1
|
Thomsen K, Keulen S, Arslan S. Functional correlates of executive dysfunction in primary progressive aphasia: a systematic review. Front Aging Neurosci 2024; 16:1448214. [PMID: 39493277 PMCID: PMC11528424 DOI: 10.3389/fnagi.2024.1448214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Recent research has recognized executive dysfunction as another component affected in Primary Progressive Aphasia (PPA). This systematic review aimed to examine what information distinctive neurophysiological markers can provide in the evaluation of executive function (EF) deficits in PPA, and to what effect executive function deficits can be assessed through the characteristics of functional markers. Methods We conducted a systematic literature search following the PRISMA guidelines across studies that employed neuropsychological assessments and neurophysiological imaging techniques (EEG, MEG; PET, SPECT, fMRI, fNIRS) to investigate executive dysfunction correlates in PPA. Results Findings from nine articles including a total number of 111 individuals with PPA met our inclusion criteria and were synthesized. Although research on the neural correlates of EF deficits is scarce, MEG studies revealed widespread oscillatory slowing, with increased delta and decreased alpha power, where alterations in alpha, theta, and beta activities were significant predictors of executive function deficits. PET findings demonstrated significant correlations between executive dysfunction and hypometabolism in frontal brain regions. fMRI results indicated elevated homotopic connectivity in PPA patients, with a broader and more anterior distribution of abnormal hippocampal connections of which were associated with reduced executive performance. Conclusion Our study provides indirect support for the assumption regarding the significance of the frontal regions and inferior frontal junction in executive control and demonstrates that neurophysiological tools can be a useful aid to further investigate clinical-neurophysiological correlations in PPA.
Collapse
Affiliation(s)
- Kristin Thomsen
- Université Côte d'Azur, CNRS, BCL, Nice, France
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Research in Cognitive Neuroscience (CRCN), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
2
|
Borroni B, Tarantino B, Graff C, Krüger J, Ludolph AC, Moreno F, Otto M, Rowe JB, Seelaar H, Solje E, Stefanova E, Traykov LD, Jelic V, Anderl-Straub S, Portaankorva AM, Barandiaran M, Gabilondo A, Murley AG, Rittman T, Van Der Ende E, Van Swieten JC, Hartikainen P, Stojmenović GM, Mehrabian S, Ghidoni R, Alberici AC, Dell'Abate MT, Zecca C, Grassi M, Logroscino G. Predictors of Care Home Admission and Survival Rate in Patients With Syndromes Associated With Frontotemporal Lobar Degeneration in Europe. Neurology 2024; 103:e209793. [PMID: 39226519 PMCID: PMC11362957 DOI: 10.1212/wnl.0000000000209793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Data on care home admission and survival rates of patients with syndromes associated with frontotemporal lobar degeneration (FTLD) are limited. However, their estimation is essential to plan trials and assess the efficacy of intervention. Population-based registers provide unique samples for this estimate. The aim of this study was to assess care home admission rate, survival rate, and their predictors in incident patients with FTLD-associated syndromes from the European FRONTIERS register-based study. METHODS We conducted a prospective longitudinal multinational observational registry study, considering incident patients with FTLD-associated syndromes diagnosed between June 1, 2018, and May 31, 2019, and followed for up to 5 years till May 31, 2023. We enrolled patients fulfilling diagnosis of the behavioral variant frontotemporal dementia (bvFTD), primary progressive aphasia (PPA), progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS), and FTD with motor neuron disease (FTD-MND). Kaplan-Meier analysis and Cox multivariable regression models were used to assess care home admission and survival rates. The survival probability score (SPS) was computed based on independent predictors of survivorship. RESULTS A total of 266 incident patients with FTLD were included (mean age ± SD = 66.7 ± 9.0; female = 41.4%). The median care home admission rate was 97 months (95% CIs 86-98) from disease onset and 57 months (95% CIs 56-58) from diagnosis. The median survival was 90 months (95% CIs 77-97) from disease onset and 49 months (95% CIs 44-58) from diagnosis. Survival from diagnosis was shorter in FTD-MND (hazard ratio [HR] 4.59, 95% CIs 2.49-8.76, p < 0.001) and PSP/CBS (HR 1.56, 95% CIs 1.01-2.42, p = 0.044) compared with bvFTD; no differences between PPA and bvFTD were found. The SPS proved high accuracy in predicting 1-year survival probability (area under the receiver operating characteristic curve = 0.789, 95% CIs 0.69-0.87), when defined by age, European area of residency, extrapyramidal symptoms, and MND at diagnosis. DISCUSSION In FTLD-associated syndromes, survival rates differ according to clinical features and geography. The SPS was able to predict prognosis at individual patient level with an accuracy of ∼80% and may help to improve patient stratification in clinical trials. Future confirmatory studies considering different populations are needed.
Collapse
Affiliation(s)
- Barbara Borroni
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Barbara Tarantino
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Caroline Graff
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Johanna Krüger
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Albert C Ludolph
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Fermin Moreno
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Markus Otto
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - James B Rowe
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Harro Seelaar
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Eino Solje
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Elka Stefanova
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Latchezar D Traykov
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Vesna Jelic
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Sarah Anderl-Straub
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Anne M Portaankorva
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Myriam Barandiaran
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Alazne Gabilondo
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Alexander G Murley
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Timothy Rittman
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Emma Van Der Ende
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - John C Van Swieten
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Päivi Hartikainen
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Gorana Mandić Stojmenović
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Shima Mehrabian
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Roberta Ghidoni
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Antonella C Alberici
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Maria Teresa Dell'Abate
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Chiara Zecca
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Mario Grassi
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Giancarlo Logroscino
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| |
Collapse
|
3
|
Montagut N, Borrego-Écija S, Herrero J, Castellví M, Balasa M, Lladó A, Grasso SM, Sánchez-Valle R. Effects of Modified Video-Implemented Script Training for Aphasia in the Three Variants of Primary Progressive Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3762-3777. [PMID: 39302879 PMCID: PMC11482574 DOI: 10.1044/2024_jslhr-23-00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/09/2024] [Accepted: 07/21/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Primary progressive aphasia (PPA) is a neurodegenerative disorder characterized by worsening of speech and/or language. Script training intervention promotes automatized speech production via repeated practice of scripted content. This study evaluated the acceptability, feasibility, and effects of a modified version of Video-Implemented Script Training for Aphasia (VISTA) in the three PPA variants and compared outcomes by intervention modality (teletherapy vs. in person). METHOD Thirteen bilingual (Spanish-Catalan) participants were included (semantic variant, n = 5; logopenic variant, n = 5; nonfluent/agrammatic variant, n = 3; teletherapy, n = 7). Using a nonrandomized design, intervention was administered in participants' dominant language. Participants were trained on an individualized script twice per week, over 8 weeks. Performance on measures related to script accuracy, content, and subjective ratings of production quality was evaluated at baseline, immediately post, and at 3 and 6 months post-intervention. RESULTS No significant differences were observed on the basis of intervention modality. Participants demonstrated significant improvements from pre- to post-intervention in script production, synonym production, keywords, and global quality on the trained script. Maintenance was observed when comparing performance at post-intervention relative to 3- and 6-month follow-up for script and synonym production. Significant improvement in production quality of the untrained topic was observed following intervention. Different patterns of benefit were observed by PPA variant. CONCLUSIONS Modified VISTA was acceptable and effective across the three PPA variants, as evidenced by improvements on a broader array of outcome measures than those previously reported. Findings also provide further support for provision for teletherapy in individuals with PPA. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.26999326.
Collapse
Affiliation(s)
- Núria Montagut
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
- Fundació Recerca Clínic Barcelona-Institut d'Investigació Biomèdica August Pi i Sunyer, Spain
- Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
- Fundació Recerca Clínic Barcelona-Institut d'Investigació Biomèdica August Pi i Sunyer, Spain
| | - Jorge Herrero
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
| | - Magdalena Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
- Fundació Recerca Clínic Barcelona-Institut d'Investigació Biomèdica August Pi i Sunyer, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
- Fundació Recerca Clínic Barcelona-Institut d'Investigació Biomèdica August Pi i Sunyer, Spain
- Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Spain
| | - Stephanie M. Grasso
- Department of Speech, Language, and Hearing Sciences, The University of Texas at Austin
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic Barcelona, Spain
- Fundació Recerca Clínic Barcelona-Institut d'Investigació Biomèdica August Pi i Sunyer, Spain
- Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Spain
| |
Collapse
|
4
|
Coemans S, De Aguiar V, Paquier P, Tsapkini K, Engelborghs S, Struys E, Keulen S. Effects of Cerebellar Transcranial Direct Current Stimulation in Bilingual Logopenic Primary Progressive Aphasia. J Alzheimers Dis Rep 2024; 8:1253-1273. [PMID: 39434819 PMCID: PMC11491977 DOI: 10.3233/adr-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Background Primary progressive aphasia (PPA) is a language-based dementia, causing progressive decline of language functions. Transcranial direct current stimulation (tDCS) can augment effects of speech-and language therapy (SLT). However, this has not been investigated in bilingual patients with PPA. Objective We evaluated the case of Mr. G., a French (native language, L1)/Dutch (second language, L2)-speaking 59-year-old male, with logopenic PPA, associated with Alzheimer's disease pathology. We aimed to characterize his patterns of language decline and evaluate the effects of tDCS applied to the right posterolateral cerebellum on his language abilities and executive control circuits. Methods In a within-subject controlled design, Mr. G received 9 sessions of sham and anodal tDCS combined with semantic and phonological SLT in L2. Changes were evaluated with an oral naming task in L2, the Boston Naming Task and subtests of the Bilingual Aphasia Test in in L2 and L1, the Stroop Test and Attention Network Test, before and after each phase of stimulation (sham/tDCS) and at 2-month follow-up. Results After anodal tDCS, but not after sham, results improved significantly on oral naming in L2, with generalization to untrained tasks and cross-language transfer (CLT) to L1: picture naming in both languages, syntactic comprehension and repetition in L2, and response times in the incongruent condition of the Attention Network Test, indicating increased inhibitory control. Conclusions Our preliminary results are the first to indicate that tDCS applied to the cerebellum may be a valuable tool to enhance the effects of SLT in bilingual patients with logopenic PPA.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Vânia De Aguiar
- Groningen Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sebastiaan Engelborghs
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Department of Biomedical Sciences, Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
5
|
Rezaii N, Hochberg D, Quimby M, Wong B, Brickhouse M, Touroutoglou A, Dickerson BC, Wolff P. Artificial intelligence classifies primary progressive aphasia from connected speech. Brain 2024; 147:3070-3082. [PMID: 38912855 PMCID: PMC11370793 DOI: 10.1093/brain/awae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Neurodegenerative dementia syndromes, such as primary progressive aphasias (PPA), have traditionally been diagnosed based, in part, on verbal and non-verbal cognitive profiles. Debate continues about whether PPA is best divided into three variants and regarding the most distinctive linguistic features for classifying PPA variants. In this cross-sectional study, we initially harnessed the capabilities of artificial intelligence and natural language processing to perform unsupervised classification of short, connected speech samples from 78 pateints with PPA. We then used natural language processing to identify linguistic features that best dissociate the three PPA variants. Large language models discerned three distinct PPA clusters, with 88.5% agreement with independent clinical diagnoses. Patterns of cortical atrophy of three data-driven clusters corresponded to the localization in the clinical diagnostic criteria. In the subsequent supervised classification, 17 distinctive features emerged, including the observation that separating verbs into high- and low-frequency types significantly improved classification accuracy. Using these linguistic features derived from the analysis of short, connected speech samples, we developed a classifier that achieved 97.9% accuracy in classifying the four groups (three PPA variants and healthy controls). The data-driven section of this study showcases the ability of large language models to find natural partitioning in the speech of patients with PPA consistent with conventional variants. In addition, the work identifies a robust set of language features indicative of each PPA variant, emphasizing the significance of dividing verbs into high- and low-frequency categories. Beyond improving diagnostic accuracy, these findings enhance our understanding of the neurobiology of language processing.
Collapse
Affiliation(s)
- Neguine Rezaii
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA 02129, USA
- Massachusetts Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA 02114, USA
| | - Phillip Wolff
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Mirbod M, Ayubcha C, Redden HWK, Teichner E, Subtirelu RC, Patel R, Raynor W, Werner T, Alavi A, Revheim ME. FDG-PET in the diagnosis of primary progressive aphasia: a systematic review. Ann Nucl Med 2024; 38:673-687. [PMID: 39028529 PMCID: PMC11339180 DOI: 10.1007/s12149-024-01958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Primary progressive aphasia (PPA) is a disease known to affect the frontal and temporal regions of the left hemisphere. PPA is often an indication of future development of dementia, specifically semantic dementia (SD) for frontotemporal dementia (FTD) and logopenic progressive aphasia (LPA) as an atypical presentation of Alzheimer's disease (AD). The purpose of this review is to clarify the value of 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-positron emission tomography (PET) in the detection and diagnosis of PPA. A comprehensive review of literature was conducted using Web of Science, PubMed, and Google Scholar. The three PPA subtypes show distinct regions of hypometabolism in FDG-PET imaging with SD in the anterior temporal lobes, LPA in the left temporo-parietal junction, and nonfluent/agrammatic Variant PPA (nfvPPA) in the left inferior frontal gyrus and insula. Despite the distinct patterns, overlapping hypometabolic areas can complicate differential diagnosis, especially in patients with SD who are frequently diagnosed with AD. Integration with other diagnostic tools could refine the diagnostic process and lead to improved patient outcomes. Future research should focus on validating these findings in larger populations and exploring the therapeutic implications of early, accurate PPA diagnosis with more targeted therapeutic interventions.
