekik
- BASIRA lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey; Computing, Imperial-X Translation and Innovation Hub, Imperial College London, London, UK.
| |
Collapse
|
42
|
Ferrario R, Giovagnoli AR. Processing speed in temporal lobe epilepsy. A scoping review. Epilepsy Behav 2023; 142:109169. [PMID: 36963317 DOI: 10.1016/j.yebeh.2023.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Impaired processing speed (PS) can affect patients with temporal lobe epilepsy (TLE). However, it is usually considered a nonspecific clinical feature and is not measured, but this raises lexical and methodological problems. This review aims to evaluate the existing terminology and assessment methods of PS in patients with TLE. METHODS A scoping review was conducted based on the extended guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. The electronic literature search was conducted on Medline-PubMed, American Psychological Association-PsycINFO, Elton Bryson Stephens Company, and Google Scholar, using the keywords "temporal lobe epilepsy" and "speed" or "slowing" plus "processing," "cognitive," "psychomotor," or "mental." Peer-reviewed articles published before December 2022 were analyzed if they were in English, including patients older than 14 years and at least one neuropsychological measure, reported original research focused on PS and had the selected keywords in the title, keywords, and abstract. RESULTS Seven articles published between December 2004 and September 2021 were selected. The terms "processing speed," "psychomotor speed," and "information processing speed," based on similar theoretical constructs, were the most frequently used. Assessment methods included non-computerized or paper-and-pencil tests (WAIS-III Digit Symbol and Symbol Search subtests, Purdue Pegboard and Grooved Pegboard Tests, Trail Making Test and Stroop Color-Word Test) and computerized tests (Sternberg Memory Scanning Test, Pattern Comparison Processing Speed, Computerized Visual Searching). In some studies, impairment was associated with white and gray matter damage in the brain, independent of clinical and treatment variables. CONCLUSION Clinical research on TLE has focused inconsistently on PS. Different evaluation terms and methods have been used while referring to similar theoretical constructs. These findings highlight a gap between the clinical importance of PS and its assessment. Studies are needed to share terms and tools among clinical centers and clarify the position of PS in the TLE phenotype.
Collapse
Affiliation(s)
- Rosalba Ferrario
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy
| | - Anna Rita Giovagnoli
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy.
| |
Collapse
|
43
|
Steimel SA, Meisenhelter S, Quon RJ, Camp EJ, Tom R, Bujarski KA, Testorf ME, Song Y, Roth RM, Jobst BC. Accelerated long-term forgetting of recall and recognition memory in people with epilepsy. Epilepsy Behav 2023; 141:109152. [PMID: 36893721 DOI: 10.1016/j.yebeh.2023.109152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE Persons with epilepsy (PWE) report memory deficits as one of the most distressing aspects of their disorder. Recently, a long-term memory deficit known as Accelerated Long-Term Forgetting (ALF) has been described in PWE. ALF is characterized by the initial retention of learned information, followed by an accelerated rate of memory decay. However, the rate of ALF varies widely across literature and it is unclear how it impacts different memory retrieval types. The current study aimed to capture the time course of ALF on both free recall and recognition memory using a movie-based task in PWE. METHODS A sample of 30 PWE and 30 healthy comparison (HC) subjects watched a nature documentary and were tested on their recall and recognition of the film's content immediately after viewing and at delays of 24 hours, 48 hours, and 72 hours. Participants also rated the confidence they had in their recognition memory trial responses. RESULTS For recall, PWE exhibit ALF at 72 hours (β = -19.840, SE = 3.743, z(226) = -5.301, p < 0.001). For recognition, PWE had decreased performance compared to controls at the 24-hour (β = -10.165, SE = 4.174, z(224) = -3.166, p = 0.004), 48-hour (β = -8.113, SE = 3.701, z(224) = -2.195, p = 0.044), and 72-hour (β = -10.794, SE = 3.017, z(224) = -3.295, p = 0.003) delays. The PWE group showed positive correlations (tau = 0.165, p < 0.001) between confidence ratings and accuracy, with higher confidence reflecting successful recognition. PWE were 49% less likely to answer either retrieval type correctly at 72 hours (OR 0.51, 95% CI [0.35, 0.74], p < 0.001). Left hemispheric seizure onset decreased the odds of successful retrieval by 88% (OR 0.12, 95% CI [0.01, 0.42], p = 0.019). CONCLUSIONS These findings provide evidence of ALF in PWE, with a differential impact on recall and recognition memory. This further supports the call to include ALF assessments in standard memory evaluations in PWE. Additionally, identifying the neural correlates of ALF in the future will be important in developing targeted therapies to alleviate the burden of memory impairment for PWE.
