1
|
Mann C, Melzer N, Münch D. Epilepsy in LEAT and other brain tumors: A focused review. Epilepsy Behav 2024; 160:110092. [PMID: 39413683 DOI: 10.1016/j.yebeh.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Of all patients with brain tumors, about 30-50% suffer from epileptic seizures. The probability of developing epilepsy is particularly high in low-grade, epilepsy-associated brain tumors (LEAT). LEATs often show a pronounced network dysfunction with extensive EEG pathologies and cognitive deficits, and the epilepsies are often difficult to treat. In high-grade brain tumors, epileptic seizures determine morbidity and quality of life. The underlying mechanisms of epileptogenesis of brain tumors are increasingly understood and raise hope for personalized therapeutic approaches. This short, focused review provides an overview of the current understanding of brain tumor-related epilepsies. This paper was presented at 16th International Epilepsy Course and Colloquium held in Frankfurt a.M., Germany, September 2024.
Collapse
Affiliation(s)
- Catrin Mann
- Goethe University Frankfurt, Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt (Main), Germany.
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dorothea Münch
- Goethe University Frankfurt, Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt (Main), Germany; Goethe University Frankfurt, Neurological Institute (Edinger Institute), University Hospital Frankfurt (Main), Germany
| |
Collapse
|
2
|
Benifla M, Constantini S, Roth J. Temporal PLGG and epilepsy. Childs Nerv Syst 2024; 40:3301-3307. [PMID: 39289197 DOI: 10.1007/s00381-024-06580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
Temporal lobe epilepsy in children is often secondary to various low-grade glial and glioneural tumors and rarely secondary to mesial temporal sclerosis. Despite the benign nature, tumor-associated TLE in children often becomes refractory over time. Abundant literature has shown the significant advantage of tumor resection compared to conservative treatment, in achieving seizure control, as well as the rates of antiseizure medication reduction. Despite these advantages, several considerations are to be related to when considering surgery. These include the impact of surgery on linguistic and neurocognitive development, especially at the younger age; the extent of resection and the role of ECoG; and the need for mesial temporal resection. Over recent years, traditional resection has been complemented with newer treatment options such as laser ablation and biological treatment, and these should be taken into account depending on the exact location and the ability to perform extensive resection in eloquent regions. In this overview manuscript, we discuss the various considerations treating tumor-associated pediatric temporal epilepsy.
Collapse
Affiliation(s)
- Mony Benifla
- The Pediatric Neurosurgery Unit, Rambam Health Care Campus, Haifa, Israel.
| | - Shlomi Constantini
- The Pediatric Brain Center, Gilbert Israeli International Neurofibromatosis Center, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Roth
- The Pediatric Brain Center, Gilbert Israeli International Neurofibromatosis Center, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Hinojosa J, Becerra V, Candela-Cantó S, Alamar M, Culebras D, Valencia C, Valera C, Rumiá J, Muchart J, Aparicio J. Extra-temporal pediatric low-grade gliomas and epilepsy. Childs Nerv Syst 2024; 40:3309-3327. [PMID: 39191974 DOI: 10.1007/s00381-024-06573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Low-grade gliomas, especially glioneuronal tumors, are a common cause of epilepsy in children. Seizures associated with low-grade pediatric tumors are medically refractory and present a significant burden to patients. Often, morbidity and patients´ quality of life are determined rather by the control of seizures than the oncological process itself and the resolution of epilepsy represents an important part in the treatment of LGGs. The pathogenesis of tumor-related seizures in focal LGG tumors is multifactorial, and mechanisms differ probably among patients and tumor types. Pediatric low-grade tumors associated with epilepsy include a series of neoplasms that have a pure astrocytic or glioneuronal lineage. They are usually benign tumors with a neocortical localization typically in the temporal lobes, but also in other supratentorial locations. Gangliogliomas and dysembryoplastic neuroepithelial tumors (DNET) are the most common entities together with astrocytic gliomas (pilocytic astrocytomas and pleomorphic xanthoastrocytoma) and angiocentric gliomas, and dual pathology is found in up to 40% of glioneuronal tumors. The treatment of low-grade gliomas and associated epilepsy is based mainly on resection and the extent of surgery is the main predictor of postoperative seizure control in patients with a LGG. Long-term epilepsy-associated tumors (LEATs) tend to be well-circumscribed, and therefore, the chances for a complete resection and epilepsy control with a safe approach are very high. New treatments have emerged as alternatives to open microsurgical approaches, including laser thermal ablation or the use of BRAF inhibitors. Future advances in identifying seizure-related biomarkers and molecular tumor pathways will facilitate targeted treatment strategies that will have a deep impact both in oncologic and epilepsy outcomes.
Collapse
Affiliation(s)
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
| | - Victoria Becerra
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Santiago Candela-Cantó
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Mariana Alamar
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Diego Culebras
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valencia
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valera
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Rumiá
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic Barcelona, C. de Villarroel, 170 08036, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Muchart
- Department of Neuroradiology, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Javier Aparicio
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| |
Collapse
|
4
|
Komori T. Glioneuronal and neuronal tumors: A perspective. Pathol Int 2024. [PMID: 39239916 DOI: 10.1111/pin.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Glioneuronal and neuronal tumors (GNTs) are slow-growing, lower-grade neuroepithelial tumors characterized by mature neuronal differentiation and, less consistently, glial differentiation. Their identification has traditionally relied on histological proof of neuronal differentiation, reflecting the well-differentiated nature of GNTs. However, after discovering genetic alterations in GNTs, particularly those in the MAP-kinase pathway, it became evident that histological diagnoses do not always correlate with genetic alterations and vice versa. Therefore, molecular-based classification is now warranted since several inhibitors targeting the MAP-kinase pathway are available. The World Health Organization classification published in 2021 applied DNA methylation profiling to segregate low-grade neuroepithelial tumors. As GNTs are essentially indolent, radical resection and unnecessary chemoradiotherapy may be more harmful than beneficial for patients. Preserving tumor tissue for potential future treatments is more important for patients with GNTs.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| |
Collapse
|
5
|
Qin G, Ma K, Yi L, Tan B, Chen Q, Chen S, Mao Y, Li Y. Negative or positive imaging: ganglioglioma in a boy with epilepsy. Br J Neurosurg 2024; 38:1035-1037. [PMID: 34823414 DOI: 10.1080/02688697.2021.2005776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Ganglioglioma is a rare primary tumour of the central nervous system, which characteristically contain both neuronal and glial neoplastic components mainly in children and adolescents. The most common clinical presentation is refractory epilepsy. The imaging findings of ganglioglioma are obvious and varied. However, ganglioglioma with normal neuroimaging is rare. We report a 12-year-old boy presented with intractable focal epilepsy with normal CT and almost negative MRI. The epileptogenic focus was found to be located in the left posterior superior temporal gyrus by comprehensive evaluation including PET-CT imaging and stereo electroencephalography monitoring. The epileptogenic focus was resected, and the histological examination of the surgical specimen confirmed ganglioglioma. He was seizure-free at last follow-up 14 months after surgery.
Collapse
Affiliation(s)
- Guangbiao Qin
- Neurosurgery Department, Capital Institute of Pediatrics, Beijing, China
| | - Kangping Ma
- Neurosurgery Department, Capital Institute of Pediatrics, Beijing, China
| | - Linhua Yi
- Neurosurgery Department, Capital Institute of Pediatrics, Beijing, China
| | - Bojing Tan
- Neurosurgery Department, Capital Institute of Pediatrics, Beijing, China
| | - Qian Chen
- Neurology Department, Capital Institute of Pediatrics, Beijing, China
| | - Shuhua Chen
- Neurology Department, Capital Institute of Pediatrics, Beijing, China
| | - Yingying Mao
- Neurology Department, Capital Institute of Pediatrics, Beijing, China
| | - Yunlin Li
- Neurosurgery Department, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
6
|
Iijima K, Fujii H, Suzuki F, Murayama K, Goto YI, Saito Y, Sano T, Suzuki H, Miyata H, Kimura Y, Nakashima T, Suzuki H, Iwasaki M, Sato N. Genotype-relevant neuroimaging features in low-grade epilepsy-associated tumors. Front Neurol 2024; 15:1419104. [PMID: 39081340 PMCID: PMC11286587 DOI: 10.3389/fneur.2024.1419104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Low-grade epilepsy-associated tumors are the second most common histopathological diagnoses in cases of drug-resistant focal epilepsy. However, the connection between neuroimaging features and genetic alterations in these tumors is unclear, prompting an investigation into genotype-relevant neuroimaging characteristics. Methods This study retrospectively analyzed neuroimaging and surgical specimens from 46 epilepsy patients with low-grade epilepsy-associated neuroepithelial tumors that had genetic mutations identified through panel sequencing to investigate their relationship to genotypes. Results Three distinct neuroimaging groups were established: Group 1 had indistinct borders and iso T1-weighted and slightly high or high T2-weighted signal intensities without a diffuse mass effect, associated with 93.8% sensitivity and 100% specificity to BRAF V600E mutations; Group 2 exhibited sharp borders and very or slightly low T1-weighted and very high T2-weighted signal intensities with a diffuse mass effect and 100% sensitivity and specificity for FGFR1 mutations; and Group 3 displayed various characteristics. Histopathological diagnoses including diffuse low-grade glioma and ganglioglioma showed no clear association with genotypes. Notably, postoperative seizure-free rates were higher in Group 1 tumors (BRAF V600E) than in Group 2 tumors (FGFR1). Discussion These findings suggest that tumor genotype may be predicted by neuroimaging before surgery, providing insights for personalized treatment approaches.
