1
|
Berti ACM, de Castro VDSR, Arcanjo GS, da Silva Araujo A, Lucena-Araujo AR, Bezerra MAC, Gazarini L, da Silva DGH, Belini-Júnior E. The endocannabinoid system's genetic polymorphisms in sickle cell anemia patients. Sci Rep 2024; 14:31562. [PMID: 39738165 DOI: 10.1038/s41598-024-76480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/14/2024] [Indexed: 01/01/2025] Open
Abstract
Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort. The study involved 138 SCA patients (n = 80 with priapism and n = 58 without priapism). SCA was detected with HPLC, and the Hb SS genotype was confirmed with PCR-RE. Alpha thalassemia mutations were detected with Multiplex-PCR, and SNP genotyping was performed using TaqMan genotyping assays. We observed a lower frequency of -α3.7kb-thalassemia mutation in patients with priapism than in patients without this complication (p < 0.001), and in adjusted multivariate analyses TT-CC genotype of CNR2 rs35761398 was associated with a lower chance of developing priapism (OR = 0.386 [0.175-0.854], p = 0.019) and a lower risk of it over time (HR = 0.634 [0.402-0.987], p = 0.049). The SCA ischemic priapism is related to unbalanced vasodilation/vasoconstriction pathways, such as decreased RhoA/Rho-kinase (ROCK) signaling. Since activating the type 2 cannabinoid receptor (CB2) decreases RhoA activation, we suggest a novel approach to SCA priapism involving CB2.
Collapse
Affiliation(s)
- Amanda Cristina Meneguetti Berti
- Institute of Biosciences, Humanities and Exact Sciences, Biosciences Postgraduate Program, UNESP - São Paulo State University, São José do Rio Preto, Brazil.
- Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil.
| | | | | | | | | | | | - Lucas Gazarini
- Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil
| | - Danilo Grünig Humberto da Silva
- Institute of Biosciences, Humanities and Exact Sciences, Biosciences Postgraduate Program, UNESP - São Paulo State University, São José do Rio Preto, Brazil
- Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil
| | - Edis Belini-Júnior
- Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil
| |
Collapse
|
2
|
Liu S, Li J, Wang W, Zhang Y, Li S, Li T, Jiang J, Zhao F. Prenatal exposure to dibutyl phthalate contributes to erectile dysfunction in offspring male rats by activating the RhoA/ROCK signalling pathway. Toxicology 2024; 508:153925. [PMID: 39151608 DOI: 10.1016/j.tox.2024.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianying Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yijun Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shufeng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
3
|
Hari Priya VM, Ganapathy A A, Veeran MG, Raphael M S, Kumaran A. Nanotechnology-based drug delivery platforms for erectile dysfunction: addressing efficacy, safety, and bioavailability concerns. Pharm Dev Technol 2024; 29:996-1015. [PMID: 39392251 DOI: 10.1080/10837450.2024.2414379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Erectile dysfunction (ED), is a common and multidimensional sexual disorder, which comprises changes among any of the processes of the erectile response such as organic, relational, and psychological. However, both endocrine and nonendocrine causes of ED produce substantial health implications including depression and anxiety due to poor sexual performance, eventually affecting man's life eminence. Marginally invasive interventions following ED consist of lifestyle modifications, oral drugs, injections, vacuum erection devices, etc. Nevertheless, these conventional treatment regimens follow certain drawbacks such as efficacy and safety issues, and navigate to the development of novel therapeutic approaches such as nanomedicine for ED management. Nanotechnology-centred drug delivery platforms are being explored to minimize these limitations with better in vitro and in vivo effectiveness. Moreover, nanomedicine and nanocarrier-linked approaches are rapidly developing science in the nanoscale range, which contributes to site-specific delivery in a controlled manner and has generated considerable interest prominent to their potential to enhance bioavailability, decrease side effects, and avoidance of first-pass metabolism. This review provides an overview of recent discoveries regarding various nanocarriers and nano-delivery methods, along with current trends in the clinical aspects of ED. Additionally, strategies for clinical translation have been incorporated.
Collapse
Affiliation(s)
- Vijayakumari Mahadevan Hari Priya
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anand Ganapathy A
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Midhu George Veeran
- Corporate Research and Development Centre (CRDC), HLL Lifecare Ltd, Akkulam, Thiruvananthapuram, India
| | - Shyni Raphael M
- Department of Chemistry, Government College for Women, Thiruvananthapuram, India
| | - Alaganandam Kumaran
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Adeyemi D, Arokoyo D, Hamed M, Dare A, Oyedokun P, Akhigbe R. Cardiometabolic Disorder and Erectile Dysfunction. Cell Biochem Biophys 2024; 82:1751-1762. [PMID: 38907942 DOI: 10.1007/s12013-024-01361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Erectile dysfunction (ED), which is defined as the inability to attain and maintain a satisfactory penile erection to sufficiently permit sexual intercourse, is a consequence and also a cause of cardiometabolic disorders like diabetes mellitus, systemic hypertension, central obesity, and dyslipidemia. Although there are mounting and convincing pieces of evidence in the literature linking ED and cardiometabolic disorders, impairment of nitric oxide-dependent vasodilatation seems to be the primary signaling pathway. Studies have also implicated the suppression of circulating testosterone, increased endothelin-1, and hyperactivation of Ang II/ATIr in the pathogenesis of ED and cardiometabolic disorders. This study provides comprehensive details of the association between cardiometabolic disorders and ED and highlights the mechanisms involved. This would open areas to be explored as therapeutic targets in the management of ED and cardiometabolic disorders. It also provides sufficient evidence establishing the need for the management of cardiometabolic disorders as an adjunct therapy in the management of ED.
Collapse
Affiliation(s)
- Damilare Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Dennis Arokoyo
- Department of Physiology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Moses Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratories, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ayobami Dare
- School of Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Precious Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
5
|
Codrington J, Varnum AA, Hildebrandt L, Pröfrock D, Bidhan J, Khodamoradi K, Höhme AL, Held M, Evans A, Velasquez D, Yarborough CC, Ghane-Motlagh B, Agarwal A, Achua J, Pozzi E, Mesquita F, Petrella F, Miller D, Ramasamy R. Detection of microplastics in the human penis. Int J Impot Res 2024:10.1038/s41443-024-00930-6. [PMID: 38890513 DOI: 10.1038/s41443-024-00930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The proliferation of microplastics (MPs) represents a burgeoning environmental and health crisis. Measuring less than 5 mm in diameter, MPs have infiltrated atmospheric, freshwater, and terrestrial ecosystems, penetrating commonplace consumables like seafood, sea salt, and bottled beverages. Their size and surface area render them susceptible to chemical interactions with physiological fluids and tissues, raising bioaccumulation and toxicity concerns. Human exposure to MPs occurs through ingestion, inhalation, and dermal contact. To date, there is no direct evidence identifying MPs in penile tissue. The objective of this study was to assess for potential aggregation of MPs in penile tissue. Tissue samples were extracted from six individuals who underwent surgery for a multi-component inflatable penile prosthesis (IPP). Samples were obtained from the corpora using Adson forceps before corporotomy dilation and device implantation and placed into cleaned glassware. A control sample was collected and stored in a McKesson specimen plastic container. The tissue fractions were analyzed using the Agilent 8700 Laser Direct Infrared (LDIR) Chemical Imaging System (Agilent Technologies. Moreover, the morphology of the particles was investigated by a Zeiss Merlin Scanning Electron Microscope (SEM), complementing the detection range of LDIR to below 20 µm. MPs via LDIR were identified in 80% of the samples, ranging in size from 20-500 µm. Smaller particles down to 2 µm were detected via SEM. Seven types of MPs were found in the penile tissue, with polyethylene terephthalate (47.8%) and polypropylene (34.7%) being the most prevalent. The detection of MPs in penile tissue raises inquiries on the ramifications of environmental pollutants on sexual health. Our research adds a key dimension to the discussion on man-made pollutants, focusing on MPs in the male reproductive system.
Collapse
Affiliation(s)
- Jason Codrington
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexandra Aponte Varnum
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lars Hildebrandt
- Institute of Coastal Environmental Chemistry, Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Daniel Pröfrock
- Institute of Coastal Environmental Chemistry, Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Joginder Bidhan
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kajal Khodamoradi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anke-Lisa Höhme
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Martin Held
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Aymara Evans
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David Velasquez
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Christina C Yarborough
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bahareh Ghane-Motlagh
- Dr. J.T. MacDonald Foundation BioNIUM, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ashutosh Agarwal
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Justin Achua
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Edoardo Pozzi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS Ospedale San Raffaele, Urology, Milan, Italy
| | - Francesco Mesquita
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Francis Petrella
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David Miller
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Santamaria A, Amighi A, Thomas M, Goradia R, Choy J, Hehemann MC. Effect of surgical, medical, and behavioral weight loss on hormonal and sexual function in men: a contemporary narrative review. Ther Adv Urol 2024; 16:17562872241279648. [PMID: 39285942 PMCID: PMC11403669 DOI: 10.1177/17562872241279648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
This review explores the mechanisms and ramifications of weight loss achieved through lifestyle modifications, medical treatments, and bariatric surgery on testosterone levels and sexual health. Obesity significantly affects the hypothalamic-pituitary-gonadal axis in men, leading to diminished libido and erectile dysfunction. Here, we delve into the physiological disruptions caused by this imbalance and the intricate interplay of hormonal factors contributing to the dysregulation associated with obesity to comprehensively grasp the consequences of weight loss via diverse mechanisms. Lifestyle modifications involving dietary adjustments and regular exercise represent a widely employed and efficacious means of weight loss. While adherence demands discipline, our review scrutinizes various studies specifically investigating the impact of weight loss, attained through lifestyle modifications, on serum hormone levels and sexual function. Notably, several randomized controlled trials within the existing body of literature corroborate the enhancement of testosterone levels and sexual function consequent to weight loss through lifestyle modifications. The realm of medical management in addressing obesity is growing, notably propelled by the popularity of pharmacotherapy. Despite its prevalence, the current literature exploring the effects of weight loss medications on men remains insufficient. Nonetheless, we examine available studies on the medical management of obesity and its implications for sexual health, emphasizing pivotal avenues requiring further investigation. Bariatric surgery stands as an effective approach for individuals seeking substantial weight loss. Our review assesses existing literature that evaluates the impact of various surgical techniques on serum hormone levels, sexual function, and semen parameters. Despite certain limitations, the available body of evidence suggests enhancements in hormone levels and sexual function post-surgery, with semen parameters generally exhibiting minimal changes. This review critically evaluates the landscape of weight loss and its correlation with sexual function, while highlighting crucial areas necessitating future research endeavors.