Collapse
Affiliation(s)
- Sarah A Steimel
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA.
| | - Stephen Meisenhelter
- Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Robert J Quon
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA
| | - Edward J Camp
- Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA
| | - Rebecca Tom
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA
| | - Krzysztof A Bujarski
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Markus E Testorf
- Thayer School of Engineering at Dartmouth College, 15 Thayer Dr, Hanover, NH 03755, USA.
| | - Yinchen Song
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Robert M Roth
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Neuropsychology Program, Department of Psychiatry, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| | - Barbara C Jobst
- Dartmouth College Geisel School of Medicine, 1 Rope Ferry Rd, Hanover, NH 03755, USA; Department of Neurology, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03766, USA.
| |
Collapse
|
44
|
McDonald CR, Busch RM, Reyes A, Arrotta K, Barr W, Block C, Hessen E, Loring DW, Drane DL, Hamberger MJ, Wilson SJ, Baxendale S, Hermann BP. Development and application of the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE): Initial results from a multi-center study of adults with temporal lobe epilepsy. Neuropsychology 2023; 37:301-314. [PMID: 35084879 PMCID: PMC9325925 DOI: 10.1037/neu0000792] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
[Correction Notice: An Erratum for this article was reported online in Neuropsychology on Sep 15 2022 (see record 2023-01997-001). In the original article, there was an error in Figure 2. In the box at the top left of the figure, the fourth explanation incorrectly stated, "Generalized impairment = At least one test < -1.0 or -1.5SD in three or more domains." The correct wording is "Generalized impairment = At least two tests < -1.0 or -1.5SD in each of three or more domains." All versions of this article have been corrected.] Objective: To describe the development and application of a consensus-based, empirically driven approach to cognitive diagnostics in epilepsy research-The International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) and to assess the ability of the IC-CoDE to produce definable and stable cognitive phenotypes in a large, multi-center temporal lobe epilepsy (TLE) patient sample. METHOD Neuropsychological data were available for a diverse cohort of 2,485 patients with TLE across seven epilepsy centers. Patterns of impairment were determined based on commonly used tests within five cognitive domains (language, memory, executive functioning, attention/processing speed, and visuospatial ability) using two impairment thresholds (≤1.0 and ≤1.5 standard deviations below the normative mean). Cognitive phenotypes were derived across samples using the IC-CoDE and compared to distributions of phenotypes reported in existing studies. RESULTS Impairment rates were highest on tests of language, followed by memory, executive functioning, attention/processing speed, and visuospatial ability. Application of the IC-CoDE using varying operational definitions of impairment (≤ 1.0 and ≤ 1.5 SD) produced cognitive phenotypes with the following distribution: cognitively intact (30%-50%), single-domain (26%-29%), bi-domain (14%-19%), and generalized (10%-22%) impairment. Application of the ≤ 1.5 cutoff produced a distribution of phenotypes that was consistent across cohorts and approximated the distribution produced using data-driven approaches in prior studies. CONCLUSIONS The IC-CoDE is the first iteration of a classification system for harmonizing cognitive diagnostics in epilepsy research that can be applied across neuropsychological tests and TLE cohorts. This proof-of-principle study in TLE offers a promising path for enhancing research collaborations globally and accelerating scientific discoveries in epilepsy. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
45
|
González HFJ, Narasimhan S, Goodale SE, Johnson GW, Doss DJ, Paulo DL, Morgan VL, Chang C, Englot DJ. Arousal and salience network connectivity alterations in surgical temporal lobe epilepsy. J Neurosurg 2023; 138:810-820. [PMID: 35901709 PMCID: PMC10127440 DOI: 10.3171/2022.5.jns22837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE It is poorly understood why patients with mesial temporal lobe epilepsy (TLE) have cognitive deficits and brain network changes that extend beyond the temporal lobe, including altered extratemporal intrinsic connectivity networks (ICNs). However, subcortical arousal structures project broadly to the neocortex, are affected by TLE, and thus may contribute to these widespread network effects. The authors' objective was to examine functional connectivity (FC) patterns between subcortical arousal structures and neocortical ICNs, possible neurocognitive relationships, and FC changes after epilepsy surgery. METHODS The authors obtained resting-state functional magnetic resonance imaging (fMRI) in 50 adults with TLE and 50 controls. They compared nondirected