1
|
Lin TC, Uchino H, Ito M, Yamaguchi S, Ishi Y, Fujimura M. Moyamoya syndrome after proton beam therapy in a pediatric patient with a pineal germ cell tumor and a germline polymorphism in RNF213. Childs Nerv Syst 2024; 40:3873-3878. [PMID: 39167199 DOI: 10.1007/s00381-024-06576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The effects of RNF213, which leads to moyamoya disease susceptibility, on radiation-induced moyamoya syndrome (MMS) remain unknown. We report a case of MMS after proton beam therapy (PBT) was deployed to treat a brain tumor in a patient with an RNF213 polymorphism. An 8-year-old boy underwent whole ventricular and local PBT for a pineal germ cell tumor and was diagnosed with radiation-induced MMS 9 months later. He underwent right and left revascularization surgeries for cerebral hemodynamic compromise at 17- and 18-years of age, respectively. Genetic analysis revealed a heterozygous germline polymorphism RNF213 p.R4810K. This is the first report to suggest an association between RNF213 polymorphism and radiation-induced MMS.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
2
|
Tsuruoka C, Shinagawa M, Shang Y, Amasaki Y, Sunaoshi M, Imaoka T, Morioka T, Shimada Y, Kakinuma S. Relative Biological Effectiveness of Carbon Ion Beams for Induction of Medulloblastoma with Radiation-specific Chromosome 13 Deletion in Ptch1+/- Mice. Radiat Res 2024; 202:503-509. [PMID: 39048112 DOI: 10.1667/rade-23-00229.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Carbon ion radiotherapy (CIRT) for pediatric cancer is currently limited because of the unknown risk of induction of secondary cancers. Medulloblastoma of Ptch1+/- mice offers a unique experimental system for radiation-induced carcinogenesis, in which tumors are classified into spontaneous and radiation-induced subtypes based on their features of loss of heterozygosity (LOH) that affect the wild-type Ptch1 allele. The present study aims to investigate in young Ptch1+/- mice the carcinogenic effect, and its age dependence, of the low-linear energy transfer (LET, ∼13 keV/µm) carbon ions, to which normal tissues in front of the tumor are exposed during therapy. We irradiated Ptch1+/- mice at postnatal day (P) 1, 4, or 10 with 290 MeV/u carbon ions (0.05-0.5 Gy; LET, 13 keV/µm) and monitored them for medulloblastoma development. Loss of heterozygosity of seven genetic markers on chromosome 13 (where Ptch1 resides) was studied to classify the tumors. Carbon ion exposure induced medulloblastoma most effectively at P1. The LOH patterns of tumors were either telomeric or interstitial, the latter occurring almost exclusively in the irradiated groups, allowing the use of interstitial LOH as a biomarker of radiation-induced tumors. Radiation-induced tumors developed during a narrow age window (most strongly at P1 and only moderately at P4, with suppressed tumorigenesis at P10). Calculated using previous results using 137Cs gamma rays, the values for relative biological effectiveness (RBE) regarding radiation-induced tumors were 4.1 (3.4, 4.8) and 4.3 (3.3, 5.2) (mean and 95% confidence interval) for exposure at P1 and 4, respectively. Thus, the RBE of carbon ions for medulloblastoma induction in Ptch1+/- mice was higher than the generally recognized RBE of 1-2 for cell killing, chromosome aberrations, and skin reactions.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Institute for Environmental Sciences, Kamikita-gun, Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
3
|
Li L, Zhang T, Xiao M, Lu Y, Gao L. Brain macrophage senescence in glioma. Semin Cancer Biol 2024; 104-105:46-60. [PMID: 39098625 DOI: 10.1016/j.semcancer.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Gliomas are a diverse group of primary central nervous system neoplasms with no curative therapies available. Brain macrophages comprise microglia in the brain parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space and monocyte-derived macrophages infiltrating the brain. With the great improvement of our recognition of brain macrophages, diverse macrophage populations have been found in the context of glioma, which exhibit functional and phenotypic heterogeneity. We have long thought that brain macrophage senescence is detrimental, manifested by specialized forms of persistent cell cycle arrest and chronic low-grade inflammation. Persistent senescence of macrophages may result in immune dysfunction, potentially contributing to glioma initiation and development. Given the crucial roles played by brain macrophages in glioma, we unravel how brain macrophages undergo reprogramming and their contribution to glioma. We outline general molecular alterations and specific biomarkers in senescent brain macrophages, as well as functional changes (such as metabolism, autophagy, phagocytosis, antigen presentation, and infiltration and recruitment). In addition, recent advances in genetic regulation and mechanisms linked to senescent brain macrophages are discussed. In particular, this review emphasizes the contribution of senescent brain macrophages to glioma, which may drive translational efforts to utilize brain macrophages as a prognostic marker or/and treatment target in glioma. An in-depth comprehending of how brain macrophage senescence functionally influences the tumor microenvironment will be key to our development of innovative therapeutics for glioma.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Tianhe Zhang
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Meiling Xiao
- Department of Rehabilitation, The Central Hospital of Shenyang Medical College, Shenyang, Liaoning 110024, China
| | - Yu Lu
- Rehabilitation Medicine Department, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China.
| | - Lin Gao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
4
|
Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, Nikolic K, Pongpitakmetha T, Ehret F, Kaul D, Boehmerle W, Endres M, Shih HA, Parsons MW, Dietrich J. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. Oncologist 2024:oyae195. [PMID: 39126664 DOI: 10.1093/oncolo/oyae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT). PATIENTS AND METHODS Thirty-four patients (19 male; median age 39.6 years) with WHO grade 2-3 gliomas treated with partial cranial radiotherapy (XRT [n = 17] vs PRT[n = 17]) were identified and matched by demographic/clinical criteria. Radiotoxicity was assessed longitudinally for 3 years post-radiotherapy via serial analysis of T2/FLAIR- (for RIL), contrast-enhanced T1- (for TN), and susceptibility (for CMB)-weighted MRI sequences. RIL was rated at whole-brain and hemispheric levels using a novel Fazekas scale-informed scoring system. RESULTS The scoring system proved reliable (ICC > 0.85). Both groups developed moderate-to-severe RIL (62%[XRT]; 71%[PRT]) within 3 years; however, XRT was associated with persistent RIL increases in the contralesional hemisphere, whereas contralesional hemispheric RIL plateaued with PRT at 1-year post-radiotherapy (t = 2.180; P = .037). TN rates were greater with PRT (6%[XRT] vs 18%[PRT]; P = ns). CMB prevalence (76%[XRT]; 71%[PRT]) and burden (mean #CMB: 4.0[XRT]; 4.2[PRT]) were similar; however, XRT correlated with greater contralesional hemispheric CMB burden (27%[XRT]; 17%[PRT]; X2 = 4.986; P = .026), whereas PRT-specific CMB clustered at the radiation field margin (X2 = 14.7; P = .002). CONCLUSIONS CNS radiotoxicity is common and progressive in glioma patients. Injury patterns suggest radiation modality-specificity as RIL, TN, and CMB exhibit unique spatiotemporal differences following XRT vs PRT, likely reflecting underlying dosimetric and radiobiological differences. Familiarity with such injury patterns is essential to improve patient management. Prospective studies are needed to validate these findings and assess their impacts on neurocognitive function.
Collapse
Affiliation(s)
- Sebastian F Winter
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117 Berlin, Germany
| | - Melissa M Gardner
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Philipp Karschnia
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke Cancer Institute, Durham, NC 27710, United States
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Marc R Bussière
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Katarina Nikolic
- Department of Neurology, Universitätsklinikum St. Pölten, 3100 Sankt Pölten, Austria
| | - Thanakit Pongpitakmetha
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, 10330 Bangkok, Thailand
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfgang Boehmerle
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Stroke Research Berlin, 10117 Berlin, Germany
- ExcellenceCluster NeuroCure, 10117 Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10117 Berlin, Germany
- German Centre for Mental Health (DZPH), Partner Site Berlin, 10117 Berlin, Germany
| | - Helen A Shih
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael W Parsons
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Jorg Dietrich
- Division of Neuro-Oncology, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
5
|
Siegel BI, Gust J. How Cancer Harms the Developing Brain: Long-Term Outcomes in Pediatric Cancer Survivors. Pediatr Neurol 2024; 156:91-98. [PMID: 38735088 DOI: 10.1016/j.pediatrneurol.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/22/2024] [Accepted: 03/31/2024] [Indexed: 05/14/2024]
Abstract
Survival rates for pediatric cancer are improving, resulting in a rising need to understand and address long-term sequelae. In this narrative review, we summarize the effects of cancer and its treatment on the developing brain, with a focus on neurocognitive function in leukemia and pediatric brain tumor survivors. We then discuss possible mechanisms of brain injury and management considerations.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, Washington, District of Columbia; Division of Pediatric Hematology and Oncology, Children's National Hospital, Washington, District of Columbia
| | - Juliane Gust
- Department of Neurology, University of Washinton, Seattle, Washington; Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington.