Collapse
Affiliation(s)
| | - Arash Amighi
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Melbin Thomas
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Rajvi Goradia
- Department of Urology, King Edward Memorial Hospital and Seth Gordhandas Sunderdas Medical College, Mumbai, India
| | - Jeremy Choy
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Marah C Hehemann
- Department of Urology, University of Washington, 4245 Roosevelt Way Ne, Third Floor, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Argiolas A, Argiolas FM, Argiolas G, Melis MR. Erectile Dysfunction: Treatments, Advances and New Therapeutic Strategies. Brain Sci 2023; 13:802. [PMID: 37239274 PMCID: PMC10216368 DOI: 10.3390/brainsci13050802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is the inability to get and maintain an adequate penile erection for satisfactory sexual intercourse. Due to its negative impacts on men's life quality and increase during aging (40% of men between 40 and 70 years), ED has always attracted researchers of different disciplines, from urology, andrology and neuropharmacology to regenerative medicine, and vascular and prosthesis implant surgery. Locally and/or centrally acting drugs are used to treat ED, e.g., phosphodiesterase 5 inhibitors (first in the list) given orally, and phentolamine, prostaglandin E1 and papaverine injected intracavernously. Preclinical data also show that dopamine D4 receptor agonists, oxytocin and α-MSH analogues may have a role in ED treatment. However, since pro-erectile drugs are given on demand and are not always efficacious, new strategies are being tested for long lasting cures of ED. These include regenerative therapies, e.g., stem cells, plasma-enriched platelets and extracorporeal shock wave treatments to cure damaged erectile tissues. Although fascinating, these therapies are laborious, expensive and not easily reproducible. This leaves old vacuum erection devices and penile prostheses as the only way to get an artificial erection and sexual intercourse with intractable ED, with penile prosthesis used only by accurately selected patients.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Francesco Mario Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Giacomo Argiolas
- General Medicine Unit, Hospital San Michele, ARNAS“G. Brotzu”, Piazzale Ricchi 1, 09100 Cagliari, Italy;
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| |
Collapse
|
8
|
Cellai I, Comeglio P, Filippi S, Martinelli S, Villanelli F, Amore F, Rapizzi E, Maseroli E, Cipriani S, Raddi C, Guarnieri G, Sarchielli E, Danza G, Morelli A, Rastrelli G, Maggi M, Vignozzi L. The regulatory effect of sex steroids on the RhoA/ROCK pathway in the rat distal vagina. J Sex Med 2023; 20:1-13. [PMID: 36897236 DOI: 10.1093/jsxmed/qdac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Sex steroids have been demonstrated as important modulators of vaginal function. The RhoA/ROCK calcium-sensitizing pathway plays a role in genital smooth muscle contractile mechanism, but its regulation has never been elucidated. AIM This study investigated the sex steroid regulation of the vaginal smooth muscle RhoA/ROCK pathway using a validated animal model. METHODS Ovariectomized (OVX) Sprague-Dawley rats were treated with 17β-estradiol (E2), testosterone (T), and T with letrozole (T + L) and compared with intact animals. Contractility studies were performed to test the effect of the ROCK inhibitor Y-27632 and the nitric oxide (NO) synthase inhibitor L-NAME. In vaginal tissues, ROCK1 immunolocalization was investigated; mRNA expression was analyzed by semiquantitative reverse transcriptase-polymerase chain reaction; and RhoA membrane translocation was evaluated by Western blot. Finally, rat vaginal smooth muscle cells (rvSMCs) were isolated from the distal vagina of intact and OVX animals, and quantification of the RhoA inhibitory protein RhoGDI was performed after stimulation with NO donor sodium nitroprusside, with or without administration of the soluble guanylate cyclase inhibitor ODQ or PRKG1 inhibitor KT5823. OUTCOMES Androgens are critical in inhibiting the RhoA/ROCK pathway of the smooth muscle compartment in the distal vagina. RESULTS ROCK1 was immunolocalized in the smooth muscle bundles and blood vessel wall of the vagina, with weak positivity detected in the epithelium. Y-27632 induced a dose-dependent relaxation of noradrenaline precontracted vaginal strips, decreased by OVX and restored by E2, while T and T + L decreased it below the OVX level. In Western blot analysis, when compared with control, OVX significantly induced RhoA activation, as revealed by its membrane translocation, with T reverting it at a level significantly lower than in controls. This effect was not exerted by E2. Abolishing NO formation via L-NAME increased Y-27632 responsiveness in the OVX + T group; L-NAME had partial effects in controls while not modulating Y-27632 responsiveness in the OVX and OVX + E2 groups. Finally, stimulation of rvSMCs from control animals with sodium nitroprusside significantly increased RhoGDI protein expression, counteracted by ODQ and partially by KT5823 incubation; no effect was observed in rvSMCs from OVX rats. CLINICAL IMPLICATIONS Androgens, by inhibiting the RhoA/ROCK pathway, could positively contribute to vaginal smooth muscle relaxation, favoring sexual intercourse. STRENGTHS AND LIMITATIONS This study describes the role of androgens in maintaining vaginal well-being. The absence of a sham-operated animal group and the use of the only intact animal as control represented a limitation to the study.
Collapse
Affiliation(s)
- Ilaria Cellai
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Paolo Comeglio
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence 50139, Italy
| | - Serena Martinelli
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Fabio Villanelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Francesca Amore
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Elena Rapizzi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Elisa Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Sarah Cipriani
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Chiara Raddi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Giovanna Danza
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Giulia Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| |
Collapse
|
9
|
Olawale F, Olofinsan K, Ogunyemi OM, Karigidi KO, Gyebi GA, Ibrahim IM, Iwaloye O. Deciphering the therapeutic role of Kigelia africana fruit in erectile dysfunction through metabolite profiling and molecular modelling. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
10
|
Fujimoto K, Hashimoto D, Kashimada K, Kumegawa S, Ueda Y, Hyuga T, Hirashima T, Inoue N, Suzuki K, Hara I, Asamura S, Yamada G. A visualization system for erectile vascular dynamics. Front Cell Dev Biol 2022; 10:1000342. [PMID: 36313553 PMCID: PMC9615422 DOI: 10.3389/fcell.2022.1000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Erection is an essential process which requires the male penis for copulation. This copulatory process depends on the vascular dynamic regulation of the penis. The corpus cavernosum (CC) in the upper (dorsal) part of the penis plays a major role in regulating blood flow inside the penis. When the CC is filled with blood, the sinusoids, including micro-vessels, dilate during erection. The CC is an androgen-dependent organ, and various genital abnormalities including erectile dysfunction (ED) are widely known. Previous studies have shown that androgen deprivation by castration results in significantly decreased smooth muscles of the CC. Experimental works in erectile biology have previously measured intracavernosal penile pressure and mechanical tension. Such reports analyze limited features without assessing the dynamic aspects of the erectile process. In the current study, we established a novel explant system enabling direct visual imaging of the sinusoidal lumen to evaluate the dynamic movement of the cavernous space. To analyze the alternation of sinusoidal spaces, micro-dissected CC explants by patent blue dye injection were incubated and examined for their structural alternations during relaxation/contraction. The dynamic process of relaxation/contraction was analyzed with various external factors administered to the CC. The system enabled the imaging of relaxation/contraction of the lumens of the sinusoids and the collagen-containing tissues. Histological analysis on the explant system also showed the relaxation/contraction. Thus, the system mimics the regulatory process of dynamic relaxation/contraction in the erectile response. The current system also enabled evaluating the erectile pathophysiology. In the current study, the lumen of sinusoids relaxed/contracted in castrated mice similarly with normal mice. These results suggested that the dynamic erectile relaxation/contraction process was similarly retained in castrated mice. However, the system also revealed decreased duration time of erection in castrated mice. The current study is expected to promote further understanding of the pathophysiology of ED, which will be useful for new treatments in the future. Hence, the current system provides unique information to investigate the novel regulations of erectile function, which can provide tools for analyzing the pathology of ED.
Collapse
Affiliation(s)
- Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Daiki Hashimoto
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Kumegawa
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Taiju Hyuga
- Department of Pediatric Urology, Children’s Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Plastic and Reconstructive Surgery, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Gen Yamada,
| |
Collapse
|
11
|
Song G, Hu P, Song J, Liu J, Ruan Y. Molecular pathogenesis and treatment of cavernous nerve injury-induced erectile dysfunction: A narrative review. Front Physiol 2022; 13:1029650. [PMID: 36277218 PMCID: PMC9582663 DOI: 10.3389/fphys.2022.1029650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Erectile dysfunction (ED) is a common complication after radical prostatectomy (RP), and it seriously affects the quality of life in patients and their partners. The primary trigger of postoperative ED is surgical injury to the cavernous nerves that control penile erection and run along the anterolateral aspect of the prostate. Despite the introduction and ongoing innovation of nerve-sparing techniques, a significant number of patients still suffer from moderate cavernous nerve injury (CNI), which is thought to be transient and reversible. Therefore, early postoperative penile rehabilitation therapy may salvage patients’ erectile function by promoting cavernous nerve regeneration and preventing penile structural alterations.Aims: To present a comprehensive overview of the current molecular pathogenesis of CNI-induced ED, as well as novel therapeutic strategies and their potential mechanisms.Methods: A literature search was performed using PubMed. Search terms included erectile dysfunction, cavernous nerve injury, pathogenesis, pathway, and treatment.Results: The NOS/NO pathway, oxidative stress-related pathway, RhoA/ROCK pathway, transforming growth factor-β (TGF-β), sonic hedgehog (Shh), and hydrogen sulfide (H2S) are involved in the molecular pathogenesis of CNI-induced ED. Multiple neurotrophins, including brain-derived nerve growth factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurturin (NTN), were found to promote cavernous nerve regeneration. Emerging therapeutic approaches can be roughly summarized into four categories, namely small molecule and drug, stem cell-based therapy (SCT), micro-energy therapy and platelet-rich plasma (PRP) therapy.Conclusion: These pathways collectively lead to the irreversible damage to the penile structure after CNI. The combined early rehabilitation strategies of promoting upstream nerve regeneration and recovering abnormal molecular signals of downstream penis are presumed to save patients’ erectile function after RP. In future studies, the cross-talk between these molecular pathways needs to be further clarified, and the questions of how denervation injury induces the molecular alterations in the penis also need to be addressed.
