1
|
Chaturvedi AK, Dym O, Levin Y, Fluhr R. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity. PLANT PHYSIOLOGY 2024; 194:1059-1074. [PMID: 37787609 DOI: 10.1093/plphys/kiad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Plants have evolved photosynthetic regulatory mechanisms to maintain homeostasis in response to light changes during diurnal transitions and those caused by passing clouds or by wind. One such adaptation directs photosynthetic electron flow to a cyclic pathway to alleviate excess energy surges. Here, we assign a function to regulatory cysteines of PGR5-like protein 1A (PGRL1A), a constituent of the PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow (CEF) pathway. During step increases from darkness to low light intensity in Arabidopsis (Arabidopsis thaliana), the intermolecular disulfide of the PGRL1A 59-kDa complex was reduced transiently within seconds to the 28-kDa form. In contrast, step increases from darkness to high light stimulated a stable, partially reduced redox state in PGRL1A. Mutations of 2 cysteines in PGRL1A, Cys82 and Cys183, resulted in a constitutively pseudo-reduced state. The mutant displayed higher proton motive force (PMF) and nonphotochemical quenching (NPQ) than the wild type (WT) and showed altered donor and acceptor dynamic flow around PSI. These changes were found to correspond with the redox state of PGRL1A. Continuous light regimes did not affect mutant growth compared to the WT. However, under fluctuating regimes of high light, the mutant showed better growth than the WT. In contrast, in fluctuating regimes of low light, the mutant displayed a growth penalty that can be attributed to constant stimulation of CEF under low light. Treatment with photosynthetic inhibitors indicated that PGRL1A redox state control depends on the penultimate Fd redox state. Our results showed that redox state changes in PGRL1A are crucial to optimize photosynthesis.
Collapse
Affiliation(s)
- Amit Kumar Chaturvedi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Li K, Zhai L, Fu S, Wu T, Zhang X, Xu X, Han Z, Wang Y. Genome-wide analysis of the MdZR gene family revealed MdZR2.2-induced salt and drought stress tolerance in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111755. [PMID: 37290593 DOI: 10.1016/j.plantsci.2023.111755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The DNL-type zinc finger protein constitutes a zinc ribbon protein (ZR) family, which belongs to a branch of zinc finger protein and plays an essential role in response to abiotic stress. Here, we identified six apple (Malus domestica) MdZR genes. Based on their phylogenetic relationship and gene structure, the MdZR genes were divided into three categories, including MdZR1, MdZR2, and MdZR3. Subcellular results showed that the MdZRs are located on the nuclear and membrane. The transcriptome data showed that MdZR2.2 is expressed in various tissues. The expression analysis results showed that MdZR2.2 was significantly upregulated under salt and drought treatments. Thus, we selected MdZR2.2 for further research. Overexpression of MdZR2.2 in apple callus improved their tolerance to drought and salt stress and ability to scavenge reactive oxygen species (ROS). In contrast, transgenic apple roots with silenced MdZR2.2 grew more poorly than the wild type when subjected to salt and drought stress, which reduced their ability to scavenge ROS. To our knowledge, this is the first study to analyze the MdZR protein family. This study identified a gene that responds to drought and salt stress. Our findings lay a foundation for a comprehensive analysis of the MdZR family members.
Collapse
Affiliation(s)
- Keting Li
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Sitong Fu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, P.R. China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China.
| |
Collapse
|
3
|
Schult F, Le TN, Albersmeier A, Rauch B, Blumenkamp P, van der Does C, Goesmann A, Kalinowski J, Albers SV, Siebers B. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response. Nucleic Acids Res 2019; 46:7179-7192. [PMID: 29982548 PMCID: PMC6101591 DOI: 10.1093/nar/gky527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
Exposure to UV light can result in severe DNA damage. The alternative general transcription factor (GTF) TFB3 has been proposed to play a key role in the UV stress response in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Reporter gene assays confirmed that tfb3 is upregulated 90–180 min after UV treatment. In vivo tagging and immunodetection of TFB3 confirmed the induced expression at 90 min. Analysis of a tfb3 insertion mutant showed that genes encoding proteins of the Ups pili and the Ced DNA importer are no longer induced in a tfb3 insertion mutant after UV treatment, which was confirmed by aggregation assays. Thus, TFB3 plays a crucial role in the activation of these genes. Genome wide transcriptome analysis allowed a differentiation between a TFB3-dependent and a TFB3-independent early UV response. The TFB3-dependent UV response is characterized by the early induction of TFB3, followed by TFB3-dependent expression of genes involved in e.g. Ups pili formation and the Ced DNA importer. Many genes were downregulated in the tfb3 insertion mutant confirming the hypothesis that TFB3 acts as an activator of transcription. The TFB3-independent UV response includes the repression of nucleotide metabolism, replication and cell cycle progression in order to allow DNA repair.