| |
Collapse
|
6
|
Tang X, Deisher AJ, Mundy DW, Kruse JJ, Mahajan A, Qian J, Johnson JE. Optimizing Gantry Breakpoint Angles in Proton Therapy: Enhancing Efficiency and Patient Experience. Int J Part Ther 2024; 11:100007. [PMID: 38757073 PMCID: PMC11095102 DOI: 10.1016/j.ijpt.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose The breakpoint for a 360° radiotherapy gantry is typically positioned at 180°. This arbitrary setting has not been systematically evaluated for efficiency and may cause redundant gantry rotation and extended setup times. Our study aimed to identify an optimal gantry breakpoint angle for a full-gantry proton therapy system, with the goal of minimizing gantry movement. Materials and Methods We analyzed 70 months of clinically delivered proton therapy plans (9152 plans, 131 883 fractions), categorizing them by treatment site and mapping the fields from a partial-gantry to full-gantry orientation. For each delivered fraction, we computed the minimum total gantry rotation angle as a function of gantry breakpoint position, which was varied between 0° and 360° in 1° steps. This analysis was performed separately within the entire plan cohort and individual treatment sites, both with and without the capability of over-rotating 10° past the breakpoint from either direction (20° overlap). The optimal gantry breakpoint was identified as one which resulted in a low average gantry rotation per fraction. Results Considering mechanical constraints, 130° was identified as a reasonable balance between increased gantry-rotation efficiency and practical treatment considerations. With a 20° overlap, this selection reduced the average gantry rotation by 41.4° per fraction when compared to the standard 180° breakpoint. Disease site subgroups showed the following reduction in average gantry rotation: gastrointestinal 192.2°, thoracic 56.3°, pediatric 44.9°, genitourinary 19.9°, central nervous system 10.7°, breast 2.8°, and head and neck 0.1°. Conclusion For a full-gantry system, a breakpoint of 130° generally outperforms the conventional 180° breakpoint. This reduction is particularly impactful for gastrointestinal, pediatric, and thoracic sites, which constitute a significant proportion of cases at our center. The adjusted breakpoint could potentially streamline patient delivery, alleviate mechanical wear, and enhance treatment precision by reducing the likelihood of patient movement during delivery.
Collapse
Affiliation(s)
- Xueyan Tang
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel W. Mundy
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jon J. Kruse
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jing Qian
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Ainslie AP, Klaver M, Voshart DC, Gerrits E, den Dunnen WFA, Eggen BJL, Bergink S, Barazzuol L. Glioblastoma and its treatment are associated with extensive accelerated brain aging. Aging Cell 2024; 23:e14066. [PMID: 38234228 PMCID: PMC10928584 DOI: 10.1111/acel.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Progressive neurocognitive dysfunction is the leading cause of a reduced quality of life in patients with primary brain tumors. Understanding how the human brain responds to cancer and its treatment is essential to improve the associated cognitive sequelae. In this study, we performed integrated transcriptomic and tissue analysis on postmortem normal-appearing non-tumor brain tissue from glioblastoma (GBM) patients that had received cancer treatments, region-matched brain tissue from unaffected control individuals and Alzheimer's disease (AD) patients. We show that normal-appearing non-tumor brain regions of patients with GBM display hallmarks of accelerated aging, in particular mitochondrial dysfunction, inflammation, and proteostasis deregulation. The extent and spatial pattern of this response decreased with distance from the tumor. Gene set enrichment analyses and a direct comparative analysis with an independent cohort of brain tissue samples from AD patients revealed a significant overlap in differentially expressed genes and a similar biological aging trajectory. Additionally, these responses were validated at the protein level showing the presence of increased lysosomal lipofuscin, phosphorylated microtubule-associated protein Tau, and oxidative DNA damage in normal-appearing brain areas of GBM patients. Overall, our data show that the brain of GBM patients undergoes accelerated aging and shared AD-like features, providing the basis for novel or repurposed therapeutic targets for managing brain tumor-related side effects.
Collapse
Affiliation(s)
- Anna P. Ainslie
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Myrthe Klaver
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- European Research Institute for the Biology of AgeingUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Daniëlle C. Voshart
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology and Medical BiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- University College Groningen, University of GroningenGroningenThe Netherlands
| | - Lara Barazzuol
- Department of Radiation OncologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
8
|
Jia SB, Shamsabadi R. Secondary cancer risk assessments following the proton therapy of lung cancer as the functions of field characteristics and patient age. Int J Radiat Biol 2024; 100:183-189. [PMID: 37747407 DOI: 10.1080/09553002.2023.2263546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Radiation-induced secondary cancers relevant to proton therapy are still a main concern among cancer survivors. This study aims to determine the effects of age at exposure and treatment field size on radiation-induced secondary tumors following the proton therapy of lung cancer within out of field organs through the Monte Carlo (MC) simulation approach. MATERIAL AND METHODS A full MC model of ICRP-110 male phantom was simulated to calculate the absorbed dose corresponding to secondary radiations within distant organs from the tumor volume. Then, the risks of secondary malignancies were estimated by employing the recommended risk model by the Committee of Biological Effects of Ionizing Radiation (BEIR) for different treatment field sizes and various patient ages at exposure. RESULTS The results revealed that by increasing the patient age from 25 to 45 years, lifetime attributable risk (LAR) values were decreased. Maximum and minimum mortality rates were obtained for the liver and thyroid at the fixed age of 25 years, respectively. Calculated risk values for most near organs to the tumor were higher than those for distant organs. Changing the aperture size from 5 × 5 cm2 to 8 × 10 cm2 resulted in LAR increments with maximum variations of 12.5% for the stomach and a rough variation of 1.12 times in LAR for all exposure ages. CONCLUSION Our work on whole-body phantom addresses the impact of age at exposure and aperture size on LAR during the proton therapy of lung cancer. To minimize secondary cancer risks relevant to proton therapy of lung cancer, extra attention should be considered.
Collapse
Affiliation(s)
| | - Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
9
|
Aslam MA, Ahmad H, Malik HS, Uinarni H, Karim YS, Akhmedov YM, Abdelbasset WK, Awadh SA, Abid MK, Mustafa YF, Farhood B, Sahebkar A. Radiotherapy-associated Sensorineural Hearing Loss in Pediatric Oncology Patients. Curr Med Chem 2024; 31:5351-5369. [PMID: 37190814 DOI: 10.2174/0929867330666230515112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
During the radiotherapeutic treatment of pediatric oncology patients, they would be at a latent risk of developing ionizing radiation-induced ototoxicity when the cochlea or auditory nerve is located within the radiation field. Sensorineural hearing loss (SNHL) is an irreversible late complication of radiotherapy, and its incidence depends on various factors such as the patient's hearing sensitivity, total radiation dose to the cochlea, radiotherapy fractionation regimen, age and chemoradiation. Importantly, this complication exhibits serious challenges to adult survivors of childhood cancer, as it has been linked to impairments in academic achievement, psychosocial development, independent living skills, and employment in the survivor population. Therefore, early detection and proper management can alleviate academic, speech, language, social, and psychological morbidity arising from hearing deficits. In the present review, we have addressed issues such as underlying mechanisms of radiation-induced SNHL, audiometric findings of pediatric cancer patients treated with radiotherapy, and management and protection measures against radiation-induced ototoxicity.
Collapse
Affiliation(s)
- Muhammad Ammar Aslam
- Department of Emergency Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hassaan Ahmad
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Hamza Sultan Malik
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Radiologist at Pantai Indah Kapuk Hospital, Jakarta, Indonesia
| | | | - Yusuf Makhmudovich Akhmedov
- Department of Pediatric Surgery, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Sura A Awadh
- Department of Anesthesia, Al-Mustaqbal University, Babylon, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Iturri L, Bertho A, Lamirault C, Brisebard E, Juchaux M, Gilbert C, Espenon J, Sébrié C, Jourdain L, de Marzi L, Pouzoulet F, Muret J, Verrelle P, Prezado Y. Oxygen supplementation in anesthesia can block FLASH effect and anti-tumor immunity in conventional proton therapy. COMMUNICATIONS MEDICINE 2023; 3:183. [PMID: 38102219 PMCID: PMC10724215 DOI: 10.1038/s43856-023-00411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Radiation-induced neurocognitive dysfunction is a major adverse effect of brain radiation therapy and has specific relevance in pediatric oncology, where serious cognitive deficits have been reported in survivors of pediatric brain tumors. Moreover, many pediatric patients receive proton therapy under general anesthesia or sedation to guarantee precise ballistics with a high oxygen content for safety. The present study addresses the relevant question of the potential effect of supplemental oxygen administered during anesthesia on normal tissue toxicity and investigates the anti-tumor immune response generated following conventional and FLASH proton therapy. METHODS Rats (Fischer 344) were cranially irradiated with a single high dose of proton therapy (15 Gy or 25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s), and the toxicities in the normal tissue were examined by histological, cytometric and behavioral analysis. Glioblastoma-bearing rats were irradiated in the same manner and tumor-infiltrating leukocytes were quantified by flow cytometry. RESULTS Our findings indicate that supplemental oxygen has an adverse impact on both functional and anatomical evaluations of normal brain following conventional and FLASH proton therapy. In addition, oxygen supplementation in anesthesia is particularly detrimental for anti-tumor immune response by preventing a strong immune cell infiltration into tumoral tissues following conventional proton therapy. CONCLUSIONS These results demonstrate the need to further optimize anesthesia protocols used in radiotherapy with the goal of preserving normal tissues and achieving tumor control, specifically in combination with immunotherapy agents.