Collapse
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyuki Fujii
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Fumio Suzuki
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kumiko Murayama
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yu-ichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Terunori Sano
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization Sendai Medical Center, Sendai, Miyagi, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
7
|
Duan Z, Feng J, Guan Y, Li S, Wu B, Shao Y, Ma Z, Hu Z, Xiang L, Zhu M, Fan X, Qi X. Enrichment of oligodendrocyte precursor phenotypes in subsets of low-grade glioneuronal tumours. Brain Commun 2024; 6:fcae156. [PMID: 38764775 PMCID: PMC11099663 DOI: 10.1093/braincomms/fcae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/06/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Current histological classification of low-grade glioneuronal tumours does not adequately represent their underlying biology. The neural lineage(s) and differentiation stage(s) involved and the cell state(s) affected by the recurrent genomic alterations are unclear. Here, we describe dysregulated oligodendrocyte lineage developmental programmes in three low-grade glioneuronal tumour subtypes. Ten dysembryoplastic neuroepithelial tumours, four myxoid glioneuronal tumours and five rosette-forming glioneuronal tumours were collected. Besides a comprehensive characterization of clinical features, known diagnostic markers and genomic alterations, we used comprehensive immunohistochemical stainings to characterize activation of rat sarcoma/mitogen-activated protein kinase pathway, involvement of neuronal component, resemblance to glial lineages and differentiation blockage along the stages of oligodendrocyte lineage. The findings were further complemented by gene set enrichment analysis with transcriptome data of dysembryoplastic neuroepithelial tumours from the literature. Dysembryoplastic neuroepithelial tumours, myxoid glioneuronal tumours and rosette-forming glioneuronal tumours occur at different ages, with symptoms closely related to tumour location. Dysembryoplastic neuroepithelial tumours and myxoid glioneuronal tumours contain oligodendrocyte-like cells and neuronal component. Rosette-forming glioneuronal tumours contained regions of rosette-forming neurocytic and astrocytic features. Scattered neurons, identified by neuronal nuclei antigen and microtubule-associated protein-2 staining, were consistently observed in all dysembryoplastic neuroepithelial tumours and myxoid glioneuronal tumours examined, but only in one rosette-forming glioneuronal tumour. Pervasive neurofilament-positive axons were observed only in dysembryoplastic neuroepithelial tumour and myxoid glioneuronal tumour samples. Alterations in B-Raf proto-oncogene, serine/threonine kinase, fibroblast growth factor receptor 1, fibroblast growth factor receptor 3 and platelet-derived growth factor receptor alpha occurred in a mutually exclusive manner, coinciding with strong staining of phospho-p44/42 mitogen-activated protein kinase and low apoptotic signal. All dysembryoplastic neuroepithelial tumours, myxoid glioneuronal tumours and the neurocytic regions of rosette-forming glioneuronal tumours showed strong expression of neuron-glia antigen 2, platelet-derived growth factor receptor alpha (markers of oligodendrocyte precursor cells) and neurite outgrowth inhibitor-A (a marker of developing oligodendrocytes), but lacked the expression of oligodendrocyte markers ectonucleotide pyrophosphatase/phosphodiesterase family member 6 and myelin basic protein. Notably, transcriptomes of dysembryoplastic neuroepithelial tumours were enriched in oligodendrocyte precursor cell signature, but not in signatures of neural stem cells, myelinating oligodendrocytes and astrocytes. Dysembryoplastic neuroepithelial tumour, myxoid glioneuronal tumour and rosette-forming glioneuronal tumour resemble oligodendrocyte precursor cells, and their enrichment of oligodendrocyte precursor cell phenotypes is closely associated with the recurrent mutations in rat sarcoma/mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Feng
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yang Shao
- Nanjing Geneseq Technology Inc., Nanjing 211899, China
- School of Public Health, Nanjing Medical University, Nanjing 211198, China
| | - Zhong Ma
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Zejuan Hu
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Lei Xiang
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Xiaolong Fan
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
8
|
Gupta A, Lechpammer M, Brossier NM. Germline BRCA2 pathogenic variants in pediatric ganglioglioma: Case report and review of the literature. Childs Nerv Syst 2024; 40:1609-1612. [PMID: 38168858 DOI: 10.1007/s00381-023-06267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND BRCA1 and BRCA2 are tumor suppressor genes associated with increased risk of breast and ovarian cancer in adulthood. Patients with germline pathogenic variants in these genes have also been reported to develop brain tumors, although it is unclear whether these syndromes are associated with significant increased risk of brain tumor formation. RESULTS Here, we report a case of a child with germline BRCA2 pathogenic variant presenting with a symptomatic ganglioglioma. To our knowledge, this is the first such patient to be reported. We discuss prior cases of brain tumors in BRCA1/2 patients and evidence for a potential role for BRCA1/2 pathogenic variants in brain tumor formation. CONCLUSION BRCA2 germline variants may increase the risk of developing some types of pediatric brain tumors, but further study is needed to determine its effect on low-grade glioma formation.
Collapse
Affiliation(s)
- Anya Gupta
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | | | - Nicole M Brossier
- Departments of Pediatrics, Washington University School of Medicine, Box 8208, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Iijima K, Komatsu K, Miyashita S, Suyama K, Murayama K, Hashizume K, Tabe NK, Miyata H, Iwasaki M, Taya S, Hoshino M. Transcriptional features of low-grade neuroepithelial tumors with the BRAF V600E mutation associated with epileptogenicity. Genes Cells 2024; 29:192-206. [PMID: 38269481 DOI: 10.1111/gtc.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Low-grade neuroepithelial tumors are major causes of drug-resistant focal epilepsy. Clinically, these tumors are defined as low-grade epilepsy-associated neuroepithelial tumors (LEATs). The BRAF V600E mutation is frequently observed in LEAT and linked to poor seizure outcomes. However, its molecular role in epileptogenicity remains elusive. To understand the molecular mechanism underlying the epileptogenicity in LEAT with the BRAF V600E genetic mutation (BRAF V600E-LEAT), we conducted RNA sequencing (RNA-seq) analysis using surgical specimens of BRAF V600E-LEAT obtained and stored at a single institute. We obtained 21 BRAF V600E-LEAT specimens and 4 control specimens, including 24 from Japanese patients and 1 from a patient of Central Asian origin, along with comprehensive clinical data. We submitted the transcriptome dataset of 21 BRAF V600E-LEAT plus 4 controls, as well as detailed clinical information, to a public database. Preliminary bioinformatics analysis using this dataset identified 2134 differentially expressed genes between BRAF V600E-LEAT and control. Additionally, gene set enrichment analysis provided novel insights into the association between estrogen response-related pathways and the epileptogenicity of BRAF V600E-LEAT patients. Our datasets and findings will contribute toward the understanding of the pathology of epilepsy caused by LEAT and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kanako Komatsu
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kyoka Suyama
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kumiko Murayama
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Nao K Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita City, Akita, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
10
|
Gatesman TA, Hect JL, Phillips HW, Johnson BJ, Wald AI, McClung C, Nikiforova MN, Skaugen JM, Pollack IF, Abel TJ, Agnihotri S. Characterization of low-grade epilepsy-associated tumor from implanted stereoelectroencephalography electrodes. Epilepsia Open 2024; 9:409-416. [PMID: 37798921 PMCID: PMC10839351 DOI: 10.1002/epi4.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
Low-grade epilepsy-associated tumors (LEATs) are a common cause of drug-resistant epilepsy in children. Herein, we demonstrate the feasibility of using tumor tissue derived from stereoelectroencephalography (sEEG) electrodes upon removal to molecularly characterize tumors and aid in diagnosis. An 18-year-old male with focal epilepsy and MRI suggestive of a dysembryoplastic neuroepithelial tumor (DNET) in the left posterior temporal lobe underwent implantation of seven peri-tumoral sEEG electrodes for peri-operative language mapping and demarcation of the peri-tumoral ictal zone prior to DNET resection. Using electrodes that passed through tumor tissue, we show successful isolation of tumor DNA and subsequent analysis using standard methods for tumor classification by DNA, including Glioseq targeted sequencing and DNA methylation array analysis. This study provides preliminary evidence for the feasibility of molecular diagnosis of LEATs or other lesions using a minimally invasive method with microscopic tissue volumes. The implications of sEEG electrodes in tumor characterization are broad but would aid in diagnosis and subsequent targeted therapeutic strategies.
Collapse
Affiliation(s)
- Taylor A. Gatesman
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Cellular and Molecular PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Jasmine L. Hect
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - H. Westley Phillips
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brenden J. Johnson
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Abigail I. Wald
- Molecular and Genomic PathologyUniversity of Pittsburgh Medical Center Health SystemPittsburghPennsylvaniaUSA
| | - Colleen McClung
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Marina N. Nikiforova
- Molecular and Genomic PathologyUniversity of Pittsburgh Medical Center Health SystemPittsburghPennsylvaniaUSA
| | - John M. Skaugen
- Molecular and Genomic PathologyUniversity of Pittsburgh Medical Center Health SystemPittsburghPennsylvaniaUSA
| | - Ian F. Pollack
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPittsburghPennsylvaniaUSA
| | - Taylor J. Abel
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Sameer Agnihotri
- Department of Neurological SurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Cellular and Molecular PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- John G. Rangos Sr. Research CenterChildren's Hospital of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurobiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Choi KS, Park JE, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 3-Summary of Imaging Findings on Glioneuronal and Neuronal Tumors. J Magn Reson Imaging 2023; 58:1680-1702. [PMID: 37715567 DOI: 10.1002/jmri.29016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/17/2023] Open
Abstract
The fifth edition of the World Health Organization classification of central nervous system tumors published in 2021 reflects the current transitional state between traditional classification system based on histopathology and the state-of-the-art molecular diagnostics. This Part 3 Review focuses on the molecular diagnostics and imaging findings of glioneuronal and neuronal tumors. Histological and molecular features in glioneuronal and neuronal tumors often overlap with pediatric-type diffuse low-grade gliomas and circumscribed astrocytic gliomas (discussed in the Part 2 Review). Due to this overlap, in several tumor types of glioneuronal and neuronal tumors the diagnosis may be inconclusive with histopathology and genetic alterations, and imaging features may be helpful to distinguish difficult cases. Thus, it is crucial for radiologists to understand the underlying molecular diagnostics as well as imaging findings for application on clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Liu Q, Cai L, Sun Y, Wang Y, Yu H, Liu C, Wang H, Zhang S, Gong J. Epilepsy Outcome and Pathology Analysis for Ganglioglioma: A Series of 51 Pediatric Patients. Pediatr Neurol 2023; 149:127-133. [PMID: 37879136 DOI: 10.1016/j.pediatrneurol.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The postoperative epilepsy outcome and clinicopathological features in children with ganglioglioma (GG) are not well understood. METHODS Data from 51 consecutive pediatric patients diagnosed with GGs who underwent surgery were collected. The correlations between the expression of CD34 and BRAF V600E mutations and clinical features were analyzed. The related factors affecting the outcome of epilepsy were analyzed. RESULTS The average follow-up was 44.2 months, and 48 patients were seizure-free. A high proportion of BRAF V600E mutation (78.8%) and CD34 expression (77.8%) was detected in GG. The onset age of epilepsy with the BRAF V600E mutation was earlier than that without. The expression of CD34 increased with the age of onset, the duration of epilepsy, and the age of operation. Focal cortical dysplasia (FCD) I was found in 62.7% of patients, and FCD II was found in 11.8% of patients approximately in the cortex surrounding GG. There was no significant correlation between the outcome of epilepsy and BRAF V600E mutation, CD34 expression, and combination with FCD. CONCLUSIONS The overall outcome of GG and epilepsy in children is optimistic, and the outcome is not closely related to the presence of BRAF V600E mutation and CD34 (+). The FCD surrounding GG could be type I or type II. Incomplete resection of the surrounding FCD has the risk of unsatisfactory control of epilepsy. Children with the BRAF V600E mutation may be prone to early-onset epilepsy. The expression of CD34 is more likely to be detected in children with older age and a long duration of epilepsy.
Collapse
Affiliation(s)
- Qingzhu Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yu Sun
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yao Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Chang Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hui Wang
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Shuang Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Jian Gong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Rosemberg S. Long-term epilepsy associated-tumors (LEATs): what is new? ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1146-1151. [PMID: 38157880 PMCID: PMC10756815 DOI: 10.1055/s-0043-1777730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Long-term epilepsy-associated tumors (LEATs) include a series of neoplasms that commonly occur in children, adolescents, or young adults, have an astrocytic or glioneuronal lineage, are histologically benign (WHO grade1) with a neocortical localization predominantly situated in the temporal lobes. Clinically, chronic refractory epilepsy is usually the unique symptom. Gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNT) are the most common representative entities besides pilocytic astrocytomas (PA) and angiocentric gliomas (AG). Recent molecular studies have defined new clinicopathological entities, which are recognized by the WHO 2021 classification of brain tumors. Some of them such as diffuse astrocytoma MIB or MYBL1 altered, polymorphous low-grade neuroepithelial tumor of the young (PLNTY), and multilocular and vacuolating neuronal tumor (MVNT) are currently considered LEATs. The relationship between LEATs and epilepsy is still a matter of debate, and there is a general agreement about the beneficial effects of an early neurosurgical intervention on the clinical outcome.