Collapse
Affiliation(s)
- Frank Schult
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Thuong N Le
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CEBITEC), University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Bernadette Rauch
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Patrick Blumenkamp
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Chris van der Does
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CEBITEC), University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schaenzlestraße 1, 79104 Freiburg, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
4
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
5
|
Kochańczyk T, Drozd A, Krężel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins – insights into zinc regulation. Metallomics 2015; 7:244-57. [DOI: 10.1039/c4mt00094c] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relationship between the architecture and stability of zinc proteins.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Laboratory of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław, Poland
| | - Agnieszka Drozd
- Laboratory of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław, Poland
| | - Artur Krężel
- Laboratory of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław, Poland
| |
Collapse
|
6
|
|
7
|
Jun SH, Reichlen MJ, Tajiri M, Murakami KS. Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 2011; 46:27-40. [PMID: 21250781 DOI: 10.3109/10409238.2010.538662] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To elucidate the mechanism of transcription by cellular RNA polymerases (RNAPs), high-resolution X-ray crystal structures together with structure-guided biochemical, biophysical, and genetics studies are essential. The recently solved X-ray crystal structures of archaeal RNAP allow a structural comparison of the transcription machinery among all three domains of life. The archaea were once thought of closely related to bacteria, but they are now considered to be more closely related to the eukaryote at the molecular level than bacteria. According to these structures, the archaeal transcription apparatus, which includes RNAP and general transcription factors (GTFs), is similar to the eukaryotic transcription machinery. Yet, the transcription regulators, activators and repressors, encoded by archaeal genomes are closely related to bacterial factors. Therefore, archaeal transcription appears to possess an intriguing hybrid of eukaryotic-type transcription apparatus and bacterial-like regulatory mechanisms. Elucidating the transcription mechanism in archaea, which possesses a combination of bacterial and eukaryotic transcription mechanisms that are commonly regarded as separate and mutually exclusive, can provide data that will bring basic transcription mechanisms across all life forms.
Collapse
Affiliation(s)
- Sung-Hoon Jun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
8
|
Marrero Coto J, Ehrenhofer-Murray AE, Pons T, Siebers B. Functional analysis of archaeal MBF1 by complementation studies in yeast. Biol Direct 2011; 6:18. [PMID: 21392374 PMCID: PMC3062615 DOI: 10.1186/1745-6150-6-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Multiprotein-bridging factor 1 (MBF1) is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP) like proteins (e.g. Gcn4 in yeast) or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect)) and the TATA-box binding protein (TBP) in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH) domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1) and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ) as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human) the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ). Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus SCM1. Conclusions The absence of MBF1-interacting activators in the archaeal domain, the presence of a Zn ribbon motif in the divergent N-terminal domain of aMBF1 and the complementation experiments using archaeal- yeast chimeric proteins presented here suggests that archaeal MBF1 is not able to functionally interact with the transcription machinery and/or Gcn4 of S. cerevisiae. Based on modeling and structural prediction it is tempting to speculate that aMBF1 might act as a single regulator or non-essential transcription factor, which directly interacts with DNA via the positive charged linker or the basal transcription machinery via its Zn ribbon motif and the HTH domain. However, also alternative functions in ribosome biosynthesis and/or functionality have been discussed and therefore further experiments are required to unravel the function of MBF1 in Archaea. Reviewers This article was reviewed by William Martin, Patrick Forterre, John van der Oost and Fabian Blombach (nominated by Eugene V Koonin (United States)). For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Jeannette Marrero Coto
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Universitätsstr. 5, (S05 V03 F41), 45141 Essen, Germany
| | | | | | | |
Collapse
|
9
|
Liu Y, Yan Z, Chen N, Di X, Huang J, Guo G. Development and function of central cell in angiosperm female gametophyte. Genesis 2011; 48:466-78. [PMID: 20506265 DOI: 10.1002/dvg.20647] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The central cell characterizes the angiosperm female gametophyte (embryo sac or megagametophyte) in that it directly participates in "double fertilization" to initiate endosperm development, a feature distinguishing angiosperm from all other plant taxa. Polygonum-type central cell is a binucleate cell that, upon fertilization with one of the two sperm cells, forms triploid endosperm to nourish embryo development. Although the formation and the structure of central cell have well been elucidated, the molecular mechanisms for its specification and development remain largely unknown. The central cell plays a critical role in pollen tube guidance during pollination and in endosperm initiation after fertilization. Recently, a group of mutants affecting specific steps of central cell development and function have been identified, providing some clues in understanding these questions. This review summarizes our current knowledge about central cell development and function, and presents overview about hypotheses for its evolution.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:323-30. [PMID: 19820686 DOI: 10.1038/nature08548] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
Abstract
To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.