Collapse
Affiliation(s)
- Melika Mirbod
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard Chan School of Public Health, Boston, MA, USA
| | | | - Eric Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert C Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Raj Patel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - William Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
7
|
Wauters LD, Croot K, Dial HR, Duffy JR, Grasso SM, Kim E, Schaffer Mendez K, Ballard KJ, Clark HM, Kohley L, Murray LL, Rogalski EJ, Figeys M, Milman L, Henry ML. Behavioral Treatment for Speech and Language in Primary Progressive Aphasia and Primary Progressive Apraxia of Speech: A Systematic Review. Neuropsychol Rev 2024; 34:882-923. [PMID: 37792075 PMCID: PMC11473583 DOI: 10.1007/s11065-023-09607-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/13/2023] [Indexed: 10/05/2023]
Abstract
Primary progressive aphasia (PPA) and primary progressive apraxia of speech (PPAOS) are neurodegenerative syndromes characterized by progressive decline in language or speech. There is a growing number of studies investigating speech-language interventions for PPA/PPAOS. An updated systematic evaluation of the treatment evidence is warranted to inform best clinical practice and guide future treatment research. We systematically reviewed the evidence for behavioral treatment for speech and language in this population. Reviewed articles were published in peer-reviewed journals through 31 May 2021. We evaluated level of evidence, reporting quality, and risk of bias using a modified version of the American Speech-Language Hearing Association (ASHA) Levels of Evidence, an appraisal point system, additional reporting quality and internal/external validity items, and, as appropriate, the Single Case Experimental Design Scale or the Physiotherapy Evidence Database - PsycBITE Rating Scale for Randomized and Non-Randomized Controlled Trials. Results were synthesized using quantitative summaries and narrative review. A total of 103 studies reported treatment outcomes for 626 individuals with PPA; no studies used the diagnostic label PPAOS. Most studies evaluated interventions for word retrieval. The highest-quality evidence was provided by 45 experimental and quasi-experimental studies (16 controlled group studies, 29 single-subject designs). All (k = 45/45) reported improvement on a primary outcome measure; most reported generalization (k = 34/43), maintenance (k = 34/39), or social validity (k = 17/19) of treatment for at least one participant. The available evidence supports speech-language intervention for persons with PPA; however, treatment for PPAOS awaits systematic investigation. Implications and limitations of the evidence and the review are discussed.
Collapse
Affiliation(s)
- Lisa D Wauters
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA
| | - Karen Croot
- School of Psychology, University of Sydney, 2006, Sydney, NSW, Australia
| | - Heather R Dial
- Department of Communication Sciences and Disorders, University of Houston, Houston, TX, 77204, USA
| | - Joseph R Duffy
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Stephanie M Grasso
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA
| | - Esther Kim
- US Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, T6G 2R3, Edmonton, AB, Canada
| | | | - Kirrie J Ballard
- Faculty of Medicine & Health and Brain & Mind Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Heather M Clark
- Department of Neurology, Division of Speech Pathology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Leeah Kohley
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA
| | - Laura L Murray
- School of Communication Sciences and Disorders, Western University, London, ON, N6A 3K7, Canada
| | - Emily J Rogalski
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 60611, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Feinberg School of Medicine, 60611, Chicago, IL, USA
| | - Mathieu Figeys
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Lisa Milman
- Department of Communicative Disorders and Deaf Education, Utah State University, Logan, UT, 84322, USA
| | - Maya L Henry
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, 2504A Whitis Ave. (A1100), 78712, Austin, TX, USA.
- Department of Neurology, Dell Medical School, University of Texas at Austin, 78712, Austin, TX, USA.
| |
Collapse
|
8
|
Baqué L, Machuca MJ. Dysfluency in primary progressive aphasia: Temporal speech parameters. CLINICAL LINGUISTICS & PHONETICS 2024:1-34. [PMID: 39104133 DOI: 10.1080/02699206.2024.2378345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Analysing spontaneous speech in individuals experiencing fluency difficulties holds potential for diagnosing speech and language disorders, including Primary Progressive Aphasia (PPA). Dysfluency in the spontaneous speech of patients with PPA has mostly been described in terms of abnormal pausing behaviour, but the temporal features related to speech have drawn little attention. This study compares speech-related fluency parameters in the three main variants of PPA and in typical speech. Forty-three adults participated in this research, thirteen with the logopenic variant of PPA (lvPPA), ten with the non-fluent variant (nfvPPA), nine with the semantic variant (svPPA), and eleven who were healthy age-matched adults. Participants' fluency was assessed through a picture description task from which 42 parameters were computed including syllable duration, speaking pace, the duration of speech chunks (i.e. interpausal units, IPU), and the number of linguistic units per IPU and per second. The results showed that each PPA variant exhibited abnormal speech characteristics reflecting various underlying factors, from motor speech deficits to higher-level issues. Out of the 42 parameters considered, 37 proved useful for characterising dysfluency in the three main PPA variants and 35 in distinguishing among them. Therefore, taking into account not only pausing behaviour but also temporal speech parameters can provide a fuller understanding of dysfluency in PPA. However, no single parameter by itself sufficed to distinguish one PPA group from the other two, further evidence that dysfluency is not dichotomous but rather multidimensional, and that complementary multiparametric analyses are needed.
Collapse
Affiliation(s)
- Lorraine Baqué
- Departament de Filologia Francesa i Romànica, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María-Jesús Machuca
- Departament de Filologia Espanyola, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Da Silveira RV, Magalhães TNC, Balthazar MLF, Castellano G. Differences between Alzheimer's disease and mild cognitive impairment using brain networks from magnetic resonance texture analysis. Exp Brain Res 2024; 242:1947-1955. [PMID: 38910159 DOI: 10.1007/s00221-024-06871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Several studies have aimed at identifying biomarkers in the initial phases of Alzheimer's disease (AD). Conversely, texture features, such as those from gray-level co-occurrence matrices (GLCMs), have highlighted important information from several types of medical images. More recently, texture-based brain networks have been shown to provide useful information in characterizing healthy individuals. However, no studies have yet explored the use of this type of network in the context of AD. This work aimed to employ texture brain networks to investigate the distinction between groups of patients with amnestic mild cognitive impairment (aMCI) and mild dementia due to AD, and a group of healthy subjects. Magnetic resonance (MR) images from the three groups acquired at two instances were used. Images were segmented and GLCM texture parameters were calculated for each region. Structural brain networks were generated using regions as nodes and the similarity among texture parameters as links, and graph theory was used to compute five network measures. An ANCOVA was performed for each network measure to assess statistical differences between groups. The thalamus showed significant differences between aMCI and AD patients for four network measures for the right hemisphere and one network measure for the left hemisphere. There were also significant differences between controls and AD patients for the left hippocampus, right superior parietal lobule, and right thalamus-one network measure each. These findings represent changes in the texture of these regions which can be associated with the cortical volume and thickness atrophies reported in the literature for AD. The texture networks showed potential to differentiate between aMCI and AD patients, as well as between controls and AD patients, offering a new tool to help understand these conditions and eventually aid early intervention and personalized treatment, thereby improving patient outcomes and advancing AD research.
Collapse
Affiliation(s)
- Rafael Vinícius Da Silveira
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.
| | - Thamires Naela Cardoso Magalhães
- Department of Neurology and Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcio Luiz Figueredo Balthazar
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
- Department of Neurology and Neuroimaging Laboratory, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Castellano
- Department of Cosmic Rays and Chronology, Gleb Wataghin Physics Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
10
|
Kintz S, Kim H, Wright HH. A preliminary investigation on core lexicon analysis in dementia of the Alzheimer's type. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:1336-1350. [PMID: 38165595 DOI: 10.1111/1460-6984.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Core lexicon (CL) analysis is a time efficient and possibly reliable measure that captures discourse production abilities. For people with aphasia, CL scores have demonstrated correlations with aphasia severity, as well as other discourse and linguistic measures. It was also found to be clinician-friendly and clinically sensitive enough to capture longitudinal changes in aphasia. To our knowledge, CL has never been investigated in individuals with neurologically progressive disease. AIMS As a preliminary investigation, we sought to investigate (1) whether CL scores correlate with dementia severity, (2) whether CL scores correlate with measures of discourse quality, and (3) whether CL scores correlate with other measures of lexical/semantic access. METHODS & PROCEDURES Twelve participants with a cognitive impairment associated with dementia of the Alzheimer's type (DAT) completed several measures of language and cognitive ability, as well as provide a language sample from the wordless picture book, Picnic. RESULTS & CONCLUSION Results are informative, as they provide insight into characteristics of CL and provide support for potential use of CL in individuals with neurologically progressive disease. The results indicated that CL scores do correlate with dementia severity and several measures of language ability, indicating they may provide a useful measure of language abilities in DAT, but more research is needed. WHAT THIS PAPER ADDS What is already known on the subject Core lexicon (CL) analysis is an assessment measure of discourse ability, most closely related to informativeness or productivity, used in aphasiology that is easier to use and less time consuming than previous measures of informativeness, such as correct information units or type-token ratio (TTR). For people with aphasia, CL analysis correlates with aphasia severity, measures of informativeness, as well as other measures of discourse quality. It has also been shown to be faster and more reliable between scorers than other informativeness measures. What this study adds Core lexicon analysis is a new simple and online method for assessing the informativeness of a discourse sample without the need to record or transcribe the language sample. CL is receiving a lot of attention in aphasia, correlating with everything from aphasia severity to measures of productivity and lexical access, as well as measures of informativeness. Unfortunately, no one has investigated CL analysis in dementia. The study demonstrates the first evidence that CL analysis may be a useful measure for determining dementia severity and language quality in people with dementia. What are the clinical implications of this work? Core lexicon analysis may provide clinicians and researchers with an easy method for assessing the discourse of people with a cognitive impairment associated with dementia of the Alzheimer's type. This will improve initial assessment, as well as improve ongoing language assessment that may provide clues into their functional ability to communicate effectively.
Collapse
Affiliation(s)
- Stephen Kintz
- Department of Speech Language Pathology, University of Arkansas at Little Rock, Little Rock, Arkansas, USA
| | - Hana Kim
- Department of Communication Sciences & Disorders, University of South Florida, Tampa Bay, Florida, USA
| | - Heather Harris Wright
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
11
|
Macoir J, Laforce R, Lavoie M. The impact of phonological short-term memory impairment on verbal repetition in the logopenic variant of primary progressive aphasia. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:723-741. [PMID: 37615549 DOI: 10.1080/13825585.2023.2249198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/22/2023] [Indexed: 08/25/2023]
Abstract
The logopenic variant of primary progressive aphasia (lvPPA) is characterized mainly by anomia, production of phonological errors, and impairment in repetition of sentences. The functional origin of these language impairments is mainly attributed to the breakdown of phonological short-term memory. The present study examined the effects of phonological short-term memory impairment on language processing in lvPPA. In two studies, 11 participants with lvPPA and 11 healthy control participants were presented with repetition tasks in which the type and length of stimuli and the mode of administration were manipulated. Study 1 aimed to examine the influence of length and lexicality (words vs. pseudowords) on immediate and delayed repetition, whereas Study 2 aimed to examine the influence of length, syntactic complexity (nominalized vs. pronominalized sentences), and serial position on immediate sentence repetition. Study 1 showed that participants' performance with lvPPA was impaired only on immediate repetition of five-syllable pseudowords and on delayed repetition of words and pseudowords. Study 2 showed that participants' performance with lvPPA was impaired in the repetition of nominalized sentences where a recency effect was observed. Repetition of pronominalized sentences was also impaired in the lvPPA group. This study provides additional support for arguments regarding phonological short-term memory as a cause of language impairment in lvPPA. Clinically, the results of the study suggest that instruments for assessing repetition ability in lvPPA should include not only lists of short or long nominalized sentences, but also delayed repetition of words and pseudowords and pronominalized sentences.