Collapse
Affiliation(s)
- Sergio Rosemberg
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo SP, Brazil.
- Santa Casa de São Paulo, Faculdade de Ciências Médicas, São Paulo SP, Brazil.
| |
Collapse
|
14
|
Golub D, Lynch DG, Pan PC, Liechty B, Slocum C, Bale T, Pisapia DJ, Juthani R. Polymorphous low-grade neuroepithelial tumor of the young with FGFR3-TACC3 fusion mimicking high-grade glioma: case report and series of high-grade correlates. Front Oncol 2023; 13:1307591. [PMID: 38074682 PMCID: PMC10698862 DOI: 10.3389/fonc.2023.1307591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Background Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a recently described entity that can mimic high-grade glioma (HGG) in histologic and molecular features; however, factors predicting aggressive behavior in these tumors are unclear. Methods We present an indolent neuroepithelial neoplasm in a 59-year-old female with imaging initially suggestive of HGG, and a series of adult patients with HGG harboring FGFR3-TACC3 fusions are also presented for comparison. Results Pathology in the case patient revealed low-grade cytomorphology, microcalcifications, unusual neovascularization, and a low proliferation index. The lesion was diffusely CD34+ and harbored an FGFR3-TACC3 fusion and TERT promoter mutation. A diagnosis of PLNTY was therefore favored and the patient was observed with no progression at 15-month follow-up. In patients with HGG with FGFR3-TACC3 fusions, molecular findings included IDH-wildtype status, absence of 1p19q codeletion, CDKN2A loss, TERT promoter mutations and lack of MGMT promoter methylation. These patients demonstrated a median 15-month overall survival and a 6-month progression-free survival. Conclusion PLNTY is a rare low-grade entity that can display characteristics of HGG, particularly in adults. Presence of FGFR3-TACC3 fusions and other high-grade features should raise concern for a more malignant precursor lesion when a diagnosis of PLNTY is considered.
Collapse
Affiliation(s)
- Danielle Golub
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
- Department of Neurosurgery, Northwell Health, Manhasset, NY, United States
| | - Daniel G. Lynch
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
| | - Peter C. Pan
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Benjamin Liechty
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Cheyanne Slocum
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David J. Pisapia
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Rupa Juthani
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
15
|
Honke J, Hoffmann L, Coras R, Kobow K, Leu C, Pieper T, Hartlieb T, Bien CG, Woermann F, Cloppenborg T, Kalbhenn T, Gaballa A, Hamer H, Brandner S, Rössler K, Dörfler A, Rampp S, Lemke JR, Baldassari S, Baulac S, Lal D, Nürnberg P, Blümcke I. Deep histopathology genotype-phenotype analysis of focal cortical dysplasia type II differentiates between the GATOR1-altered autophagocytic subtype IIa and MTOR-altered migration deficient subtype IIb. Acta Neuropathol Commun 2023; 11:179. [PMID: 37946310 PMCID: PMC10633947 DOI: 10.1186/s40478-023-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.
Collapse
Affiliation(s)
- Jonas Honke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
- Research Institute for Rehabilitation, Transition, and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Friedrich Woermann
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, Germany
| | - Ahmed Gaballa
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Hajo Hamer
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
- Epilepsy Center, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Arnd Dörfler
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sara Baldassari
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Stéphanie Baulac
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA.
| |
Collapse
|
16
|
Zhang L, Bordey A. Advances in glioma models using in vivo electroporation to highjack neurodevelopmental processes. Biochim Biophys Acta Rev Cancer 2023; 1878:188951. [PMID: 37433417 DOI: 10.1016/j.bbcan.2023.188951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Glioma is the most prevalent type of neurological malignancies. Despite decades of efforts in neurosurgery, chemotherapy and radiation therapy, glioma remains one of the most treatment-resistant brain tumors with unfavorable outcomes. Recent progresses in genomic and epigenetic profiling have revealed new concepts of genetic events involved in the etiology of gliomas in humans, meanwhile, revolutionary technologies in gene editing and delivery allows to code these genetic "events" in animals to genetically engineer glioma models. This approach models the initiation and progression of gliomas in a natural microenvironment with an intact immune system and facilitates probing therapeutic strategies. In this review, we focus on recent advances in in vivo electroporation-based glioma modeling and outline the established genetically engineered glioma models (GEGMs).
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery, Changde hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China; Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA.
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| |
Collapse
|
17
|
Rahim S, Ud Din N, Abdul-Ghafar J, Chundriger Q, Khan P, Ahmad Z. Clinicopathological features of dysembryoplastic neuroepithelial tumor: a case series. J Med Case Rep 2023; 17:327. [PMID: 37525202 PMCID: PMC10391907 DOI: 10.1186/s13256-023-04062-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Dysembryoplastic neuroepithelial tumors are rare benign supratentotrial epilepsy-associated glioneuronal tumors of children and young adults. Patients have a long history of seizures. Proper surgical resection achieves long term seizure control. We describe the clinicopathological features of dysembryoplastic neuroepithelial tumor cases reported in our practice and review the published literature. METHODS All cases of Pakistani ethnicity were diagnosed between 2015 and 2021 were included. Slides were reviewed and clinicopathological features were recorded. Follow-up was obtained. Extensive literature review was conducted. RESULTS Fourteen cases were reported. There were 12 males and 2 females. Age range was 9-45 years (mean 19 years). Majority were located in the temporal and frontal lobes. Duration of seizures prior to resection ranged from 2 months to 9 years with mean and median duration of 3.2 and 3 years, respectively. Histologically, all cases demonstrated a multinodular pattern, specific glioneuronal component, and floating neurons. Simple and complex forms comprised seven cases each. No significant nuclear atypia, mitotic activity, or necrosis was seen. Ki-67 proliferative index was very low. Cortical dysplasia was noted in adjacent glial tissue in four cases. Follow-up ranged from 20 to 94 months. Seizures continued following resection in all but one case but were reduced in frequency and intensity. In one case, seizures stopped completely following surgery. CONCLUSION Clinicopathological features were similar to those in published literature. However, a marked male predominance was noted in our series. Seizures continued following resection in all but one case but were reduced in frequency and intensity. This series will help raise awareness among clinicians and pathologists in our part of the world about this seizure-associated tumor of children and young adults.
Collapse
Affiliation(s)
- Shabina Rahim
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan.
| | - Qurratulain Chundriger
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Poonum Khan
- Department of Radiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
18
|
Reisz Z, Radics BL, Nemes P, Laxton R, Kaizer L, Gabor KM, Novak T, Barzo P, Al-Sarraj S, Bodi I. Case Report: Brainstem angiocentric glioma presenting in a toddler child-diagnostic and therapeutic challenges. Pathol Oncol Res 2023; 29:1611231. [PMID: 37362245 PMCID: PMC10287963 DOI: 10.3389/pore.2023.1611231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Introduction: Angiocentric gliomas (AG) in brainstem location are exceedingly rare and might cause differential diagnostic problems and uncertainty regarding the best therapeutic approach. Hereby, we describe the clinicopathological findings in a brainstem AG presenting in a toddler child and review the literature. Case report: A 2-year-old boy presented with 5 weeks history of gait disturbances, frequent falls, left-sided torticollis and swallowing problems. MRI head showed a T2-hyperintense, partly exophytic mass lesion centred in the pontomedullary region, raising the possibility of diffuse midline glioma. The exophytic component was partially resected by suboccipital craniotomy, leaving intact the infiltrative component. Ventriculoperitoneal shunt was implanted due to postoperative hydrocephalus. Histological examination revealed a moderately cellular tumour consisted of bland glial cells infiltrating the brain parenchyma and radially arranged around the blood vessels. By immunohistochemistry, the tumour strongly expressed S100 and GFAP in addition to intense nestin positivity, while OLIG2 was negative in the perivascular tumour cells. DNA methylation array profiled the tumour as "methylation class diffuse astrocytoma, MYB or MYBL1-altered subtype B (infratentorial)" and an in-frame MYB::QKI fusion was identified by RNA sequencing, confirming the diagnosis of angiocentric glioma. The patient has been initially treated with angiogenesis inhibitor and mTOR inhibitor, and now he is receiving palliative vinblastine. He is clinically stable on 9 months follow-up. Conclusion: Brainstem AG may cause a diagnostic problem, and the surgical and oncological management is challenging due to unresectability and lack of response to conventional chemo-radiation. In the future, genetically-tailored therapies might improve the prognosis.
Collapse
Affiliation(s)
- Zita Reisz
- Department of Clinical Neuropathology, King’s College Hospital, London, United Kingdom
| | | | - Peter Nemes
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Ross Laxton
- Department of Clinical Neuropathology, King’s College Hospital, London, United Kingdom
| | - Laszlo Kaizer
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gabor
- Department of Pediatrics and Pediatric Healthcare Center, University of Szeged, Szeged, Hungary
| | - Timea Novak
- Department of Radiology, University of Szeged, Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King’s College Hospital, London, United Kingdom
| | - Istvan Bodi
- Department of Clinical Neuropathology, King’s College Hospital, London, United Kingdom
| |
Collapse
|
19
|
Hoffmann L, Coras R, Kobow K, López-Rivera JA, Lal D, Leu C, Najm I, Nürnberg P, Herms J, Harter PN, Bien CG, Kalbhenn T, Müller M, Pieper T, Hartlieb T, Kudernatsch M, Hamer H, Brandner S, Rössler K, Blümcke I, Jabari S. Ganglioglioma with adverse clinical outcome and atypical histopathological features were defined by alterations in PTPN11/KRAS/NF1 and other RAS-/MAP-Kinase pathway genes. Acta Neuropathol 2023; 145:815-827. [PMID: 36973520 PMCID: PMC10175344 DOI: 10.1007/s00401-023-02561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.