Collapse
|
11
|
Sanders BD, Jackson B, Marmorstein R. Structural basis for sirtuin function: what we know and what we don't. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1604-16. [PMID: 19766737 DOI: 10.1016/j.bbapap.2009.09.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/26/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022]
Abstract
The sirtuin (silent information regulator 2) proteins are NAD(+)-dependent deacetylases that are implicated in diverse biological processes including DNA regulation, metabolism, and longevity. Homologues of the prototypic yeast Sir2p have been identified in all three kingdoms of life, and while bacteria and archaea typically contain one to two sirtuins, eukaryotic organisms contain multiple members. Sirtuins are regulated in part by the cellular concentrations of the noncompetitive inhibitor, nicotinamide, and several synthetic modulators of these enzymes have been identified. The x-ray crystal structures of several sirtuin proteins in various liganded forms have been determined. This wealth of structural information, together with related biochemical studies, have provided important insights into the catalytic mechanism, substrate specificity, and inhibitory mechanism of sirtuin proteins. Implications for future structural studies to address outstanding questions in the field are also discussed.
Collapse
Affiliation(s)
- Brandi D Sanders
- The Wistar Institute and Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
Structure of the C-terminal domain of transcription factor IIB from Trypanosoma brucei. Proc Natl Acad Sci U S A 2009; 106:13242-7. [PMID: 19666603 DOI: 10.1073/pnas.0904309106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIB(C)). The tTFIIB(C) structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIB(C) contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.
Collapse
|
13
|
Paytubi S, White MF. The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription. Mol Microbiol 2009; 72:1487-99. [PMID: 19460096 DOI: 10.1111/j.1365-2958.2009.06737.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcription initiation factor B (TFB) is conserved in eukaryotes and archaea and has an essential role in the recruitment of RNA polymerase to the promoter and the initiation of transcription. The genome of Sulfolobus solfataricus and related crenarchaea contain three paralogues of the tfb gene. Two of them (tfb1 and tfb2) encode full-length TFB proteins. The third (tfb3) is significantly shorter than the other two, possessing an N-terminal Zn ribbon domain but lacking the B-finger and DNA binding domains. In S. solfataricus and Sulfolobus acidocaldarius, tfb3 is one of the most highly upregulated transcripts following exposure to UV irradiation. We demonstrate that S. solfataricus TFB3 binds to the RpoK subunit of RNA polymerase, an interaction dependent on the Zn ribbon motif of TFB3. TFB3 can also interact with the ternary complex of TBP and TFB1 bound to a DNA promoter. TFB3 stimulates transcription in vitro from several promoters in the presence of TFB1 and TBP. These observations are consistent with a model whereby TFB3 activates general transcription in trans, via an interaction with RNA polymerase in the pre-initiation complex. This could provide a mechanism for the modulation of transcription initiation in response to environmental stresses, such as DNA damage.
Collapse
Affiliation(s)
- Sonia Paytubi
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
14
|
Abstract
Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a pre-initiation complex. The general transcription factor TF (transcription factor) IIB plays a central role in the assembly of the pre-initiation complex, providing a bridge between promoter-bound TFIID and RNA polymerase II/TFIIF. We have characterized a series of TFIIB mutants in their ability to support transcription and recruit RNA polymerase II to the promoter. Our analyses identify several residues within the TFIIB zinc ribbon that are required for RNA polymerase II assembly. Using the structural models of TFIIB, we describe the interface between the TFIIB zinc ribbon region and RNA polymerase II.