Collapse
|
12
|
Pereira PDS, Pereira DA, Calmasini FB, Reis LO, Brinkman N, Burnett AL, Costa FF, Silva FH. Haptoglobin treatment contributes to regulating nitric oxide signal and reduces oxidative stress in the penis: A preventive treatment for priapism in sickle cell disease. Front Physiol 2022; 13:961534. [PMID: 36176769 PMCID: PMC9514379 DOI: 10.3389/fphys.2022.961534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background: In sickle cell disease (SCD), reduced bioavailability of endothelial NO and cGMP results in reduced expression of phosphodiesterase type 5 (PDE5), thus impairing the penile erection control mechanism and resulting in prolonged penile erection (priapism). In SCD, reduced NO bioavailability is associated with excess plasma hemoglobin due to intravascular hemolysis and increased oxidative stress. Haptoglobin is the plasma protein responsible for reducing plasma hemoglobin levels, but in SCD, haptoglobin levels are reduced, which favors the accumulation of hemoglobin in plasma. Therefore, we aimed to evaluate the effects of haptoglobin treatment on functional and molecular alterations of erectile function, focusing on the contractile and relaxant mechanisms of corpus cavernosum (CC), as well as oxidative stress. Methods: SCD mice were treated with haptoglobin (400 mg/kg, subcutaneous) or vehicle of Monday, Wednesday and Friday for a period of 1 month. Corpus cavernosum strips were dissected free and placed in organ baths. Cumulative concentration-response curves to the acetylcholine, sodium nitroprusside, phenylephrine and KCL, as well as to electrical field stimulation (EFS), were obtained in CC. Protein expressions of eNOS, phosphorylation of eNOS at Ser-1177, nNOS, PDE5, ROCK1, ROCK2, gp91phox, 3-nitrotyrosine, and 4-HNE were measured by western blot in CC. Results: Increased CC relaxant responses to acetylcholine, sodium nitroprusside and electrical-field stimulation were reduced by haptoglobin in SCD mice. Reduced CC contractile responses to phenylephrine and KCl were increased by haptoglobin in SCD mice. Haptoglobin prevented downregulated eNOS, p-eNOS (Ser-1177), PDE5, and ROCK2 protein expressions and reduced protein expressions of reactive oxygen species markers, NADPH oxidase subunit gp91phox, 3-nitrotyrosine and 4-HNE in penises from SCD mice. Haptoglobin treatment did not affect ROCK1 and nNOS protein expressions in penises from SCD mice. Basal cGMP production was lower in the SCD group, which was normalized by haptoglobin treatment. Conclusion: Treatment with haptoglobin improved erectile function due to up-regulation of eNOS-PDE5 expression and down-regulation of the gp91phox subunit of NADPH oxidase and oxidative/nitrosative stress in the penises of SCD mice. Treatment with haptoglobin also increased contractile activity due to up-regulation of ROCK2. Therefore, haptoglobin treatment may be an additional strategy to prevent priapism in SCD.
Collapse
Affiliation(s)
| | - Dalila Andrade Pereira
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Leonardo O. Reis
- UroScience, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, Brazil
| | | | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Fábio Henrique Silva
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, Brazil
- *Correspondence: Fábio Henrique Silva,
| |
Collapse
|
13
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
14
|
Lou L, Zheng W. Micro RNA 200a contributes to the smooth muscle cells growth in aged-related erectile dysfunction via regulating Rho/ROCK pathway. Andrologia 2022; 54:e14503. [PMID: 35778809 DOI: 10.1111/and.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022] Open
Abstract
Aged-related erectile dysfunction (A-ED) is generally regarded as degeneration of penile erectile tissue due to age, male hormone deficiency and concomitant cardiovascular disease. Current pathological studies of A-ED are still limited. In this study, aged rats were divided into AE group (aged rats with ED) and YN group (young normal rats) for evaluating the roles of miRNA-200a and RhoA/ROCK signalling pathway in A-ED. Apo-morphine test, ICP measurement and pathological results were compared between these two groups. After transfection of miRNA-200a into Corpus cavernosum smooth muscle cells (CCSMCs), the expression of miRNA-200a, RhoA, ROCK1 and ROCK2 in the AE group were significantly increased. Additionally, miRNA-200a, RhoA, ROCK1 and ROCK2 were upregulated at a high level after transfecting the miRNA-200a mimics. Therefore, we speculated that miRNA-200a is a positive regulator, which may inhibit the growth of CCSMCs by activating the Rho/ROCK pathway in vitro.
Collapse
Affiliation(s)
- Lulu Lou
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Wei Zheng
- Health Management Center, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
Current strategies to improve erectile function in patients undergoing radical prostatectomy - postoperative scenario. Urol Oncol 2022; 40:87-94. [DOI: 10.1016/j.urolonc.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022]
|
16
|
Defeudis G, Mazzilli R, Tenuta M, Rossini G, Zamponi V, Olana S, Faggiano A, Pozzilli P, Isidori AM, Gianfrilli D. Erectile dysfunction and diabetes: A melting pot of circumstances and treatments. Diabetes Metab Res Rev 2022; 38:e3494. [PMID: 34514697 PMCID: PMC9286480 DOI: 10.1002/dmrr.3494] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM), a chronic metabolic disease characterised by elevated levels of blood glucose, is among the most common chronic diseases. The incidence and prevalence of DM have been increasing over the years. The complications of DM represent a serious health problem. The long-term complications include macroangiopathy, microangiopathy and neuropathy as well as sexual dysfunction (SD) in both men and women. Erectile dysfunction (ED) has been considered the most important SD in men with DM. The prevalence of ED is approximately 3.5-fold higher in men with DM than in those without DM. Common risk factors for the development of DM and its complications include sedentary lifestyle, overweight/obesity and increased caloric consumption. Although lifestyle changes may help improve sexual function, specific treatments are often needed. This study aims to review the definition and prevalence of ED in DM, the impact of DM complications and DM treatment on ED and, finally, the current and emerging therapies for ED in patients with DM.
Collapse
Affiliation(s)
- Giuseppe Defeudis
- Unit of Endocrinology and DiabetesDepartment of MedicineUniversity Campus Bio‐Medico di RomaRomeItaly
| | - Rossella Mazzilli
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | - Marta Tenuta
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Giovanni Rossini
- Unit of Endocrinology and DiabetesDepartment of MedicineUniversity Campus Bio‐Medico di RomaRomeItaly
| | - Virginia Zamponi
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | - Soraya Olana
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | - Antongiulio Faggiano
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | - Paolo Pozzilli
- Unit of Endocrinology and DiabetesDepartment of MedicineUniversity Campus Bio‐Medico di RomaRomeItaly
| | - Andrea M. Isidori
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | | |
Collapse
|
17
|
Moch Rizal D, Septiyorini N. Molecular Action of Herbal Medicine in Physiology of Erection and its Dysfunction. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224902002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Erection is a physiological process that involves vascular, hormonal, and nervous factors. Erectile dysfunction is one of the male sexual problems that occur globally and is reported to affect men's quality of life. Herbal plants have been widely used for disease treatment, including the problem of erectile dysfunction. This paper aims to review the molecular potential of various plants in the physiology of erection and to treat erectile dysfunction. The literature search was carried out through the Pubmed and Google Scholar databases regarding the molecular mechanisms of herbal plants and their potential involvement in the physiology of erection and overcoming erectile dysfunction. This paper focuses on six herbal plants: Panax ginseng, Ginkgo biloba, Epimedium, Black pepper, Tribulus terrestris, and Eurycoma longifolia. The six herbal plants have involvement in the erection process and have molecular potential in the treatment of erectile problems
Collapse
|
18
|
Zhang F, Xiong Y, Qin F, Yuan J. Short Sleep Duration and Erectile Dysfunction: A Review of the Literature. Nat Sci Sleep 2022; 14:1945-1961. [PMID: 36325277 PMCID: PMC9621223 DOI: 10.2147/nss.s375571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The meaning of sleep has puzzled people for millennia. In modern society, short sleep duration is becoming a global problem. It has been established that short sleep duration can increase the risk of several diseases, such as cardiovascular and metabolic diseases. Currently, a growing body of research has revealed a possible link between sleep disorders and erectile dysfunction (ED). However, the mechanisms linking short sleep duration and ED are largely unknown. Thus, we provide a review of clinical trials and animal studies. In this review, we propose putative pathways connecting short sleep duration and ED, including neuroendocrine pathways and molecular mechanisms, aiming to pave the way for future research. Meanwhile, the assessment and improvement of sleep quality should be recommended in the diagnosis and treatment of ED patients.