Collapse
Affiliation(s)
- Lucas Hoffmann
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Roland Coras
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Katja Kobow
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Javier A. López-Rivera
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142 USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142 USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Patrick N. Harter
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Markus Müller
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Manfred Kudernatsch
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Hajo Hamer
- Epilepsy Center, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Sebastian Brandner
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, EpiCARE Partner, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ingmar Blümcke
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Samir Jabari
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| |
Collapse
|
20
|
Khoshkhoo S, Wang Y, Chahine Y, Erson-Omay EZ, Robert SM, Kiziltug E, Damisah EC, Nelson-Williams C, Zhu G, Kong W, Huang AY, Stronge E, Phillips HW, Chhouk BH, Bizzotto S, Chen MH, Adikari TN, Ye Z, Witkowski T, Lai D, Lee N, Lokan J, Scheffer IE, Berkovic SF, Haider S, Hildebrand MS, Yang E, Gunel M, Lifton RP, Richardson RM, Blümcke I, Alexandrescu S, Huttner A, Heinzen EL, Zhu J, Poduri A, DeLanerolle N, Spencer DD, Lee EA, Walsh CA, Kahle KT. Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy. JAMA Neurol 2023; 80:578-587. [PMID: 37126322 PMCID: PMC10152377 DOI: 10.1001/jamaneurol.2023.0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023]
Abstract
Importance Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (ie, somatic) variants in the brain is unknown. Objective To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy-associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consents were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures Drug-resistant MTLE. Main Outcomes and Measures Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Yilan Wang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Yasmine Chahine
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - E. Zeynep Erson-Omay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie M. Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Eyiyemisi C. Damisah
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | | | - Guangya Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenna Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - August Yue Huang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward Stronge
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - H. Westley Phillips
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Brian H. Chhouk
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Sara Bizzotto
- Sorbonne University, Paris Brain Institute (ICM), National Institute of Health and Medical Research (INSERM), National Center for Scientific Research (CNRS), Paris, France
| | - Ming Hui Chen
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Thiuni N. Adikari
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
| | - Zimeng Ye
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
| | - Tom Witkowski
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
| | - Dulcie Lai
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Nadine Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Julie Lokan
- Department of Anatomical Pathology, Austin Health, Heidelberg, Australia
| | - Ingrid E. Scheffer
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Australia
| | - Samuel F. Berkovic
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Michael S. Hildebrand
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Australia
- Murdoch Children’s Research Institute, Parkville, Australia
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Murat Gunel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | | | - Ingmar Blümcke
- Department of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Erin L. Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill
| | - Jidong Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nihal DeLanerolle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Dennis D. Spencer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston, Massachusetts
| | - Kristopher T. Kahle
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
21
|
Sran S, Bedrosian TA. RAS pathway: The new frontier of brain mosaicism in epilepsy. Neurobiol Dis 2023; 180:106074. [PMID: 36907520 DOI: 10.1016/j.nbd.2023.106074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As cells divide during development, errors in DNA replication and repair lead to somatic mosaicism - a phenomenon in which different cell lineages harbor unique constellations of genetic variants. Over the past decade, somatic variants that disrupt mTOR signaling, protein glycosylation, and other functions during brain development have been linked to cortical malformations and focal epilepsy. More recently, emerging evidence points to a role for Ras pathway mosaicism in epilepsy. The Ras family of proteins is a critical driver of MAPK signaling. Disruption of the Ras pathway is most known for its association with tumorigenesis; however, developmental disorders known as RASopathies commonly have a neurological component that sometimes includes epilepsy, offering evidence for Ras involvement in brain development and epileptogenesis. Brain somatic variants affecting the Ras pathway (e.g., KRAS, PTPN11, BRAF) are now strongly associated with focal epilepsy through genotype-phenotype association studies as well as mechanistic evidence. This review summarizes the Ras pathway and its involvement in epilepsy and neurodevelopmental disorders, focusing on new evidence regarding Ras pathway mosaicism and the potential future clinical implications.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
22
|
A deep learning-based histopathology classifier for Focal Cortical Dysplasia. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AbstractA light microscopy-based histopathology diagnosis of human brain specimens obtained from epilepsy surgery remains the gold standard to confirm the underlying cause of a patient’s focal epilepsy and further inform postsurgical patient management. The differential diagnosis of neocortical specimens in the realm of epilepsy surgery remains, however, challenging. Herein, we developed an open access, deep learning-based classifier to histopathologically assess whole slide microscopy images (WSI) and to automatically recognize various subtypes of Focal Cortical Dysplasia (FCD), according to the ILAE consensus classification update of 2022. We trained a convolutional neuronal network (CNN) with fully digitalized WSI of hematoxylin–eosin stainings obtained from 125 patients covering the spectrum of mild malformation of cortical development (mMCD), mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE), FCD ILAE Type 1a, 2a and 2b using 414 formalin-fixed and paraffin-embedded archival tissue blocks. An additional series of 198 postmortem tissue blocks from 59 patients without neurological disorders served as control to train the CNN for homotypic frontal, temporal and occipital areas and heterotypic Brodmann areas 4 and 17, entorhinal cortex and dentate gyrus. Special stains and immunohistochemical reactions were used to comprehensively annotate the region of interest. We then programmed a novel tile extraction pipeline and graphical dashboard to visualize all areas on the WSI recognized by the CNN. Our deep learning-based classifier is able to compute 1000 × 1000 µm large tiles and recognizes 25 anatomical regions and FCD categories with an accuracy of 98.8% (F1 score = 0.82). Microscopic review of regions predicted by the network confirmed these results. This deep learning-based classifier will be made available as online web application to support the differential histopathology diagnosis in neocortical human brain specimens obtained from epilepsy surgery. It will also serve as blueprint to build a digital histopathology slide suite addressing all major brain diseases encountered in patients with surgically amenable focal epilepsy.
Collapse
|
23
|
Reimers A, Helmstaedter C, Elger CE, Pitsch J, Hamed M, Becker AJ, Witt JA. Neuropathological Insights into Unexpected Cognitive Decline in Epilepsy. Ann Neurol 2023; 93:536-550. [PMID: 36411525 DOI: 10.1002/ana.26557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Some patients unexpectedly display an unfavorable cognitive course after epilepsy surgery subsequent to any direct cognitive sequelae of the surgical treatment. Therefore, we conducted in-depth neuropathological examinations of resective specimens from corresponding patients to provide insights as to the underlying disease processes. METHODS In this study, cases with significant cognitive deterioration following a previous postoperative assessment were extracted from the neuropsychological database of a longstanding epilepsy surgical program. An extensive reanalysis of available specimens was performed using current, state-of-the-art neuropathological examinations. Patients without cognitive deterioration but matched in regard to basic pathologies served as controls. RESULTS Among the 355 operated patients who had undergone more than one postoperative neuropsychological examination, 30 (8%) showed significant cognitive decline in the period after surgery. Of the 24 patients with available specimens, 71% displayed further neuropathological changes in addition to the typical spectrum (ie, hippocampal sclerosis, focal cortical dysplasias, vascular lesions, and low-grade tumors), indicating (1) a secondary, putatively epilepsy-independent neurodegenerative disease process; (2) limbic inflammation; or (3) the enigmatic pathology pattern of "hippocampal gliosis" without segmental neurodegeneration. In the controls, the matched individual principal epilepsy-associated pathologies were not found in combination with the secondary pathology patterns of the study group. INTERPRETATION Our findings indicate that patients who unexpectedly displayed unfavorable cognitive development beyond any direct surgical effects show rare and very particular pathogenetic causes or parallel, presumably independent, neurodegenerative alterations. A multicenter collection of such cases would be appreciated to discern presurgical biomarkers that help with surgical decision-making. ANN NEUROL 2023;93:536-550.
Collapse
Affiliation(s)
- Annika Reimers
- Section for Translational Epilepsy Research, Institute of Neuropathology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Institute of Neuropathology, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
24
|
Xie M, Wang X, Duan Z, Luan G. Low-grade epilepsy-associated neuroepithelial tumors: Tumor spectrum and diagnosis based on genetic alterations. Front Neurosci 2023; 16:1071314. [PMID: 36699536 PMCID: PMC9868944 DOI: 10.3389/fnins.2022.1071314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Brain tumors can always result in seizures when involving the cortical neurons or their circuits, and they were found to be one of the most common etiologies of intractable focal seizures. The low-grade epilepsy-associated neuroepithelial tumors (LEAT), as a special group of brain tumors associated with seizures, share common clinicopathological features, such as seizure onsets at a young age, a predilection for involving the temporal lobe, and an almost benign course, including a rather slow growth pattern and thus a long-term history of seizures. Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) are the typical representatives of LEATs. Surgical treatments with complete resection of tumors and related epileptogenic zones are deemed the optimal way to achieve postoperative seizure control and lifetime recurrence-free survival in patients with LEATs. Although the term LEAT was originally introduced in 2003, debates on the tumor spectrum and the diagnosis or classification of LEAT entities are still confusing among epileptologists and neuropathologists. In this review, we would further discuss these questions, especially based on the updated classification of central nervous system tumors in the WHO fifth edition and the latest molecular genetic findings of tumor entities in LEAT entities.
Collapse
Affiliation(s)
- Mingguo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,Chinese Institute for Brain Research, Beijing, China,*Correspondence: Guoming Luan,
| |
Collapse
|
25
|
Xie MG, Wang XF, Qiao J, Zhou J, Guan YG, Li TF, Qi XL, Luan GM. The clinicopathological features of ganglioglioma with CD34 expression and BRAF mutation in patients with epilepsy. Front Mol Neurosci 2023; 16:1022364. [PMID: 36910263 PMCID: PMC9995901 DOI: 10.3389/fnmol.2023.1022364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective The aim of the study was to evaluate the clinicopathological features, as well as the surgical prognosis, of epilepsy-associated gangliogliomas (GG) with CD34 expression and BRAFV600E mutation. Methods Clinical data of patients who underwent epilepsy surgery for GG were retrospectively studied. Univariate and multivariate analyses were performed to evaluate the correlations of clinical and pathological factors with molecular markers of CD34 expression and BRAFV600E mutation in GG. Results A total of 208 patients with GG had immunohistochemical detection of CD34 expression (positive/negative: 184/24), and among them, 89 patients had immunohistochemical detection of BRAFV600E mutation (positive/negative: 54/35). By univariate and multivariate analyses, seizure aura (p = 0.025), concordance of ictal electroencephalogram (EEG) findings (p = 0.045) and medial temporal tumor (p = 0.030) were found to be related to CD34 expression, but only hospitalization time (p = 0.042) was different for BRAF-mutated status. In addition, drug-resistant epilepsy (p = 0.040) and concordance of interictal EEG findings (p = 0.009) were found to be associated with tumor progression-free survival (PFS) in univariate analysis, but only concordance of interictal EEG findings was with significance in multivariate analysis. However, CD34 expression or BRAFV600E mutation in GG was not found to be associated with surgical outcomes of seizure control and tumor PFS. Conclusion The CD34 expression or BRAFV600E mutation in GG may partly influence the distribution of clinicopathological features of patients with epilepsy, but they may be not able to predict the surgical prognosis of seizure outcome and tumor recurrence.
Collapse
Affiliation(s)
- Ming-Guo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiong-Fei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiao Qiao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tian-Fu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xue-Ling Qi
- Department of Neuropathology, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guo-Ming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Martinoni M, Fabbri VP, La Corte E, Zucchelli M, Toni F, Asioli S, Giannini C. Glioneuronal and Neuronal Tumors of the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:253-280. [PMID: 37452941 DOI: 10.1007/978-3-031-23705-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Glioneuronal and neuronal tumors (GNTs) are rare neoplasms composed of neural and glial elements frequently located in the temporal lobe. Epilepsy is the main symptom and diagnosis mostly occurs before adulthood. The great majority of GNTs are WHO grade I tumors, but anaplastic transformations and forms exist. Their common association with focal cortical dysplasia is well recognized and should be taken into consideration during neurophysiological presurgical and surgical planning since the aim of surgery should be the removal of the tumor and of the entire epileptogenic zone according to anatomo-electrophysiological findings. Surgery still remains the cornerstone of symptomatic GNT, while radiotherapy, chemotherapy, and new target therapies are generally reserved for anaplastic, unresectable, or evolving tumors. Furthermore, since many GNTs show overlapping clinical and neuroradiological features, the definition of specific histopathological, genetic, and molecular characteristics is crucial. Epileptological, oncological, neurosurgical, and pathological issues of these tumors make a multidisciplinary management mandatory.