Collapse
Affiliation(s)
- Joël Macoir
- Faculté de médecine, École des Sciences de la Réadaptation, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Brain Research Centre, Québec, QC, Canada
| | - Robert Laforce
- Chaire de recherche sur les aphasies primaires progressives, Fondation de la famille Lemaire, Québec, QC, Canada
- Faculté de Médecine, Département de Médecine, Université Laval, Québec, QC, Canada
- Clinique Interdisciplinaire de la Mémoire, Centre hospitalier de l'Université Laval, Québec, QC, Canada
| | - Monica Lavoie
- Chaire de recherche sur les aphasies primaires progressives, Fondation de la famille Lemaire, Québec, QC, Canada
| |
Collapse
|
12
|
Tetzloff KA, Martin PR, Duffy JR, Utianski RL, Clark HM, Botha H, Machulda MM, Thu Pham NT, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Longitudinal flortaucipir, metabolism and volume differ between phonetic and prosodic speech apraxia. Brain 2024; 147:1696-1709. [PMID: 38217867 PMCID: PMC11068100 DOI: 10.1093/brain/awae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
Progressive apraxia of speech (PAOS) is a neurodegenerative motor-speech disorder that most commonly arises from a four-repeat tauopathy. Recent studies have established that progressive apraxia of speech is not a homogenous disease but rather there are distinct subtypes: the phonetic subtype is characterized by distorted sound substitutions, the prosodic subtype by slow and segmented speech and the mixed subtype by a combination of both but lack of predominance of either. There is some evidence that cross-sectional patterns of neurodegeneration differ across subtypes, although it is unknown whether longitudinal patterns of neurodegeneration differ. We examined longitudinal patterns of atrophy on MRI, hypometabolism on 18F-fluorodeoxyglucose-PET and tau uptake on flortaucipir-PET in a large cohort of subjects with PAOS that had been followed for many years. Ninety-one subjects with PAOS (51 phonetic, 40 prosodic) were recruited by the Neurodegenerative Research Group. Of these, 54 (27 phonetic, 27 prosodic) returned for annual follow-up, with up to seven longitudinal visits (total visits analysed = 217). Volumes, metabolism and flortaucipir uptake were measured for subcortical and cortical regions, for all scans. Bayesian hierarchical models were used to model longitudinal change across imaging modalities with PAOS subtypes being compared at baseline, 4 years from baseline, and in terms of rates of change. The phonetic group showed smaller volumes and worse metabolism in Broca's area and the striatum at baseline and after 4 years, and faster rates of change in these regions, compared with the prosodic group. There was also evidence of faster spread of hypometabolism and flortaucipir uptake into the temporal and parietal lobes in the phonetic group. In contrast, the prosodic group showed smaller cerebellar dentate, midbrain, substantia nigra and thalamus volumes at baseline and after 4 years, as well as faster rates of atrophy, than the phonetic group. Greater hypometabolism and flortaucipir uptake were also observed in the cerebellar dentate and substantia nigra in the prosodic group. Mixed findings were observed in the supplementary motor area and precentral cortex, with no clear differences observed across phonetic and prosodic groups. These findings support different patterns of disease spread in PAOS subtypes, with corticostriatal patterns in the phonetic subtype and brainstem and thalamic patterns in the prosodic subtype, providing insight into the pathophysiology and heterogeneity of PAOS.
Collapse
Affiliation(s)
| | - Peter R Martin
- Department of Quantitative Health Sciences (Biostatistics), Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry (Neuropsychology), Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
13
|
Lust B, Flynn S, Henderson C, Gair J, Sherman JC. Disintegration at the Syntax-Semantics Interface in Prodromal Alzheimer's Disease: New Evidence from Complex Sentence Anaphora in Amnestic Mild Cognitive Impairment (aMCI). JOURNAL OF NEUROLINGUISTICS 2024; 70:101190. [PMID: 38370310 PMCID: PMC10871704 DOI: 10.1016/j.jneuroling.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Although diverse language deficits have been widely observed in prodromal Alzheimer's disease (AD), the underlying nature of such deficits and their explanation remains opaque. Consequently, both clinical applications and brain-language models are not well-defined. In this paper we report results from two experiments which test language production in a group of individuals with amnestic Mild Cognitive Impairment (aMCI) in contrast to healthy aging and healthy young. The experiments apply factorial designs informed by linguistic analysis to test two forms of complex sentences involving anaphora (relations between pronouns and their antecedents). Results show that aMCI individuals differentiate forms of anaphora depending on sentence structure, with selective impairment of sentences which involve construal with reference to context (anaphoric coreference). We argue that aMCI individuals maintain core structural knowledge while evidencing deficiency in syntax-semantics integration, thus locating the source of the deficit in the language-thought interface of the Language Faculty.
Collapse
Affiliation(s)
- Barbara Lust
- Cognitive Science, Psychology, Cornell University
| | | | | | | | | |
Collapse
|
14
|
Fedorenko E, Ivanova AA, Regev TI. The language network as a natural kind within the broader landscape of the human brain. Nat Rev Neurosci 2024; 25:289-312. [PMID: 38609551 DOI: 10.1038/s41583-024-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Program in Speech and Hearing in Bioscience and Technology, Harvard University, Cambridge, MA, USA.
| | - Anna A Ivanova
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tamar I Regev
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Hurley RS, Lapin B, Jones SE, Crawford A, Leverenz JB, Bonner-Jackson A, Pillai JA. Hemispheric asymmetries in hippocampal volume related to memory in left and right temporal variants of frontotemporal degeneration. Front Neurol 2024; 15:1374827. [PMID: 38742046 PMCID: PMC11089209 DOI: 10.3389/fneur.2024.1374827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
In addition to Alzheimer's disease (AD), the hippocampus is now known to be affected in variants of frontotemporal degeneration (FTD). In semantic variant primary progressive aphasia (svPPA), characterized by language impairments, hippocampal atrophy is greater in the left hemisphere. Nonverbal impairments (e.g., visual object recognition) are prominent in the right temporal variant of FTD (rtvFTD), and hippocampal atrophy may be greater in the right hemisphere. In this study we examined the hypothesis that leftward hippocampal asymmetry (predicted in svPPA) would be associated with selective verbal memory impairments (with relative preservation of visual memory), while rightward asymmetry (predicted in rtvFTD) would be associated with the opposite pattern (greater visual memory impairment). In contrast, we predicted that controls and individuals in the amnestic mild cognitive impairment stage of AD (aMCI), both of whom were expected to show symmetrical hippocampal volumes, would show roughly equivalent scores in verbal and visual memory. Participants completed delayed recall tests with words and geometric shapes, and hippocampal volumes were assessed with MRI. The aMCI sample showed symmetrical hippocampal atrophy, and similar degree of verbal and visual memory impairment. The svPPA sample showed greater left hippocampal atrophy and verbal memory impairment, while rtvFTD showed greater right hippocampal atrophy and visual memory impairment. Greater asymmetry in hippocampal volumes was associated with larger differences between verbal and visual memory in the FTD samples. Unlike AD, asymmetry is a core feature of brain-memory relationships in temporal variants of FTD.
Collapse
Affiliation(s)
- Robert S. Hurley
- Department of Psychology, Cleveland State University, Cleveland, OH, United States
| | - Brittany Lapin
- Department of Quantitative Health Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, United States
- Center for Outcomes Research and Evaluation, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| | - Stephen E. Jones
- Department of Diagnostic Radiology, Imaging Institute Cleveland Clinic, Cleveland, OH, United States
| | - Anna Crawford
- Department of Diagnostic Radiology, Imaging Institute Cleveland Clinic, Cleveland, OH, United States
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| | - Aaron Bonner-Jackson
- Lou Ruvo Center for Brain Health, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| | - Jagan A. Pillai
- Lou Ruvo Center for Brain Health, Neurological Institute Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
16
|
Bao YW, Wang ZJ, Guo LL, Bai GJ, Feng Y, Zhao GD. Expression of regional brain amyloid-β deposition with [18F]Flutemetamol in Centiloid scale -a multi-site study. Neuroradiology 2024:10.1007/s00234-024-03364-5. [PMID: 38676749 DOI: 10.1007/s00234-024-03364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE The Centiloid project helps calibrate the quantitative amyloid-β (Aβ) load into a unified Centiloid (CL) scale that allows data comparison across multi-site. How the smaller regional amyloid converted into CL has not been attempted. We first aimed to express regional Aβ deposition in CL using [18F]Flutemetamol and evaluate regional Aβ deposition in CL with that in standardized uptake value ratio (SUVr). Second, we aimed to determine the presence or absence of focal Aβ deposition by measuring regional CL in equivocal cases showing negative global CL. METHODS Following the Centiloid project pipeline, Level-1 replication, Level-2 calibration, and quality control were completed to generate corresponding Centiloid conversion equations to convert SUVr into Centiloid at regional levels. In equivocal cases, the regional CL was compared with visual inspection to evaluate regional Aβ positivity. RESULTS 14 out of 16 regional conversions from [18F]Flutemetamol SUVr to Centiloid successfully passed the quality control, showing good reliability and relative variance, especially precuneus/posterior cingulate and prefrontal regions with good stability for Centiloid scaling. The absence of focal Aβ deposition could be detected by measuring regional CL, showing a high agreement rate with visual inspection. The regional Aβ positivity in the bilateral anterior cingulate cortex was most prevalent in equivocal cases. CONCLUSION The expression of regional brain Aβ deposition in CL with [18F]Flutemetamol has been attempted in this study. Equivocal cases had focal Aβ deposition that can be detected by measuring regional CL.
Collapse
Affiliation(s)
- Yi-Wen Bao
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China.
| | - Zuo-Jun Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li-Li Guo
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China
| | - Gen-Ji Bai
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China
| | - Yun Feng
- Department of Medical Imaging Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin District, 223300, Huai'an, Jiangsu, China
| | - Guo-Dong Zhao
- Department of General Surgery, Lianshui County People's Hospital, 223400, Huai'an, Jiang Su, China
| |
Collapse
|
17
|
Cayir S, Volpi T, Toyonaga T, Gallezot JD, Yang Y, Ebrahimian SF, Mulnix T, Mecca AP, Fesharaki-Zadeh A, Matuskey D. Relationship between neuroimaging and cognition in frontotemporal dementia: An FDG-PET and structural MRI study. J Neuroimaging 2024; 34:10.1111/jon.13206. [PMID: 38676301 PMCID: PMC11511789 DOI: 10.1111/jon.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative condition with a prevalence comparable to Alzheimer's disease for patients under 65 years of age. Limited studies have examined the association between cognition and neuroimaging in FTD using different imaging modalities. METHODS We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both gray matter (GM) volume and glucose metabolism using magnetic resonance imaging and fluorodeoxyglucose (FDG)-PET in 21 patients diagnosed with FTD. Standardized uptake value ratio (SUVR) using the brainstem as a reference region was the primary outcome measure for FDG-PET. Partial volume correction was applied to PET data to account for disease-related atrophy. RESULTS Significant positive associations were found between whole-cortex GM volume and MoCA scores (r = 0.46, p = .04). The association between whole-cortex FDG SUVR and MoCA scores was not significant (r = 0.37, p = .09). GM volumes of the frontal cortex (r = 0.54, p = .01), caudate (r = 0.62, p<.01), and insula (r = 0.57, p<.01) were also significantly correlated with MoCA, as were SUVR values of the insula (r = 0.51, p = .02), thalamus (r = 0.48, p = .03), and posterior cingulate cortex (PCC) (r = 0.47, p = .03). CONCLUSIONS Whole-cortex atrophy is associated with cognitive dysfunction, and this association is larger than for whole-cortex hypometabolism as measured with FDG-PET. At the regional level, focal atrophy and/or hypometabolism in the frontal cortex, insula, PCC, thalamus, and caudate seem to be important for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Sadabad Faranak Ebrahimian
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Adam P. Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA
| | - Arman Fesharaki-Zadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511 USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06511 USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
18
|
Watanabe M, Cartwright J, Pierce JE. Positive effects of speech and language therapy group interventions in primary progressive aphasia: A systematic review. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024. [PMID: 38602276 DOI: 10.1111/1460-6984.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Primary progressive aphasia (PPA) is a neurodegenerative condition characterised by a prominent and progressive deterioration in language abilities, which significantly impacts quality of life and interpersonal relationships. Speech and language therapy plays a crucial role in offering interventions. Group intervention is one mode of delivery that could benefit communication functioning and overall wellbeing of people with PPA (pwPPA) and their care partners. Group interventions are also more efficient than one-to-one intervention and may facilitate peer support. AIMS The aim of this review was to systematically evaluate the current evidence for the effectiveness of speech and language therapy groups for pwPPA and their care partners. Specifically, this paper considered three questions: 1.What evidence-based speech and language therapy groups for pwPPA and their care partners have been reported to date? 2.Are group communication interventions effective in improving quality of life and communication function for pwPPA and their care partners? 3.Are group communication interventions that are designed for people with communication difficulties of other aetiologies (such as stroke) effective for pwPPA? In addition, this review aimed to describe the structure and content of groups, including aims, disciplines involved, size and frequency of group meetings, and outcome measures. METHODS MEDLINE, CINAHL and PsycINFO were used to retrieve articles of interest. A total of 10 studies published between 2009 and 2022 met the eligibility criteria and therefore were included in this study. Data were extracted from the articles regarding the structure and content of groups. MAIN CONTRIBUTION Although evidence is currently limited, results suggest that speech and language therapy group intervention can improve specific linguistic processes, the use of communication strategies and psychosocial well-being. The importance of multidisciplinary input and care partners' involvement in groups was highlighted, along with the benefits of creative non-verbal activities as tools for self-expression. There is also initial evidence that telehealth group provision and one-off group sessions may be feasible and can benefit psychosocial well-being. Lastly, intentional recruitment and explicit education on different aphasia types are described as important when pwPPA participate in groups with mixed diagnoses. CONCLUSIONS The literature on speech and language therapy group interventions for PPA shows promise of positive effects on communication function and psychosocial well-being of both pwPPA and their care partners. Speech and language therapists can consider these published interventions when designing and implementing similar groups, but more robust evidence is required to confirm the relative effectiveness of this approach. WHAT THIS PAPER ADDS What is already known on this subject Speech pathology led group intervention shows some promise in benefitting communication functioning and overall well-being of pwPPA and their carers, but there has been no systematic evaluation of all the evidence regarding the efficacy of speech and language therapy led groups. Establishing feasibility, acceptability and efficacy of speech and language therapy group interventions for pwPPA and their carers may present a valuable addition for managing this progressive language disability. What this paper adds to existing knowledge Although evidence is currently limited, results from this systematic review suggest that speech and language therapy led group intervention can improve specific linguistic processes, the use of communication strategies and psychosocial well-being for pwPPA and their carers. The importance of multidisciplinary input and carers' involvement in groups was highlighted, along with the benefits of creative non-verbal activities as tools for self-expression. There is also initial evidence that telehealth group provision for carers may be feasible and can benefit psychosocial wellbeing. Lastly, intentional recruitment and explicit education on different aphasia types are described as important when pwPPA participate in groups with mixed diagnoses. What are the potential or actual clinical implications of this work? A synthesis of the evidence base for speech and language therapy led PPA groups, as well as a description of the group components and formats, will be valuable for clinical service planning, and will guide future examination of group options for pwPPA and their carers. Speech and language therapists can also consider the research findings from this systematic review when designing and implementing similar groups in their local context.