Collapse
Affiliation(s)
- Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
19
|
Jiang N, Wu C, Zhou X, Zhai G, Wu J. Cavernous Nerve Injury Resulted Erectile Dysfunction and Regeneration. J Immunol Res 2021; 2021:5353785. [PMID: 34970630 PMCID: PMC8714392 DOI: 10.1155/2021/5353785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Erectile dysfunction (ED) is an important cause of reduced quality of life for men and their partners. Recent studies have found that cavernous nerve injury (CNI) during prostate cancer surgery and other pelvic surgery results in medically induced CNIED in more than 80% of patients. The efficacy of first- and second-line treatment options for ED is poor. A great deal of research has been devoted to exploring new methods of neuroprotection and nerve regeneration to save erectile function in patients with CNIED, especially in patients with cavernous nerve injury after prostate cancer surgery. In addition, such as neuromodulatory proteins, proimmune ligands, gene therapy, stem cell therapy, and the current cutting-edge low-energy shock wave therapy have shown advantages in basic research and limited clinical studies. In the context of today's modern medicine, these new therapeutic techniques are expected to be new tools in the treatment of cavernous nerve injury erectile dysfunction. This article presents the main causes, mechanisms, and treatment of cavernous nerve injury erectile dysfunction and combines them with new treatment strategies.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Cheng Wu
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Xunrong Zhou
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou 215008, Jiangsu, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou 215008, Jiangsu, China
| |
Collapse
|
20
|
Pakpahan C, Ibrahim R, William W, Faizah Z, Juniastuti J, Lusida MI, Oceandy D. Stem cell therapy and diabetic erectile dysfunction: A critical review. World J Stem Cells 2021; 13:1549-1563. [PMID: 34786157 PMCID: PMC8567456 DOI: 10.4252/wjsc.v13.i10.1549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Erectile dysfunction (ED) has been identified as one of the most frequent chronic complications of diabetes mellitus (DM). The prevalence of ED is estimated to be about 67.4% in all DM cases worldwide. The pathophysiological process leading to ED involves endothelial, neurological, hormonal, and psychological factors. In DM, endothelial and neurological factors play a crucial role. Damages in the blood vessels and erectile tissue due to insulin resistance are the hallmark of ED in DM. The current treatments for ED include phosphodiesterase-5 inhibitors and penile prosthesis surgery. However, these treatments are limited in terms of just relieving the symptoms, but not resolving the cause of the problem. The use of stem cells for treating ED is currently being studied mostly in experimental animals. The stem cells used are derived from adipose tissue, bone, or human urine. Most of the studies observed an improvement in erectile quality in the experimental animals as well as an improvement in erectile tissue. However, research on stem cell therapy for ED in humans remains to be limited. Nevertheless, significant findings from studies using animal models indicate a potential use of stem cells in the treatment of ED.
Collapse
Affiliation(s)
- Cennikon Pakpahan
- Department of Biomedical Sciences, Universitas Airlangga, Surabaya 60132, Indonesia
- Andrology Program, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Raditya Ibrahim
- Andrology Program, Universitas Airlangga, Surabaya 60132, Indonesia
| | - William William
- Andrology Program, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Medical Biology, School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia
| | - Zakiyatul Faizah
- Department of Biomedical Sciences, Universitas Airlangga, Surabaya 60132, Indonesia
| | | | - Maria I Lusida
- Institute for Tropical Disease, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| |
Collapse
|
21
|
Abstract
The science of penile erection, including recent advances in its molecular physiology and neuroanatomic pathways, is described. The pathophysiology of erectile dysfunction is presented, acknowledging associated disease states, and accordingly follows a practical classification scheme: vasculogenic, neurogenic, endocrine, and psychogenic.
Collapse
Affiliation(s)
- Susan M MacDonald
- Division of Urology, Penn State Health Milton S. Hershey Medical Center, Mail Code H055, 500 University Drive, Hershey, PA 17033, USA.
| | - Arthur L Burnett
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe Street, Marburg 407, Baltimore, MD 21287, USA
| |
Collapse
|
22
|
Cignarelli A, Genchi VA, D’Oria R, Giordano F, Caruso I, Perrini S, Natalicchio A, Laviola L, Giorgino F. Role of Glucose-Lowering Medications in Erectile Dysfunction. J Clin Med 2021; 10:jcm10112501. [PMID: 34198786 PMCID: PMC8201035 DOI: 10.3390/jcm10112501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Erectile dysfunction (ED) is a long-term complication of type 2 diabetes (T2D) widely known to affect the quality of life. Several aspects of altered metabolism in individuals with T2D may help to compromise the penile vasculature structure and functions, thus exacerbating the imbalance between smooth muscle contractility and relaxation. Among these, advanced glycation end-products and reactive oxygen species derived from a hyperglycaemic state are known to accelerate endothelial dysfunction by lowering nitric oxide bioavailability, the essential stimulus of relaxation. Although several studies have explained the pathogenetic mechanisms involved in the generation of erectile failure, few studies to date have described the efficacy of glucose-lowering medications in the restoration of normal sexual activity. Herein, we will present current knowledge about the main starters of the pathophysiology of diabetic ED and explore the role of different anti-diabetes therapies in the potential remission of ED, highlighting specific pathways whose activation or inhibition could be fundamental for sexual care in a diabetes setting.
Collapse
|
23
|
Al-Hilal TA, Hossain MA, Alobaida A, Alam F, Keshavarz A, Nozik-Grayck E, Stenmark KR, German NA, Ahsan F. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J Control Release 2021; 334:237-247. [PMID: 33915222 DOI: 10.1016/j.jconrel.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse. To overcome the adverse effects of systemic ROCK inhibition, we developed a bioreductive prodrug of a ROCK inhibitor, fasudil, that functions selectively under hypoxic conditions. By masking fasudil's active site with a bioreductive 4-nitrobenzyl group, we synthesized a prodrug of fasudil that is inactive in normoxia. Reduction of the protecting group initiated by hypoxia reveals an electron-donating substituent that leads to fragmentation of the parent molecule. Under normoxia the fasudil prodrug displayed significantly reduced activity against ROCK compared to its parent compound, but under severe hypoxia the prodrug was highly effective in suppressing ROCK activity. Under hypoxia the prodrug elicited an antiproliferative effect on disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. The prodrug displayed a long plasma half-life, remained inactive in the blood, and produced no drop in systemic blood pressure when compared with fasudil-treated controls. Due to its selective nature, our hypoxia-activated fasudil prodrug could be used to treat diseases where tissue-hypoxia or hypoxic cells are the pathological basis of the disease.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutics, School of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Farzana Alam
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ali Keshavarz
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical and Biomedical Sciences, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
24
|
Association of erectile dysfunction with tinnitus: a nationwide population-based study. Sci Rep 2021; 11:6982. [PMID: 33772046 PMCID: PMC7997891 DOI: 10.1038/s41598-021-86441-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
With many previous studies indicating a higher prevalence of sexual problems in patients with tinnitus, the association between tinnitus and erectile dysfunction (ED) has become an interesting topic that warrants further research. In our study, we hypothesized that tinnitus may be associated with ED and aimed to further explore the relationship between these two medical conditions using a nationwide population-based database. After retrieving data of 19,329 patients with ED and 19,329 propensity score-matched patients without ED (controls) from Taiwan’s National Health Insurance Dataset, we defined the diagnosis date (the date of the first ED claim) for patients with ED as the index date for cases, and the date of the first utilization of ambulatory care by patients without ED during the index year of their matched case as the index date for controls. We found that 1247 out of 38,658 sampled patients (3.23%) had received a tinnitus diagnosis within the year before the index date, with 792 (4.10%) from cases and 455 (2.35%) from controls. We then utilized multiple logistic regression analysis and observed that cases were more likely to have had a prior tinnitus diagnosis compared to controls (OR 1.772; 95% CI 1.577–1.992; p < 0.001). Lastly, we adjusted the data for co-morbid medical disorders and social economic factors, with the end results showing that cases were more likely than controls to have a prior diagnosis of tinnitus (OR 1.779, 95% CI 1.582–2.001, p < 0.001). Through our investigation, we have ultimately detected a novel association between ED and tinnitus and urge physicians to be alert to the possibility of the development of ED in patients treated for tinnitus.
Collapse
|
25
|
Hashimoto D, Hirashima T, Yamamura H, Kataoka T, Fujimoto K, Hyuga T, Yoshiki A, Kimura K, Kuroki S, Tachibana M, Suzuki K, Yamamoto N, Morioka S, Sasaki T, Yamada G. Dynamic erectile responses of a novel penile organ model utilizing TPEM†. Biol Reprod 2021; 104:875-886. [PMID: 33511393 DOI: 10.1093/biolre/ioab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Male penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection. A novel in vitro explant system to analyze the dynamic erectile responses during contraction/relaxation is established. The current data show regulatory contraction/relaxation processes induced by phenylephrine (PE) and nitric oxide (NO) donor mimicking dynamic erectile responses by in vitro CC explants. Two-photon excitation microscopy (TPEM) observation shows the synchronous movement of sinusoidal space and the entire CC. By taking advantages of the CC explant system, tadalafil (Cialis) was shown to increase sinusoidal relaxation. Histopathological changes have been generally reported associating with erection in several pathological conditions. Various stressed statuses have been suggested to occur in the erectile responses by previous studies. The current CC explant model enables to analyze such conditions through directly manipulating CC in the repeated contraction/relaxation processes. Expression of oxidative stress marker and contraction-related genes, Hypoxia-inducible factor 1-alpha (Hif1a), glutathione peroxidase 1 (Gpx1), Ras homolog family member A (RhoA), and Rho-associated protein kinase (Rock), was significantly increased in such repeated contraction/relaxation. Altogether, it is suggested that the system is valuable for analyzing structural changes and physiological responses to several regulators in the field of penile medicine.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kazunori Kimura
- Department of Clinical Pharmaceutics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shunsuke Kuroki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Nobuhiko Yamamoto
- Cellular and Molecular Neurobiology Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shin Morioka
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Sasaki
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
26
|
Zhang W, Wei Y, Cao X, Guo K, Wang Q, Xiao X, Zhai X, Wang D, Huang Z. Enzymatic preparation of Crassostrea oyster peptides and their promoting effect on male hormone production. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113382. [PMID: 32918991 DOI: 10.1016/j.jep.2020.113382] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crassostrea gigas Thunberg and other oysters have been traditionally used in China as folk remedies to invigorate the kidney and as natural aphrodisiacs to combat male impotence. AIM OF THE STUDY Erectile dysfunction (ED) has become a major health problem for the global ageing population. The aim of this study is therefore to evaluate the effect of peptide-rich preparations from C. gigas oysters on ED and related conditions as increasing evidence suggests that peptides are important bioactive components of marine remedies and seafood. MATERIALS AND METHODS Crassostrea oyster peptide (COP) preparations COP1, COP2 and COP3 were obtained from C. gigas oysters by trypsin, papain or sequential trypsin-papain digestion, respectively. The contents of testosterone, cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in mice and/or cells were measured by enzyme-linked immunosorbent assays. Real-time PCR was used to assess the expression of genes associated with sex hormone secretion pathways. The model animal Caenorhabditis elegans was also used to analyze the gene expression of a conserved steroidogenic enzyme. In silico analysis of constituent peptides was performed using bioinformatic tools based on public databases. RESULTS The peptide-rich preparation COP3, in which >95% peptides were <3000 Da, was found to increase the contents of male mouse serum testosterone and cAMP, both of which are known to play important roles in erectile function, and to increase the activity of mouse penile NOS, which is closely associated with ED. Further investigation using mouse Leydig-derived TM3 cells demonstrates that COP3 was able to stimulate the production of testosterone as well as NO, a pivotal mediator of penile erection. Real-time PCR analysis reveals that COP3 up-regulated the expression of Areg and Acvr2b, the genes known to promote sex hormone secretion, but not Fst, a gene involved in suppressing follicle-stimulating hormone release. Furthermore, COP3 was also shown to up-regulate the expression of let-767, a well-conserved C. elegans gene encoding a protein homologous to human 17-β-hydroxysteroid dehydrogenases. Preliminary bioinformatic analysis using the peptide sequences in COP3 cryptome identified 19 prospective motifs, each of which occurred in more than 10 peptides. CONCLUSIONS In this paper, Crassostrea oyster peptides were prepared by enzymatic hydrolysis and were found for the first time to increase ED-associated biochemical as well as molecular biology parameters. These results may help to explain the ethnopharmacological use of oysters and provide an important insight into the potentials of oyster peptides in overcoming ED-related health issues.