Collapse
Affiliation(s)
- Matteo Martinoni
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Viscardo Paolo Fabbri
- Surgical Pathology Section, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Emanuele La Corte
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Mino Zucchelli
- Pediatric Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Toni
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Programma di neuroradiologia con tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna ETC, Bologna, Italy
| | - Sofia Asioli
- Surgical Pathology Section, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM) - Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Caterina Giannini
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Division of Anatomic Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
27
|
Chen Y, Zhu Q, Wang Y, Dai X, Chen P, Chen A, Zhou S, Dai C, Zhao S, Xiao S, Lan Q. Case Report: A novel LHFPL3::NTRK2 fusion in dysembryoplastic neuroepithelial tumor. Front Oncol 2022; 12:1064817. [PMID: 36531047 PMCID: PMC9752035 DOI: 10.3389/fonc.2022.1064817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Neurotrophic tyrosine receptor kinase (NTRK) rearrangements are oncogenic drivers of various types of adult and pediatric tumors, including gliomas. However, NTRK rearrangements are extremely rare in glioneuronal tumors. Here, we report a novel NTRK2 rearrangement in a 24-year-old female with dysembryoplastic neuroepithelial tumor (DNT), a circumscribed WHO grade I benign tumor associated with epilepsy. By utilizing targeted RNA next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), reverse transcriptase PCR (RT-PCR), and Sanger sequencing, we verified an in-frame fusion between NTRK2 and the lipoma HMGIC fusion partner-like 3 (LHFPL3). This oncogenic gene rearrangement involves 5' LHFPL3 and 3' NTRK2, retaining the entire tyrosine kinase domain of NTRK2 genes. Moreover, the targeted DNA NGS analysis revealed an IDH1 (p.R132H) mutation, a surprising finding in this type of tumor. The pathogenic mechanism of the LHFPL3::NTRK2 in this case likely involves aberrant dimerization and constitutive activation of RTK signaling pathways.
Collapse
Affiliation(s)
- Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Wang
- Heath Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoxiao Dai
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Chen
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Ailin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sujuan Zhou
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
- Pathology and Pathophysiology, Soochow University Medical College, Suzhou, China
| | - Chungang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengbin Zhao
- Molecular Genetics Laboratory, Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Boston, BS, United States
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Jesus-Ribeiro J, Rebelo O, Ribeiro IP, Pires LM, Melo JD, Sales F, Santana I, Freire A, Melo JB. The landscape of common genetic drivers and DNA methylation in low-grade (epilepsy-associated) neuroepithelial tumors: A review. Neuropathology 2022; 42:467-482. [PMID: 35844095 DOI: 10.1111/neup.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Low-grade neuroepithelial tumors (LNETs) represent an important group of central nervous system neoplasms, some of which may be associated to epilepsy. The concept of long-term epilepsy-associated tumors (LEATs) includes a heterogenous group of low-grade, cortically based tumors, associated to drug-resistant epilepsy, often requiring surgical treatment. LEATs entities can sometimes be poorly discriminated by histological features, precluding a confident classification in the absence of additional diagnostic tools. This study aimed to provide an updated review on the genomic findings and DNA methylation profiling advances in LNETs, including histological entities of LEATs. A comprehensive search strategy was conducted on PubMed, Embase, and Web of Science Core Collection. High-quality peer-reviewed original manuscripts and review articles with full-text in English, published between 2003 and 2022, were included. Results were screened based on titles and abstracts to determine suitability for inclusion, and when addressed the topic of the review was screened by full-text reading. Data extraction was performed through a qualitative content analysis approach. Most LNETs appear to be driven mainly by a single genomic abnormality and respective affected signaling pathway, including BRAF p.V600E mutations in ganglioglioma, FGFR1 abnormalities in dysembryoplastic neuroepithelial tumor, MYB alterations in angiocentric glioma, BRAF fusions in pilocytic astrocytoma, PRKCA fusions in papillary glioneuronal tumor, between others. However, these molecular alterations are not exclusive, with some overlap amongst different tumor histologies. Also, clustering analysis of DNA methylation profiles allowed the identification of biologically similar molecular groups that sometimes transcend conventional histopathological classification. The exciting developments on the molecular basis of these tumors reinforce the importance of an integrative histopathological and (epi)genetic classification, which can be translated into precision medicine approaches.
Collapse
Affiliation(s)
- Joana Jesus-Ribeiro
- Neurology Department, Centro Hospitalar de Leiria, Leiria, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Daniel Melo
- Internal Medicine Department, CUF Coimbra Hospital, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy and Sleep Monitoring Unit, Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António Freire
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurology Department, Coimbra Luz Hospital, Coimbra, Portugal
| | - Joana Barbosa Melo
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
29
|
Chávez López EK, Aparicio J, Valera C, Campistol Plana J, Ramírez Camacho A, Fons C, Arzimanoglou A. Pre-surgical evaluation challenges and long-term outcome in children operated on for Low Grade Epilepsy Associated brain Tumors. Eur J Paediatr Neurol 2022; 41:55-62. [PMID: 36272355 DOI: 10.1016/j.ejpn.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/10/2022] [Accepted: 10/09/2022] [Indexed: 12/01/2022]
Abstract
OBJETIVE Analyze pre-surgical evaluation modalities, surgical failures, long-term results of surgery and neurocognitive outcome in children with Low-grade Epilepsy Associated brain Tumors (LEAT). METHODS Retrospective observational study of 37 children who underwent epilepsy surgery, with a minimum follow-up of 12 months. At time of surgery, pharmaco-sensitivity (Group 1; n = 8) and drug-resistance (Group 2; n = 29), were considered. RESULTS Age range of seizure onset was 5 months-14 years (mean 5.73years) and age at surgery was 2.2-18.7years (mean 10.7years). Gangliogliomas (35.1%) or DNTs (29.7%), combined or not to a focal cortical dysplasia (FCD), were the most frequent. Extended lesionectomy 16 children (43.2%) were the most frequently used surgical approach in both groups. At one year of follow-up, 36 children (97.2%) were classified as Engel I. Within the age-range studied, duration of epilepsy and time to surgery appeared to have no impact on clinical and neurocognitive outcome in both groups. It is noteworthy, however, that antiseizure medications (ASMs) were withdrawn in 100% of the pharmacosensitive group vs 34.5% of the drug-resistant group (p = 0.002). In children with a pharmaco-sensitive epilepsy, neurocognitive evaluation showed significant improvement in the verbal comprehension index (p = 0.029). CONCLUSIONS Epilepsy-surgery is a safe therapeutic option for LEATs including for children with seizures controlled by ASMs. Presence of associated lesions is not rare. Comprehensive pre-surgical evaluation increases the chances for control of the seizures, the early discontinuation of medications and favours neurocognitive development.
Collapse
Affiliation(s)
- Evelyn Karina Chávez López
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain.
| | - Javier Aparicio
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain
| | - Carlos Valera
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain
| | - Jaume Campistol Plana
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain
| | - Alia Ramírez Camacho
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain
| | - Carmen Fons
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain
| | - Alexis Arzimanoglou
- Department of Child Neurology, Epilepsy and Neurophysiology Unit, Member of the ERN EpiCARE, Hospital Sant Joan de Dèu, Passeig Sant Joan de Déu, Barcelona, Spain; Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of ERN-EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| |
Collapse
|
30
|
The clinical and pathological features of low-grade epilepsy-associated glioneuronal tumors. Sci Rep 2022; 12:18163. [PMID: 36307486 PMCID: PMC9616895 DOI: 10.1038/s41598-022-22443-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/14/2022] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to evaluate the clinicopathological features, as well as the surgical prognosis, of epilepsy-associated glioneuronal tumors (GNT) with CD34 expression and BRAF mutation. Clinical data of patients who underwent epilepsy surgery for GNT were retrospectively studied. Univariate and multivariate analyses were performed to evaluate the correlations of clinical and pathological factors with molecular markers of CD34 expression and BRAFV600E mutation in GNT. A total of 247 patients with GNT had immunohistochemical detection of CD34 expression (CD34 positive vs. negative: 198/49), and among them, 102 patients had immunohistochemical detection of BRAFV600E mutation (BRAF positive vs. negative: 59/43). Univariate analysis found that tumor types (P < 0.001), patient population (P = 0.015), seizure aura (P = 0.007), drug-resistant epilepsy (P = 0.036), concordance of ictal electroencephalogram (EEG) findings (P = 0.032), surgical resection extent (P = 0.045), tumor location (P = 0.007) and duration of epilepsy (P = 0.027) were related to CD34 expression, and that concordance of ictal EEG findings (P = 0.031) and age at surgery (P = 0.015) were related to BRAFV600E mutation. In addition, history of generalized tonic-clonic seizure (HR 0.12; P = 0.035), drug-resistant epilepsy (HR 0.13; P = 0.030) and concordance of interictal EEG findings (HR 8.01; P = 0.039) were associated with tumor progression-free survival (PFS). However, CD34 expression or BRAFV600E mutation in GNT was not associated with surgical outcomes of seizure control and tumor PFS. The CD34 expression or BRAFV600E mutation in GNT may partly influence the distribution of clinicopathological features of patients with epilepsy, but they may be not able to predict the surgical prognosis of seizure outcome and tumor recurrence.
Collapse
|
31
|
Xie M, Wang X, Qiao J, Zhou J, Guan Y, Liu C, Zhao M, Li T, Luan G. The long-term surgical outcomes of low-grade epilepsy-associated neuroepithelial tumors. Epilepsia Open 2022; 7:697-709. [PMID: 36081402 PMCID: PMC9712488 DOI: 10.1002/epi4.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the surgical outcomes and relevant prognostic factors in patients with low-grade epilepsy-associated neuroepithelial tumors (LEAT) and, especially, to develop a scoring system to predict postoperative seizure outcomes. METHODS The clinical data of patients who underwent epilepsy surgery for LEAT were retrospectively studied. The surgical outcomes of seizure and neurological statuses in patients were evaluated using Engel classification and modified Rankin Scale (mRS) scoring, respectively. A scoring system of seizure outcomes was constructed based on the weight of the β-coefficient estimate of each predictor in the final multivariate predicting model of seizure outcomes. RESULTS Of the 287 patients (106 female) enrolled, the median age was 19 years at surgery and 10 years at seizure onset, with a median duration of epilepsy of 60 months. Among 258 patients who were followed up for at least 12 months, 215 (83.3%) patients had a favorable seizure outcome (Engel class I) after surgery, and 43 (16.7%) patients had an unfavorable seizure outcome; longer duration of epilepsy, discordant magnetoencephalography (MEG) findings, and acute postoperative seizures were significantly included in the scoring system to predict unfavorable seizure outcomes, and in the scoring system, accumulated scoring of 0-19 scores was recorded, which were finally grouped into three risk levels: low risk (risk < 30%), medium risk (30% ≤ risk < 70%), and high risk (risk ≥ 70%). In addition, favorable neurological outcomes (mRS score 0-1) were recorded in 187 (72.5%) patients, while unfavorable neurological outcomes were recorded in 71 (27.5%) patients, which were significantly related to poor seizure control, older age at surgery, and longer duration of epilepsy and hospitalization time. SIGNIFICANCE The long-term surgical outcomes of LEAT after surgery were satisfactory. A scoring system for predicting unfavorable seizure outcomes with different risk levels was developed, which could partly guide clinical treatments of LEAT.