Collapse
|
15
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
16
|
Tao Z, Gao P, Hoffman DW, Liu HW. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry 2008; 47:5804-13. [PMID: 18452307 DOI: 10.1021/bi800018a] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a multimodular nuclear protein that participates in many fundamental cellular activities. Stimulated by binding to nicked DNA, PARP-1 catalyzes poly(ADP-ribosyl)ation of the acceptor proteins using NAD (+) as a substrate. In this work, NMR methods were used to determine the solution structure of human PARP-1 protein. Domain C was found to contain a zinc-binding motif of three antiparallel beta-strands with four conserved cysteines positioned to coordinate the metal ligand, in addition to a helical region. The zinc-binding motif is structurally reminiscent of the "zinc-ribbon" fold, but with a novel spacing between the conserved cysteines (CX2CX12CX 9C). Domain C alone does not appear to bind to DNA. Interestingly, domain C is essential for PARP-1 activity, since a mixture containing nicked DNA and the PARP-1 ABDEF domains has only basal enzymatic activity, while the addition of domain C to the mixture initiated NAD (+) hydrolysis and the formation of poly(ADP-ribose), as detected by an NMR-based assay and autoradiography. The structural model for domain C in solution provides an important framework for further studies aimed at improving our understanding of how the various domains within the complex PARP-1 enzyme play their respective roles in regulating the enzyme activity when cells are under conditions of genotoxic stress.
Collapse
Affiliation(s)
- Zhihua Tao
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
17
|
Benson BK, Meades G, Grove A, Waldrop GL. DNA inhibits catalysis by the carboxyltransferase subunit of acetyl-CoA carboxylase: implications for active site communication. Protein Sci 2008; 17:34-42. [PMID: 18156466 DOI: 10.1110/ps.073186408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in the synthesis of long-chain fatty acids. The crystal structure of the Escherichia coli carboxyltransferase component of ACC revealed an alpha(2)beta(2) subunit composition with two active sites and, most importantly, a unique zinc domain in each alphabeta pair that is absent in the eukaryotic enzyme. We show here that carboxyltransferase binds DNA. Half-maximal saturation of different single-stranded or double-stranded DNA constructs is seen at 0.5-1.0 muM, and binding is cooperative and nonspecific. The substrates (malonyl-CoA and biocytin) inhibit DNA:carboxyltransferase complex formation. More significantly, single-stranded DNA, double-stranded DNA, and heparin inhibit the reaction catalyzed by carboxyltransferase, with single-stranded DNA and heparin acting as competitive inhibitors. However, double-inhibition experiments revealed that both DNA and heparin can bind the enzyme in the presence of a bisubstrate analog (BiSA), and the binding of BiSA has a very weak synergistic effect on the binding of the second inhibitor (DNA or heparin) and vice versa. In contrast, DNA and heparin can also bind to the enzyme simultaneously, but the binding of either molecule has a strong synergistic effect on binding of the other. An important mechanistic implication of these observations is that the dual active sites of ACC are functionally connected.
Collapse
Affiliation(s)
- Brian K Benson
- Division of Biochemistry and Molecular Biology, Louisana State University, Baton Rouge, Louisana 70803, USA
| | | | | | | |
Collapse
|
18
|
Wu B, Lukin J, Yee A, Lemak A, Semesi A, Ramelot TA, Kennedy MA, Arrowsmith CH. Solution structure of ribosomal protein L40E, a unique C4 zinc finger protein encoded by archaeon Sulfolobus solfataricus. Protein Sci 2008; 17:589-96. [PMID: 18218710 DOI: 10.1110/ps.073273008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The ribosomal protein L40E from archaeon Sulfolobus solfataricus is a component of the 50S ribosomal subunit. L40E is a 56-residue, highly basic protein that contains a C4 zinc finger motif, CRKC_X(10)_CRRC. Homologs are found in both archaea and eukaryotes but are not present in bacteria. Eukaryotic genomes encode L40E as a ubiquitin-fusion protein. L40E was absent from the crystal structure of euryarchaeota 50S ribosomal subunit. Here we report the three-dimensional solution structure of L40E by NMR spectroscopy. The structure of L40E is a three-stranded beta-sheet with a simple beta2beta1beta3 topology. There are two unique characteristics revealed by the structure. First, a large and ordered beta2-beta3 loop twists to pack across the one side of the protein. L40E contains a buried polar cluster comprising Lys19, Lys20, Cys22, Asn29, and Cys36. Second, the surface of L40E is almost entirely positively charged. Ten conserved basic residues are positioned on the two sides of the surface. It is likely that binding of zinc is essential in stabilizing the tertiary structure of L40E to act as a scaffold to create a broad positively charged surface for RNA and/or protein recognition.