Collapse
Affiliation(s)
- Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Charlotte Lamirault
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, Orsay, France
| | | | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristèle Gilbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Catherine Sébrié
- Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, BIOMAPS Universite Paris-Saclay, Orsay, France
| | - Laurène Jourdain
- Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, BIOMAPS Universite Paris-Saclay, Orsay, France
| | - Ludovic de Marzi
- Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie (LITO), Orsay, France
- Institut Curie, Radiation Oncology Department, Campus universitaire, Orsay, France
| | - Frédéric Pouzoulet
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, Orsay, France
- Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie (LITO), Orsay, France
| | - Jane Muret
- Institut Curie, Université PSL, Department of Anesthesia and Intensive Care, Paris, France
| | - Pierre Verrelle
- Institut Curie, Radiation Oncology Department, Campus universitaire, Orsay, France
- Institut Curie, Université Paris-Saclay, Inserm U1196, CNRS UMR9187, Chimie et Modélisation pour la Biologie du Cancer (CMBC), Orsay, France
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
| |
Collapse
|
11
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Elkatatny A, Ismail M, Ibrahim KMM, Aly MH, Fouda MA. The incidence of radiation-induced moyamoya among pediatric brain tumor patients who received photon radiation versus those who received proton beam therapy: a systematic review. Neurosurg Rev 2023; 46:146. [PMID: 37354243 DOI: 10.1007/s10143-023-02055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Cranial irradiation is associated with several adverse events such as endocrinopathy, growth retardation, neurocognitive impairment, secondary malignancies, cerebral vasculopathy, and potential stroke. The better side effects profile of proton beam therapy compared with that of photon radiation therapy is due to its physical properties, mainly the sharp dose fall-off after energy deposition in the Bragg peak. Despite the better toxicity profile of proton beam therapy, the risk of moyamoya syndrome still exists. We conducted a systematic review of the existing literature on moyamoya syndrome after receiving cranial radiation therapy for pediatric brain tumors to investigate the incidence of moyamoya syndrome after receiving photon versus proton radiation therapy. In this review, we report that the incidence of moyamoya syndrome after receiving proton beam therapy is almost double that of photon-induced moyamoya syndrome. Patients who received proton beam therapy for the management of pediatric brain tumors are more likely to develop moyamoya syndrome at the age of less than 5 years. Meanwhile, most patients with proton-induced moyamoya are more likely to be diagnosed within the first 2 years after the completion of their proton beam therapy.
Collapse
Affiliation(s)
- Amr Elkatatny
- Department of Neurological Surgery, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Ismail
- Department of Neurological Surgery, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohammed H Aly
- Department of Neurological Surgery, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed A Fouda
- Department of Neurological Surgery, New York-Presbyterian Hospital, Weill Cornell Medicine, 525 E 68th Street, Box 99, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Oyefiade A, Parthab N, Skocic J, Moxon-Emre I, Tabori U, Bouffet E, Ramaswamy V, Laughlin S, Mabbott DJ. Insult to Short-Range White Matter Connectivity in Childhood Brain Tumor Survivors. Int J Radiat Oncol Biol Phys 2023:S0360-3016(23)00068-8. [PMID: 36706870 DOI: 10.1016/j.ijrobp.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Children treated for brain tumors are at an increased risk for cognitive impairments due to the effect of radiation therapy on developing white matter (WM). Although damage to long-range WM is well documented in pediatric brain tumor survivors, the effect of radiation therapy on short-range WM remains unelucidated. We sought to clarify whether radiation treatment affects short-range WM by completing a virtual dissection of these connections and comparing their microstructural properties between brain tumor survivors and typically developing children. METHODS AND MATERIALS T1-weighted and diffusion-weighted magnetic resonance images were acquired for 26 brain tumor survivors and 26 typically developing children. Short-range WM was delineated using a novel, whole-brain approach. A random forest classifier was used to identify short-range connections with the largest differences in microstructure between patients and typically developing children. RESULTS The random forest classifier identified differences in short-range WM microstructure across the brain with an accuracy of 87.5%. Nine connections showed the largest differences in short-range WM between patients and typically developing children. For these connections, fractional anisotropy and axial diffusivity were significantly lower in patients. Short-range connections in the posterior fossa were disproportionately affected, suggesting that greater radiation exposure to the posterior fossa was more injurious to short-range WM. Lower craniospinal radiation dose did not predict reduced toxicity to short-range WM. CONCLUSIONS Our findings indicate that treatment for medulloblastoma resulted in changes in short-range WM in patients. Lower fractional anisotropy and axial diffusivity may reflect altered microstructural organization and coherence of these connections, especially in the posterior fossa. Short-range WM may be especially sensitive to the effect of craniospinal radiation therapy, resulting in compromise to these connections regardless of dose.
Collapse
Affiliation(s)
- Adeoye Oyefiade
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nadeem Parthab
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jovanka Skocic
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Iska Moxon-Emre
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Divisions of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Divisions of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Divisions of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susanne Laughlin
- Divisions of Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Qiu W, Zhang W, Ma X, Kong Y, Shi P, Fu M, Wang D, Hu M, Zhou X, Dong Q, Zhou Q, Zhu J. Auto-segmentation of important centers of growth in the pediatric skeleton to consider during radiation therapy based on deep learning. Med Phys 2023; 50:284-296. [PMID: 36047281 DOI: 10.1002/mp.15919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Routinely delineating of important skeletal growth centers is imperative to mitigate radiation-induced growth abnormalities for pediatric cancer patients treated with radiotherapy. However, it is hindered by several practical problems, including difficult identification, time consumption, and inter-practitioner variability. PURPOSE The goal of this study was to construct and evaluate a novel Triplet-Attention U-Net (TAU-Net)-based auto-segmentation model for important skeletal growth centers in childhood cancer radiotherapy, concentrating on the accuracy and time efficiency. METHODS A total of 107 childhood cancer patients fulfilled the eligibility criteria were enrolled in the training cohort (N = 80) and test cohort (N = 27). The craniofacial growth plates, shoulder growth centers, and pelvic ossification centers, with a total of 19 structures in the three groups, were manually delineated by two experienced radiation oncologists on axial, coronal, and sagittal computed tomography images. Modified from U-Net, the proposed TAU-Net has one main branch and two bypass branches, receiving semantic information of three adjacent slices to predict the target structure. With supervised deep learning, the skeletal growth centers contouring of each group was generated by three different auto-segmentation models: U-Net, V-Net, and the proposed TAU-Net. Dice similarity coefficient (DSC) and Hausdorff distance 95% (HD95) were used to evaluate the accuracy of three auto-segmentation models. The time spent on performing manual tasks and manually correcting auto-contouring generated by TAU-Net was recorded. The paired t-test was used to compare the statistical differences in delineation quality and time efficiency. RESULTS Among the three groups, including craniofacial growth plates, shoulder growth centers, and pelvic ossification centers groups, TAU-Net had demonstrated highly acceptable performance (the average DSC = 0.77, 0.87, and 0.83 for each group; the average HD95 = 2.28, 2.07, and 2.86 mm for each group). In the overall evaluation of 19 regions of interest (ROIs) in the test cohort, TAU-Net had an overwhelming advantage over U-Net (63.2% ROIs in DSC and 31.6% ROIs in HD95, p = 0.001-0.042) and V-Net (94.7% ROIs in DSC and 36.8% ROIs in HD95, p = 0.001-0.040). With an average time of 52.2 min for manual delineation, the average time saved to adjust TAU-Net-generated contours was 37.6 min (p < 0.001), a 72% reduction. CONCLUSIONS Deep learning-based models have presented enormous potential for the auto-segmentation of important growth centers in pediatric skeleton, where the proposed TAU-Net outperformed the U-Net and V-Net in geometrical precision for the majority status.
Collapse
Affiliation(s)
- Wenlong Qiu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.,Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Wei Zhang
- Manteia Technologies Co., Ltd, Xiamen, P. R. China
| | - Xingmin Ma
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Youyong Kong
- School of Computer Science and Engineering, Southeast University, Nanjing, P. R. China
| | - Pengyue Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Min Fu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.,Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Dandan Wang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.,Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Xianjun Zhou
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Qichao Zhou
- Manteia Technologies Co., Ltd, Xiamen, P. R. China
| | - Jian Zhu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China.,Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, P. R. China
| |
Collapse
|
15
|
Peters S, Frisch S, Stock A, Merta J, Bäumer C, Blase C, Schuermann E, Tippelt S, Bison B, Frühwald M, Rutkowski S, Fleischhack G, Timmermann B. Proton Beam Therapy for Pediatric Tumors of the Central Nervous System-Experiences of Clinical Outcome and Feasibility from the KiProReg Study. Cancers (Basel) 2022; 14:cancers14235863. [PMID: 36497345 PMCID: PMC9737072 DOI: 10.3390/cancers14235863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
As radiotherapy is an important part of the treatment in a variety of pediatric tumors of the central nervous system (CNS), proton beam therapy (PBT) plays an evolving role due to its potential benefits attributable to the unique dose distribution, with the possibility to deliver high doses to the target volume while sparing surrounding tissue. Children receiving PBT for an intracranial tumor between August 2013 and October 2017 were enrolled in the prospective registry study KiProReg. Patient's clinical data including treatment, outcome, and follow-up were analyzed using descriptive statistics, Kaplan-Meier, and Cox regression analysis. Adverse events were scored according to the Common Terminology Criteria for Adverse Events (CTCAE) 4.0 before, during, and after PBT. Written reports of follow-up imaging were screened for newly emerged evidence of imaging changes, according to a list of predefined keywords for the first 14 months after PBT. Two hundred and ninety-four patients were enrolled in this study. The 3-year overall survival of the whole cohort was 82.7%, 3-year progression-free survival was 67.3%, and 3-year local control was 79.5%. Seventeen patients developed grade 3 adverse events of the CNS during long-term follow-up (new adverse event n = 7; deterioration n = 10). Two patients developed vision loss (CTCAE 4°). This analysis demonstrates good general outcomes after PBT.