Collapse
Affiliation(s)
- Ming‐Guo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Xiong‐Fei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Jiao Qiao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Jian Zhou
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Yu‐Guang Guan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Chang‐Qing Liu
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Meng Zhao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Tian‐Fu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina,Department of Neurology, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Guo‐Ming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
32
|
Early Epilepsy Surgery in Benign Cerebral Tumors: Avoid Your ‘Low-Grade’ Becoming a ‘Long-Term’ Epilepsy-Associated Tumor. J Clin Med 2022; 11:jcm11195892. [PMID: 36233759 PMCID: PMC9571257 DOI: 10.3390/jcm11195892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy surgery in low-grade epilepsy-associated neuroepithelial tumors (LEAT) is usually evaluated in drug-resistant cases, often meaning a time delay from diagnosis to surgery. To identify factors predicting good postoperative seizure control and neuropsychological outcome, the cohort of LEAT patients treated with resective epilepsy surgery at the Epilepsy Center Frankfurt Rhine-Main, Germany between 2015 and 2020 was analyzed. Thirty-five patients (19 males (54.3%) and 16 females, aged 4 to 40 years (M = 18.1), mean follow-up 33 months) were included. Following surgery, 77.1% of patients remained seizure-free (Engel IA/ILAE 1). Hippocampus and amygdala resection was predictive for seizure freedom in temporal lobe epilepsy. In total, 65.7% of all patients showed cognitive deficits during presurgical workup, decreasing to 51.4% after surgery, predominantly due to significantly less impaired memory functions (p = 0.011). Patients with presurgical cognitive deficits showed a tendency toward a longer duration of epilepsy (p = 0.050). Focal to bilateral tonic-clonic seizures (p = 0.019) and young age at onset (p = 0.018) were associated with a higher likelihood of cognitive deficits after surgery. Therefore, we advocate early epilepsy surgery without requiring proof of drug-resistance. This refers especially to lesions associated with the non-eloquent cortex.
Collapse
|
33
|
Altered Extracellular Matrix as an Alternative Risk Factor for Epileptogenicity in Brain Tumors. Biomedicines 2022; 10:biomedicines10102475. [PMID: 36289737 PMCID: PMC9599244 DOI: 10.3390/biomedicines10102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Seizures are one of the most common symptoms of brain tumors. The incidence of seizures differs among brain tumor type, grade, location and size, but paediatric-type diffuse low-grade gliomas/glioneuronal tumors are often highly epileptogenic. The extracellular matrix (ECM) is known to play a role in epileptogenesis and tumorigenesis because it is involved in the (re)modelling of neuronal connections and cell-cell signaling. In this review, we discuss the epileptogenicity of brain tumors with a focus on tumor type, location, genetics and the role of the extracellular matrix. In addition to functional problems, epileptogenic tumors can lead to increased morbidity and mortality, stigmatization and life-long care. The health advantages can be major if the epileptogenic properties of brain tumors are better understood. Surgical resection is the most common treatment of epilepsy-associated tumors, but post-surgery seizure-freedom is not always achieved. Therefore, we also discuss potential novel therapies aiming to restore ECM function.
Collapse
|
34
|
Xie MG, Qiao J, Wang X, Zhou J, Guan Y, Liu C, Zhao M, Li T, Luan G. The cognitive functions and seizure outcomes of patients with low-grade epilepsy-associated neuroepithelial tumors. J Neurooncol 2022; 160:1-12. [PMID: 36053451 DOI: 10.1007/s11060-022-04076-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of the study was to evaluate the cognitive functions and seizure outcomes of patients with low-grade epilepsy-associated neuroepithelial tumors (LEATs). METHODS We retrospectively reviewed the clinical data of patients who underwent preoperative neuropsychological evaluations and subsequent epilepsy surgery for LEATs. The neuropsychological results of full-scaled intelligence quotient (FSIQ) and full-scaled memory quotient (FSMQ) were analyzed, as well as the postoperative seizure outcomes. RESULTS Of the 138 patients included in the study, 59 patients (40.4%) were female and 47 (36.6%) patients were children. Preoperatively, 138 patients received FSIQ assessments and 30 patients (21.7%) had an intellectual deficit (FSIQ < 80 scores); 124 patients received FSMQ assessments and 32 patients (25.8%) had a memory deficit (FSMQ < 80 scores). Younger age at seizure onset (OR 0.93; P = 0.035) and discordant ictal electroencephalography (EEG) findings (OR 5.26; P = 0.001) were found to predict intellectual deficits, while abnormal hippocampus (OR 2.36; P = 0.051) as well as discordant ictal EEG findings (OR 4.03; P = 0.007) tended to cause memory deficits. During postoperative follow-up, 123 patients (90.7%) were followed up at least 12 months, and among them, 105 patients (85.4%) got seizure-free (Engel class I), while 18 patients (14.6%) were not (Engel class II-IV); longer duration of epilepsy (OR 1.01; P < 0.001) and discordant interictal EEG findings (OR 5.91; P = 0.005) were found to be related to poor seizure outcomes in patients with LEATs. CONCLUSION Cognitive deficits commonly occur in patients with LEATs, especially in patients with early or childhood seizures. Early surgical intervention, however, could prevent most of patients from repeated seizure onsets and thus cognitive impairments.
Collapse
Affiliation(s)
- Ming-Guo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiao Qiao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Changqing Liu
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China.,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong Road 50, Haidian District, Beijing, 100093, China. .,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
35
|
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, Palmini A, Paglioli E, Sarnat HB, Walsh CA, Wiebe S, Aronica E, Baulac S, Coras R, Kobow K, Cross JH, Garbelli R, Holthausen H, Rössler K, Thom M, El-Osta A, Lee JH, Miyata H, Guerrini R, Piao YS, Zhou D, Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022; 63:1899-1919. [PMID: 35706131 PMCID: PMC9545778 DOI: 10.1111/epi.17301] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Collapse
Affiliation(s)
- Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA
| | - Dennis Lal
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Neurology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Translational Medicine, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Andre Palmini
- Department of Clinical Neurosciences, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Porto Alegre Epilepsy Surgery Program, Hospital São Lucas PUCRS, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Harvey B Sarnat
- Department of Paediatrics, Department of Pathology (Neuropathology) and Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Kobow
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Helen Cross
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Karl Rössler
- Department of Neurosurgery, Allgemeines Krankenhaus Wien, Vienna Medical University, Wien, Austria
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, UK
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST and SoVarGen, Daejeon, South Korea
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer- University of Florence, Florence, Italy
| | - Yue-Shan Piao
- National Center for Neurological Disorders, Department of Pathology, Xuanwu Hospital, Capital Medical University, and Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, Miller AR, Navarro J, Westfall J, Leraas K, Choi S, Williamson R, Fitch J, Kelly BJ, White P, Lee K, McGrath S, Cottrell CE, Magrini V, Leonard J, Pindrik J, Shaikhouni A, Boué DR, Thomas DL, Pierson CR, Wilson RK, Ostendorf AP, Mardis ER, Koboldt DC. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia 2022; 63:1981-1997. [PMID: 35687047 DOI: 10.1111/epi.17323] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Olivia E Grischow
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hyojung Yoon
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jason Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samantha Choi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rachel Williamson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sean McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jeffrey Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan Pindrik
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ammar Shaikhouni
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boué
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher R Pierson
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adam P Ostendorf
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Division of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
37
|
Kumar K, Banerjee Dixit A, Tripathi M, Dubey V, Siraj F, Sharma MC, Lalwani S, Chandra PS, Banerjee J. Transcriptomic profiling of nonneoplastic cortical tissues reveals epileptogenic mechanisms in dysembryoplastic neuroepithelial tumors. Funct Integr Genomics 2022; 22:905-917. [PMID: 35633443 DOI: 10.1007/s10142-022-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Low-grade dysembryoplastic neuroepithelial tumors (DNTs) are a frequent cause of drug-refractory epilepsy. Molecular mechanisms underlying seizure generation in these tumors are poorly understood. This study was conducted to identify altered genes in nonneoplastic epileptogenic cortical tissues (ECTs) resected from DNT patients during electrocorticography (ECoG)-guided surgery. RNA sequencing (RNAseq) was used to determine the differentially expressed genes (DEGs) in these high-spiking ECTs compared to non-epileptic controls. A total of 477 DEGs (180 upregulated; 297 downregulated) were observed in the ECTs compared to non-epileptic controls. Gene ontology analysis revealed enrichment of genes belonging to the following Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: (i) glutamatergic synapse; (ii) nitrogen metabolism; (iii) transcriptional misregulation in cancer; and (iv) protein digestion and absorption. The glutamatergic synapse pathway was enriched by DEGs such as GRM4, SLC1A6, GRIN2C, GRM2, GRM5, GRIN3A, and GRIN2B. Enhanced glutamatergic activity was observed in the pyramidal neurons of ECTs, which could be attributed to altered synaptic transmission in these tissues compared to non-epileptic controls. Besides glutamatergic synapse, altered expression of other genes such as GABRB1 (synapse formation), SLIT2 (axonal growth), and PROKR2 (neuron migration) could be linked to epileptogenesis in ECTs. Also, upregulation of GABRA6 gene in ECTs could underlie benzodiazepine resistance in these patients. Neural cell-type-specific gene set enrichment analysis (GSEA) revealed transcriptome of ECTs to be predominantly contributed by microglia and neurons. This study provides first comprehensive gene expression profiling of nonneoplastic ECTs of DNT patients and identifies genes/pathways potentially linked to epileptogenesis.
Collapse
Affiliation(s)
- Krishan Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | | | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
38
|
Cases-Cunillera S, van Loo KMJ, Pitsch J, Quatraccioni A, Sivalingam S, Salomoni P, Borger V, Dietrich D, Schoch S, Becker AJ. Heterogeneity and excitability of BRAFV600E-induced tumors is determined by Akt/mTOR-signaling state and Trp53-loss. Neuro Oncol 2022; 24:741-754. [PMID: 34865163 PMCID: PMC9071348 DOI: 10.1093/neuonc/noab268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Developmental brain tumors harboring BRAFV600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAFV600E-induced tumor biology and function. METHODS Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in-vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays. RESULTS BRAF V600E expression in murine neural progenitors elicits benign neoplasms composed of enlarged dysmorphic neurons and neoplastic astroglia recapitulating ganglioglioma (GG) only in concert with active Akt/mTOR-signaling. Purely glial tumors resembling aspects of polymorphous low-grade neuroepithelial tumors of the young (PLNTYs) emerge from BRAFV600E alone. Additional somatic Trp53-loss is sufficient to generate anaplastic GGs (aGGs) with glioneuronal clonality. Functionally, only BRAFV600E/pAkt tumors intrinsically generate substantial neuronal activity and show enhanced relay to adjacent tissue conferring high epilepsy propensity. In contrast, PLNTY- and aGG models lack significant spike activity, which appears in line with the glial differentiation of the former and a dysfunctional tissue structure combined with reduced neuronal transcript signatures in the latter. CONCLUSION mTOR-signaling and Trp53-loss critically determine the biological diversity and electrical activity of BRAFV600E-induced tumors.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Karen M J van Loo
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | - Julika Pitsch
- Department of Epileptology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
- Department of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Paolo Salomoni
- Nuclear Function Group, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Susanne Schoch
- Department of Epileptology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Albert J Becker
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
39
|
Hagiwara K, Kamada T, Suzuki SO, Miyoshi A, Tanaka H, Shigeto H, Ohara S, Akamatsu N. Stereo-electroencephalography evidence of an eccentrically located seizure-onset zone around a polymorphous low-grade neuroepithelial tumor of the young: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE22106. [PMCID: PMC9379642 DOI: 10.3171/case22106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a newly identified low-grade brain tumor with frequent epileptic presentation. Despite the facilitated use of invasive electroencephalography owing to the growing availability of stereo-electroencephalography (SEEG), intracranial features of tumor-related seizures are still scarcely described. This report provides the first description of SEEG-recorded seizures in PLNTY to provide an insight into its surgical strategy.