Collapse
Affiliation(s)
- Wanwan Zhang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yifang Wei
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoxiao Cao
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiaochun Xiao
- Research and Development Center, Infinitus (China) Company Ltd, Guangzhou, 510665, China
| | - Xufeng Zhai
- Research and Development Center, Infinitus (China) Company Ltd, Guangzhou, 510665, China
| | - Dingding Wang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Hiremath DS, Priviero FB, Webb RC, Ko C, Narayan P. Constitutive LH receptor activity impairs NO-mediated penile smooth muscle relaxation. Reproduction 2021; 161:31-41. [PMID: 33112284 PMCID: PMC7686140 DOI: 10.1530/rep-20-0447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Timely activation of the luteinizing hormone receptor (LHCGR) is critical for fertility. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP) due to premature synthesis of testosterone. A mouse model of FMPP (KiLHRD582G), expressing a constitutively activating mutation in LHCGR, was previously developed in our laboratory. KiLHRD582G mice became progressively infertile due to sexual dysfunction and exhibited smooth muscle loss and chondrocyte accumulation in the penis. In this study, we tested the hypothesis that KiLHRD582G mice had erectile dysfunction due to impaired smooth muscle function. Apomorphine-induced erection studies determined that KiLHRD582G mice had erectile dysfunction. Penile smooth muscle and endothelial function were assessed using penile cavernosal strips. Penile endothelial cell content was not changed in KiLHRD582G mice. The maximal relaxation response to acetylcholine and the nitric oxide donor, sodium nitroprusside, was significantly reduced in KiLHRD582G mice indicating an impairment in the nitric oxide (NO)-mediated signaling. Cyclic GMP (cGMP) levels were significantly reduced in KiLHRD582G mice in response to acetylcholine, sodium nitroprusside and the soluble guanylate cyclase stimulator, BAY 41-2272. Expression of NOS1, NOS3 and PKRG1 were unchanged. The Rho-kinase signaling pathway for smooth muscle contraction was not altered. Together, these data indicate that KiLHRD582G mice have erectile dysfunction due to impaired NO-mediated activation of soluble guanylate cyclase resulting in decreased levels of cGMP and penile smooth muscle relaxation. These studies in the KiLHRD582G mice demonstrate that activating mutations in the mouse LHCGR cause erectile dysfunction due to impairment of the NO-mediated signaling pathway in the penile smooth muscle.
Collapse
Affiliation(s)
- Deepak S. Hiremath
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Fernanda B.M. Priviero
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy University of South Carolina, Columbia, SC, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy University of South Carolina, Columbia, SC, USA
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Prema Narayan
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| |
Collapse
|
28
|
Yue XF, Shen CX, Wang JW, Dai LY, Fang Q, Long L, Zhi Y, Li XR, Wang YW, Shen GF, Liu ZJ, Shi CM, Li WB. The near-infrared dye IR-61 restores erectile function in a streptozotocin-induced diabetes model via mitochondrial protection. Asian J Androl 2021; 23:249-258. [PMID: 33402547 PMCID: PMC8152422 DOI: 10.4103/aja.aja_69_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study aimed to evaluate the therapeutic effect of IR-61, a novel mitochondrial heptamethine cyanine dye with antioxidant effects, on diabetes mellitus-induced erectile dysfunction (DMED). Eight-week-old male Sprague-Dawley rats were intraperitoneally injected with streptozotocin (STZ) to induce type 1 diabetes. Eight weeks after STZ injection, all rats were divided into three groups: the control group, DM group, and DM + IR-61 group. In the DM + IR-61 group, the rats were administered IR-61 (1.6 mg kg-1) twice a week by intravenous injection. At week 13, erectile function was evaluated by determining the ratio of the maximal intracavernous pressure to mean arterial pressure, and the penises were then harvested for fluorescent imaging, transmission electron microscopy, histological examinations, and Western blot analysis. Whole-body imaging suggested that IR-61 was highly accumulated in the penis after intravenous injection. IR-61 treatment significantly improved the maximal ICP of diabetic rats. Additionally, IR-61 ameliorated diabetes-induced inflammation, apoptosis, and phenotypic transition of corpus cavernosum smooth muscle cells (CCSMCs) in penile tissue. IR-61 also attenuated mitochondrial damage, reduced reactive oxygen species production in the corpus cavernosum and upregulated sirtuin1 (SIRT1), sirtuin3 (SIRT3), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase expression in penile tissue. In conclusion, IR-61 represents a potential therapeutic option for DMED by protecting the mitochondria of CCSMCs, which may be mediated by activation of the SIRT1, SIRT3, and Nrf2 pathways.
Collapse
Affiliation(s)
- Xiao-Feng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Chong-Xing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Jian-Wu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lin-Yong Dai
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xue-Ru Li
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Ya-Wei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Gu-Fang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Zu-Juan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Chun-Meng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Wei-Bing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| |
Collapse
|
29
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
30
|
Li X, Zhou Q, Wang S, Wang P, Li J, Xie Z, Liu C, Wen J, Wu X. Prolonged treatment with Y-27632 promotes the senescence of primary human dermal fibroblasts by increasing the expression of IGFBP-5 and transforming them into a CAF-like phenotype. Aging (Albany NY) 2020; 12:16621-16646. [PMID: 32843583 PMCID: PMC7485707 DOI: 10.18632/aging.103910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
The Rho-kinases (ROCK) inhibitor Y-27632 has been shown to promote the growth of epidermal cells, however, its potential effects on human dermal fibroblasts (HDFs) need to be clarified. Here we show that prolonged treatment of HDFs with Y-27632 decreased their growth by inducing senescence, which was associated with induction of the senescence markers p16 and p21, and downmodulation of the ERK pathways. The senescent HDFs induced by Y-27632 acquired a cancer-associated-fibroblast (CAF)-like phenotype to promote squamous cell carcinoma (SCC) cell growth in vitro. Expression of a newly identified target of Y-27632 by RNA-seq, insulin growth factor binding protein 5 (IGFBP-5), was dramatically increased after 24 h of treatment with Y-27632. Adding recombinant IGFBP-5 protein to the culture medium produced similar phenotypes of HDFs as did treatment with Y-27632, and knockdown of IGFBP-5 blocked the Y-27632-induced senescence. Furthermore, Y-27632 induced the expression of an IGFBP-5 upstream gene, GATA4, and knockdown of GATA4 also reduced the Y-27632-induced senescence. In summary, these results demonstrate for the first time that Y-27632 promotes cellular senescence in primary HDFs by inducing the expression of IGFBP-5 and that prolonged treatment with Y-27632 potentially transforms primary HDFs into CAF-like cells.
Collapse
Affiliation(s)
- Xiangyong Li
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Key Laboratory of Biotechnology and Biological Resource Utilization in Universities of Shandong and College of Life Science, Dezhou University, Dezhou, China
| | - Qian Zhou
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ping Wang
- Department of Outpatient Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Key Laboratory of Biotechnology and Biological Resource Utilization in Universities of Shandong and College of Life Science, Dezhou University, Dezhou, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
31
|
Yuan P, Ma D, Gao X, Wang J, Li R, Liu Z, Wang T, Wang S, Liu J, Liu X. Liraglutide Ameliorates Erectile Dysfunction via Regulating Oxidative Stress, the RhoA/ROCK Pathway and Autophagy in Diabetes Mellitus. Front Pharmacol 2020; 11:1257. [PMID: 32903510 PMCID: PMC7435068 DOI: 10.3389/fphar.2020.01257] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Erectile dysfunction (ED) occurs more frequently and causes a worse response to the first-line therapies in diabetics compared with nondiabetic men. Corpus cavernosum vascular dysfunction plays a pivotal role in the occurrence of diabetes mellitus ED (DMED). The aim of this study was to investigate the protective effects of glucagon-like peptide-1 (GLP-1) analog liraglutide on ED and explore the underlying mechanisms in vivo and in vitro. Methods Type 1 diabetes was induced in rats by streptozotocin, and the apomorphine test was for screening the DMED model in diabetic rats. Then they were randomly treated with subcutaneous injections of liraglutide (0.3 mg/kg/12 h) for 4 weeks. Erectile function was assessed by cavernous nerve electrostimulation. The corpus cavernosum was used for further study. In vitro, effects of liraglutide were evaluated by primary corpus cavernosum smooth muscle cells (CCSMCs) exposed to low or high glucose (HG)-containing medium with or without liraglutide and GLP-1 receptor (GLP-1R) inhibitor. Western blotting, fluorescent probe, immunohistochemistry, and relevant assay kits were performed to measure the levels of target proteins. Results Administration of liraglutide did not significantly affect plasma glucose and body weights in diabetic rats, but improved erectile function, reduced levels of NADPH oxidases and ROS production, downregulated expression of Ras homolog gene family (RhoA) and Rho-associated protein kinase (ROCK) 2 in the DMED group dramatically. The liraglutide treatment promoted autophagy further and restored expression of GLP-1R in the DMED group. Besides, cultured CCSMCs with liraglutide exhibited a lower level of oxidative stress accompanied by inhibition of the RhoA/ROCK pathway and a higher level of autophagy compared with HG treatment. These beneficial effects of liraglutide effectively reversed by GLP-1R inhibitor. Conclusion Liraglutide exerts protective effects on ED associated with the regulation of smooth muscle dysfunction, oxidative stress and autophagy, independently of a glucose- lowering effect. It provides new insight into the extrapancreatic actions of liraglutide and preclinical evidence for a potential treatment for DMED.