FC (correlation) and directed FC (Granger causality laterality index) within the salience network, default mode network, and central executive network, as well as between subcortical arousal structures; these 3 ICNs were also compared between patients and controls. They also used an fMRI-based vigilance index to relate alertness to arousal center FC. Finally, fMRI was repeated in 29 patients > 12 months after temporal lobe resection. RESULTS Nondirected FC within the salience (p = 0.042) and default mode (p = 0.0008) networks, but not the central executive network (p = 0.79), was decreased in patients in comparison with controls (t-tests, corrected). Nondirected FC between the salience network and subcortical arousal structures (nucleus basalis of Meynert, thalamic centromedian nucleus, and brainstem pedunculopontine nucleus) was reduced in patients in comparison with controls (p = 0.0028-0.015, t-tests, corrected), and some of these connectivity abnormalities were associated with lower processing speed index, verbal comprehension, and full-scale IQ. Interestingly, directed connectivity measures suggested a loss of top-down influence from the salience network to the arousal nuclei in patients. After resection, certain FC patterns between the arousal nuclei and salience network moved toward control values in the patients, suggesting that some postoperative recovery may be possible. Although an fMRI-based vigilance measure suggested that patients exhibited reduced alertness over time, FC abnormalities between the salience network and arousal structures were not influenced by the alertness levels during the scans. CONCLUSIONS FC abnormalities between subcortical arousal structures and ICNs, such as the salience network, may be related to certain neurocognitive deficits in TLE patients. Although TLE patients demonstrated vigilance abnormalities, baseline FC perturbations between the arousal and salience networks are unlikely to be driven solely by alertness level, and some may improve after surgery. Examination of the arousal network and ICN disturbances may improve our understanding of the downstream clinical effects of TLE.
Collapse
Affiliation(s)
- Hernán F. J. González
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Saramati Narasimhan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah E. Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Derek J. Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Danika L. Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L. Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
46
|
Au Yong HM, Clough M, Perucca P, Malpas CB, Kwan P, O'Brien TJ, Fielding J. Ocular motility as a measure of cerebral dysfunction in adults with focal epilepsy. Epilepsy Behav 2023; 141:109140. [PMID: 36812874 DOI: 10.1016/j.yebeh.2023.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Using objective oculomotor measures, we aimed to: (1) compare oculomotor performance in patients with drug-resistant focal epilepsy to healthy controls, and (2) investigate the differential impact of epileptogenic focus laterality and location on oculomotor performance. METHODS We recruited 51 adults with drug-resistant focal epilepsy from the Comprehensive Epilepsy Programs of two tertiary hospitals and 31 healthy controls to perform prosaccade and antisaccade tasks. Oculomotor variables of interest were latency, visuospatial accuracy, and antisaccade error rate. Linear mixed models were performed to compare interactions between groups (epilepsy, control) and oculomotor tasks, and between epilepsy subgroups and oculomotor tasks for each oculomotor variable. RESULTS Compared to healthy controls, patients with drug-resistant focal epilepsy exhibited longer antisaccade latencies (mean difference = 42.8 ms, P = 0.001), poorer spatial accuracy for both prosaccade (mean difference = 0.4°, P = 0.002), and antisaccade tasks (mean difference = 2.1°, P < 0.001), and more antisaccade errors (mean difference = 12.6%, P < 0.001). In the epilepsy subgroup analysis, left-hemispheric epilepsy patients exhibited longer antisaccade latencies compared to controls (mean difference = 52.2 ms, P = 0.003), while right-hemispheric epilepsy was the most spatially inaccurate compared to controls (mean difference = 2.5°, P = 0.003). The temporal lobe epilepsy subgroup displayed longer antisaccade latencies compared to controls (mean difference = 47.6 ms, P = 0.005). SIGNIFICANCE Patients with drug-resistant focal epilepsy exhibit poor inhibitory control as evidenced by a high percentage of antisaccade errors, slower cognitive processing speed, and impaired visuospatial accuracy on oculomotor tasks. Patients with left-hemispheric epilepsy and temporal lobe epilepsy have markedly impaired processing speed. Overall, oculomotor tasks can be a useful tool to objectively quantify cerebral dysfunction in drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Hue Mun Au Yong
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Meaghan Clough
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Piero Perucca
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia.