Collapse
Affiliation(s)
- Bin Wu
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Proudfoot M, Sanders SA, Singer A, Zhang R, Brown G, Binkowski A, Xu L, Lukin JA, Murzin AG, Joachimiak A, Arrowsmith CH, Edwards AM, Savchenko AV, Yakunin AF. Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain. J Mol Biol 2007; 375:301-15. [PMID: 18021800 DOI: 10.1016/j.jmb.2007.10.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 12/22/2022]
Abstract
We have identified a novel family of proteins, in which the N-terminal cystathionine beta-synthase (CBS) domain is fused to the C-terminal Zn ribbon domain. Four proteins were overexpressed in Escherichia coli and purified: TA0289 from Thermoplasma acidophilum, TV1335 from Thermoplasma volcanium, PF1953 from Pyrococcus furiosus, and PH0267 from Pyrococcus horikoshii. The purified proteins had a red/purple color in solution and an absorption spectrum typical of rubredoxins (Rds). Metal analysis of purified proteins revealed the presence of several metals, with iron and zinc being the most abundant metals (2-67% of iron and 12-74% of zinc). Crystal structures of both mercury- and iron-bound TA0289 (1.5-2.0 A resolution) revealed a dimeric protein whose intersubunit contacts are formed exclusively by the alpha-helices of two cystathionine beta-synthase subdomains, whereas the C-terminal domain has a classical Zn ribbon planar architecture. All proteins were reversibly reduced by chemical reductants (ascorbate or dithionite) or by the general Rd reductase NorW from E. coli in the presence of NADH. Reduced TA0289 was found to be capable of transferring electrons to cytochrome C from horse heart. Likewise, the purified Zn ribbon protein KTI11 from Saccharomyces cerevisiae had a purple color in solution and an Rd-like absorption spectrum, contained both iron and zinc, and was reduced by the Rd reductase NorW from E. coli. Thus, recombinant Zn ribbon domains from archaea and yeast demonstrate an Rd-like electron carrier activity in vitro. We suggest that, in vivo, some Zn ribbon domains might also bind iron and therefore possess an electron carrier activity, adding another physiological role to this large family of important proteins.
Collapse
Affiliation(s)
- Michael Proudfoot
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Room 72, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC. The central cell plays a critical role in pollen tube guidance in Arabidopsis. THE PLANT CELL 2007; 19:3563-77. [PMID: 18055609 PMCID: PMC2174880 DOI: 10.1105/tpc.107.053967] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/28/2007] [Accepted: 11/04/2007] [Indexed: 05/18/2023]
Abstract
The sperm cell of flowering plants cannot migrate unaided and must be transported by the pollen tube cell of the male gametophyte to achieve successful fertilization. Long-distance pollen tube guidance is controlled by the seven-celled female gametophyte, the embryo sac. Previous reports showed that the synergid cell of the embryo sac is essential for pollen tube guidance. Here, we report the identification of a central cell guidance (ccg) mutant, which is defective in micropylar pollen tube guidance. CCG encodes a nuclear protein with an N-terminal conserved zinc beta-ribbon domain that is functionally interchangeable with that of TFIIB in yeast. This suggests that CCG might act as a transcription regulator for pollen tube guidance. CCG is expressed in the central cell of the female gametophyte. Expression of CCG in the central cell alone is sufficient to restore the normal pollen tube guidance phenotype, demonstrating that the central cell plays a critical role in pollen tube guidance.