Collapse
Affiliation(s)
| | - Jade Cartwright
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - John E Pierce
- Centre of Research Excellence in Aphasia Recovery and Rehabilitation, La Trobe University, Melbourne, Victoria, Australia
- Speech Pathology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Joubert S, Maquestiaux F, Enriquez-Rosas A, Villalpando JM, Brodeur C, Bier N. Smartphone use as an efficient tool to improve anomia in primary progressive aphasia. Neuropsychol Rehabil 2024; 34:362-387. [PMID: 36871267 DOI: 10.1080/09602011.2023.2181824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
Cognitive interventions are helpful in the non-pharmacological management of Primary progressive aphasia (PPA) and other neurodegenerative disorders of cognition, by helping patients to compensate for their cognitive deficits and improve their functional independence. In this study, we examined the effectiveness of cognitive rehabilitation based on the use of mobile device technology in PPA. The aim of this research study was to determine if BL, a patient with semantic variant PPA (svPPA) and severe anomia, was able to learn using specific smartphone functions and an application to reduce her word finding difficulties. She was trained during the intervention sessions on a list of target pictures to measure changes in picture naming performance. Errorless learning was applied during learning. BL quickly learned to use smartphone functions and the application over the course of the intervention. She significantly improved her anomia for trained pictures, and to a lesser extent for untrained semantically related pictures. Picture naming performance was maintained six months after the intervention, and she continued to use her smartphone regularly to communicate with family members and friends. This study confirms that smartphone use can be learned in PPA, which can help reduce the symptoms of anomia and improve communication skills.
Collapse
Affiliation(s)
- Sven Joubert
- CIUSSS-CSMTL - Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
- Département de psychologie, Université de Montréal, Montreal, Canada
| | - François Maquestiaux
- Centre de recherches sur les fonctionnements et dysfonctionnements psychologiques (CRFDP, EA 7475), université de Rouen Normandie, Rouen, France
- Laboratoire de recherches intégratives en neurosciences et psychologie cognitive (LINC, UR 481), université de Franche-Comté, Besançon, France
- Maison des sciences de l'homme et de l'environnement (MSHE) Ledoux, UFC, Besançon, France
| | | | - Juan Manuel Villalpando
- CIUSSS-CSMTL - Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
- CIUSSS-CSMTL - Institut universitaire de gériatrie de Montréal (IUGM), Montreal, Canada
- Faculté de médecine, Université de Montréal, Montreal, Canada
| | - Catherine Brodeur
- CIUSSS-CSMTL - Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
- CIUSSS-CSMTL - Institut universitaire de gériatrie de Montréal (IUGM), Montreal, Canada
- Faculté de médecine, Université de Montréal, Montreal, Canada
| | - Nathalie Bier
- CIUSSS-CSMTL - Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
- Faculté de médecine, Université de Montréal, Montreal, Canada
| |
Collapse
|
20
|
Lyu WJ, Chiu PY, Liu CH, Liao YC, Chang HT. Determining optimal cutoff scores of Cognitive Abilities Screening Instrument to identify dementia and mild cognitive impairment in Taiwan. BMC Geriatr 2024; 24:216. [PMID: 38431549 PMCID: PMC10909252 DOI: 10.1186/s12877-024-04810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The early detection of dementia depends on efficient methods for the assessment of cognitive capacity. Existing cognitive screening tools are ill-suited to the differentiation of cognitive status, particularly when dealing with early-stage impairment. METHODS The study included 8,979 individuals (> 50 years) with unimpaired cognitive functions, mild cognitive impairment (MCI), or dementia. This study sought to determine optimal cutoffs values for the Cognitive Abilities Screening Instrument (CASI) aimed at differentiating between individuals with or without dementia as well as between individuals with or without mild cognitive impairment. Cox proportional hazards models were used to evaluate the value of CASI tasks in predicting conversion from MCI to all-cause dementia, dementia of Alzheimer's type (DAT), or to vascular dementia (VaD). RESULTS Our optimized cutoff scores achieved high accuracy in differentiating between individuals with or without dementia (AUC = 0.87-0.93) and moderate accuracy in differentiating between CU and MCI individuals (AUC = 0.67 - 0.74). Among individuals without cognitive impairment, scores that were at least 1.5 × the standard deviation below the mean scores on CASI memory tasks were predictive of conversion to dementia within roughly 2 years after the first assessment (all-cause dementia: hazard ratio [HR] = 2.81 - 3.53; DAT: 1.28 - 1.49; VaD: 1.58). Note that the cutoff scores derived in this study were lower than those reported in previous studies. CONCLUSION Our results in this study underline the importance of establishing optimal cutoff scores for individuals with specific demographic characteristics and establishing profiles by which to guide CASI analysis.
Collapse
Affiliation(s)
- Wan-Jing Lyu
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua City, Changhua, Taiwan
| | - Chung-Hsiang Liu
- Department of Neurology, College of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Chi Liao
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Hsin-Te Chang
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
- Research Assistance Center, Show Chwan Memorial Hospital, Changhua City, Changhua, Taiwan.
- Department of Psychology, College of Science, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan 320, Taiwan.
| |
Collapse
|
21
|
Rofes A, Piai V. Introduction to the special issue on cognitive neurosurgery. J Neuropsychol 2024; 18 Suppl 1:1-6. [PMID: 38375989 DOI: 10.1111/jnp.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Affiliation(s)
- Adrià Rofes
- Center for Language and Cognition (CLCG), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neurosciences (BCN), University of Groningen, Groningen, The Netherlands
| | - Vitória Piai
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Haeger A, Muising J, Romanzetti S, Fimm B, Matz O, Schulz JB, Heim S, Reetz K. Communicative impairment and its neural correlates in Alzheimer's disease and frontotemporal dementia. Brain Behav 2024; 14:e3420. [PMID: 38494763 PMCID: PMC10945087 DOI: 10.1002/brb3.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE Communication skills can deteriorate in neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD); however, their clinical assessment and treatment in patient care can be challenging. In the present study, we aimed to quantify the distinctive communication resources and barriers reported by patients and their relatives in AD and FTD and associated these communicative characteristics with clinical parameters, such as the degree of cognitive impairment and atrophy in language-associated brain areas. METHODS We assessed self-reported communication barriers and resources in 33 individuals with AD and FTD through an interview on daily-life communication, using the Aachener KOMPASS questionnaire. We correlated reported communication barriers and resources with atrophy from high-resolution 3T brain magnetic resonance imaging, neuropsychological assessment, and neurodegenerative markers from cerebrospinal fluid. RESULTS Communicative impairment was higher in FTD compared to AD. Increased reported communication barriers in our whole sample were associated with the atrophy rate in the left middle temporal lobe, a critical site within the neuronal language network, and with depressive symptoms as well as the semantic word fluency from neuropsychological assessment. The best model for prediction of communicative impairment included the diagnosis (AD or FTD), semantic word fluency, and depressive symptoms. CONCLUSIONS Our study demonstrates that communication barriers and resources can be successfully assessed via a structured interview based on self-report and report of patients' relatives in practice and are reflected in neuroimaging specific for AD and FTD as well as in further clinical parameters specific for these neurodegenerative diseases. This can potentially open new treatment options for clinical practice and patient care.
Collapse
Affiliation(s)
- Alexa Haeger
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Janka Muising
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Bruno Fimm
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Oliver Matz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - Jörg B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| | - Stefan Heim
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum Jülich GmbH and RWTH Aachen UniversityAachenGermany
| |
Collapse
|
23
|
Ma D, Stocks J, Rosen H, Kantarci K, Lockhart SN, Bateman JR, Craft S, Gurcan MN, Popuri K, Beg MF, Wang L. Differential diagnosis of frontotemporal dementia subtypes with explainable deep learning on structural MRI. Front Neurosci 2024; 18:1331677. [PMID: 38384484 PMCID: PMC10879283 DOI: 10.3389/fnins.2024.1331677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Background Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN). Methods Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach. Results The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping. Conclusion In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.
Collapse
Affiliation(s)
- Da Ma
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jane Stocks
- Department of Psychiatry and Behavioral Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Howard Rosen
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Samuel N. Lockhart
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - James R. Bateman
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lei Wang
- Department of Psychiatry and Behavioral Health, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | |
Collapse
|
24
|
Nevler N, Cho S, Cousins KAQ, Ash S, Olm CA, Shellikeri S, Agmon G, Gonzalez-Recober C, Xie SX, Barker MS, Manoochehri M, Mcmillan CT, Irwin DJ, Massimo L, Dratch L, Cheran G, Huey ED, Cosentino SA, Van Deerlin VM, Liberman MY, Grossman M. Changes in Digital Speech Measures in Asymptomatic Carriers of Pathogenic Variants Associated With Frontotemporal Degeneration. Neurology 2024; 102:e207926. [PMID: 38165329 PMCID: PMC11407502 DOI: 10.1212/wnl.0000000000207926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Clinical trials developing therapeutics for frontotemporal degeneration (FTD) focus on pathogenic variant carriers at preclinical stages. Objective, quantitative clinical assessment tools are needed to track stability and delayed disease onset. Natural speech can serve as an accessible, cost-effective assessment tool. We aimed to identify early changes in the natural speech of FTD pathogenic variant carriers before they become symptomatic. METHODS In this cohort study, speech samples of picture descriptions were collected longitudinally from healthy participants in observational studies at the University of Pennsylvania and Columbia University between 2007 and 2020. Participants were asymptomatic but at risk for familial FTD. Status as "carrier" or "noncarrier" was based on screening for known pathogenic variants in the participant's family. Thirty previously validated digital speech measures derived from automatic speech processing pipelines were selected a priori based on previous studies in patients with FTD and compared between asymptomatic carriers and noncarriers cross-sectionally and longitudinally. RESULTS A total of 105 participants, all asymptomatic, included 41 carriers: 12 men [30%], mean age 43 ± 13 years; education, 16 ± 2 years; MMSE 29 ± 1; and 64 noncarriers: 27 men [42%]; mean age, 48 ± 14 years; education, 15 ± 3 years; MMSE 29 ± 1. We identified 4 speech measures that differed between carriers and noncarriers at baseline: mean speech segment duration (mean difference -0.28 seconds, 95% CI -0.55 to -0.02, p = 0.04); word frequency (mean difference 0.07, 95% CI 0.008-0.14, p = 0.03); word ambiguity (mean difference 0.02, 95% CI 0.0008-0.05, p = 0.04); and interjection count per 100 words (mean difference 0.33, 95% CI 0.07-0.59, p = 0.01). Three speech measures deteriorated over time in carriers only: particle count per 100 words per month (β = -0.02, 95% CI -0.03 to -0.004, p = 0.009); total narrative production time in seconds per month (β = -0.24, 95% CI -0.37 to -0.12, p < 0.001); and total number of words per month (β = -0.48, 95% CI -0.78 to -0.19, p = 0.002) including in 3 carriers who later converted to symptomatic disease. DISCUSSION Using automatic processing pipelines, we identified early changes in the natural speech of FTD pathogenic variant carriers in the presymptomatic stage. These findings highlight the potential utility of natural speech as a digital clinical outcome assessment tool in FTD, where objective and quantifiable measures for abnormal behavior and language are lacking.