OBSERVATIONS
Spontaneous clinical seizures were recorded with SEEG in a young adult patient with drug-resistant epilepsy associated with a PLNTY in the left lateral temporal cortex. The seizure onset was characterized by low-voltage fast activity (LVFA) and showed eccentric localization with respect to the tumor: LVFA was localized in the anterior portion of the tumor and spread toward the adjacent polar cortex. The language risks associated with the resection of the posterior temporal cortex could thus be minimized.
LESSONS
PLNTY can show a focal and eccentric seizure-onset zone around the tumor. The present findings serve to improve the functional and seizure outcomes using the staged invasive approach in PLNTY.
Collapse
Affiliation(s)
| | | | | | | | - Hideaki Tanaka
- Department of Psychiatry, Shourai Hospital, Saga, Japan; and
| | - Hiroshi Shigeto
- Epilepsy and Sleep Center and
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Ohara
- Epilepsy and Sleep Center and
- Department of Psychiatry, Shourai Hospital, Saga, Japan; and
| | | |
Collapse
|
40
|
Hagemann A, Bien CG, Kalbhenn T, Hopf JL, Grewe P. Epilepsy Surgery in Extratemporal vs Temporal Lobe Epilepsy: Changes in Surgical Volumes and Seizure Outcome Between 1990 and 2017. Neurology 2022; 98:e1902-e1912. [DOI: 10.1212/wnl.0000000000200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Objective:Seizure outcome after extratemporal lobe epilepsy (exTLE) surgery has often been poorer than after temporal lobe epilepsy (TLE) surgery, but recent improvements in diagnostics and surgery may have changed this. Our aim was to analyze the changes in presurgical and surgical volumes and seizure outcome two years after surgery for patients with exTLE compared to those with TLE.Methods:We performed a retrospective, single-center cohort study including patients from the Bethel presurgical-surgical-postsurgical database from 1990 to 2017. We used logistic regression to analyze factors influencing the odds for surgery and the odds for seizure freedom after surgery.Results:We included 3822 patients with presurgical evaluation, 2404 of whom had subsequently undergone surgery. The proportion of exTLE patients in presurgical evaluation increased from 41% between 1990-1993 to 64% in 2014-2017. The odds for surgery decreased over time (2003-2011: OR=0.50 [95%CI 0.36-0.70]; 2012-2017: OR=0.24 [CI 0.17-0.35]; reference: 1990-2002), and patients with exTLE had lower odds for surgery than TLE patients, but this difference diminished over time (exTLE vs. TLE 1990-2002: OR=0.14 [CI 0.09-0.20]; 2003-2011: OR=0.32 [CI 0.24-0.44]; 2012-2017: OR=0.46 [CI 0.34-0.63]). Etiology, the side of the epileptogenic lesion and invasive recordings additionally influenced the odds for surgery. The most frequent reasons for not undergoing surgery were the missing identification of a circumscribed epileptogenic zone or an unacceptable risk of postsurgical deficits in exTLE patients and the patient’s decision in TLE patients. Compared to TLE patients, the odds for seizure freedom after surgery started lower for patients with exTLE in earlier years, but increased (≤2 lobes 1990-2002: OR=0.47 [CI 0.33-0.68]; 2003-2011: OR=0.62 [CI 0.44-0.87]; 2012-2017: OR=0.78 [CI 0.53-1.15]; ≥3 lobes 1990-2002: OR=0.37 [CI 0.22-0.62]; 2003-2011: OR=0.73 [CI 0.43-1.23]; 2012-2017: OR=1.46 [CI 0.91-2.42]). Etiology, age at surgery and invasive recordings were further predictors for the odds for seizure freedom.Conclusion:Over the past 28 years, the success of resective surgery for patients with exTLE has improved. At the same time, the number of exTLE patients being evaluated for surgery increased as well as their odds for undergoing surgery.
Collapse
|
41
|
Fei X, Zhao J, Wei W, Wang W, Kong X, Qian R, Niu C, Yao Y. Clinical, Radiological, Pathological Features and Seizure Outcome With Surgical Management of Polymorphous Low-Grade Neuroepithelial Tumor of the Young Associated With Epilepsy. Front Oncol 2022; 12:863373. [PMID: 35372027 PMCID: PMC8971723 DOI: 10.3389/fonc.2022.863373] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePolymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a novel distinct epileptogenic neoplasm, and its clinical, imaging, histopathological, and molecular features were already known in the existing literature. We aimed to analyze the surgical management of PLNTY combined with these known characteristics.MethodsEight patients underwent surgical treatment in our center between December 2017 and December 2020, and the postoperative pathology was diagnosed as PLNTY. Their clinical data, imaging, pathological, molecular characteristics, and seizure outcome were retrospectively analyzed. Follow-up evaluations and a literature review were performed.ResultsThe 8 patients included 1 woman and 7 men, aged between 5 and 51 years old (mean = 31.6, median = 29). The preoperative symptoms of all 8 cases were seizures. Four tumors were situated in the temporal lobes, and one of the four extratemporal tumors was in the occipital lobe and three were in the frontal lobe. Enlarged and gross total resections were performed in 2 cases and the other 6 cases, respectively. All cases exhibited intense labeling of CD34, and absence of 1p/19q codeletion and IDH1 or IDH2 mutation. B-Raf proto-oncogene (BRAF) V600E mutation was presented in 4 (66.7%) of 6 detected cases. The postoperative seizure outcome of Engel class I was achieved in 6 cases (75%).ConclusionPLNTY represents distinctive histologic, immunophenotypic and biomolecular features, and has high epileptogenicity. Early surgical intervention and enlarged resection of PLNTY associated with epilepsy will help to improve the postoperative seizure-free rate.
Collapse
Affiliation(s)
- Xiaorui Fei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Kong
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruobing Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Yao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yang Yao,
| |
Collapse
|
42
|
Adams JW, Malicki D, Levy M, Crawford JR. Ganglioglioma with novel molecular features presenting in a child with Allan-Herndon-Dudley syndrome. BMJ Case Rep 2022; 15:e248734. [PMID: 35236707 PMCID: PMC8895953 DOI: 10.1136/bcr-2021-248734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Affiliation(s)
- Jason W Adams
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Denise Malicki
- Pathology, Rady Children's Hospital University of California San Diego, San Diego, California, USA
| | - Michael Levy
- Neurosurgery, University of California San Diego, San Diego, California, USA
| | - John Ross Crawford
- Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
43
|
Kopachev D, Shishkina L, Shkatova A, Golovteev A, Troitsky A, Grinenko O, Sharkova S, Petrosyan D, Gushcha A. Long-term epilepsy-associated tumors. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:127-134. [DOI: 10.17116/jnevro2022122041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Jabari S, Kobow K, Pieper T, Hartlieb T, Kudernatsch M, Polster T, Bien CG, Kalbhenn T, Simon M, Hamer H, Rössler K, Feucht M, Mühlebner A, Najm I, Peixoto-Santos JE, Gil-Nagel A, Delgado RT, Aledo-Serrano A, Hou Y, Coras R, von Deimling A, Blümcke I. DNA methylation-based classification of malformations of cortical development in the human brain. Acta Neuropathol 2022; 143:93-104. [PMID: 34797422 PMCID: PMC8732912 DOI: 10.1007/s00401-021-02386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Malformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular classification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.
Collapse
Affiliation(s)
- Samir Jabari
- Department of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Vogtareuth, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Vogtareuth, Germany
- Research Institute, Rehabilitation, Transition, Palliation", PMU Salzburg, Salzburg, Austria
| | - Manfred Kudernatsch
- Center for Neurosurgery and Epilepsy Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
- Research Institute, Rehabilitation, Transition, Palliation", PMU Salzburg, Salzburg, Austria
| | - Tilman Polster
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery - Epilepsy Surgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld University, Bielefeld, Germany
| | - Matthias Simon
- Department of Neurosurgery - Epilepsy Surgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld University, Bielefeld, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Angelika Mühlebner
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of (Neuro) Pathology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Imad Najm
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Yanghao Hou
- Department of Neuropathology, German Cancer Research Center (DKFZ), Universitätsklinikum Heidelberg, and CCU Neuropathology, Heidelberg, Germany
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Roland Coras
- Department of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, German Cancer Research Center (DKFZ), Universitätsklinikum Heidelberg, and CCU Neuropathology, Heidelberg, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Zheng Z, Jiang H, Wu H, Ding Y, Wang S, Ming W, Zhu J. Epilepsy surgery for low-grade epilepsy-associated neuroepithelial tumor of temporal lobe: a single-institution experience of 61 patients. Neurol Sci 2021; 43:3333-3341. [PMID: 34816317 PMCID: PMC9018634 DOI: 10.1007/s10072-021-05703-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Background Low-grade epilepsy-associated neuroepithelial tumor (LEAT) is highly responsive to surgery in general. The appropriate surgical strategy remains controversial in temporal LEAT. The aim of this study is to analyze the surgical seizure outcome of temporal LEAT, focusing on the aspects of surgical strategy. Methods Sixty-one patients from a single epilepsy center with temporal LEAT underwent surgery. The surgical strategy was according to the multidisciplinary presurgical evaluation. Electrocorticogram (ECoG)-assisted resection was utilized. Surgical extent including lesionectomy and extended resection was described in detail. Seizure outcome was classified as satisfactory (Engel class I) and unsatisfactory (Engel classes II–IV). Results After a median follow-up of 36.0 (30.0) months, 83.6% of patients achieved satisfactory outcome, including 72.1% with Engel class Ia. There was 39.3% (24/61) of patients with antiepileptic drug (AED) withdrawal. Use of ECoG (χ2 = 0.000, P > 0.1), preresection spike (χ2 = 0.000, P = 0.763), or spike residue (P = 0.545) was not correlated with the seizure outcome. For lateral temporal LEAT, outcome from lesionectomy was comparable to extended resection (χ2 = 0.499, P > 0.1). For mesial temporal LEAT, 94.7% (18/19) of patients who underwent additional hippocampectomy were satisfactory, whereas only 25% (1/4) of patients who underwent lesionectomy were satisfactory (P = 0.009). Conclusion Surgical treatment was highly effective for temporal LEAT. ECoG may not influence the seizure outcome. For lateral temporal LEAT, lesionectomy with or without cortectomy was sufficient in most patients. For mesial temporal LEAT, extended resection was recommended.
Collapse
Affiliation(s)
- Zhe Zheng
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
| | - Hongjie Jiang
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
| | - Hemmings Wu
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
| | - Yao Ding
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
| | - Shuang Wang
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
| | - Wenjie Ming
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China
| | - Junming Zhu
- Epilepsy Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China.