Collapse
Affiliation(s)
- Sarah Peters
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, 45147 Essen, Germany
- Clinic for Particle Therapy, University Hospital Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-8943
| | - Sabine Frisch
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, 45147 Essen, Germany
| | - Annika Stock
- Department of Neuroradiology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Julien Merta
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, 45147 Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, 45147 Essen, Germany
| | - Christoph Blase
- AnästhesieNetz Rhein-Ruhr, Westenfelder Str. 62/64, 44867 Bochum, Germany
| | - Eicke Schuermann
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Stephan Tippelt
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
- Neuroradiological Reference Center for the Pediatric Brain Tumor (HIT) Studies of the German Society of Pediatric Oncology and Hematology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Michael Frühwald
- Pediatric and Adolescent Medicine, Swabian Childrens Cancer Center, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gudrun Fleischhack
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, 45147 Essen, Germany
- Clinic for Particle Therapy, University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
16
|
Kim N, Lim DH. Recent Updates on Radiation Therapy for Pediatric Optic Pathway Glioma. Brain Tumor Res Treat 2022; 10:94-100. [PMID: 35545828 PMCID: PMC9098980 DOI: 10.14791/btrt.2022.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Optic pathway glioma (OPG) is a rare tumor located in optic nerve, optic tract, or optic chiasm. Treatment options for OPG include surgery, radiation therapy (RT), and chemotherapy. Although RT may provide favorable long-term outcomes in manner of either adjuvant or salvage aim, chemotherapy-first approach is increasingly performed due to possible late effects of RT. Proton beam RT may allow normal tissue sparing of radiation exposure compared to conventional X-ray treatment. Therefore, proton beam RT is expected to reduce complications from RT. This review discusses the recent updates on oncologic outcomes of OPG, late toxicities following RT, and compares the outcomes between X-ray treatment and proton beam RT.
Collapse
Affiliation(s)
- Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Trybula SJ, Youngblood MW, Kemeny HR, Clark JR, Karras CL, Hartsell WF, Tomita T. Radiation Induced Cavernomas in the Treatment of Pediatric Medulloblastoma: Comparative Study Between Proton and Photon Radiation Therapy. Front Oncol 2021; 11:760691. [PMID: 34707999 PMCID: PMC8542782 DOI: 10.3389/fonc.2021.760691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
Radiation induced cavernomas among children with medulloblastoma are common following external beam radiation (XRT) treatment with either photon or proton beams. However, with the increased utilization of proton beam therapy over the last decade we sought to determine if there was any difference in the development or natural history of these cavernous malformations (CM) or CM-like lesions. We performed a retrospective analysis of 79 patients from 2003 to 2019 who had undergone resection of medulloblastoma and subsequent XRT (30 photon or 49 proton beam therapy). The average age of patients at radiation treatment was 8.7 years old. Average follow up for patients who received photon beam therapy was 105 months compared to 56.8 months for proton beam therapy. A total of 68 patients (86.1%) developed post-radiation CMs, including 26 photon and 42 proton patients (86.7% and 85.7% respectively). The time to cavernoma development was significantly different, with a mean of 40.2 months for photon patients and 18.2 months for proton patients (p = 1.98 x 10-4). Three patients, one who received photon and two who received proton beam radiation, required surgical resection of a cavernoma. Although CM or CM-like lesions are detected significantly earlier in patients after receiving proton beam therapy, there appears to be no significant difference between the two radiation therapy modalities in the development of significant CM requiring surgical resection or intervention other than continued follow up and surveillance.
Collapse
Affiliation(s)
- S Joy Trybula
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mark W Youngblood
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hanna R Kemeny
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey R Clark
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Constantine L Karras
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - William F Hartsell
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
19
|
Prasanna PG, Rawojc K, Guha C, Buchsbaum JC, Miszczyk JU, Coleman CN. Normal Tissue Injury Induced by Photon and Proton Therapies: Gaps and Opportunities. Int J Radiat Oncol Biol Phys 2021; 110:1325-1340. [PMID: 33640423 PMCID: PMC8496269 DOI: 10.1016/j.ijrobp.2021.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Despite technological advances in radiation therapy (RT) and cancer treatment, patients still experience adverse effects. Proton therapy (PT) has emerged as a valuable RT modality that can improve treatment outcomes. Normal tissue injury is an important determinant of the outcome; therefore, for this review, we analyzed 2 databases: (1) clinical trials registered with ClinicalTrials.gov and (2) the literature on PT in PubMed, which shows a steady increase in the number of publications. Most studies in PT registered with ClinicalTrials.gov with results available are nonrandomized early phase studies with a relatively small number of patients enrolled. From the larger database of nonrandomized trials, we listed adverse events in specific organs/sites among patients with cancer who are treated with photons and protons to identify critical issues. The present data demonstrate dosimetric advantages of PT with favorable toxicity profiles and form the basis for comparative randomized prospective trials. A comparative analysis of 3 recently completed randomized trials for normal tissue toxicities suggests that for early stage non-small cell lung cancer, no meaningful comparison could be made between stereotactic body RT and stereotactic body PT due to low accrual (NCT01511081). In addition, for locally advanced non-small cell lung cancer, a comparison of intensity modulated RTwith passive scattering PT (now largely replaced by spot-scanned intensity modulated PT), PT did not provide any benefit in normal tissue toxicity or locoregional failure over photon therapy. Finally, for locally advanced esophageal cancer, proton beam therapy provided a lower total toxicity burden but did not improve progression-free survival and quality of life (NCT01512589). The purpose of this review is to inform the limitations of current trials looking at protons and photons, considering that advances in technology, physics, and biology are a continuum, and to advocate for future trials geared toward accurate precision RT that need to be viewed as an iterative process in a defined path toward delivering optimal radiation treatment. A foundational understanding of the radiobiologic differences between protons and photons in tumor and normal tissue responses is fundamental to, and necessary for, determining the suitability of a given type of biologically optimized RT to a patient or cohort.
Collapse
Affiliation(s)
- Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.
| | - Kamila Rawojc
- The University Hospital in Krakow, Department of Endocrinology, Nuclear Medicine Unit, Krakow, Poland
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Justyna U Miszczyk
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
20
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
21
|
Aleksonis HA, Krishnamurthy LC, King TZ. White matter hyperintensity volumes are related to processing speed in long-term survivors of childhood cerebellar tumors. J Neurooncol 2021; 154:63-72. [PMID: 34231115 DOI: 10.1007/s11060-021-03799-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Across several clinical populations, higher white matter hyperintensity (WMH) burden is consistently associated with decreases in cognitive performance, especially processing speed. Research of childhood cancer survivors has not utilized WMH quantification methodology to better understand the impact of WMH burden and its relationship with core cognitive skills. The present study aimed to quantify WMH volumes in a sample of long-term survivors of childhood cerebellar tumor and investigate the relationships with performance on a measure of oral processing speed. To further explore brain-behavior relationships, multivariate sparse canonical correlations was employed to identify WMH areas that predict processing speed performance. METHODS Thirty-five survivors and 56 healthy controls underwent neuroimaging and completed a measure of oral processing speed. The survivor group was further divided based on treatment (i.e., chemoradiation therapy (n = 20) vs. surgery only (n = 15)) to better understand the impact of treatment. RESULTS Survivors, and especially those treated with chemoradiation therapy, showed higher total WMH volumes and slower processing speed. Higher total WMH volumes were significantly associated with poorer processing speed (r = - 0.492, p = 0.003). Multivariate brain-behavior relationships revealed that periventricular WMHs were significantly associated with slower processing speed performance (p < 0.05). CONCLUSION Results exemplify that long-term survivors treated with and without chemoradiation therapy are at increased risk of developing higher WMH volumes compared to healthy peers. In addition, processing speed was robustly shown to be related to periventricular WMHs using an automated neuroimaging pipeline. This methodology to monitor WMH burden has the potential to be implemented efficiently with routine clinical neuroimaging of cancer survivors.