Collapse
Affiliation(s)
- Penghui Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xintao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Zewdie KA, Ayza MA, Tesfaye BA, Wondafrash DZ, Berhe DF. A Systematic Review on Rho-Kinase as a Potential Therapeutic Target for the Treatment of Erectile Dysfunction. Res Rep Urol 2020; 12:261-272. [PMID: 32766173 PMCID: PMC7373493 DOI: 10.2147/rru.s255743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
Background Erectile dysfunction (ED) is a common clinical condition with limited treatment options. The main aim of the present systematic review was to synthesize information on Rho-kinase as a novel therapeutic approach for the treatment of ED. Methods We performed a systematic literature study in PubMed, Google Scholar and Scopus. Included studies were original articles studied the role of Rho-kinase in the pathogenesis and/or new treatment approach for ED in animal models and clinical studies, published between 2014 and 2019. Data derived from each study were study design used, interventions applied and main treatment outcomes. The quality of the selected articles was assessed by CAMARADES criteria and data were analyzed using descriptive statistics. Results A total of 1067 original articles were retrieved in the given period and eighteen papers met our inclusion criteria. Five articles explain the role of Rho-kinase in ED pathogenesis using different models such as cavernous nerve crush injury, heart failure-induced ED, vasculogenic and post-radical prostatectomy ED, diabetes-induced ED and age-related ED. Other ten papers explain the role of novel drugs evaluated for ED treatment by targeting Rho-kinase as a new approach for ED therapy. The rest three papers discuss the role of plant extracts used by traditional society for the treatment of ED and assess their potential function in targeting Rho-kinase in animal models. The penile erectile functional index has shown that the ratio of intracavernosal pressure to mean arterial pressure (ICP/MAP) was decreased due to age and various chronic diseases. Whilst, ROCK I and ROCK II expression were increased. Western blot findings have also shown that ROCK II and MYPT-1 phosphorylation rates increased in cavernous tissue after ED induction. Besides, compounds which can inhibit the action of Rho-kinase activity showed relaxation of the corpus cavernosum, decrease in corporal fibrosis, and alleviate increased apoptosis and caspase-3 activity in an NO-independent manner. Moreover, histological and molecular dysregulation have been improved by inhibition of Rho-kinase. Conclusion Targeting Rho-kinase may be a possible target for the treatment of ED secondary to specific causes, and Rho-kinase inhibitors may be a new drug family for the treatment of ED. However, this requires further studies for in-depth understanding.
Collapse
Affiliation(s)
- Kaleab Alemayehu Zewdie
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Muluken Altaye Ayza
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Bekalu Amare Tesfaye
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Dawit Zewdu Wondafrash
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
33
|
Diniz AFA, Ferreira RC, de Souza ILL, da Silva BA. Ionic Channels as Potential Therapeutic Targets for Erectile Dysfunction: A Review. Front Pharmacol 2020; 11:1120. [PMID: 32848741 PMCID: PMC7396897 DOI: 10.3389/fphar.2020.01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition, especially in men over 40 years old, characterized by the inability to obtain and/or maintain penile erection sufficient for satisfactory sexual intercourse. Several psychological and/or organic factors are involved in the etiopathogenesis of ED. In this context, we gathered evidence of the involvement of Large-conductance, Ca2+-activated K+ channels (BKCa), Small-conductance, Ca2+-activated K+ channels (SKCa), KCNQ-encoded voltage-dependent K+ channels (KV7), Transient Receptor Potential channels (TRP), and Calcium-activated Chloride channels (CaCC) dysfunctions on ED. In addition, the use of modulating agents of these channels are involved in relaxation of the cavernous smooth muscle cell and, consequent penile erection, suggesting that these channels are promising therapeutic targets for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Anderson Fellyp Avelino Diniz
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Rafael Carlos Ferreira
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Iara Leão Luna de Souza
- Departamento de Ciências Biológicas e da Saúde, Universidade Estadual de Roraima, Boa Vista, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
34
|
Mahmood J, Pandita R, Zhang A, Kamlapurkar S, Saeed A, Chen M, Staats PN, Shukla HD, Anvari A, Sawant A, Vujaskovic Z. RhoA/ROCK pathway inhibitor ameliorates erectile dysfunction induced by radiation therapy in rats. Radiother Oncol 2020; 150:174-180. [PMID: 32565390 DOI: 10.1016/j.radonc.2020.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Prostate cancer (PCa) treatment with radiation therapy (RT) has an excellent cure rate. However, Radiation-induced Erectile Dysfunction (RiED) is a common and irreversible toxicity impacting quality of life, and there is no FDA approved specific drug for RiED. We previously showed that prostate RT increased RhoA/ROCK signaling in the cavernous nerve (CN) and penile tissues, which may lead to RiED in rats. In this study, we investigated whether RhoA/ROCK pathway inhibition by a specific inhibitor called Hydroxyfasudil (HF) can improve RiED in our well-established rat model. MATERIALS/METHODS Male Sprague-Dawley rats were randomized to the following groups: sham-RT, HF-only, RT-only, and RT + HF. Rats were either exposed to a single dose of 25 Gy prostate-confined RT or a sham procedure. 10 mg/kg HF or normal saline was injected intraperitoneally. Erectile function was evaluated by intracavernosal pressure (ICP) and mean arterial pressure (MAP) measurements at week 14 post-RT. Cavernous nerve (CN) injury was evaluated by transmission electron microscopy (TEM), and penile tissue fibrosis by Masson trichrome staining (MT). RESULTS We have found that the HF treatment prior to RT showed significant (p < 0.001) improvement in ICP/MAP ratio, area under the curve, and maximum ICP value, compared to RT-alone rats. Furthermore, RT + HF treated rats exhibited increased CN myelination and decreased axonal atrophy, comparted to RT-only. HF treatment showed significantly decreased penile tissue fibrosis (p < 0.05) compared to RT-alone treated rats. CONCLUSION Our results provide the first preclinical evidence that targeting RhoA/ROCK pathway by HF may provide a novel therapeutic option for the treatment of RiED.
Collapse
Affiliation(s)
- Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA.
| | - Ravina Pandita
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Angel Zhang
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Shriya Kamlapurkar
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Ali Saeed
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Hem D Shukla
- Department of Neurology and Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Akbar Anvari
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Amit Sawant
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
35
|
Musicki B, Burnett AL. Mechanisms underlying priapism in sickle cell disease: targeting and key innovations on the preclinical landscape. Expert Opin Ther Targets 2020; 24:439-450. [PMID: 32191546 DOI: 10.1080/14728222.2020.1745188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Priapism is prolonged penile erection in the absence of sexual arousal or desire and is a devastating condition affecting millions of patients with sickle cell disease (SCD) globally. Available drug treatments for SCD-related priapism remain limited and have been primarily reactive rather than preventive. Hence, there is an unmet need for new drug targets and pharmacologic therapies.Areas covered: We examine the molecular mechanisms underlying SCD-associated priapism evaluated mostly in animal models. In mouse models of SCD, molecular defects of priapism operating at the cavernous tissue level include reduced tonic NO/cGMP signaling, elevated oxidative/nitrosative stress, vascular adhesion molecule derangements, excessive adenosine and opiorphin signaling, dysregulated vasoconstrictive RhoA/ROCK signaling, and testosterone deficiency. We discuss the consequences of downregulated cGMP-dependent phosphodiesterase type 5 (PDE5) activity in response to these molecular signaling derangements, as the main effector mechanism causing unrestrained cavernous tissue relaxation that results in priapism.Expert opinion: Basic science studies are crucial for understanding the underlying pathophysiology of SCD-associated priapism. Understanding the molecular mechanisms could unearth new therapeutic targets for this condition based on these mechanisms. Treatment options should aim to improve deranged erection physiology regulatory signaling to prevent priapism and potentially restore or preserve erectile function.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Testosterone Deficiency and Endothelial Dysfunction: Nitric Oxide, Asymmetric Dimethylarginine, and Endothelial Progenitor Cells. Sex Med Rev 2019; 7:661-668. [DOI: 10.1016/j.sxmr.2019.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
|
37
|
Effect of HongJing I in Treating Erectile Function and Regulating RhoA Pathway in a Rat Model of Bilateral Cavernous Nerve Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1083737. [PMID: 31636680 PMCID: PMC6766086 DOI: 10.1155/2019/1083737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/05/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
HongJing I (HJI), a traditional Chinese herbal formula, has been confirmed to be effective for the clinical treatment of erectile dysfunction (ED). However, the mechanism of action of HJI remains unclear. Here, we aimed to investigate the effect and underlying mechanisms of HJI against ED in a rat model of bilateral cavernous nerve injury (BCNI). Rats were divided into five groups: normal control (NC), BCNI-induced ED model (M), M + low-dose HJI (HL), M + medium-dose HJI (HM), and M + high-dose HJI (HH). All groups were treated with normal saline or the relevant drug for 28 consecutive days after inducing BCNI-ED. At the end of the treatment period, the intracavernous pressure (ICP) was recorded, and histological examination was conducted using Masson's trichrome staining. Immunofluorescence staining and western blotting were applied to detect the changes in fibrosis protein and Ras homolog A (RhoA), Rho-associated protein kinase 1 (ROCK1), and ROCK2 expression. We found that HJI effectively improved the ICP in the treatment groups. In addition, RhoA, ROCK1, and ROCK2 expression levels were increased upon BCNI-ED induction, and HJI successfully inhibited cavernosum fibrosis and the activation of RhoA/ROCK2 signaling. Overall, these results suggest that the effects of HJI in attenuating ED may be caused, at least in part, by the suppression of RhoA/ROCK2 signaling and alleviation of fibrosis. However, the precise mechanism surrounding this requires further investigation in future studies.