Collapse
Affiliation(s)
- Naomi Nevler
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Sunghye Cho
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Katheryn A Q Cousins
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Sharon Ash
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Christopher A Olm
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Sanjana Shellikeri
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Galit Agmon
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Carmen Gonzalez-Recober
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Sharon X Xie
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Megan S Barker
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Masood Manoochehri
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Corey T Mcmillan
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - David J Irwin
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Lauren Massimo
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Laynie Dratch
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Gayathri Cheran
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Edward D Huey
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Stephanie A Cosentino
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Vivianna M Van Deerlin
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Mark Y Liberman
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| | - Murray Grossman
- From the Frontotemporal Degeneration Center, Department of Neurology, (N.N., K.A.Q.C., S.A., C.A.O., S.S., G.A., C.G.-R., C.T.M., D.J.I., L.M., L.D., M.G.), Linguistic Data Consortium, Department of Linguistics (S.C., M.Y.L.), Penn Image Computing and Science Laboratory, Department of Radiology (C.A.O.), Department of Biostatistics, Epidemiology and Informatics (S.X.X.), and Department of Pathology and Laboratory Medicine (V.M.V.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (M.S.B.,M.M., G.C., E.D.H., S.A.C.); and Department of Neurology (G.C., E.D.H., S.A.C.) and Gertrude H. Sergievsky Center (S.A.C.), Columbia University Irving Medical Center, New York
| |
Collapse
|
25
|
Cayir S, Volpi T, Toyonaga T, Gallezot JD, Yanghong Y, Sadabad FE, Mulnix T, Mecca AP, Fesharaki-Zadeh A, Matuskey D. Relationship between Neuroimaging and Cognition in Frontotemporal Dementia: A [18 F]FDG PET and Structural MRI Study. RESEARCH SQUARE 2024:rs.3.rs-3846125. [PMID: 38313264 PMCID: PMC10836106 DOI: 10.21203/rs.3.rs-3846125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous condition with a prevalence comparable to Alzheimer's Disease for patients under sixty-five years of age. Gray matter (GM) atrophy and glucose hypometabolism are important biomarkers for the diagnosis and evaluation of disease progression in FTD. However, limited studies have systematically examined the association between cognition and neuroimaging in FTD using different imaging modalities in the same patient group. Methods We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both GM volume and glucose metabolism using structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography scanning ([18F]FDG PET) in 21 patients diagnosed with FTD. Standardized uptake value ratio (SUVR) using the brainstem as a reference region was the primary outcome measure for [18F]FDG PET. Partial volume correction was applied to PET data to account for disease-related atrophy. Results Significant positive associations were found between whole-cortex GM volume and MoCA scores (r = 0.461, p = 0.035). The association between whole-cortex [18F]FDG SUVR and MoCA scores was not Significant (r = 0.374, p = 0.094). GM volumes of the frontal cortex (r = 0.540, p = 0.011), caudate (r = 0.616, p = 0.002), and insula (r = 0.568, p = 0.007) were also Significantly correlated with MoCA, as were SUVR values of the insula (r = 0.508, p = 0.018), thalamus (r = 0.478, p = 0.028), and posterior cingulate cortex (PCC) (r = 0.472, p = 0.030). Discussion Whole-cortex atrophy is associated with cognitive dysfunction, and this effect is larger than for cortical hypometabolism as measured with [18F]FDG PET. At the regional level, focal atrophy and/or hypometabolism in the frontal lobe, insula, PCC, thalamus, and caudate seem to imply the importance of these regions for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways. Our findings provide insight into the relationships between structural, metabolic, and cognitive changes due to FTD.
Collapse
|
26
|
Barbieri E, Lukic S, Rogalski E, Weintraub S, Mesulam MM, Thompson CK. Neural mechanisms of sentence production: a volumetric study of primary progressive aphasia. Cereb Cortex 2024; 34:bhad470. [PMID: 38100360 PMCID: PMC10793577 DOI: 10.1093/cercor/bhad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Studies on the neural bases of sentence production have yielded mixed results, partly due to differences in tasks and participant types. In this study, 101 individuals with primary progressive aphasia (PPA) were evaluated using a test that required spoken production following an auditory prime (Northwestern Assessment of Verbs and Sentences-Sentence Production Priming Test, NAVS-SPPT), and one that required building a sentence by ordering word cards (Northwestern Anagram Test, NAT). Voxel-Based Morphometry revealed that gray matter (GM) volume in left inferior/middle frontal gyri (L IFG/MFG) was associated with sentence production accuracy on both tasks, more so for complex sentences, whereas, GM volume in left posterior temporal regions was exclusively associated with NAVS-SPPT performance and predicted by performance on a Digit Span Forward (DSF) task. Verb retrieval deficits partly mediated the relationship between L IFG/MFG and performance on the NAVS-SPPT. These findings underscore the importance of L IFG/MFG for sentence production and suggest that this relationship is partly accounted for by verb retrieval deficits, but not phonological loop integrity. In contrast, it is possible that the posterior temporal cortex is associated with auditory short-term memory ability, to the extent that DSF performance is a valid measure of this in aphasia.
Collapse
Affiliation(s)
- Elena Barbieri
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sladjana Lukic
- Department of Communication Sciences and Disorders, Adelphi University, 158 Cambridge Avenue, Garden City, NY 11530, United States
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 676 N Saint Clair Street, Chicago, IL 60611, United States
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
| | - Cynthia K Thompson
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Neurology, Northwestern University, 300 E Superior Street, Chicago, IL 60611, United States
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, United States
| |
Collapse
|
27
|
Rezaii N, Quimby M, Wong B, Hochberg D, Brickhouse M, Touroutoglou A, Dickerson BC, Wolff P. Using Generative Artificial Intelligence to Classify Primary Progressive Aphasia from Connected Speech. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300470. [PMID: 38234853 PMCID: PMC10793520 DOI: 10.1101/2023.12.22.23300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Neurodegenerative dementia syndromes, such as Primary Progressive Aphasias (PPA), have traditionally been diagnosed based in part on verbal and nonverbal cognitive profiles. Debate continues about whether PPA is best subdivided into three variants and also regarding the most distinctive linguistic features for classifying PPA variants. In this study, we harnessed the capabilities of artificial intelligence (AI) and natural language processing (NLP) to first perform unsupervised classification of concise, connected speech samples from 78 PPA patients. Large Language Models discerned three distinct PPA clusters, with 88.5% agreement with independent clinical diagnoses. Patterns of cortical atrophy of three data-driven clusters corresponded to the localization in the clinical diagnostic criteria. We then used NLP to identify linguistic features that best dissociate the three PPA variants. Seventeen features emerged as most valuable for this purpose, including the observation that separating verbs into high and low-frequency types significantly improves classification accuracy. Using these linguistic features derived from the analysis of brief connected speech samples, we developed a classifier that achieved 97.9% accuracy in predicting PPA subtypes and healthy controls. Our findings provide pivotal insights for refining early-stage dementia diagnosis, deepening our understanding of the characteristics of these neurodegenerative phenotypes and the neurobiology of language processing, and enhancing diagnostic evaluation accuracy.
Collapse
Affiliation(s)
- Neguine Rezaii
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital & Harvard Medical School, Boston MA, USA
| | - Phillip Wolff
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Ramanan S, Halai AD, Garcia-Penton L, Perry AG, Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, Patterson K, Rowe JB, Garrard P, Ralph MAL. The neural substrates of transdiagnostic cognitive-linguistic heterogeneity in primary progressive aphasia. Alzheimers Res Ther 2023; 15:219. [PMID: 38102724 PMCID: PMC10724982 DOI: 10.1186/s13195-023-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Clinical variants of primary progressive aphasia (PPA) are diagnosed based on characteristic patterns of language deficits, supported by corresponding neural changes on brain imaging. However, there is (i) considerable phenotypic variability within and between each diagnostic category with partially overlapping profiles of language performance between variants and (ii) accompanying non-linguistic cognitive impairments that may be independent of aphasia magnitude and disease severity. The neurobiological basis of this cognitive-linguistic heterogeneity remains unclear. Understanding the relationship between these variables would improve PPA clinical/research characterisation and strengthen clinical trial and symptomatic treatment design. We address these knowledge gaps using a data-driven transdiagnostic approach to chart cognitive-linguistic differences and their associations with grey/white matter degeneration across multiple PPA variants. METHODS Forty-seven patients (13 semantic, 15 non-fluent, and 19 logopenic variant PPA) underwent assessment of general cognition, errors on language performance, and structural and diffusion magnetic resonance imaging to index whole-brain grey and white matter changes. Behavioural data were entered into varimax-rotated principal component analyses to derive orthogonal dimensions explaining the majority of cognitive variance. To uncover neural correlates of cognitive heterogeneity, derived components were used as covariates in neuroimaging analyses of grey matter (voxel-based morphometry) and white matter (network-based statistics of structural connectomes). RESULTS Four behavioural components emerged: general cognition, semantic memory, working memory, and motor speech/phonology. Performance patterns on the latter three principal components were in keeping with each variant's characteristic profile, but with a spectrum rather than categorical distribution across the cohort. General cognitive changes were most marked in logopenic variant PPA. Regardless of clinical diagnosis, general cognitive impairment was associated with inferior/posterior parietal grey/white matter involvement, semantic memory deficits with bilateral anterior temporal grey/white matter changes, working memory impairment with temporoparietal and frontostriatal grey/white matter involvement, and motor speech/phonology deficits with inferior/middle frontal grey matter alterations. CONCLUSIONS Cognitive-linguistic heterogeneity in PPA closely relates to individual-level variations on multiple behavioural dimensions and grey/white matter degeneration of regions within and beyond the language network. We further show that employment of transdiagnostic approaches may help to understand clinical symptom boundaries and reveal clinical and neural profiles that are shared across categorically defined variants of PPA.
Collapse
Affiliation(s)
- Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Ajay D Halai
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Lorna Garcia-Penton
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Alistair G Perry
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Nikil Patel
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Katie A Peterson
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Ruth U Ingram
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Ian Storey
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Stefano F Cappa
- IUSS Cognitive Neuroscience Center (ICoN), University Institute of Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Eleonora Catricala
- IUSS Cognitive Neuroscience Center (ICoN), University Institute of Advanced Studies IUSS, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Karalyn Patterson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Peter Garrard
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
29
|
Akhmadullina DR, Konovalov RN, Shpilyukova YA, Fedotova EY, Illarioshkin SN. Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sci 2023; 13:1703. [PMID: 38137151 PMCID: PMC10741652 DOI: 10.3390/brainsci13121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Naming decline is one of the most common symptoms of primary progressive aphasia (PPA). Most studies on anomia in PPA are performed without taking into account PPA variants, especially for action naming. Only limited data are available for the neuroanatomical basis of anomia considering differences in the pathogenesis of PPAs. The aim of our study is to investigate the associations between anomia severity for both noun and verb naming and gray matter (GM) atrophy, as well as accompanying functional connectivity (FC) changes in three PPA variants. A total of 17 patients with non-fluent (nfvPPA), 11 with semantic (svPPA), and 9 with logopenic (lvPPA) PPA variants were included in the study and underwent cognitive/naming assessments and brain MRIs. Voxel-based morphometry was performed to evaluate GM volume. A resting-state functional MRI was applied to investigate FC changes in the identified GM areas. The study shows that different brain regions are involved in naming decline in each PPA variant with a predominantly temporal lobe involvement in svPPA, parietal lobe involvement in lvPPA, and frontal lobe involvement in nfvPPA. Separate data for object and action naming in PPA variants are provided. The obtained results mainly correspond to the current understanding of language processing and indicate that the evaluation of language impairments is preferable for each PPA variant separately. A further analysis of larger cohorts of patients is necessary to confirm these preliminary results.
Collapse
|
30
|
Peterson M, Braga RM, Floris DL, Nielsen JA. Evidence for a Compensatory Relationship between Left- and Right-Lateralized Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570817. [PMID: 38106130 PMCID: PMC10723397 DOI: 10.1101/2023.12.08.570817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
31
|
Nitrini R. The past, present and future of Alzheimer's disease - part 1: the past. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1070-1076. [PMID: 38157874 PMCID: PMC10756790 DOI: 10.1055/s-0043-1777722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) was described in 1907, and since then it changed from a relatively rare condition to one of the most prevalent diseases. OBJECTIVE To describe the evolution of the notions of dementias and AD, and to investigate the reasons for the increase in scientific interest in AD. METHODS A historical analysis was carried out on knowledge about dementia, the site of mental activity, the relationships between brain diseases and mental activity, and on the advances in research about AD, since its discovery until the publication of the amyloid cascade hypothesis in 1992. A search was carried out in the National Library of Medicine (PubMed) for scientific articles that included the terms dementia or AD over 50 years, from 1972 to 2021. RESULTS The scientific research on AD increased from 615 papers with the term AD in the first decade (1972-1981), to 100,028 papers in the last decade (2012-2021): an increase of 162.6 times whereas publications with the term dementia increased 28.6 times in the same period. In the 1960s and 1970s, a consensus was reached that AD is responsible for the majority of cases of dementia previously known as senile dementia. In the 1980s, beta-amyloid peptide was identified in the core of the senile plaque, hyperphosphorylated tau protein was found in neurofibrillary tangles, and a mutation was discovered in a hereditary form of AD. CONCLUSION The expansion of the concept of AD to include senile dementia, and the discoveries that occurred in the 1980s greatly expanded research in AD.