Collapse
Affiliation(s)
- Holly A Aleksonis
- Department of Psychology and the Neuroscience Institute, Georgia State University, Urban Life Building, 11th Floor, 140 Decatur St, Atlanta, GA, 30303, USA
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veteran's Affairs Medical Center, Decatur, GA, USA
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Urban Life Building, 11th Floor, 140 Decatur St, Atlanta, GA, 30303, USA.
| |
Collapse
|
22
|
Indelicato DJ, Ioakeim-Ioannidou M, Bradley JA, Mailhot-Vega RB, Morris CG, Tarbell NJ, Yock T, MacDonald SM. Proton Therapy for Pediatric Ependymoma: Mature Results From a Bicentric Study. Int J Radiat Oncol Biol Phys 2021; 110:815-820. [PMID: 33508372 DOI: 10.1016/j.ijrobp.2021.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To report the long-term efficacy and toxicity of proton therapy for pediatric ependymoma. METHODS AND MATERIALS Between 2000 and 2019, 386 children with nonmetastatic grade 2/3 intracranial ependymoma received proton therapy at 1 of 2 academic institutions. Median age at treatment was 3.8 years (range, 0.7-21.3); 56% were male. Most (72%) tumors were in the posterior fossa and classified as World Health Organization grade 3 (65%). Eighty-five percent had a gross total or near total tumor resection before radiation therapy; 30% received chemotherapy. Median radiation dose was 55.8 Gy relative biologic effectiveness (RBE) (range, 50.4-59.4). RESULTS Median follow-up was 5.0 years (range, 0.4-16.7). The 7-year local control, progression-free survival, and overall survival rates were 77.0% (95% confidence interval [CI], 71.9%-81.5%), 63.8% (95% CI, 58.0%-68.8%), and 82.2% (95% CI, 77.2%-86.3%), respectively. Subtotal resection was associated with inferior local control (59% vs 80%; P < .005), progression-free survival (48% vs 66%; P < .001), and overall survival (70% vs 84%; P < .05). Male sex was associated with inferior progression-free (60% vs 69%; P < .05) and overall survival (76% vs 89%; P < .05). Posterior fossa tumor site was also associated with inferior progression-free (59% vs 74%; P < .05) and overall survival (79% vs 89%; P < .01). Twenty-one patients (5.4%) required hearing aids; of these, 13 received cisplatin, including the 3 with bilateral hearing loss. Forty-five patients (11.7%) required hormone replacement, typically growth hormone (38/45). The cumulative incidence of grade 2+ brain stem toxicity was 4% and occurred more often in patients who received >54 GyRBE. Two patients (0.5%) died of brain stem necrosis. The second-malignancy rate was 0.8%. CONCLUSION Proton therapy offers disease control commensurate with modern photon therapy without unexpected toxicity. The high rate of long-term survival justifies efforts to reduce radiation exposure in this young population. Independent of radiation modality, this large series confirms extent of resection as the most important modifiable factor for survival.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | | | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Raymond B Mailhot-Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Nancy J Tarbell
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Torunn Yock
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Bavle A, Srinivasan A, Choudhry F, Anderson M, Confer M, Simpson H, Gavula T, Thompson JS, Clifton S, Gross NL, McNall-Knapp R. Systematic review of the incidence and risk factors for cerebral vasculopathy and stroke after cranial proton and photon radiation for childhood brain tumors. Neurooncol Pract 2021; 8:31-39. [PMID: 33664967 PMCID: PMC7906269 DOI: 10.1093/nop/npaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The aim of our study is to determine the incidence, timing, and risk factors for cerebral vasculopathy after cranial proton and photon radiation for pediatric brain tumors. METHODS We performed a single-institution retrospective review of a cohort of children treated with proton radiation for brain tumors. MRA and/or MRI were reviewed for evidence of cerebral vascular stenosis and infarcts. Twenty-one similar studies (17 photon, 4 proton) were identified by systematic literature review. RESULTS For 81 patients with median follow-up of 3 years, the rates of overall and severe vasculopathy were 9.9% and 6.2% respectively, occurring a median of 2 years post radiation. Dose to optic chiasm greater than 45 Gy and suprasellar location were significant risk factors. Results were consistent with 4 prior proton studies (752 patients) that reported incidence of 5% to 6.7%, 1.5 to 3 years post radiation. With significantly longer follow-up (3.7-19 years), 9 studies (1108 patients) with traditional photon radiation reported a higher rate (6.3%-20%) and longer time to vasculopathy (2-28 years). Significant risk factors were neurofibromatosis type 1 (NF-1; rate 7.6%-60%) and suprasellar tumors (9%-20%). In 10 studies with photon radiation (1708 patients), the stroke rate was 2% to 18.8% (2.3-24 years post radiation). CONCLUSIONS Childhood brain tumor survivors need screening for vasculopathy after cranial radiation, especially with higher dose to optic chiasm, NF-1, and suprasellar tumors. Prospective studies are needed to identify risk groups, and ideal modality and timing, for screening of this toxicity.
Collapse
Affiliation(s)
- Abhishek Bavle
- Children’s Blood and Cancer Center, Dell Children’s Medical Center of Central Texas, Toronto, Canada
| | - Anand Srinivasan
- Blood and Marrow Transplant Program, Hospital for Sick Children, Toronto, Canada
| | - Farooq Choudhry
- Department of Radiology, University of Oklahoma Health Sciences Center (OUHSC) Oklahoma City, OK, US
| | | | | | - Hilarie Simpson
- Department of Radiation Oncology, University of Kansas School of Medicine, Oklahoma City, OK, US
| | - Theresa Gavula
- Department of Pediatrics, OUHSC, Oklahoma City, OK, US
- Jimmy Everest Section of Pediatric Hematology/Oncology, Oklahoma City, OK, US
| | | | | | - Naina L Gross
- Department of Neurosurgery, OUHSC, Oklahoma City, OK, US
| | - Rene McNall-Knapp
- Department of Pediatrics, OUHSC, Oklahoma City, OK, US
- Jimmy Everest Section of Pediatric Hematology/Oncology, Oklahoma City, OK, US
| |
Collapse
|
24
|
Bhattacharya D, Chhabda S, Lakshmanan R, Tan R, Warne R, Benenati M, Michalski A, Aquilina K, Jacques T, Hargrave D, Chang YC, Gains J, Mankad K. Spectrum of neuroimaging findings post-proton beam therapy in a large pediatric cohort. Childs Nerv Syst 2021; 37:435-446. [PMID: 32705327 DOI: 10.1007/s00381-020-04819-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Proton beam therapy (PBT) is now well established for the treatment of certain pediatric brain tumors. The intrinsic properties of PBT are known to reduce long-term negative effects of photon radiotherapy (PRT). To better understand the intracranial effects of PBT, we analyzed the longitudinal imaging changes in a cohort of children with brain tumors treated by PBT with clinical and radiotherapy dose correlations. MATERIALS AND METHODS Retrospective imaging review of 46 patients from our hospital with brain tumors treated by PBT. The imaging findings were correlated with clinical and dose parameters. RESULTS Imaging changes were assessed by reviewing serial magnetic resonance imaging (MRI) scans following PBT over a follow-up period ranging from 1 month to 7 years. Imaging changes were observed in 23 patients undergoing PBT and categorized as pseudoprogression (10 patients, 43%), white matter changes (6 patients, 23%), parenchymal atrophy (6 patients, 23%), and cerebral large vessel arteriopathy (5 patients, 25%). Three patients had more than one type of imaging change. Clinical symptoms attributable to PBT were observed in 13 (28%) patients. CONCLUSION In accordance with published literature, we found evidence of varied intracranial imaging changes in pediatric brain tumor patients treated with PBT. There was a higher incidence (10%) of large vessel cerebral arteriopathy in our cohort than previously described in the literature. Twenty-eight percent of patients had clinical sequelae as a result of these changes, particularly in the large vessel arteriopathy subgroup, arguing the need for angiographic and perfusion surveillance to pre-empt any morbidities and offer potential neuro-protection.
Collapse
Affiliation(s)
| | | | | | - Ronald Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | | | | | | | | | - Thomas Jacques
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | - Jenny Gains
- University College London Hospital, London, UK
| | | |
Collapse
|
25
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
26
|
Yeom YS, Griffin K, Mille M, Jung JW, Lee C, Lee C. A dose voxel kernel method for rapid reconstruction of out-of-field neutron dose of patients in pencil beam scanning (PBS) proton therapy. Phys Med Biol 2020; 65:175015. [PMID: 32726766 PMCID: PMC10182832 DOI: 10.1088/1361-6560/abaa5f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monte Carlo (MC) radiation transport methods are used for dose calculation as 'gold standard.' However, the method is computationally time-consuming and thus impractical for normal tissue dose reconstructions for the large number of proton therapy patients required for epidemiologic investigations of late health effects. In the present study, we developed a new dose calculation method for the rapid reconstruction of out-of-field neutron dose to patients undergoing pencil beam scanning (PBS) proton therapy. The new dose calculation method is based on neutron dose voxel kernels (DVKs) generated by MC simulations of a proton pencil beam irradiating a water phantom (60 × 60 × 300 cm3), which was conducted using a MC proton therapy simulation code, TOPAS. The DVKs were generated for 19 beam energies (from 70 to 250 MeV with the 10 MeV interval) and three range shifter thicknesses (1, 3, and 5 cm). An in-house program was written in C++ to superimpose the DVKs onto a patient CT images according to proton beam characteristics (energy, position, and direction) available in treatment plans. The DVK dose calculation method was tested by calculating organ/tissue-specific neutron doses of 1- and 5-year-old whole-body computational phantoms where intracranial and craniospinal irradiations were simulated. The DVK-based doses generally showed reasonable agreement with those calculated by direct MC simulations with a detailed PBS model that were previously published, with differences mostly less than 30% and 10% for the intracranial and craniospinal irradiations, respectively. The computation time of the DVK method for one patient ranged from 1 to 30 min on a single CPU core of a personal computer, demonstrating significant improvement over the direct MC dose calculation requiring several days on high-performance computing servers. Our DVK-based dose calculation method will be useful when dosimetry is needed for the large number of patients such as for epidemiologic or clinical research.
Collapse
Affiliation(s)
- Yeon Soo Yeom
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, United States of America
| | | | | | | | | | | |
Collapse
|
27
|
Luly KM, Choi J, Rui Y, Green JJ, Jackson EM. Safety considerations for nanoparticle gene delivery in pediatric brain tumors. Nanomedicine (Lond) 2020; 15:1805-1815. [PMID: 32698671 PMCID: PMC7441302 DOI: 10.2217/nnm-2020-0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Current standard of care for many CNS tumors involves surgical resection followed by chemotherapy and/or radiation. Some pediatric brain tumor types are infiltrative and diffuse in nature, which reduces the role for surgery. Furthermore, children are extremely vulnerable to neurological sequelae from surgery and radiation therapy, thus alternative approaches are in critical need. As molecular targets underlying various cancers become more clearly defined, there is an increasing push for targeted gene therapies. Viral vectors and nonviral nanoparticles have been thoroughly investigated for gene delivery and show promise as vectors for gene therapy for pediatric brain cancer. Here, we review inorganic and organic materials in development for nanoparticle gene delivery to the brain with a particular focus on safety.