Collapse
|
38
|
Zhao H, Kim HH. The Complex Relationship Between Lower Urinary Tract Symptoms and Sexual Health. Curr Urol Rep 2019; 20:58. [DOI: 10.1007/s11934-019-0930-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Karakus S, Musicki B, Burnett AL. Phosphodiesterase type 5 in men with vasculogenic and post-radical prostatectomy erectile dysfunction: is there a molecular difference? BJU Int 2018; 122:1066-1074. [PMID: 29888556 DOI: 10.1111/bju.14433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To clarify the molecular basis of penile erection at the human level and distinguish the mechanisms underlying vasculogenic and post-radical prostatectomy (RP) erectile dysfunction (ED) subtypes. PATIENTS AND METHODS Erectile tissue was obtained from men without history of ED who underwent penile surgery for Peyronie's disease (control group, n = 5) and from men with ED who underwent penile prosthesis implantation (n = 17). ED was categorized into vasculogenic (n = 8) and post-RP (n = 9) subtypes. Penile erectile tissue samples were collected for molecular analyses of protein expressions of neuronal and endothelial isoforms of nitric oxide synthase (nNOS and eNOS, respectively), phospho-nNOS (Ser-1412), phospho-eNOS (Ser-1177), phospho-protein kinase B (Ser-473), phosphodiesterase type 5 (PDE5), α-smooth muscle actin, phospho-myosin phosphatase target subunit 1, RhoA/Rho-associated protein kinase (ROCK)-α, ROCK-β, 4-hydroxy-2-nonenal, and nNOS and eNOS uncoupling by Western blot. RESULTS Vasculogenic ED was characterized by decreased eNOS protein expression and eNOS and nNOS phosphorylation on their activatory sites (Ser-1177 and Ser-1412, respectively), uncoupled eNOS, upregulated PDE5 protein expression, increased ROCK activity, and increased oxidative stress in erectile tissue. Post-RP ED was characterized by decreased nNOS protein expression, increased nNOS phosphorylation on its activatory site (Ser-1412), uncoupled nNOS, downregulated PDE5 protein expression, and increased oxidative stress in erectile tissue. CONCLUSION The mechanisms of vasculogenic and post-RP ED in the human penis involve derangements in constitutive nitric oxide synthase function, PDE5 protein expression and ROCK activity, and increased oxidative stress, which conceivably provide a molecular basis for chronically reduced nitric oxide bioavailability and increased smooth muscle contraction contributing to erectile impairment. Selective differences in PDE5 protein expression suggest distinct molecular mechanisms are in play for these ED subtypes.
Collapse
Affiliation(s)
- Serkan Karakus
- Department of Urology, Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - Biljana Musicki
- Department of Urology, Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - Arthur L Burnett
- Department of Urology, Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| |
Collapse
|
40
|
Bandarage UK, Cao J, Come JH, Court JJ, Gao H, Jacobs MD, Marhefka C, Nanthakumar S, Green J. ROCK inhibitors 3: Design, synthesis and structure-activity relationships of 7-azaindole-based Rho kinase (ROCK) inhibitors. Bioorg Med Chem Lett 2018; 28:2622-2626. [PMID: 30082069 DOI: 10.1016/j.bmcl.2018.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/21/2023]
Abstract
Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.
Collapse
Affiliation(s)
- Upul K Bandarage
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| | - Jingrong Cao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Jon H Come
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - John J Court
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Huai Gao
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Marc D Jacobs
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | - Craig Marhefka
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA
| | | | - Jeremy Green
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA.
| |
Collapse
|
41
|
Pederzoli F, Campbell JD, Matsui H, Sopko NA, Bivalacqua TJ. Surgical Factors Associated With Male and Female Sexual Dysfunction After Radical Cystectomy: What Do We Know and How Can We Improve Outcomes? Sex Med Rev 2018; 6:469-481. [PMID: 29371143 DOI: 10.1016/j.sxmr.2017.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sexual dysfunction after radical cystectomy (RC) is a frequent, though commonly overlooked symptom for both men and women. Improved oncological outcomes and the rising number of bladder cancer survivors mandate physicians to closely address and evaluate post-surgical sexual dysfunction and offer goal-directed treatment. Improvements in RC surgical techniques that promote post-operative sexual function have been proposed, alongside new quality-of-life inventories and sexual function therapeutic options; however, rigorous studies in the field are lacking. AIM To provide a comprehensive overview of post-RC sexual dysfunction and discuss new surgical techniques, sexual dysfunction evaluation, and novel treatment strategies. METHODS A non-systematic narrative review of the literature was performed through PubMed about sexual dysfunction in men and women after RC. OUTCOMES We reported on the surgical anatomy of sexual function-sparing RC, the most common inventories used to investigate sexual function in post-RC patients, and current treatment options. RESULTS Extensive knowledge about pelvic anatomy and nerve-sparing surgical techniques in men is well understood from studies about prostate anatomy and nerve-sparing prostatectomy. However, anatomical and surgical details of sexual-sparing RC in women needs further characterization. Several questionnaires are used to investigate sexuality after RC, but a standardized approach is still missing. Therapeutic options are available to treat sexual dysfunction, but limited studies have been conducted to specifically address the post-RC population. CONCLUSION Further work is needed to understand the best strategies to prevent and treat sexual dysfunction in patients after RC. Pederzoli F, Campbell JD, Matsui H, et al. Surgical Factors Associated With Male and Female Sexual Dysfunction After Radical Cystectomy: What Do We Know and How Can We Improve Outcomes? Sex Med Rev 2018;6:469-481.
Collapse
Affiliation(s)
- Filippo Pederzoli
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Vita-Salute San Raffaele University, Milan, Italy.
| | - Jeffrey D Campbell
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hotaka Matsui
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nikolai A Sopko
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Trinity J Bivalacqua
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
De Nunzio C, Roehrborn CG, Andersson KE, McVary KT. Erectile Dysfunction and Lower Urinary Tract Symptoms. Eur Urol Focus 2017; 3:352-363. [PMID: 29191671 DOI: 10.1016/j.euf.2017.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/12/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023]
Abstract
CONTEXT Lower urinary tract symptoms (LUTSs) and erectile dysfunction (ED) are substantial health concerns with a significant impact on the overall male quality of life. OBJECTIVE To evaluate the available evidence of the association between LUTSs and ED in patients with benign prostatic hyperplasia (BPH), and discuss possible clinical implications for the management of LUTS/BPH. EVIDENCE ACQUISITION A systematic review of the existing literature published between 1997 and June 2017 and available in the Medline, Scopus, and Web of Science databases was conducted using both the Medical Subject Heading (MeSH) and free-text protocols. The MeSH search was conducted by combining the following terms: "lower urinary tract symptoms," "LUTS," "benign prostatic hyperplasia," "BPH," "erectile dysfunction," "sexual dysfunction," "BPE," and "benign prostatic enlargement." The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed. EVIDENCE SYNTHESIS Several community-based studies in different geographical areas have provided strong evidence of an age-independent association between LUTSs and ED. Several biological mechanisms have been proposed to explain this association, but further research is required to better understand the molecular pathways involved. It is necessary to evaluate the possible impact of the metabolic syndrome treatment on LUTS/ED management. Considering the possible relationship between LUTSs and ED, their impact on the quality of life, and the possible adverse effects associated with LUTS medical treatment, clinicians should always evaluate ED in patients with LUTSs and take the opportunity to evaluate patients reporting ED for LUTSs. CONCLUSIONS Data from the peer-reviewed literature suggest the existence of an association between LUTS/BPH and ED, although their casual relationship has not been established yet. Emerging data also suggest that pathophysiological mechanisms involved in the metabolic syndrome are key factors in both disorders. Considering the association, it is also recommended that men presenting with LUTSs or ED should be evaluated for both disorders. A better understanding of the molecular pathways behind this association may also help identify new possible targets and develop novel therapeutic approaches to manage LUTSs and ED. PATIENT SUMMARY In this manuscript, we report on all the available evidence linking erectile dysfunction and lower urinary tract symptoms. Our findings suggest the existence of a strong relationship between these two conditions. On the basis of these findings, we recommend that clinicians always explore both conditions in male patients presenting with either of symptoms.
Collapse
Affiliation(s)
- Cosimo De Nunzio
- Department of Urology, Sant'Andrea Hospital, "La Sapienza" University, Roma, Italy.
| | - Claus G Roehrborn
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kevin T McVary
- Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
43
|
Jiang H, Gao Q, Che X, Zhu L, Zhang Z, Chen Y, Dai Y. Inhibition of penile tunica albuginea myofibroblasts activity by adipose-derived stem cells. Exp Ther Med 2017; 14:5149-5156. [PMID: 29201230 DOI: 10.3892/etm.2017.5179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The activation of tunica albuginea myofibroblasts (MFs) serves an essential role in Peyronie's disease (PD). Increasing evidence has reported that adipose tissue-derived stem cells (ADSCs) have been demonstrated to attenuate the symptoms of PD in animal models. However, the mechanisms of the antifibrotic effects of ADSCs in PD remain to be fully elucidated. In the present study, the inhibitory effects and possible mechanism of ADSCs on the activation of MFs derived from rat penile tunica albuginea were investigated. ADSCs were obtained from the paratesticular fat of Sprague Dawley rats. MFs were transformed from rat penile tunica albuginea fibroblasts through stimulation with 5 ng/ml tumor growth factor-β1. Transwell cell cultures were adopted for co-culture of ADSCs and MFs. Western blot analysis was used to assess changes in the expression levels of α smooth muscle actin (αSMA), collagen I, phosphorylated (p)-SMAD family member 2 (Smad2), Smad2, ras homolog family member A (RhoA), Rho associated coiled-coil containing protein kinase (ROCK)1 and ROCK2, caspase3, caspase9, and matrix metalloproteinases (MMPs). Collagen gel assays were used to assess cell contractility. Additionally, the concentration of hydroxyproline in the culture medium was detected using commercially available kits. It was demonstrated that ADSCs reduced the expression of αSMA and collagen I of MFs. Furthermore, p-Smad2, RhoA, ROCK1 and ROCK2 expression was significantly reduced in the MFs+ADSCs group compared with that in the MFs-only culture, while the expression of MMPs (MMP2, MMP3, MMP9 and MMP13) and caspases (caspase3 and caspase9) was upregulated. In addition, ADSCs were able to downregulate the concentration of hydroxyproline in the culture medium of MFs and reverse the contraction of MFs. Collectively, these results suggested that ADSCs inhibited the activation of MFs, decreased collagen production, and suppressed the contraction of myofibroblasts, via Smad and RhoA/ROCK signaling pathways. Furthermore, ADSCs reduced the deposition of collagen and promoted the apoptosis of MFs via MMPs, and caspases. Accordingly, the application of ADSCs may provide a novel therapeutic strategy for PD.