Collapse
Affiliation(s)
- Yan-Hong Chen
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ye J, Cho SH, Fuselier J, Li W, Beckwith J, Rapoport TA. Crystal structure of an unusual thioredoxin protein with a zinc finger domain. J Biol Chem 2007; 282:34945-51. [PMID: 17913712 DOI: 10.1074/jbc.m704044200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many Gram-negative bacteria have two cytoplasmic thioredoxins, thioredoxin-1 and -2, encoded by the trxA and trxC genes, respectively. Both thioredoxins have the highly conserved WCGPC motif and function as disulfide-bond reductases. However, thioredoxin-2 has unique features: it has an N-terminal motif that binds a zinc ion, and its transcription is under the control of OxyR, which allows it to be up-regulated under oxidative stress. Here, we report the crystal structure of thioredoxin-2 from Rhodobacter capsulatus. The C-terminal region of thioredoxin-2 forms a canonical thioredoxin fold with a central beta-sheet consisting of five strands and four flanking alpha-helices on either side. The N-terminal zinc finger is composed of four short beta-strands (S1-S4) connected by three short loops (L1-L3). The four cysteines are at loops L1 and L3 and form a tetragonal binding site for a zinc ion. The zinc finger is close to the first beta-strand and first alpha-helix of the thioredoxin fold. Nevertheless, the zinc finger may not directly affect the oxidoreductase activity of thioredoxin-2 because the zinc finger is not near the active site of a protomer and because thioredoxin-2 is a monomer in solution. On the basis of structural similarity to the zinc fingers in Npl4 and Vps36, we propose that the N-terminal zinc finger of thioredoxin-2 mediates protein-protein interactions, possibly with its substrates or chaperones.
Collapse
Affiliation(s)
- Jiqing Ye
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Deng W, Roberts SGE. TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma 2007; 116:417-29. [PMID: 17593382 DOI: 10.1007/s00412-007-0113-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 02/01/2023]
Abstract
Accurate transcription of a gene by RNA polymerase II requires the assembly of a group of general transcription factors at the promoter. The general transcription factor TFIIB plays a central role in preinitiation complex assembly, providing a bridge between promoter-bound TFIID and RNA polymerase II. TFIIB makes extensive contact with the core promoter via two independent DNA-recognition modules. In addition to interacting with other general transcription factors, TFIIB directly modulates the catalytic center of RNA polymerase II in the transcription complex. Moreover, TFIIB has been proposed as a target of transcriptional activator proteins that act to stimulate preinitiation complex assembly. In this review, we will discuss our current understanding of these activities of TFIIB.
Collapse
Affiliation(s)
- Wensheng Deng
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
23
|
Viard T, de la Tour CB. Type IA topoisomerases: a simple puzzle? Biochimie 2006; 89:456-67. [PMID: 17141394 DOI: 10.1016/j.biochi.2006.10.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
Type IA topoisomerases are enzymes that can modify DNA topology. They form a distinct family of proteins present in all domains of life, from bacteria to archaea and higher eukaryotes. They are composed of two domains: a core domain containing all the conserved motifs involved in the trans-esterification reactions, and a carboxyl-terminal domain that is highly variable in size and sequence. The latter appears to interact with other proteins, defining the physiological use of the topoisomerase activity. The evolutionary relevance of this topoisomerase-cofactor complex, also known as the "toposome", as well as its enzymatic consequences are discussed in this review.
Collapse
Affiliation(s)
- Thierry Viard
- Nicholas Cozzarelli Laboratory, Molecular and Cell Biology Department, 16 Barker Hall, University of California, Berkeley, CA 94720-3204, USA.
| | | |
Collapse
|
24
|
Elsby LM, O'Donnell AJM, Green LM, Sharrocks AD, Roberts SGE. Assembly of transcription factor IIB at a promoter in vivo requires contact with RNA polymerase II. EMBO Rep 2006; 7:898-903. [PMID: 16878124 PMCID: PMC1559668 DOI: 10.1038/sj.embor.7400767] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 06/29/2006] [Accepted: 06/30/2006] [Indexed: 01/19/2023] Open
Abstract
The general transcription factor TFIIB has a central role in the assembly of the preinitiation complex at the promoter, providing a platform for the entry of RNA polymerase II/TFIIF. We used an RNA interference (RNAi)-based system in which TFIIB expression is ablated in vivo and replaced with a TFIIB derivative that contains a silent mutation and is refractory to the RNAi. Using this approach, we found that transcriptionally defective TFIIB amino-terminal mutants showed distinct effects on the basis of their ability to compete with wild-type TFIIB in vivo. Moreover, analysis of the TFIIB mutant derivatives by chromatin immunoprecipitation showed that promoter occupancy by TFIIB is dependent on the association with RNA polymerase II. Together, our results support a mode of preinitiation complex assembly in which TFIIB/RNA polymerase II recruitment to the promoter occurs in vivo.