Collapse
Affiliation(s)
- Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, São Paulo SP, Brazil.
| |
Collapse
|
32
|
Norata D, Motolese F, Magliozzi A, Pilato F, Di Lazzaro V, Luzzi S, Capone F. Transcranial direct current stimulation in semantic variant of primary progressive aphasia: a state-of-the-art review. Front Hum Neurosci 2023; 17:1219737. [PMID: 38021245 PMCID: PMC10663282 DOI: 10.3389/fnhum.2023.1219737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
The semantic variant of primary progressive aphasia (svPPA), known also as "semantic dementia (SD)," is a neurodegenerative disorder that pertains to the frontotemporal lobar degeneration clinical syndromes. There is currently no approved pharmacological therapy for all frontotemporal dementia variants. Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation technique capable of modulating cortical excitability through a sub-threshold shift in neuronal resting potential. This technique has previously been applied as adjunct treatment in Alzheimer's disease, while data for frontotemporal dementia are controversial. In this scoped review, we summarize and critically appraise the currently available evidence regarding the use of tDCS for improving performance in naming and/or matching tasks in patients with svPPA. Clinical trials addressing this topic were identified through MEDLINE (accessed by PubMed) and Web of Science, as of November 2022, week 3. Clinical trials have been unable to show a significant benefit of tDCS in enhancing semantic performance in svPPA patients. The heterogeneity of the studies available in the literature might be a possible explanation. Nevertheless, the results of these studies are promising and may offer valuable insights into methodological differences and overlaps, raising interest among researchers in identifying new non-pharmacological strategies for treating svPPA patients. Further studies are therefore warranted to investigate the potential therapeutic role of tDCS in svPPA.
Collapse
Affiliation(s)
- Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simona Luzzi
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
33
|
Tuckute G, Sathe A, Srikant S, Taliaferro M, Wang M, Schrimpf M, Kay K, Fedorenko E. Driving and suppressing the human language network using large language models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537080. [PMID: 37090673 PMCID: PMC10120732 DOI: 10.1101/2023.04.16.537080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transformer models such as GPT generate human-like language and are highly predictive of human brain responses to language. Here, using fMRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict the magnitude of brain response associated with each sentence. Then, we use the model to identify new sentences that are predicted to drive or suppress responses in the human language network. We show that these model-selected novel sentences indeed strongly drive and suppress activity of human language areas in new individuals. A systematic analysis of the model-selected sentences reveals that surprisal and well-formedness of linguistic input are key determinants of response strength in the language network. These results establish the ability of neural network models to not only mimic human language but also noninvasively control neural activity in higher-level cortical areas, like the language network.
Collapse
Affiliation(s)
- Greta Tuckute
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Aalok Sathe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Shashank Srikant
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- MIT-IBM Watson AI Lab, Cambridge, MA 02142, USA
| | - Maya Taliaferro
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Mingye Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Martin Schrimpf
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Quest for Intelligence, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
34
|
Hinkley LBN, Thompson M, Miller ZA, Borghesani V, Mizuiri D, Shwe W, Licata A, Ninomiya S, Lauricella M, Mandelli ML, Miller BL, Houde J, Gorno‐Tempini ML, Nagarajan SS. Distinct neurophysiology during nonword repetition in logopenic and non-fluent variants of primary progressive aphasia. Hum Brain Mapp 2023; 44:4833-4847. [PMID: 37516916 PMCID: PMC10472914 DOI: 10.1002/hbm.26408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 06/11/2023] [Indexed: 07/31/2023] Open
Abstract
Overlapping clinical presentations in primary progressive aphasia (PPA) variants present challenges for diagnosis and understanding pathophysiology, particularly in the early stages of the disease when behavioral (speech) symptoms are not clearly evident. Divergent atrophy patterns (temporoparietal degeneration in logopenic variant lvPPA, frontal degeneration in nonfluent variant nfvPPA) can partially account for differential speech production errors in the two groups in the later stages of the disease. While the existing dogma states that neurodegeneration is the root cause of compromised behavior and cortical activity in PPA, the extent to which neurophysiological signatures of speech dysfunction manifest independent of their divergent atrophy patterns remain unknown. We test the hypothesis that nonword deficits in lvPPA and nfvPPA arise from distinct patterns of neural oscillations that are unrelated to atrophy. We use a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations during a non-word repetition task with voxel-based morphometry-derived measures of gray matter volume to isolate neural oscillation abnormalities independent of atrophy. We find reduced beta band neural activity in left temporal regions associated with the late stages of auditory encoding unique to patients with lvPPA and reduced high-gamma neural activity over left frontal regions associated with the early stages of motor preparation in patients with nfvPPA. Neither of these patterns of reduced cortical oscillations was explained by cortical atrophy in our statistical model. These findings highlight the importance of structure-function imaging in revealing neurophysiological sequelae in early stages of dementia when neither structural atrophy nor behavioral deficits are clinically distinct.
Collapse
Affiliation(s)
- Leighton B. N. Hinkley
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Megan Thompson
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Zachary A. Miller
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Danielle Mizuiri
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Wendy Shwe
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Abigail Licata
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Seigo Ninomiya
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael Lauricella
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Bruce L. Miller
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - John Houde
- Department of Otolaryngology – Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
35
|
Agarwal A, Makkar AM, Garg A, Tripathi M, Vishnu VY, Rajan R, Singh MB, Bhatia R, Srivastava MVP, Gupta A. Granulin-FTLD Presenting as Mixed Transcortical Aphasia: New Kid on the Block? Ann Indian Acad Neurol 2023; 26:819-822. [PMID: 38022440 PMCID: PMC10666881 DOI: 10.4103/aian.aian_164_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ayush M. Makkar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta B. Singh
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - M. V. P. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Anu Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
36
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
37
|
Mandelli ML, Lorca‐Puls DL, Lukic S, Montembeault M, Gajardo‐Vidal A, Licata A, Scheffler A, Battistella G, Grasso SM, Bogley R, Ratnasiri BM, La Joie R, Mundada NS, Europa E, Rabinovici G, Miller BL, De Leon J, Henry ML, Miller Z, Gorno‐Tempini ML. Network anatomy in logopenic variant of primary progressive aphasia. Hum Brain Mapp 2023; 44:4390-4406. [PMID: 37306089 PMCID: PMC10318204 DOI: 10.1002/hbm.26388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.
Collapse
Affiliation(s)
- Maria Luisa Mandelli
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Diego L. Lorca‐Puls
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Sección de Neurología, Departamento de Especialidades, Facultad de MedicinaUniversidad de ConcepciónConcepciónChile
| | - Sladjana Lukic
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Communication Sciences and DisordersAdelphi UniversityGarden CityNew YorkUSA
| | - Maxime Montembeault
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PsychiatryDouglas Mental Health University Institute, McGill UniversityMontréalCanada
| | - Andrea Gajardo‐Vidal
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Faculty of Health SciencesUniversidad del DesarrolloConcepciónChile
| | - Abigail Licata
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Aaron Scheffler
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Giovanni Battistella
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of OtolaryngologyHead and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical SchoolBostonMassachusettsUSA
| | - Stephanie M. Grasso
- Department of Speech, Language, and Hearing SciencesUniversity of TexasAustinTexasUSA
| | - Rian Bogley
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Buddhika M. Ratnasiri
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Nidhi S. Mundada
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Eduardo Europa
- Department of Communicative Disorders and SciencesSan Jose State UniversitySan JoseCaliforniaUSA
| | - Gil Rabinovici
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jessica De Leon
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Maya L. Henry
- Department of Speech, Language, and Hearing SciencesUniversity of TexasAustinTexasUSA
| | - Zachary Miller
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
38
|
Josephy-Hernandez S, Rezaii N, Jones A, Loyer E, Hochberg D, Quimby M, Wong B, Dickerson BC. Automated analysis of written language in the three variants of primary progressive aphasia. Brain Commun 2023; 5:fcad202. [PMID: 37539353 PMCID: PMC10396070 DOI: 10.1093/braincomms/fcad202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Despite the important role of written language in everyday life, abnormalities in functional written communication have been sparsely investigated in primary progressive aphasia. Prior studies have analysed written language separately in each of the three variants of primary progressive aphasia-but have rarely compared them to each other or to spoken language. Manual analysis of written language can be a time-consuming process. We therefore developed a program that quantifies content units and total units in written or transcribed language samples. We analysed written and spoken descriptions of the Western Aphasia Battery picnic scene, based on a predefined content unit corpus. We calculated the ratio of content units to units as a measure of content density. Our cohort included 115 participants (20 controls for written, 20 controls for spoken, 28 participants with nonfluent variant primary progressive aphasia, 30 for logopenic variant and 17 for semantic variant). Our program identified content units with a validity of 99.7% (95%CI 99.5-99.8). All patients wrote fewer units than controls (P < 0.001). Patients with the logopenic variant (P = 0.013) and the semantic variant (0.004) wrote fewer content units than controls. The content unit-to-unit ratio was higher in the nonfluent and semantic variants than controls (P = 0.019), but no difference in the logopenic variant (P = 0.962). Participants with the logopenic (P < 0.001) and semantic (P = 0.04) variants produced fewer content units in written compared to spoken descriptions. All variants produced fewer units in written samples compared to spoken (P < 0.001). However, due to a relatively smaller decrease in written content units, we observed a larger content unit-to-unit ratio in writing over speech (P < 0.001). Written and spoken content units (r = 0.5, P = 0.009) and total units (r = 0.64, P < 0.001) were significantly correlated in patients with nonfluent variant, but this was not the case for logopenic or semantic. Considering all patients with primary progressive aphasia, fewer content units were produced in those with greater aphasia severity (Progressive Aphasia Severity Scale Sum of Boxes, r = -0.24, P = 0.04) and dementia severity (Clinical Dementia Rating scale Sum of Boxes, r = -0.34, P = 0.004). In conclusion, we observed reduced written content in patients with primary progressive aphasia compared to controls, with a preference for content over non-content units in patients with the nonfluent and semantic variants. We observed a similar 'telegraphic' style in both language modalities in patients with the nonfluent variant. Lastly, we show how our program provides a time-efficient tool, which could enable feedback and tracking of writing as an important feature of language and cognition.
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Neguine Rezaii
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Amelia Jones
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Emmaleigh Loyer
- Speech and Language Pathology Department, Spaulding Rehabilitation Hospital, Charlestown, MA 02129, USA
| | - Daisy Hochberg
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Megan Quimby
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Bonnie Wong
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Bradford C Dickerson
- Correspondence to: Bradford C. Dickerson Frontotemporal Disorders Unit, Department of Neurology Massachusetts General Hospital & Harvard Medical School 149 13th Street, Suite 10.004, Charlestown, MA 02129, USA E-mail:
| |
Collapse
|
39
|
Chen X, Affourtit J, Ryskin R, Regev TI, Norman-Haignere S, Jouravlev O, Malik-Moraleda S, Kean H, Varley R, Fedorenko E. The human language system, including its inferior frontal component in "Broca's area," does not support music perception. Cereb Cortex 2023; 33:7904-7929. [PMID: 37005063 PMCID: PMC10505454 DOI: 10.1093/cercor/bhad087] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
Language and music are two human-unique capacities whose relationship remains debated. Some have argued for overlap in processing mechanisms, especially for structure processing. Such claims often concern the inferior frontal component of the language system located within "Broca's area." However, others have failed to find overlap. Using a robust individual-subject fMRI approach, we examined the responses of language brain regions to music stimuli, and probed the musical abilities of individuals with severe aphasia. Across 4 experiments, we obtained a clear answer: music perception does not engage the language system, and judgments about music structure are possible even in the presence of severe damage to the language network. In particular, the language regions' responses to music are generally low, often below the fixation baseline, and never exceed responses elicited by nonmusic auditory conditions, like animal sounds. Furthermore, the language regions are not sensitive to music structure: they show low responses to both intact and structure-scrambled music, and to melodies with vs. without structural violations. Finally, in line with past patient investigations, individuals with aphasia, who cannot judge sentence grammaticality, perform well on melody well-formedness judgments. Thus, the mechanisms that process structure in language do not appear to process music, including music syntax.
Collapse
Affiliation(s)
- Xuanyi Chen
- Department of Cognitive Sciences, Rice University, TX 77005, United States
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Rachel Ryskin
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive & Information Sciences, University of California, Merced, Merced, CA 95343, United States
| | - Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Samuel Norman-Haignere
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Olessia Jouravlev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| | - Hope Kean
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Rosemary Varley
- Psychology & Language Sciences, UCL, London, WCN1 1PF, United Kingdom
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
40
|
Mandelli ML, Lorca-Puls DL, Lukic S, Montembeault M, Gajardo-Vidal A, Licata A, Scheffler A, Battistella G, Grasso SM, Bogley R, Ratnasiri BM, La Joie R, Mundada NS, Europa E, Rabinovici G, Miller BL, De Leon J, Henry ML, Miller Z, Gorno-Tempini ML. Network anatomy in logopenic variant of primary progressive aphasia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23289065. [PMID: 37292690 PMCID: PMC10246009 DOI: 10.1101/2023.05.15.23289065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills, resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through pre-determined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically-fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporo-parietal junction regions, predominantly follows at least two partially non-overlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.