- Department of Neurosurgery The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangchen District, Hangzhou, 310009, China.
| |
Collapse
|
46
|
Cloppenborg T, van Schooneveld M, Hagemann A, Hopf JL, Kalbhenn T, Otte WM, Polster T, Bien CG, Braun KPJ. Development and Validation of Prediction Models for Developmental and Intellectual Outcome Following Pediatric Epilepsy Surgery. Neurology 2021; 98:e225-e235. [PMID: 34795046 DOI: 10.1212/wnl.0000000000013065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To (1) identify predictors of postoperative intelligence and developmental quotients (IQ/DQ) and (2) develop and validate clinically applicable IQ/DQ prediction models. METHODS We retrospectively analyzed neuropsychological outcomes and their possible determinants for children treated in Bethel and Utrecht since 1990. We performed separate analyses for patients with IQ and those with only DQ available. We developed prediction models based on presurgical determinants to predict dichotomized levels of performance (IQ≥85, IQ≥70, DQ≥50). RESULTS IQ/DQ data before and two years after surgery were available for 492 patients (IQ n=365, DQ n=127). At a cutoff-level ±10 points, the chance of improvement was considerably higher than the chance of deterioration (IQ 37.3% vs. 6.6% and DQ 31.5% vs. 15.0%, respectively). Presurgical IQ/DQ was the strongest predictor of postoperative cognition (IQ r=0.85, p<.001, DQ: r=0.57, p<.001).Two IQ models were developed in the Bethel cohort (n=258) and externally validated in the Utrecht cohort (n=102). For DQ, we developed the model in the Bethel cohort and used 10-fold cross-validation. Models allowed good prediction at all three cutoff-levels (correct classification for IQ≥85=86%, IQ≥70=91%, DQ≥50=76%). External validation of the IQ models showed high accuracy (IQ≥85: 0.82, CI 0.75-0.91, IQ≥70: 0.84, CI 0.77-0.92) and excellent discrimination (ROC curves IQ≥85: AUC 0.90, CI 0.84-0.96; IQ≥70: AUC 0.92, CI 0.87-0.97). DISCUSSION After epilepsy surgery in children, the risk of cognitive deterioration is very low. Presurgical development has a strong impact on the postoperative trajectory. The presented models can improve presurgical counseling of patients and parents by reliably predicting cognitive outcomes. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for children undergoing epilepsy surgery presurgical IQ/DQ was the strongest predictor of postoperative cognition.
Collapse
Affiliation(s)
- Thomas Cloppenborg
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Monique van Schooneveld
- University Medical Center Utrecht, Department of Pediatric Neurology, The Netherlands, member of the ERN EpiCARE
| | | | - Johanna Lena Hopf
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Thilo Kalbhenn
- Bielefeld University, Medical School, Department of Neurosurgery (Evangelisches Klinikum Bethel), Bielefeld, Germany
| | - Willem M Otte
- University Medical Center Utrecht, Department of Pediatric Neurology, The Netherlands, member of the ERN EpiCARE
| | - Tilman Polster
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Christian G Bien
- Bielefeld University, Medical School, Department of Epileptology (Krankenhaus Mara), Bielefeld, Germany
| | - Kees P J Braun
- University Medical Center Utrecht, Department of Pediatric Neurology, The Netherlands, member of the ERN EpiCARE
| |
Collapse
|
47
|
Métais A, Appay R, Pagès M, Gallardo C, Silva K, Siegfried A, Perbet R, Maurage CA, Scavarda D, Fina F, Uro-Coste E, Riffaud L, Colin C, Figarella-Branger D. Low-grade epilepsy-associated neuroepithelial tumours with a prominent oligodendroglioma-like component: The diagnostic challenges. Neuropathol Appl Neurobiol 2021; 48:e12769. [PMID: 34551121 DOI: 10.1111/nan.12769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS We searched for recurrent pathological features and molecular alterations in a retrospective series of 72 low-grade epilepsy-associated neuroepithelial tumours (LEATs) with a prominent oligodendroglioma-like component, in order to classify them according to the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumours. METHODS Centralised pathological examination was performed as well as targeted molecular analysis of v-Raf murine sarcoma viral oncogene homologue B (BRAF) and fibroblast growth factor receptor 1 (FGFR1) by multiplexed digital polymerase chain reaction (mdPCR). DNA methylation profiling was performed in cases with sufficient DNA. In cases with no genetic alteration by mdPCR and sufficient material, RNA sequencing was done. RESULTS We first reclassified our cohort into three groups: ganglioglioma (GG, n = 14), dysembryoplastic neuroepithelial tumours (DNTs, n = 19) and glioneuronal tumours/paediatric-type low-grade glioma (LGG) not otherwise specified (GNT/PLGG NOS, n = 39). mdPCR found an alteration in 38/72 cases. Subsequent RNA sequencing revealed a fusion transcript involving BRAF, FGFR1/2/3 or neurotrophic tyrosine kinase receptor type 2 [NTRK2] in 9/25 cases. DNA methylation profiling found 12/46 cases with a calibrated score ≥0.9. Unsupervised hierarchical clustering revealed two clusters: Cluster 1 was enriched with cases classified as DNT at histology, belonging to the LGG-DNT methylation class (MC), with haematopoietic progenitor cell antigen (CD34) negativity and FGRF1 alterations; Cluster 2 was enriched with cases classified at histology as GG, belonging to the LGG-GG MC MC, with BRAF V600E mutation and CD34 positivity. The tumours reclassified as GNT/PLGG NOS were equally distributed across both clusters. Interestingly, all polymorphous low-grade neuroepithelial tumour of the young belonged to Cluster 2, whereas diffuse LGG mitogen-activated protein kinase (MAPK) pathway-altered were equally distributed among the two clusters. This led us to build an algorithm to classify LEATs with a prominent oligodendroglioma-like component. CONCLUSIONS Integrated histomolecular diagnosis of LEATs with a prominent oligodendroglioma-like component remains challenging. Because these tumours can be split into two major clusters of biological significance, the clinicopathological relevance of the four types recognised by the WHO CNS5 within this spectrum of tumours is questionable.
Collapse
Affiliation(s)
- Alice Métais
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Service d'Anatomie et Cytologie Pathologiques, CHU Pontchaillou, Rennes, France
| | - Romain Appay
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Mélanie Pagès
- GHU-Paris Sainte-Anne Hospital, Paris University, Paris, France.,Department of Genetics, Institut Curie, Paris, France.,SIREDO Paediatric Cancer Center, Institut Curie, Paris, France.,INSERM U830, Laboratory of Translational Research in Paediatric Oncology, Institut Curie, Paris, France
| | - Catherine Gallardo
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Karen Silva
- Groupe Hospitalier Est, Département de Neuropathologie, Hospices Civils de Lyon, Bron, France
| | - Aurore Siegfried
- Department of Pathology, Toulouse University Hospital, Toulouse, France.,INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Romain Perbet
- Univ. Lille, Inserm, CHU Lille, Alzheimer and Tauopathies, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Didier Scavarda
- Aix-Marseille Univ, AP-HM, Institut de Neurosciences des Systèmes, CHU Timone, Service de Neurochirurgie infantile, Marseille, France
| | - Frédéric Fina
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,ID Solutions, Research and Development, Grabels, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France.,INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Laurent Riffaud
- Department of Pediatric Neurosurgery, Rennes University Hospital, Rennes, France.,INSERM MediCIS, unit U1099 LTSI, Rennes 1 University, Rennes, France
| | - Carole Colin
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Dominique Figarella-Branger
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | |
Collapse
|
48
|
Wang Y, Wang L, Blümcke I, Zhang W, Fu Y, Shan Y, Piao Y, Zhao G. Integrated genotype-phenotype analysis of long-term epilepsy-associated ganglioglioma. Brain Pathol 2021; 32:e13011. [PMID: 34355449 PMCID: PMC8713530 DOI: 10.1111/bpa.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The BRAF p.V600E mutation is the most common genetic alteration in ganglioglioma (GG). Herein, we collected a consecutive series of 30 GG specimens from Xuanwu Hospital in order to corroborate the genetic landscape and genotype–phenotype correlation of this enigmatic and often difficult‐to‐classify epilepsy‐associated brain tumor entity. All specimens with histopathologically confirmed lesions were submitted to targeted next‐generation sequencing using a panel of 131 genes. Genetic alterations in three cases with histologically distinct tumor components, that is, GG plus pleomorphic xanthoastrocytoma (PXA), dysembryoplastic neuroepithelial tumor (DNT), or an oligodendroglioma (ODG)‐like tumor component, were separately studied. A mean post‐surgical follow‐up time‐period of 23 months was available in 24 patients. Seventy seven percent of GG in our series can be explained by genetic alterations, with BRAF p.V600E mutations being most prevalent (n = 20). Three additional cases showed KRAS p.Q22R and KRAS p.G13R, IRS2 copy number gain (CNG) and a KIAA1549‐BRAF fusion. When genetically studying different histopathology patterns from the same tumor we identified composite features with BRAF p.V600E plus CDKN2A/B homozygous deletion in a GG with PXA features, IRS2 CNG in a GG with DNT features, and a BRAF p.V600E plus CNG of chromosome 7 in a GG with ODG‐like features. Follow‐up revealed no malignant tumor progression but nine patients had seizure recurrence. Eight of these nine GG were immunoreactive for CD34, six patients were male, five were BRAF wildtype, and atypical histopathology features were encountered in four patients, that is, ki‐67 proliferation index above 5% or with PXA component. Our results strongly point to activation of the MAP kinase pathway in the vast majority of GG and their molecular‐genetic differentiation from the cohort of low‐grade pediatric type diffuse glioma remains, however, to be further clarified. In addition, histopathologically distinct tumor components accumulated different genetic alterations suggesting collision or composite glio‐neuronal GG variants. Our results strongly point to activation of the MAP kinase pathway in the vast majority of ganglioglioma (GG). Composite genetic alterations were found in cases with histologically distinct tumor components firstly, i.e. GG plus pleomorphic xanthoastrocytoma (PXA), dysembryoplastic neuroepithelial tumor, or an oligodendroglioma‐like tumor. Seizure recurrence is inclined to ganglioglioma with atypical histopathology features (i.e. GG containing a ki‐67 proliferation index above 5% or GG with PXA component).
Collapse
Affiliation(s)
- Yujiao Wang
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Leiming Wang
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ingmar Blümcke
- Department of NeuropathologyUniversity Hospital ErlangenErlangenGermany
| | - Weiwei Zhang
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yongjuan Fu
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yongzhi Shan
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for Epilepsy Capital Medical UniversityBeijingChina
| | - Yueshan Piao
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for Epilepsy Capital Medical UniversityBeijingChina
| | - Guoguang Zhao
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
- Clinical Research Center for Epilepsy Capital Medical UniversityBeijingChina
| |
Collapse
|
49
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
50
|
Saute RL, Peixoto-Santos JE, Velasco TR, Leite JP. Improving surgical outcome with electric source imaging and high field magnetic resonance imaging. Seizure 2021; 90:145-154. [PMID: 33608134 DOI: 10.1016/j.seizure.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
While most patients with focal epilepsy present with clear structural abnormalities on standard, 1.5 or 3 T MRI, some patients are MRI-negative. For those, quantitative MRI techniques, such as volumetry, voxel-based morphometry, and relaxation time measurements can aid in finding the epileptogenic focus. High-field MRI, just recently approved for clinical use by the FDA, increases the resolution and, in several publications, was shown to improve the detection of focal cortical dysplasias and mild cortical malformations. For those cases without any tissue abnormality in neuroimaging, even at 7 T, scalp EEG alone is insufficient to delimitate the epileptogenic zone. They may benefit from the use of high-density EEG, in which the increased number of electrodes helps improve spatial sampling. The spatial resolution of even low-density EEG can benefit from electric source imaging techniques, which map the source of the recorded abnormal activity, such as interictal epileptiform discharges, focal slowing, and ictal rhythm. These EEG techniques help localize the irritative, functional deficit, and seizure-onset zone, to better estimate the epileptogenic zone. Combining those technologies allows several drug-resistant cases to be submitted to surgery, increasing the odds of seizure freedom and providing a must needed hope for patients with epilepsy.
Collapse
Affiliation(s)
- Ricardo Lutzky Saute
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista School of Medicine, Unifesp, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|