Collapse
Affiliation(s)
- Kathryn M Luly
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Choi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Institute for Nanobiotechnology & The Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Ophthalmology & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Materials Science & Engineering & Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
28
|
Tonse R, Noufal MP, Deopujari CE, Jalali R. India's First Proton Beam Therapy Pediatric Patient. Neurol India 2020; 68:189-191. [PMID: 32129277 DOI: 10.4103/0028-3886.279686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We recently started India's first proton beam therapy facility. Proton beam therapy because of its unique physical characteristics of minimal exit dose has an unequivocal dosimetric superiority over high-end photon/standard X-ray beam therapy and is particularly advantageous in growing children with curable cancers in view of their very high probability of long-term cures. We hereby report a case of a 7-year-old boy with a craniopharyngioma which had been subtotally resected and was subsequently treated with modern pencil beam proton therapy under high-precision image guidance. This is the first ever child ever to be treated with proton therapy in India.
Collapse
Affiliation(s)
- Raees Tonse
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| | - M P Noufal
- Department of Medical Physics, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| | | | - Rakesh Jalali
- Department of Radiation, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| |
Collapse
|
29
|
Yeom YS, Kuzmin G, Griffin K, Mille M, Polf J, Langner U, Jung JW, Lee C, Ellis D, Shin J, Lee C. A Monte Carlo model for organ dose reconstruction of patients in pencil beam scanning (PBS) proton therapy for epidemiologic studies of late effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:225-242. [PMID: 31509813 PMCID: PMC10065358 DOI: 10.1088/1361-6498/ab437d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Significant efforts such as the Pediatric Proton/Photon Consortium Registry (PPCR) involving multiple proton therapy centers have been made to conduct collaborative studies evaluating outcomes following proton therapy. As a groundwork dosimetry effort for the late effect investigation, we developed a Monte Carlo (MC) model of proton pencil beam scanning (PBS) to estimate organ/tissue doses of pediatric patients at the Maryland Proton Treatment Center (MPTC), one of the proton centers involved in the PPCR. The MC beam modeling was performed using the TOPAS (TOol for PArticle Simulation) MC code and commissioned to match measurement data within 1% for range, and 0.3 mm for spot sizes. The established MC model was then tested by calculating organ/tissue doses for sample intracranial and craniospinal irradiations on whole-body pediatric computational human phantoms. The simulated dose distributions were compared with the treatment planning system dose distributions, showing the 3 mm/3% gamma index passing rates of 94%-99%, validating our simulations with the MC model. The calculated organ/tissue doses per prescribed doses for the craniospinal irradiations (1 mGy Gy-1 to 1 Gy Gy-1) were generally much higher than those for the intracranial irradiations (2.1 μGy Gy-1 to 0.1 Gy Gy-1), which is due to the larger field coverage of the craniospinal irradiations. The largest difference was observed at the adrenal dose, i.e. ∼3000 times. In addition, the calculated organ/tissue doses were compared with those calculated with a simplified MC model, showing that the beam properties (i.e. spot size, spot divergence, mean energy, and energy spread) do not significantly influence dose calculations despite the limited irradiation cases. This implies that the use of the MC model commissioned to the MPTC measurement data might be dosimetrically acceptable for patient dose reconstructions at other proton centers particularly when their measurement data are unavailable. The developed MC model will be used to reconstruct organ/tissue doses for MPTC pediatric patients collected in the PPCR.
Collapse
Affiliation(s)
- Yeon Soo Yeom
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Quinn TJ, Almahariq MF, Siddiqui ZA, Thompson AB, Hamstra DA, Kabolizadeh P, Gowans KL, Chen PY. Trimodality therapy for atypical teratoid/rhabdoid tumor is associated with improved overall survival: A surveillance, epidemiology, and end results analysis. Pediatr Blood Cancer 2019; 66:e27969. [PMID: 31464041 DOI: 10.1002/pbc.27969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumors (AT/RTs) are rare aggressive central nervous system tumors. The use of radiation therapy (RT) remains controversial, especially for patients younger than three years of age. The purpose of the current investigation is to robustly analyze the impact of RT among pediatric AT/RT patients using the Surveillance, Epidemiology, and End Results (SEER) database. METHODS SEER 18 Custom Data registries were queried for AT/RT (ICD-0-3 9508/3). A total of 190 pediatric AT/RT patients were identified, of whom 102 underwent surgery + chemotherapy and 88 underwent trimodality therapy. Univariate and multivariable analyses using Kaplan-Meier and Cox proportional hazards regression modeling were performed. Propensity-score matched analysis with inverse probability of treatment weighting was performed to account for indication bias. The landmark method was used to account for immortal time bias. RESULTS The majority of patients were <3 years old (75.8%). Patients <3 were more likely to be treated without RT as compared with older patients (62% vs 38%). Doubly robust MVA identified distant disease as a negative prognostic factor (HR 2.1, P = 0.003), whereas trimodality therapy was strongly protective (HR 0.39, P < 0.001). Infants (<1), toddlers (1-2), and older children (3+) all benefited from trimodality therapy, with largest benefit for infants (HR 0.34, P = 0.02) and toddlers (HR 0.31, P < 0.001). CONCLUSION The current study provides further evidence that trimodality therapy improves clinical outcomes among patients with AT/RT. This finding was most pronounced for younger patients; therefore, further studies are needed to confirm this finding in this vulnerable population.
Collapse
Affiliation(s)
- Thomas J Quinn
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | | | - Zaid A Siddiqui
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Andrew B Thompson
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Daniel A Hamstra
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | | | - Kate L Gowans
- Department of Pediatric Hematology/Oncology, Beaumont Health, Royal Oak, Michigan
| | - Peter Y Chen
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| |
Collapse
|
31
|
Nonviral polymeric nanoparticles for gene therapy in pediatric CNS malignancies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102115. [PMID: 31655205 DOI: 10.1016/j.nano.2019.102115] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Together, medulloblastoma (MB) and atypical teratoid/rhabdoid tumors (AT/RT) represent two of the most prevalent pediatric brain malignancies. Current treatment involves radiation, which has high risks of developmental sequelae for patients under the age of three. New safer and more effective treatment modalities are needed. Cancer gene therapy is a promising alternative, but there are challenges with using viruses in pediatric patients. We developed a library of poly(beta-amino ester) (PBAE) nanoparticles and evaluated their efficacy for plasmid delivery of a suicide gene therapy to pediatric brain cancer models-specifically herpes simplex virus type I thymidine kinase (HSVtk), which results in controlled apoptosis of transfected cells. In vivo, PBAE-HSVtk treated groups had a greater median overall survival in mice implanted with AT/RT (P = 0.0083 vs. control) and MB (P < 0.0001 vs. control). Our data provide proof of principle for using biodegradable PBAE nanoparticles as a safe and effective nanomedicine for treating pediatric CNS malignancies.
Collapse
|
32
|
Oh D. Proton therapy: the current status of the clinical evidences. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2019.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
33
|
Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques. Radiother Oncol 2019; 140:41-53. [PMID: 31176207 DOI: 10.1016/j.radonc.2019.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Abstract
Microvascular changes are increasingly recognised not only as primary drivers of radiotherapy treatment response in brain tumours, but also as an important contributor to short- and long-term (cognitive) side effects arising from irradiation of otherwise healthy brain tissue. As overall survival of patients with brain tumours is increasing, monitoring long-term sequels of radiotherapy-induced microvascular changes in the context of their potential predictive power for outcome, such as cognitive disability, has become increasingly relevant. Ideally, radiotherapy-induced significant microvascular changes in otherwise healthy brain tissue should be identified as early as possible to facilitate adaptive radiotherapy and to proactively start treatment to minimise the influence on these side-effects on the final outcome. Although MRI is already known to be able to detect significant long-term radiotherapy induced microvascular effects, more recently advanced MR imaging biomarkers reflecting microvascular integrity and function have been reported and might provide a more accurate and earlier detection of microvascular changes. However, the use and validation of both established and new techniques in the context of monitoring early and late radiotherapy-induced microvascular changes in both target-tissue and healthy tissue currently are minimal at best. This review aims to summarise the performance and limitations of existing methods and future opportunities for detection and quantification of radiotherapy-induced microvascular changes, as well as the relation of these findings with key clinical parameters.
Collapse
|
34
|
Abu Arja MH, Bouffet E, Finlay JL, AbdelBaki MS. Critical review of the management of primary central nervous nongerminomatous germ cell tumors. Pediatr Blood Cancer 2019; 66:e27658. [PMID: 30767415 DOI: 10.1002/pbc.27658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/06/2019] [Accepted: 01/27/2019] [Indexed: 12/28/2022]
Abstract
Multimodal strategies have significantly improved the outcomes for patients with central nervous system nongerminomatous germ cell tumors. Two large cooperative group studies have recently reported much improved outcomes compared with historical series. However, a substantial proportion of patients still attain inadequate responses to initial chemotherapy prior to irradiation, with adverse impact upon survival; optimal induction chemotherapy regimens and radiotherapy strategies are as yet unidentified. Outcomes for patients with relapsed disease remain poor. There is an obvious need to incorporate molecular studies within prospective clinical trials that will likely lead to the incorporation of targeted, more effective future treatment strategies.