Collapse
|
41
|
Nassan M, Piras IS, Rogalski E, Geula C, Mesulam MM, Huentelman M. Evaluating the Association Between Genetically Proxied Neurodevelopmental Language Phenotypes and the Risk of Primary Progressive Aphasia. Neurology 2023; 100:e1922-e1929. [PMID: 36889925 PMCID: PMC10159766 DOI: 10.1212/wnl.0000000000207136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/18/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Primary progressive aphasia (PPA) is a neurodegenerative syndrome of progressive language decline. PPA has 3 main subtypes: logopenic, semantic, and agrammatic. Observational studies suggested an association between language-related neurodevelopmental phenotypes and an increased risk of PPA. We sought to assess such relationships through Mendelian randomization (MR) approach, which can suggest potentially causal associations. METHODS Genome-wide significant single-nucleotide polymorphisms (SNPs) associated with dyslexia (42 SNPs), developmental speech disorders (29 SNPs), and left-handedness (41 SNPs) were used as genetic proxies for the exposures. Eighteen of 41 SNPs of left-handedness were associated with structural asymmetry of the cerebral cortex. Genome-wide association study summary statistics were obtained from publicly available databases for semantic (308 cases/616 controls) and agrammatic PPA (269 cases/538 controls). The logopenic PPA (324 cases/3,444 controls) was approximated by proxy through the rubric of clinically diagnosed Alzheimer disease with salient language impairment. Inverse-weighted variance MR was performed as the main analysis for testing the relationship between the exposures and outcomes. Sensitivity analyses were completed to test the robustness of the results. RESULTS Dyslexia, developmental speech disorders, and left-handedness were not associated with any PPA subtype (p > 0.05). The genetic proxy of cortical asymmetry in left-handedness was significantly associated with agrammatic PPA (β = 4.3, p = 0.007), but not with other PPA subtypes. This association was driven by microtubule-related genes, primarily by a variant that is in complete linkage disequilibrium with MAPT gene. Sensitivity analyses were overall consistent with the primary analyses. DISCUSSION Our results do not support a causal association between dyslexia, developmental speech disorders, and handedness with any of the PPA subtypes. Our data suggest a complex association between cortical asymmetry genes and agrammatic PPA. Whether the additional association with left-handedness is necessary remains to be determined but is unlikely, given the absence of association between left-handedness and PPA. Genetic proxy of brain asymmetry (regardless of handedness) was not tested as an exposure due to lack of suitable genetic proxy. Furthermore, the genes related to cortical asymmetry associated with agrammatic PPA are implicated in microtubule-related proteins (TUBA1B, TUBB, and MAPT), which is keeping with the association of tau-related neurodegeneration in this PPA variant.
Collapse
Affiliation(s)
- Malik Nassan
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease (M.N., E.R., C.G., M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Neurogenomics Division (I.S.P., M.H.), Translational Genomics Research Institute, TGen, Phoenix, AZ; and Department of Psychiatry and Behavioral Disorders (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Ignazio S Piras
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease (M.N., E.R., C.G., M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Neurogenomics Division (I.S.P., M.H.), Translational Genomics Research Institute, TGen, Phoenix, AZ; and Department of Psychiatry and Behavioral Disorders (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Emily Rogalski
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease (M.N., E.R., C.G., M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Neurogenomics Division (I.S.P., M.H.), Translational Genomics Research Institute, TGen, Phoenix, AZ; and Department of Psychiatry and Behavioral Disorders (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Changiz Geula
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease (M.N., E.R., C.G., M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Neurogenomics Division (I.S.P., M.H.), Translational Genomics Research Institute, TGen, Phoenix, AZ; and Department of Psychiatry and Behavioral Disorders (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - M Marsel Mesulam
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease (M.N., E.R., C.G., M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Neurogenomics Division (I.S.P., M.H.), Translational Genomics Research Institute, TGen, Phoenix, AZ; and Department of Psychiatry and Behavioral Disorders (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Matt Huentelman
- From the Mesulam Center for Cognitive Neurology and Alzheimer's Disease (M.N., E.R., C.G., M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Neurogenomics Division (I.S.P., M.H.), Translational Genomics Research Institute, TGen, Phoenix, AZ; and Department of Psychiatry and Behavioral Disorders (E.R.), and Department of Neurology (M.M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
42
|
Godefroy O, Aarabi A, Dorchies F, Barbay M, Andriuta D, Diouf M, Thiebaut de Schotten M, Kassir R, Tasseel-Ponche S, Roussel M. Functional architecture of executive processes: Evidence from verbal fluency and lesion mapping in stroke patients. Cortex 2023; 164:129-143. [PMID: 37207410 DOI: 10.1016/j.cortex.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 05/21/2023]
Abstract
The functional organization and related anatomy of executive functions are still largely unknown and were examined in the present study using a verbal fluency task. The objective of this study was to determine the cognitive architecture of a fluency task and related voxelwise anatomy in the GRECogVASC cohort and fMRI based meta-analytical data. First, we proposed a model of verbal fluency in which two control processes, lexico-semantic strategic search process and attention process, interact with semantic and lexico-phonological output processes. This model was assessed by testing 404 patients and 775 controls for semantic and letter fluency, naming, and processing speed (Trail Making test part A). Regression (R2 = .276 and .3, P = .0001, both) and structural equation modeling (CFI: .88, RMSEA: .2, SRMR: .1) analyses supported this model. Second, voxelwise lesion-symptom mapping and disconnectome analyses demonstrated fluency to be associated with left lesions of the pars opercularis, lenticular nucleus, insula, temporopolar region, and a large number of tracts. In addition, a single dissociation showed specific association of letter fluency with the pars triangularis of F3. Disconnectome mapping showed the additional role of disconnection of left frontal gyri and thalamus. By contrast, these analyses did not identify voxels specifically associated with lexico-phonological search processes. Third, meta-analytic fMRI data (based on 72 studies) strikingly matched all structures identified by the lesion approach. These results support our modeling of the functional architecture of verbal fluency based on two control processes (strategic search and attention) operating on semantic and lexico-phonologic output processes. Multivariate analysis supports the prominent role of the temporopolar area (BA 38) in semantic fluency and the F3 triangularis area (BA 45) in letter fluency. Finally, the lack of voxels specifically dedicated to strategic search processes could be due to a distributed organization of executive functions warranting further studies.
Collapse
Affiliation(s)
- Olivier Godefroy
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France; Departments of Neurology, Amiens University Hospital, France.
| | - Ardalan Aarabi
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Flore Dorchies
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France
| | - Mélanie Barbay
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France; Departments of Neurology, Amiens University Hospital, France
| | - Daniela Andriuta
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France; Departments of Neurology, Amiens University Hospital, France
| | - Momar Diouf
- Departments of Biostatistics, Amiens University Hospital, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Rania Kassir
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France; Laboratoire de Recherche en Neurosciences (LAREN), Université Saint-Joseph, Beyrouth, Lebanon
| | - Sophie Tasseel-Ponche
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France; Departments of Physical Medicine and Rehabilitation, Amiens University Hospital, France
| | - Martine Roussel
- Laboratory of Functional Neurosciences (UR UPJV 4559), Jules Verne University of Picardie, Amiens, France; Departments of Neurology, Amiens University Hospital, France
| |
Collapse
|
43
|
Zhu H, Fitzhugh MC, Keator LM, Johnson L, Rorden C, Bonilha L, Fridriksson J, Rogalsky C. How can graph theory inform the dual-stream model of speech processing? a resting-state fMRI study of post-stroke aphasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537216. [PMID: 37131756 PMCID: PMC10153155 DOI: 10.1101/2023.04.17.537216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The dual-stream model of speech processing has been proposed to represent the cortical networks involved in speech comprehension and production. Although it is arguably the prominent neuroanatomical model of speech processing, it is not yet known if the dual-stream model represents actual intrinsic functional brain networks. Furthermore, it is unclear how disruptions after a stroke to the functional connectivity of the dual-stream model's regions are related to specific types of speech production and comprehension impairments seen in aphasia. To address these questions, in the present study, we examined two independent resting-state fMRI datasets: (1) 28 neurotypical matched controls and (2) 28 chronic left-hemisphere stroke survivors with aphasia collected at another site. Structural MRI, as well as language and cognitive behavioral assessments, were collected. Using standard functional connectivity measures, we successfully identified an intrinsic resting-state network amongst the dual-stream model's regions in the control group. We then used both standard functional connectivity analyses and graph theory approaches to determine how the functional connectivity of the dual-stream network differs in individuals with post-stroke aphasia, and how this connectivity may predict performance on clinical aphasia assessments. Our findings provide strong evidence that the dual-stream model is an intrinsic network as measured via resting-state MRI, and that weaker functional connectivity of the hub nodes of the dual-stream network defined by graph theory methods, but not overall average network connectivity, is weaker in the stroke group than in the control participants. Also, the functional connectivity of the hub nodes predicted specific types of impairments on clinical assessments. In particular, the relative strength of connectivity of the right hemisphere's homologues of the left dorsal stream hubs to the left dorsal hubs versus right ventral stream hubs is a particularly strong predictor of post-stroke aphasia severity and symptomology.
Collapse
|
44
|
Restrepo-Martínez M, Ramirez-Bermudez J, So I, Coleman K, Finger E. Delusions of love and passion in the behavioral variant of frontotemporal dementia. Neurocase 2023; 29:37-45. [PMID: 38678305 DOI: 10.1080/13554794.2024.2345110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Erotomania (de Clérambault's syndrome) refers to the delusional belief that another person, usually socially unreachable, is in love with the holder of the delusion. The occurrence of erotomania in Frontotemporal Dementia has rarely been reported. We present the unique case of a 59-year-old woman with a strong family history of early-onset dementia in whom erotomania was the initial manifestation that led to a diagnosis of definite Behavioral Variant of Frontotemporal Dementia with a pathogenic missense mutation in the MAPT gene. Based on this case, we propose a hypothetical model for developing erotomania in patients with FTD.
Collapse
Affiliation(s)
- Miguel Restrepo-Martínez
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jesus Ramirez-Bermudez
- Department of Neuropsychiatry, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Isis So
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Kristy Coleman
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
45
|
Nelson MJ, Moeller S, Seckin M, Rogalski EJ, Mesulam MM, Hurley RS. The eyes speak when the mouth cannot: Using eye movements to interpret omissions in primary progressive aphasia. Neuropsychologia 2023; 184:108530. [PMID: 36906222 PMCID: PMC10166577 DOI: 10.1016/j.neuropsychologia.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Though it may seem simple, object naming is a complex multistage process that can be impaired by lesions at various sites of the language network. Individuals with neurodegenerative disorders of language, known as primary progressive aphasias (PPA), have difficulty with naming objects, and instead frequently say "I don't know" or fail to give a vocal response at all, known as an omission. Whereas other types of naming errors (paraphasias) give clues as to which aspects of the language network have been compromised, the mechanisms underlying omissions remain largely unknown. In this study, we used a novel eye tracking approach to probe the cognitive mechanisms of omissions in the logopenic and semantic variants of PPA (PPA-L and PPA-S). For each participant, we identified pictures of common objects (e.g., animals, tools) that they could name aloud correctly, as well as pictures that elicited an omission. In a separate word-to-picture matching task, those pictures appeared as targets embedded among an array with 15 foils. Participants were given a verbal cue and tasked with pointing to the target, while eye movements were monitored. On trials with correctly-named targets, controls and both PPA groups ceased visual search soon after foveating the target. On omission trials, however, the PPA-S group failed to stop searching, and went on to view many foils "post-target". As further indication of impaired word knowledge, gaze of the PPA-S group was subject to excessive "taxonomic capture", such that they spent less time viewing the target and more time viewing related foils on omission trials. In contrast, viewing behavior of the PPA-L group was similar to controls on both correctly-named and omission trials. These results indicate that the mechanisms of omission in PPA differ by variant. In PPA-S, anterior temporal lobe degeneration causes taxonomic blurring, such that words from the same category can no longer be reliably distinguished. In PPA-L, word knowledge remains relatively intact, and omissions instead appear to be caused by downstream factors (e.g., lexical access, phonological encoding). These findings demonstrate that when words fail, eye movements can be particularly informative.
Collapse
Affiliation(s)
- M J Nelson
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL USA, 60611; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, USA; Department of Neurosurgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | - S Moeller
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL USA, 60611; Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
| | - M Seckin
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL USA, 60611; Department of Neurology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, 34684, Turkey
| | - E J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL USA, 60611; Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, USA
| | - M-M Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL USA, 60611; Department of Neurology, Feinberg School of Medicine, Northwestern University, USA
| | - R S Hurley
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL USA, 60611; Department of Psychology, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
46
|
Volkmer A, Cartwright J, Ruggero L, Beales A, Gallée J, Grasso S, Henry M, Jokel R, Kindell J, Khayum R, Pozzebon M, Rochon E, Taylor-Rubin C, Townsend R, Walker F, Beeke S, Hersh D. Principles and philosophies for speech and language therapists working with people with primary progressive aphasia: an international expert consensus. Disabil Rehabil 2023; 45:1063-1078. [PMID: 35352609 DOI: 10.1080/09638288.2022.2051080] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Primary progressive aphasia (PPA) is a language-led dementia associated with Alzheimer's pathology and fronto-temporal lobar degeneration. Multiple tailored speech and language interventions have been developed for people with PPA. Speech and language therapists/speech-language pathologists (SLT/Ps) report lacking confidence in identifying the most pertinent interventions options relevant to their clients living with PPA during their illness trajectory. MATERIALS AND METHODS The aim of this study was to establish a consensus amongst 15 clinical-academic SLT/Ps on best practice in selection and delivery of speech and language therapy interventions for people with PPA. An online nominal group technique (NGT) and consequent focus group session were held. NGT rankings were aggregated and focus groups video recorded, transcribed, and reflexive thematic analysis undertaken. RESULTS The results of the NGT identified 17 items. Two main themes and seven further subthemes were identified in the focus groups. The main themes comprised (1) philosophy of person-centredness and (2) complexity. The seven subthemes were knowing people deeply, preventing disasters, practical issues, professional development, connectedness, barriers and limitations, and peer support and mentoring towards a shared understanding. CONCLUSIONS This study describes the philosophy of expert practice and outlines a set of best practice principles when working with people with PPA.Implications for rehabilitationPrimary progressive aphasia (PPA) describes a group of language led dementias which deteriorate inexorably over time.Providing speech and language therapy for people with PPA is complex and must be person centred and bespoke.This study describes the philosophy of expert practice and outlines a set of best practice principles for speech and language therapists/pathologists working with people with people with PPA.