Collapse
Affiliation(s)
- Hesong Jiang
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Qingqiang Gao
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyan Che
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Leilei Zhu
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Chen
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Yutian Dai
- Department of Andrology, Drum Tower Hospital, Affiliated to School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
44
|
Neuroprotective and Nerve Regenerative Approaches for Treatment of Erectile Dysfunction after Cavernous Nerve Injury. Int J Mol Sci 2017; 18:ijms18081794. [PMID: 28820434 PMCID: PMC5578182 DOI: 10.3390/ijms18081794] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 01/02/2023] Open
Abstract
Erectile dysfunction (ED) is a significant cause of reduced quality of life in men and their partners. Cavernous nerve injury (CNI) during pelvic surgery results in ED in greater than 50% of patients, regardless of additional patient factors. ED related to CNI is difficult to treat and typically poorly responsive to first- and second-line therapeutic options. Recently, a significant amount of research has been devoted to exploring neuroprotective and neuroregenerative approaches to salvage erectile function in patients with CNI. In addition, therapeutic options such as neuregulins, immunophilin ligands, gene therapy, stem cell therapy and novel surgical strategies, have shown benefit in pre-clinical, and limited clinical studies. In the era of personalized medicine, these new therapeutic technologies will be the future of ED treatment and are described in this review.
Collapse
|
45
|
Choo SH, Lee SW, Chae MR, Kang SJ, Sung HH, Han DH, Chun JN, Park JK, Kim CY, Kim HK, So I. Effects of eupatilin on the contractility of corpus cavernosal smooth muscle through nitric oxide-independent pathways. Andrology 2017; 5:1016-1022. [PMID: 28719725 DOI: 10.1111/andr.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone) is one of the main compounds present in Artemisia species. Eupatilin has both antioxidative and anti-inflammatory properties and a relaxation effect on vascular contraction regardless of endothelial function. We evaluated the relaxant effects of eupatilin on the corpus cavernosum (CC) of rabbits and the underlying mechanisms of its activity in human corpus cavernosum smooth muscle (CCSM) cells. Isolated rabbit CC strips were mounted in an organ bath system. A conventional whole-cell patch clamp technique was used to measure activation of calcium-sensitive K+ -channel currents in human CCSM cells. The relaxation effect of eupatilin was evaluated by cumulative addition (10-5 m ~ 3 × 10-4 m) to CC strips precontracted with 10-5 m phenylephrine. Western blotting analysis was performed to measure myosin phosphatase targeting subunit 1 (MYPT1) and protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17-kDa (CPI-17) expression and to evaluate the effect of eupatilin on the RhoA/Rho-kinase pathway. Eupatilin effectively relaxed the phenylephrine-induced tone in the rabbit CC strips in a concentration-dependent manner with an estimated EC50 value of 1.2 ± 1.6 × 10-4 m (n = 8, p < 0.05). Iberiotoxin and tetraethylammonium significantly reduced the relaxation effect (n = 8, p < 0.001 and p = 0.003, respectively). Removal of the endothelium or the presence of L-NAME or indomethacin did not affect the relaxation effect of eupatilin. In CCSM cells, the extracellular application of eupatilin 10-4 m significantly increased the outward currents, and the eupatilin-stimulated currents were significantly attenuated by treatment with 10-7 m iberiotoxin (n = 13, p < 0.05). Eupatilin reduced the phosphorylation level of MYPT1 at Thr853 of MLCP and CPI-17 at Thr38. Eupatilin-induced relaxation of the CCSM cells via NO-independent pathways. The relaxation effects of eupatilin on CCSM cells were partially due to activation of BKCa channels and inhibition of RhoA/Rho-kinase.
Collapse
Affiliation(s)
- S H Choo
- Department of Urology, Ajou University School of Medicine, Suwon, Korea
| | - S W Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M R Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S J Kang
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H H Sung
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - D H Han
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J N Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - J K Park
- Department of Urology, Institute for Medical Sciences, Medical School, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - C Y Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - H K Kim
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - I So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
SM = SM: The Interface of Systems Medicine and Sexual Medicine for Facing Non-Communicable Diseases in a Gender-Dependent Manner. Sex Med Rev 2017; 5:349-364. [DOI: 10.1016/j.sxmr.2017.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/23/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
|
47
|
Mahmood J, Connors CQ, Alexander AA, Pavlovic R, Samanta S, Soman S, Matsui H, Sopko NA, Bivalacqua TJ, Weinreich D, Ho CY, Eley J, Sawant A, Jackson IL, Vujaskovic Z. Cavernous Nerve Injury by Radiation Therapy May Potentiate Erectile Dysfunction in Rats. Int J Radiat Oncol Biol Phys 2017; 99:680-688. [PMID: 29280463 DOI: 10.1016/j.ijrobp.2017.06.2449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE/OBJECTIVES Radiation-induced erectile-dysfunction (RiED) is one of the most common side effects of radiation therapy (RT) and significantly reduces the quality of life (QoL) of cancer patients. Approximately 50% of prostate cancer patients experience RiED within 3 to 5 years after completion of RT. A series of vascular, muscular, and neurogenic injuries after prostate RT lead to RiED; however, the precise role of RT-induced neurogenic injury in RiED has not been fully established. The cavernous nerves (CN) are postganglionic parasympathetic nerves located beside the prostate gland that assist in penile erection. This study was designed to investigate the role of CN injury, tissue damage, and altered signaling pathways in an RiED rat model. METHODS AND MATERIALS Male rats were exposed to a single dose of 25 Gy prostate-confined RT. Erectile function was evaluated by intracavernous pressure (ICP) measurements conducted both 9 and 14 weeks after RT. Neuronal injury was evaluated in the CN using quantitative polymerase chain reaction, conduction studies, transmission electron microscopy, and immunoblotting. Masson trichrome staining was performed to elucidate fibrosis level in penile tissues. RESULTS There were significant alterations in the ICP (P<.0001) of RT rats versus non-RT rats. TEM analysis showed decreased myelination, increased microvascular damage, and progressive axonal atrophy of the CN fibers after RT. Electrophysiologic analysis showed significant impairment of the CN conduction velocity after RT. RT also significantly increased RhoA/Rho-associated protein kinase 1 (ROCK1) mRNA and protein expression. In addition, penile tissue showed increased apoptosis and fibrosis 14 weeks after RT. CONCLUSIONS RT-induced CN injury may contribute to RiED; this is therefore a rationale for developing novel therapeutic strategies to mitigate CN and tissue damage. Moreover, further investigation of the RhoA/ROCK pathway's role in mitigating RiED is necessary.
Collapse
Affiliation(s)
- Javed Mahmood
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Caroline Q Connors
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Allen A Alexander
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Radmila Pavlovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Santanu Samanta
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandrine Soman
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hotaka Matsui
- Department of Urology, University of Tokyo, Tokyo, Japan
| | - Nikolai A Sopko
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Trinity J Bivalacqua
- James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Weinreich
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - John Eley
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sawant
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Akakpo W, Musicki B, Burnett AL. cAMP-dependent regulation of RhoA/Rho-kinase attenuates detrusor overactivity in a novel mouse experimental model. BJU Int 2017; 120:143-151. [PMID: 28303627 DOI: 10.1111/bju.13847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate detrusor function and cAMP activation as a possible target for detrusor overactivity in an experimental model lacking a key denitrosylation enzyme, S-nitrosoglutathione reductase (GSNOR). MATERIALS AND METHODS GSNOR-deficient (GSNOR-/- ) (n = 30) and wild-type (WT) mice (n = 26) were treated for 7 days with the cAMP activator, colforsin (1 mg/kg), or vehicle intraperitoneally. Cystometric studies or molecular analyses of bladder specimens were performed. Bladder function indices and expression levels of proteins that regulate detrusor relaxation (nitric oxide synthase pathway) or contraction (RhoA/Rho-kinase pathway) and oxidative stress were assessed. For statistical analysis the Student's t-test and one-way analysis of variance were used. RESULTS GSNOR-/- mice had significantly higher (P < 0.05) voiding and non-voiding contraction frequencies compared to WT mice (Cohen's effect size values d = 1.82 and 2.52, respectively). Colforsin normalised these abnormalities (Cohen's effect size values d = 1.85 and 1.28, respectively). Western blot analyses showed an up-regulation of the RhoA/Rho-kinase pathway reflected by significantly higher (P < 0.05) phosphorylated myosin phosphatase target subunit 1 (P-MYPT-1) expression in GSNOR-/- mouse bladders, which was reversed by colforsin treatment. There was a higher level (P < 0.05) of gp91phox expression in the bladders of GSNOR-/- mice without significant change after colforsin treatment. Neuronal and endothelial nitric oxide synthase phosphorylation on Ser-1412 and Ser-1177, respectively, did not differ between GSNOR-/- and WT mouse bladders irrespective of colforsin treatment. CONCLUSION Impaired denitrosylation is associated with detrusor overactivity, which is linked with upregulated RhoA/Rho-kinase signalling. Colforsin reverses physiological and molecular abnormalities. This study describes a novel model of detrusor overactivity and suggests a possible basis for its treatment.
Collapse
Affiliation(s)
- William Akakpo
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
50
|
Bell M, Sopko NA, Matsui H, Hannan JL, Bivalacqua TJ. RhoA/ROCK activation in major pelvic ganglion mediates caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury. Neural Regen Res 2017; 12:572-573. [PMID: 28553331 PMCID: PMC5436349 DOI: 10.4103/1673-5374.205091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Michael Bell
- The James Buchannan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nikolai A Sopko
- The James Buchannan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hotaka Matsui
- The James Buchannan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Johanna L Hannan
- The James Buchannan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Trinity J Bivalacqua
- The James Buchannan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|