| | - Charles B Malpas
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Patrick Kwan
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Terence J O'Brien
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Joanne Fielding
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
47
|
Varvel NH, Amaradhi R, Espinosa-Garcia C, Duddy S, Franklin R, Banik A, Alemán-Ruiz C, Blackmer-Raynolds L, Wang W, Honore T, Ganesh T, Dingledine R. Preclinical development of an EP2 antagonist for post-seizure cognitive deficits. Neuropharmacology 2023; 224:109356. [PMID: 36460083 PMCID: PMC9894535 DOI: 10.1016/j.neuropharm.2022.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Cognitive comorbidities can substantially reduce quality of life in people with epilepsy. Inflammation is a component of all chronic diseases including epilepsy, as well as acute events like status epilepticus (SE). Neuroinflammation is the consequence of several broad signaling cascades including cyclooxygenase-2 (COX-2)-associated pathways. Activation of the EP2 receptor for prostaglandin E2 appears responsible for blood-brain barrier leakage and much of the inflammatory reaction, neuronal injury and cognitive deficit that follows seizure-provoked COX-2 induction in brain. Here we show that brief exposure of mice to TG11-77, a potent, selective, orally available and brain permeant EP2 antagonist, eliminates the profound cognitive deficit in Y-maze performance after SE and reduces delayed mortality and microgliosis, with a minimum effective i.p. dose (as free base) of 8.8 mg/kg. All in vitro studies required to submit an investigational new drug (IND) application for TG11-77 have been completed, and non-GLP dose range-finding toxicology in the rat identified no overt, organ or histopathology signs of toxicity after 7 days of oral administration at 1000 mg/kg/day. Plasma exposure in the rat was dose-linear between 15 and 1000 mg/kg dosing. TG11-77 thus appears poised to continue development towards the initial clinical test of the hypothesis that EP2 receptor modulation after SE can provide the first preventive treatment for one of the chief comorbidities of epilepsy.
Collapse
Affiliation(s)
- Nicholas H Varvel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Steven Duddy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Ronald Franklin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Avijit Banik
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Carlos Alemán-Ruiz
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Lisa Blackmer-Raynolds
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Tage Honore
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, Georgia.
| |
Collapse
|
48
|
Cornwell MA, Kohn A, Spat-Lemus J, Bender HA, Koay JM, McLean E, Mandelbaum S, Wing H, Sacks-Zimmerman A. Foundations of Neuropsychology: Collaborative Care in Neurosurgery. World Neurosurg 2023; 170:268-276. [PMID: 36782425 DOI: 10.1016/j.wneu.2022.09.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 02/11/2023]
Abstract
The disciplines of neuropsychology and neurosurgery have a history of partnership that has improved prognoses for patients with neurologic diagnoses that once had poor outcomes. This article outlines the evolution of this relationship and describes the current role that clinical neuropsychology has within a department of neurological surgery across the preoperative, intraoperative, and postoperative stages of treatment. Understanding the foundations of collaboration between neuropsychology and neurosurgery contextualizes present challenges and future innovations for advancing excellence along the continuum of care for all neurosurgical patients.