Collapse
Affiliation(s)
- A Volkmer
- Division of Psychology and Language Sciences, University College London, London, UK
| | - J Cartwright
- Curtin School of Allied Health, Curtin University, Perth, Australia
| | - L Ruggero
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - A Beales
- Curtin School of Allied Health, Curtin University, Perth, Australia
- Community Rehabilitation Unit, Hobart, Australia
| | - J Gallée
- Division of Medical Sciences, Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, USA
- Evergreen Speech and Hearing Clinic, Redmond, WA, USA
| | - S Grasso
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - M Henry
- Department of Speech, Language, and Hearing Sciences, Moody College of Communication, Austin, TX, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - R Jokel
- Rotman Research Institute, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
- Baycrest Health Sciences, Toronto, Canada
| | - J Kindell
- Pennine Care NHS Foundation Trust, Ashton-under-Lyne, UK
| | - R Khayum
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- MemoryCare Corporation, Aurora, IL, USA
| | - M Pozzebon
- Speech Pathology Department, Royal Melbourne Hospital - Royal Park Campus, Melbourne, Australia
| | - E Rochon
- Department of Speech-Language Pathology and Rehabilitation Sciences Institute, University of Toronto, KITE Research Institute, Toronto Rehab, University Health Network, Toronto, Canada
| | - C Taylor-Rubin
- Speech Pathology Department, War Memorial Hospital, Sydney, Australia
- Department of Cognitive Science, Macquarie University, Sydney, Australia
| | | | - F Walker
- Speech Pathology Department, Carrington Health, Melbourne, Australia
| | - S Beeke
- Division of Psychology and Language Sciences, University College London, London, UK
| | - D Hersh
- Speech Pathology, School of Allied Health, Curtin University, Perth, Australia
- Speech Pathology, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- School of Allied Health Science and Practice, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
47
|
Katsumi Y, Quimby M, Hochberg D, Jones A, Brickhouse M, Eldaief MC, Dickerson BC, Touroutoglou A. Association of Regional Cortical Network Atrophy With Progression to Dementia in Patients With Primary Progressive Aphasia. Neurology 2023; 100:e286-e296. [PMID: 36192173 PMCID: PMC9869757 DOI: 10.1212/wnl.0000000000201403] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with primary progressive aphasia (PPA) have gradually progressive language deficits during the initial phase of the illness. As the underlying neurodegenerative disease progresses, patients with PPA start losing independent functioning due to the development of nonlanguage cognitive or behavioral symptoms. The timeline of this progression from the mild cognitive impairment stage to the dementia stage of PPA is variable across patients. In this study, in a sample of patients with PPA, we measured the magnitude of cortical atrophy within functional networks believed to subserve diverse cognitive and affective functions. The objective of the study was to evaluate the utility of this measure as a predictor of time to subsequent progression to dementia in PPA. METHODS Patients with PPA with largely independent daily function were recruited through the Massachusetts General Hospital Frontotemporal Disorders Unit. All patients underwent an MRI scan at baseline. Cortical atrophy was then estimated relative to a group of amyloid-negative cognitively normal control participants. For each patient, we measured the time between the baseline visit and the subsequent visit at which dementia progression was documented or last observation. Simple and multivariable Cox regression models were used to examine the relationship between cortical atrophy and the likelihood of progression to dementia. RESULTS Forty-nine patients with PPA (mean age = 66.39 ± 8.36 years, 59.2% females) and 25 controls (mean age = 67.43 ± 4.84 years, 48% females) were included in the data analysis. Greater baseline atrophy in not only the left language network (hazard ratio = 1.47, 95% CI = 1.17-1.84) but also in the frontoparietal control (1.75, 1.25-2.44), salience (1.63, 1.25-2.13), default mode (1.55, 1.19-2.01), and ventral frontotemporal (1.41, 1.16-1.71) networks was associated with a higher risk of progression to dementia. A multivariable model identified contributions of the left frontoparietal control (1.94, 1.09-3.48) and ventral frontotemporal (1.61, 1.09-2.39) networks in predicting dementia progression, with no additional variance explained by the language network (0.75, 0.43-1.31). DISCUSSION These results suggest that baseline atrophy in cortical networks subserving nonlanguage cognitive and affective functions is an important predictor of progression to dementia in PPA. This measure should be included in precision medicine models of prognosis in PPA.
Collapse
Affiliation(s)
- Yuta Katsumi
- *These authors contributed equally as co-first authors.
- These authors contributed equally as co-senior authors.
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| | - Megan Quimby
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daisy Hochberg
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Amelia Jones
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Michael Brickhouse
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Mark C Eldaief
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Bradford C Dickerson
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alexandra Touroutoglou
- *These authors contributed equally as co-first authors
- These authors contributed equally as co-senior authors
- From the Frontotemporal Disorders Unit (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), the Departments of Neurology (Y.K., M.Q., D.H., A.J., M.B., M.C.E., B.C.D., A.T.), and Psychiatry (M.C.E., B.C.D., A.T.), the Massachusetts Alzheimer's Disease Research Center (M.C.E., B.C.D., A.T.), and the Athinoula A. Martinos Center for Biomedical Imaging (B.C.D.), Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Mooney AR, Bravo M, Roberts A, Salley E, Blaze E, Esparza M, Fried-Oken M, Khayum B, Rao L, Rademaker A, Rogalski E. Use and Perceived Effectiveness of Communication Modes Reported by Persons With Primary Progressive Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:298-305. [PMID: 36472941 PMCID: PMC10023145 DOI: 10.1044/2022_ajslp-21-00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/22/2022] [Accepted: 08/11/2022] [Indexed: 06/17/2023]
Abstract
PURPOSE Primary progressive aphasia (PPA) is a clinical neurodegenerative dementia syndrome characterized by early, selective, and progressive language impairment. PPA onset is gradual, providing time to potentially identify additional or alternative expressive communication modes; however, reports of communication mode use and effectiveness by persons with PPA have not been described. This study characterized the use, frequency, and perceived effectiveness of communication modes reported by individuals with PPA. METHOD Forty-one participants with mild-to-moderate PPA completed a structured interview detailing the type, frequency, and perceived effectiveness of 12 potential communication modes, categorized by technology required (no-tech, low-tech, and high-tech). The ratio of modes used was compared across technology categories with a repeated-measures generalized linear model assuming a binomial distribution with an overall Wald chi-square statistic, followed by pairwise post hoc t-test comparisons. RESULTS Of the 12 communication modes assessed, participants reported using a median of eight (range: 5-10). All participants affirmed using speech, facial expressions, and talking on the phone. Frequency and perceived effectiveness ratings for these three modes were endorsed at the "some/most of the time" level for more than 80% of the participants. No-tech mode use was significantly higher than reported high-tech and low-tech modes (p = .004 and p < .0001, respectively). Even so, while some high-tech modes (apps) and some low-tech modes (nonelectronic augmentative and alternative communication) had fewer users, effectiveness ratings were moderate to high for all but one user. CONCLUSIONS Persons with mild-to-moderate language impairment due to PPA report using a range of communication modes with moderate-to-high frequency and perceived effectiveness. These outcomes provide practical information when considering mode refinement or expansion during intervention to maximize communication participation. Barriers to modality use may include low awareness or access, which could be queried by future studies and supported by speech and language interventions. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21614262.
Collapse
Affiliation(s)
| | - Megan Bravo
- Oregon Health & Science University, Portland
| | - Angela Roberts
- School of Communication Sciences and Disorders and Department of Computer Science, Western University, London, Ontario, Canada
| | - Elizabeth Salley
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Erin Blaze
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marissa Esparza
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Becky Khayum
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Leela Rao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alfred Rademaker
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
49
|
Mesulam MM. Temporopolar regions of the human brain. Brain 2023; 146:20-41. [PMID: 36331542 DOI: 10.1093/brain/awac339] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Following prolonged neglect during the formative decades of behavioural neurology, the temporopolar region has become a site of vibrant research on the neurobiology of cognition and conduct. This turnaround can be attributed to increasing recognition of neurodegenerative diseases that target temporopolar regions for peak destruction. The resultant syndromes include behavioural dementia, associative agnosia, semantic forms of primary progressive aphasia and semantic dementia. Clinicopathological correlations show that object naming and word comprehension are critically dependent on the language-dominant (usually left) temporopolar region, whereas behavioural control and non-verbal object recognition display a more bilateral representation with a rightward bias. Neuroanatomical experiments in macaques and neuroimaging in humans show that the temporoparietal region sits at the confluence of auditory, visual and limbic streams of processing at the downstream (deep) pole of the 'what' pathway. The functional neuroanatomy of this region revolves around three axes, an anterograde horizontal axis from unimodal to heteromodal and paralimbic cortex; a radial axis where visual (ventral), auditory (dorsal) and paralimbic (medial) territories encircle temporopolar cortex and display hemispheric asymmetry; and a vertical depth-of-processing axis for the associative elaboration of words, objects and interoceptive states. One function of this neural matrix is to support the transformation of object and word representations from unimodal percepts to multimodal concepts. The underlying process is likely to start at canonical gateways that successively lead to generic (superordinate), specific (basic) and unique levels of recognition. A first sign of left temporopolar dysfunction takes the form of taxonomic blurring where boundaries among categories are preserved but not boundaries among exemplars of a category. Semantic paraphasias and coordinate errors in word-picture verification tests are consequences of this phenomenon. Eventually, boundaries among categories are also blurred and comprehension impairments become more profound. The medial temporopolar region belongs to the amygdalocentric component of the limbic system and stands to integrate exteroceptive information with interoceptive states underlying social interactions. Review of the pertinent literature shows that word comprehension and conduct impairments caused by temporopolar strokes and temporal lobectomy are far less severe than those seen in temporopolar atrophies. One explanation for this unexpected discrepancy invokes the miswiring of residual temporopolar neurons during the many years of indolently progressive neurodegeneration. According to this hypothesis, the temporopolar regions become not only dysfunctional but also sources of aberrant outputs that interfere with the function of areas elsewhere in the language and paralimbic networks, a juxtaposition not seen in lobectomy or stroke.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
50
|
Grasso SM, Rodríguez CAW, Colomer NM, Kiderle SKM, Sánchez-Valle R, Santos MÁS. Bilingual Primary Progressive Aphasia: A Scoping Review of Assessment and Treatment Practices. J Alzheimers Dis 2023; 96:1453-1476. [PMID: 37980666 PMCID: PMC10900184 DOI: 10.3233/jad-230673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Primary progressive aphasia (PPA) is a neurodegenerative syndrome characterized by speech and/or language impairment with relatively spared cognition. Research investigating behavioral speech-language intervention and methods for cognitive-linguistic assessment in PPA has predominantly centered around monolingual speakers. This gap hinders the widespread adoption of evidence-based approaches and exacerbates the inequities faced by culturally and linguistically diverse populations living with PPA. OBJECTIVE This scoping review synthesizes the current evidence for assessment and treatment practices in bilingual PPA as well as the operationalization of bilingualism in PPA. METHODS Arksey & O'Malley's scoping review methodology was utilized. Information was extracted from each study and entered into a data-charting template designed to capture information regarding operationalization of bilingualism in PPA and assessment and treatment practices. RESULTS Of the 16 identified studies, 14 reported the results of assessments conducted in both languages. Three studies reported positive naming treatment outcomes. Thirteen studies included English-speaking participants, revealing linguistic bias. Most studies reported age of acquisition, proficiency, and patterns of language use rather than providing an operational definition for bilingualism. CONCLUSIONS Neither formal assessment measures nor clear guidelines for assessment of bilingual PPA currently exist; however, language-specific measures are emerging. Speech-language intervention in bilingual PPA has been relatively unexplored, representing a significant gap in the literature. In order to improve diagnostic and treatment options for bilingual PPA, targeted efforts to increase representation of bilinguals from various sociocultural contexts, as well as those who speak a variety of language pairs, is necessary.
Collapse
Affiliation(s)
- Stephanie M. Grasso
- Department of Speech, Language and Hearing Sciences, University of Texas at Austin, Austin, TX, USA
| | | | - Núria Montagut Colomer
- Alzheimer’s disease and other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sonia-Karin Marqués Kiderle
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau (IIB Sant Pau)– Hospital de la Santa Creu I Sant Pau (HSP), Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s disease and other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miguel Ángel Santos Santos
- Sant Pau Memory Unit, Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau (IIB Sant Pau)– Hospital de la Santa Creu I Sant Pau (HSP), Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), National Institute of Health Carlos III, Spain
| |
Collapse
|