Collapse
Affiliation(s)
- Mohammad H Abu Arja
- The Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Eric Bouffet
- The Division of Hematology, Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan L Finlay
- The Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Mohamed S AbdelBaki
- The Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Durante M, Flanz J. Charged particle beams to cure cancer: Strengths and challenges. Semin Oncol 2019; 46:219-225. [DOI: 10.1053/j.seminoncol.2019.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
|
36
|
Scherman J, Appelt AL, Yu J, Persson GF, Nygård L, Langendijk JA, Bentzen SM, Vogelius IR. Incorporating NTCP into Randomized Trials of Proton Versus Photon Therapy. Int J Part Ther 2019; 5:24-32. [PMID: 31788505 PMCID: PMC6874185 DOI: 10.14338/ijpt-18-00038.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose: We propose and simulate a model-based methodology to incorporate heterogeneous treatment benefit of proton therapy (PrT) versus photon therapy into randomized trial designs. We use radiation-induced pneumonitis (RP) as an exemplar. The aim is to obtain an unbiased estimate of how predicted difference in normal tissue complications probability (ΔNTCP) converts into clinical outcome on the patient level. Materials and Methods: ΔNTCP data from in silico treatment plans for photon therapy and PrT for patients with locally advanced lung cancer as well as randomly sampled clinical risk factors were included in simulations of trial outcomes. The model used at point of analysis of the trials was an iQUANTEC model. Trial outcomes were examined with Cox proportional hazards models, both in case of a correctly specified model and in a scenario where there is discrepancy between the dose metric used for ΔNTCP and the dose metric associated with the “true” clinical outcome, that is, when the model is misspecified. We investigated how outcomes from such a randomized trial may feed into a model-based estimate of the patient-level benefit from PrT, by creating patient-specific predicted benefit probability distributions. Results: Simulated trials showed benefit in accordance with that expected when the NTCP model was equal to the model for simulating outcome. When the model was misspecified, the benefit changed and we observed a reversal when the driver of outcome was high-dose dependent while the NTCP model was mean-dose dependent. By converting trial results into probability distributions, we demonstrated large heterogeneity in predicted benefit, and provided a randomized measure of the precision of individual benefit estimates. Conclusions: The design allows for quantifying the benefit of PrT referral, based on the combination of NTCP models, clinical risk factors, and traditional randomization. A misspecified model can be detected through a lower-than-expected hazard ratio per predicted ΔNTCP.
Collapse
Affiliation(s)
- Jonas Scherman
- Department of Radiation Physics, Skane University Hospital, Lund, Sweden.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ane L Appelt
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark.,Leeds Institute of Medical Research at St James's, University of Leeds and Leeds Cancer Centre, St James's University Hospital, Leeds, United Kingdom
| | - Jen Yu
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, MD, USA.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | - Lotte Nygård
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
37
|
Nielsen S, Bassler N, Grzanka L, Laursen L, Swakon J, Olko P, Andreassen CN, Alsner J, Singers Sørensen B. Comparison of Coding Transcriptomes in Fibroblasts Irradiated With Low and High LET Proton Beams and Cobalt-60 Photons. Int J Radiat Oncol Biol Phys 2018; 103:1203-1211. [PMID: 30529373 DOI: 10.1016/j.ijrobp.2018.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To identify differential cellular responses after proton and photon irradiation by comparing transcriptomes of primary fibroblasts irradiated with either radiation type. METHODS AND MATERIALS A panel of primary dermal fibroblast cultures was irradiated with low and higher linear energy transfer (LET) proton beams. Cobalt-60 photon irradiation was used as reference. Dose was delivered in 3 fractions of 3.5 Gy (relative biological effectiveness) using a relative biological effectiveness of 1.1 for proton doses. Cells were harvested 2 hours after the final fraction was delivered, and RNA was purified. RNA sequencing was performed using Illumina NextSeq 500 with high-output kit. The edgeR package in R was used for differential gene expression analysis. RESULTS Pairwise comparisons of the transcriptomes in the 3 treatment groups showed that there were 84 and 56 differentially expressed genes in the low LET group compared with the Cobalt-60 group and the higher LET group, respectively. The higher LET proton group and the Cobalt-60 group had the most distinct transcriptome profiles, with 725 differentially regulated genes. Differentially regulated canonical pathways and various regulatory factors involved in regulation of biological mechanisms such as inflammation, carcinogenesis, and cell cycle control were identified. CONCLUSIONS Inflammatory regulators associated with the development of normal tissue complications and malignant transformation factors seem to be differentially regulated by higher LET proton and Cobalt-60 photon irradiation. The reported transcriptome differences could therefore influence the progression of adverse effects and the risk of developing secondary cancers.
Collapse
Affiliation(s)
- Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Louise Laursen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
38
|
Huynh M, Marcu LG, Giles E, Short M, Matthews D, Bezak E. Current status of proton therapy outcome for paediatric cancers of the central nervous system - Analysis of the published literature. Cancer Treat Rev 2018; 70:272-288. [PMID: 30326423 DOI: 10.1016/j.ctrv.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The most common solid tumours that develop in children are cancers of the central nervous system. Due to the increased rate of survival over the past decades, greater focus has been placed on the minimisation of long term side effects. In childhood cancer survivors, over 60% report one or more radiation-related late toxicities while half of these adverse events are graded as life-threatening or severe. Proton therapy enables high conformity with the planning target volume and a reduction in dose to areas beyond the target. Owing to the unique nature of dose delivery with proton therapy a reduction of low doses to normal tissues is achievable, and is believed to allow for a decrease in long-term treatment-related side effects. This paper aims to review the published literature around the effectiveness of proton therapy for the treatment of paediatric cancers of the central nervous system, with a focus on treatment outcomes and treatment-related toxicities. METHODS A search strategy utilising the Medline database was created with the intent of including all articles reporting on proton therapy, paediatric cancers, CNS tumours and treatment outcomes. The final search strategy included the following limitations: limited to humans, English, published from 2000 onwards. The final article count total was 74. RESULTS AND CONCLUSIONS Proton therapy for the treatment of paediatric cancers of the central nervous system was found to provide survival and tumour control outcomes comparable to photon therapy. Reduced incidence of severe acute and late toxicities was also reported with the use of proton therapy. This includes reduced severity of endocrine, neurological, IQ and QoL deficits. Currently, extensive follow-up of proton patient populations still needs to be made to determine incidences of late-onset toxicities and secondary malignancies. Current evidence surrounding proton therapy use in paediatric patients supports its effectiveness and potential benefits in reducing the incidence of severe toxicities in later life.
Collapse
Affiliation(s)
- Myxuan Huynh
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Loredana Gabriela Marcu
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Faculty of Science, University of Oradea, Oradea 410087, Romania
| | - Eileen Giles
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Donna Matthews
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; School of Physical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
39
|
Morton LM, Ricks-Santi L, West CML, Rosenstein BS. Radiogenomic Predictors of Adverse Effects following Charged Particle Therapy. Int J Part Ther 2018; 5:103-113. [PMID: 30505881 PMCID: PMC6261418 DOI: 10.14338/ijpt-18-00009.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022] Open
Abstract
Radiogenomics is the study of genomic factors that are associated with response to radiation therapy. In recent years, progress has been made toward identifying genetic risk factors linked with late radiation-induced adverse effects. These advances have been underpinned by the establishment of an international Radiogenomics Consortium with collaborative studies that expand cohort sizes to increase statistical power and efforts to improve methodologic approaches for radiogenomic research. Published studies have predominantly reported the results of research involving patients treated with photons using external beam radiation therapy. These studies demonstrate our ability to pool international cohorts to identify common single nucleotide polymorphisms associated with risk for developing normal tissue toxicities. Progress has also been achieved toward the discovery of genetic variants associated with radiation therapy-related subsequent malignancies. With the increasing use of charged particle therapy (CPT), there is a need to establish cohorts for patients treated with these advanced technology forms of radiation therapy and to create biorepositories with linked clinical data. While some genetic variants are likely to impact toxicity and second malignancy risks for both photons and charged particles, it is plausible that others may be specific to the radiation modality due to differences in their biological effects, including the complexity of DNA damage produced. In recognition that the formation of patient cohorts treated with CPT for radiogenomic studies is a high priority, efforts are underway to establish collaborations involving institutions treating cancer patients with protons and/or carbon ions as well as consortia, including the Proton Collaborative Group, the Particle Therapy Cooperative Group, and the Pediatric Proton Consortium Registry. These important radiogenomic CPT initiatives need to be expanded internationally to build on experience gained from the Radiogenomics Consortium and epidemiologists investigating normal tissue toxicities and second cancer risk.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Catharine M. L. West
- Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Bavle A, Tewari S, Sisson A, Chintagumpala M, Anderson M, Paulino AC. Meta-analysis of the incidence and patterns of second neoplasms after photon craniospinal irradiation in children with medulloblastoma. Pediatr Blood Cancer 2018; 65:e27095. [PMID: 29693784 DOI: 10.1002/pbc.27095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Second neoplasms (SNs) are a well-established long-term adverse effect of radiation therapy (RT), but there are limited data regarding their incidence and location relative to the radiation field, specific to medulloblastoma (MB) survivors after craniospinal irradiation (CSI). METHODS A systematic literature review, per Preferred Reporting Items for Systematic Reviews and Meta-Analyses, identified six studies reporting the incidence and locations of SNs for 1,114 patients with MB, after CSI, with a median follow-up of ∼9 years (7.6-15.4 years). The study-specific cumulative incidence (CI) of SNs, second benign neoplasms (SBNs), and second malignant neoplasms (SMNs) were standardized to a 10-year time frame. Meta-analysis was performed using random effects models, with pooled data from selected studies and an institutional cohort of 55 patients. RESULTS The 10-year CI was 6.1% for all SNs (excluding skin cancer and leukemia), 3.1% for SBNs, and 3.7% for SMNs. Fifty-eight percent of SNs were malignant; high-grade glioma was the most common SMN (15/33; 45%) and meningioma, the most common SBN (16/24; 67%). Forty percent of SNs occurred outside the target central nervous system (CNS) field, with a majority in areas of exit RT dose. Seventy-four percent of extra-CNS tumors (17/23) were malignant, most commonly thyroid carcinoma (7/17; 41%) and bone and soft-tissue tumors (6/17, 35%). CONCLUSIONS Survivors of MB are at risk of SNs both within and outside the CNS. A significant proportion of SNs occur in areas of exit RT dose. Studies are needed to determine whether the use of proton therapy, which has no exit RT dose, is associated with a lower incidence of SNs.