Collapse
Affiliation(s)
- Melinda A Cornwell
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aviva Kohn
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Ferkauf Graduate School of Psychology, Bronx, New York, USA
| | - Jessica Spat-Lemus
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - H Allison Bender
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA.
| | - Jun Min Koay
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | - Erin McLean
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Psychology, Hofstra University, Hempstead, New York, USA
| | - Sarah Mandelbaum
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Ferkauf Graduate School of Psychology, Bronx, New York, USA
| | - Hannah Wing
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Fordham University Graduate School of Education, New York, New York, USA
| | | |
Collapse
|
49
|
Zhuang XF, Liu YX, Yang ZH, Gao Q, Wang L, Ju C, Wang K. Attenuation of Epileptogenesis and Cognitive Deficits by a Selective and Potent Kv7 Channel Opener in Rodent Models of Seizures. J Pharmacol Exp Ther 2023; 384:315-325. [PMID: 36396352 DOI: 10.1124/jpet.122.001328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Targeting neuronal Kv7 channels by pharmacological activation has been proven to be an attractive therapeutic strategy for epilepsy. Here, we show that activation of Kv7 channels by an opener SCR2682 dose-dependently reduces seizure activity and severity in rodent models of epilepsy induced by a GABAa receptor antagonist pentylenetetrazole (PTZ), maximal electroshock, and a glutamate receptor agonist kainic acid (KA). Electroencephalographic recordings of rat cerebral cortex confirm that SCR2682 also decreases epileptiform discharges in KA-induced seizures. Nissl and neuronal nuclei staining further demonstrates that SCR2682 also protects neurons from injury induced by KA. In Morris water maze navigation and Y-maze tests, SCR2682 improves PTZ- and KA-induced cognitive impairment. Taken together, our findings demonstrate that pharmacological activation of Kv7 by novel opener SCR2682 may hold promise for therapy of epilepsy with cognitive impairment. SIGNIFICANCE STATEMENT: A neuronal Kv7 channel opener SCR2682 attenuates epileptogenesis and seizure-induced cognitive impairment in rodent models of seizures, thus possessing a developmental potential for effective therapy of epilepsy with cognitive impairment.
Collapse
Affiliation(s)
- Xiao-Fei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Yu-Xue Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Zhi-Hong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Qin Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Lei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College (X.-F.Z., Y.-X.L., Z.-H.Y., Q.G., L.W., C.J., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (K.W.)
| |
Collapse
|
50
|
Ren Z, Zhao Y, Han X, Yue M, Wang B, Zhao Z, Wen B, Hong Y, Wang Q, Hong Y, Zhao T, Wang N, Zhao P. An objective model for diagnosing comorbid cognitive impairment in patients with epilepsy based on the clinical-EEG functional connectivity features. Front Neurosci 2023; 16:1060814. [PMID: 36711136 PMCID: PMC9878185 DOI: 10.3389/fnins.2022.1060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Cognitive impairment (CI) is a common disorder in patients with epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs would be beneficial in reality. This study proposed to construct a diagnostic model for CI in PWEs using the clinical and the phase locking value (PLV) functional connectivity features of the electroencephalogram (EEG). Methods PWEs who met the inclusion and exclusion criteria were divided into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The 23 clinical features and 684 PLV EEG features at the time of patient visit were screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct diagnostic models of CI in PWEs either with pure clinical features, pure PLV EEG features, or combined clinical and PLV EEG features. The performance of these models was assessed using a five-fold cross-validation method. Results GBDT-built model with combined clinical and PLV EEG features performed the best with accuracy, precision, recall, F1-score, and an area under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top 5 features found to influence the model performance based on the Fisher scores were the magnetic resonance imaging (MRI) findings of the head for abnormalities, educational attainment, PLV EEG in the beta (β)-band C3-F4, seizure frequency, and PLV EEG in theta (θ)-band Fp1-Fz. A total of 12 of the top 5% of features exhibited statistically different PLV EEG features, while eight of which were PLV EEG features in the θ band. Conclusion The model constructed from the combined clinical and PLV EEG features could effectively identify CI in PWEs and possess the potential as a useful objective evaluation method. The PLV EEG in the θ band could be a potential biomarker for the complementary diagnosis of CI comorbid with epilepsy.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yibo Zhao
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Xiong Han,
| | - Mengyan Yue
- Department of Rehabilitation, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bin Wen
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yang Hong
- Department of Neurology, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Qi Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yingxing Hong
- Department of Neurology, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Ting Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Wang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pan Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|