Collapse
Affiliation(s)
- Abhishek Bavle
- Jimmy Everest Center for Cancer and Blood Disorders, Oklahoma City, Oklahoma.,University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sayani Tewari
- Jimmy Everest Center for Cancer and Blood Disorders, Oklahoma City, Oklahoma.,University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Amy Sisson
- The Texas Medical Center Library, Houston, Texas
| | - Murali Chintagumpala
- Section of Pediatric Hematology/Oncology, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | - Michael Anderson
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Biostatistics and Epidemiology, Oklahoma City, Oklahoma
| | - Arnold C Paulino
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
41
|
Ajithkumar T, Horan G, Padovani L, Thorp N, Timmermann B, Alapetite C, Gandola L, Ramos M, Van Beek K, Christiaens M, Lassen-Ramshad Y, Magelssen H, Nilsson K, Saran F, Rombi B, Kortmann R, Janssens GO. SIOPE - Brain tumor group consensus guideline on craniospinal target volume delineation for high-precision radiotherapy. Radiother Oncol 2018; 128:192-197. [PMID: 29729847 DOI: 10.1016/j.radonc.2018.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To develop a consensus guideline for craniospinal target volume (TV) delineation in children and young adults participating in SIOPE studies in the era of high-precision radiotherapy. METHODS AND MATERIALS During four consensus meetings (Cambridge, Essen, Liverpool, and Marseille), conventional field-based TV has been translated into image-guided high-precision craniospinal TV by a group of expert paediatric radiation oncologists and enhanced by MRI images of liquor distribution. RESULTS The CTVcranial should include the whole brain, cribriform plate, most inferior part of the temporal lobes, and the pituitary fossa. If the full length of both optic nerves is not included, the dose received by different volumes of optic nerve should be recorded to correlate with future patterns of relapse (no consensus). The CTVcranial should be modified to include the dural cuffs of cranial nerves as they pass through the skull base foramina. Attempts to spare the cochlea by excluding CSF within the internal auditory canal should be avoided. The CTVspinal should include the entire subarachnoid space, including nerve roots laterally. The lower limit of the spinal CTV is at the lower limit of the thecal sac, best visible on MRI scan. There is no need to include sacral root canals in the spinal CTV. CONCLUSION This consensus guideline has the potential to improve consistency of craniospinal TV delineation in an era of high-precision radiotherapy. This proposal will be incorporated in the RTQA guidelines of future SIOPE-BTG trials using CSI.
Collapse
Affiliation(s)
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals, United Kingdom
| | - Laetitia Padovani
- Department of Radiation Oncology, Assistance Publique Hôpitaux de Marseille, France
| | - Nicky Thorp
- Department of Oncology, Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | | | - Claire Alapetite
- Radiation Oncology department and Proton Centre, Institute Curie, Paris and Orsay, France
| | - Lorenza Gandola
- Department of Radiation Oncology, Fondazione IRCCS-Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ramos
- Hospital Universitari de la Vall d'Hebron, Barcelona, Spain
| | | | | | | | - Henriette Magelssen
- Department of Oncology, Oslo University Hospital (The Norwegian Radium Hospital), Norway
| | - Kristina Nilsson
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Clinical Oncology, Uppsala University Hospital, Sweden
| | - Frank Saran
- Department of Oncology, Royal Marsden Hospital, Sutton, United Kingdom
| | - Barbara Rombi
- Proton Therapy Center, Santa Chiara Hospital, Trento, Italy
| | - Rolf Kortmann
- Department of Radiation Oncology, University of Leipzig, Germany
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, and Princess Maxima Center for Pediatric Oncology, The Netherlands
| | | |
Collapse
|
42
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
43
|
Gupta P, Jalali R. Long-term Survivors of Childhood Brain Tumors: Impact on General Health and Quality of Life. Curr Neurol Neurosci Rep 2017; 17:99. [PMID: 29119343 DOI: 10.1007/s11910-017-0808-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW We review and summarize the key issues affecting general health and quality of life (QOL) of pediatric long-term survivors of brain tumors. RECENT FINDINGS Long-term survivors of brain tumors are at risk of considerable late morbidity and mortality. Lengthening survival in brain tumors has highlighted the deep impact of tumor and its treatment on the physical, psychological, functional, and social health and QOL of these survivors. Evolution in tumor therapy including surgery, radiotherapy, and systemic therapies, etc., has the potential to mitigate this impact to some extent. Sensitization of health staff, policy makers, and the primary designers of clinical trials towards integration of QOL end points while measuring survival in brain tumor patients is the need of the hour. New developments in tumor therapeutics must not only provide quantitative gain but also improve the quality of survival in these long-term survivors. While majority of the issues presented pertain to survivorship in pediatric brain tumor population, similar challenges are likely to exist in young adults surviving brain tumors as well.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Neuro Oncology Group, Tata Memorial Centre, Tata Memorial Hospital, Dr Ernest Borges Road, Parel, Mumbai, 400 012, India
| | - Rakesh Jalali
- Neuro Oncology Group, Tata Memorial Centre, Tata Memorial Hospital, Dr Ernest Borges Road, Parel, Mumbai, 400 012, India.
| |
Collapse
|
44
|
A Clarion Call for Large-Scale Collaborative Studies of Pediatric Proton Therapy. Int J Radiat Oncol Biol Phys 2017; 98:980-981. [DOI: 10.1016/j.ijrobp.2017.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
|
45
|
Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol 2017; 14:483-495. [DOI: 10.1038/nrclinonc.2017.30] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Tensaouti F, Ducassou A, Chaltiel L, Bolle S, Muracciole X, Coche-Dequeant B, Alapetite C, Bernier V, Claude L, Supiot S, Huchet A, Kerr C, le Prisé E, Laprie A. Patterns of failure after radiotherapy for pediatric patients with intracranial ependymoma. Radiother Oncol 2017; 122:362-367. [DOI: 10.1016/j.radonc.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/25/2016] [Indexed: 12/20/2022]
|
47
|
Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 2017; 18:e91-e100. [DOI: 10.1016/s1470-2045(17)30030-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
|
48
|
Doyen J, Bondiau PY, Benezery K, Thariat J, Vidal M, Gérard A, Hérault J, Carrie C, Hannoun-Lévi JM. [Indications and results for protontherapy in cancer treatments]. Cancer Radiother 2016; 20:513-8. [PMID: 27614508 DOI: 10.1016/j.canrad.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
Purpose was to summarize results for proton therapy in cancer treatment. A systematic review has been done by selecting studies on the website www.pubmed.com (Medline) and using the following keywords: proton therapy, radiation therapy, cancer, chordoma, chondrosarcoma, uveal melanoma, retinoblastoma, meningioma, glioma, neurinoma, pituitary adenoma, medulloblastoma, ependymoma, craniopharyngioma and nasal cavity. There are several retrospective studies reporting results for proton therapy in cancer treatments in the following indications: ocular tumors, nasal tumors, skull-based tumors, pediatric tumors. There is no prospective study except one phase II trial in medulloblastoma. The use of proton therapy for these indications is due to dosimetric advantages offering better tumor coverage and organ at risk sparing in comparison with photon therapy. Clinical results are historically at least as efficient as photon therapy with a better toxicity profile in pediatric tumors (cognitive and endocrine functions, radiation-induced cancer) and a better tumoral control in tumors of the nasal cavity. Clinical advantages of proton therapy counterbalance its cost especially in pediatric tumors. Proton therapy could be used in other types of cancer. Proton therapy showed good outcome in ocular, nasal tumors, pediatric, skull-based and paraspinal tumors. Because of some dosimetric advantages, proton therapy could be proposed for other indications in cancer treatments.
Collapse
Affiliation(s)
- J Doyen
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France.
| | - P-Y Bondiau
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - K Benezery
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - J Thariat
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - M Vidal
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - A Gérard
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - J Hérault
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| | - C Carrie
- Centre Léon-Bérard, radiation oncology, 28, rue Laennec, 69008 Lyon, France
| | - J-M Hannoun-Lévi
- Centre Antoine-Lacassagne, radiation oncology, 33, avenue de Valombrose, 06189 Nice, France
| |
Collapse
|