Collapse
Affiliation(s)
- Laura M Elsby
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Amanda J M O'Donnell
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Laura M Green
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Stefan G E Roberts
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Hansen G, Harrenga A, Wieland B, Schomburg D, Reinemer P. Crystal structure of full length topoisomerase I from Thermotoga maritima. J Mol Biol 2006; 358:1328-40. [PMID: 16600296 DOI: 10.1016/j.jmb.2006.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Revised: 03/05/2006] [Accepted: 03/06/2006] [Indexed: 12/01/2022]
Abstract
DNA topoisomerases are a family of enzymes altering the topology of DNA by concerted breakage and rejoining of the phosphodiester backbone of DNA. Bacterial and archeal type IA topoisomerases, including topoisomerase I, topoisomerase III, and reverse gyrase, are crucial in regulation of DNA supercoiling and maintenance of genetic stability. The crystal structure of full length topoisomerase I from Thermotoga maritima was determined at 1.7A resolution and represents an intact and fully active bacterial topoisomerase I. It reveals the torus-like structure of the conserved transesterification core domain comprising domains I-IV and a tightly associated C-terminal zinc ribbon domain (domain V) packing against domain IV of the core domain. The previously established zinc-independence of the functional activity of T.maritima topoisomerase I is further supported by its crystal structure as no zinc ion is bound to domain V. However, the structural integrity is preserved by the formation of two disulfide bridges between the four Zn-binding cysteine residues. A functional role of domain V in DNA binding and recognition is suggested and discussed in the light of the structure and previous biochemical findings. In addition, implications for bacterial topoisomerases I are provided.
Collapse
Affiliation(s)
- Guido Hansen
- Bayer HealthCare AG, Pharma R and D Europe, Enabling Technologies, D-42096 Wuppertal, Germany
| | | | | | | | | |
Collapse
|
26
|
Okuda M, Tanaka A, Hanaoka F, Ohkuma Y, Nishimura Y. Structural insights into the asymmetric effects of zinc-ligand cysteine mutations in the novel zinc ribbon domain of human TFIIEalpha for transcription. J Biochem 2006; 138:443-9. [PMID: 16272138 DOI: 10.1093/jb/mvi138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The large subunit of TFIIE (TFIIEalpha) has a highly conserved zinc ribbon domain, which is essential for transcription. Recently, we determined the solution structure of this domain to be that of a novel zinc finger motif [Okuda et al. (2004) J. Biol. Chem. 279, 51395-51403]. On examination of the functions of four cysteine mutants of TFIIEalpha, in which each of four zinc-liganded cysteines was replaced by alanine, we found an interesting functional asymmetry; on a supercoiled template, the two C-terminal mutants did not show any transcriptional activity, however, the two N-terminal mutants retained about 20% activity. Furthermore, these two pairs of mutants showed distinct binding abilities as to several general transcription factors. To obtain structural insights into the asymmetry, here we have analyzed the structures of the four cysteine mutants of the zinc ribbon domain by CD and NMR. All four mutants possessed a characteristic partially folded structure coordinating with a zinc atom, despite the imperfect set of cysteine-ligands. However, they equilibrated with several structures including the random coil structure. Unexpectedly, the two N-terminal mutants mainly equilibrated with the random coil structure, while the two C-terminal ones mainly equilibrated with folded structures. The characteristic structure formation of each mutant was reversible, which totally depended on the zinc binding.
Collapse
Affiliation(s)
- Masahiko Okuda
- International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
27
|
Saxena A, Ma B, Schramm L, Hernandez N. Structure-function analysis of the human TFIIB-related factor II protein reveals an essential role for the C-terminal domain in RNA polymerase III transcription. Mol Cell Biol 2005; 25:9406-18. [PMID: 16227591 PMCID: PMC1265830 DOI: 10.1128/mcb.25.21.9406-9418.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Collapse
Affiliation(s)
- Ashish Saxena
- Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
28
|
Bartlett MS. Determinants of transcription initiation by archaeal RNA polymerase. Curr Opin Microbiol 2005; 8:677-84. [PMID: 16249119 DOI: 10.1016/j.mib.2005.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 10/13/2005] [Indexed: 12/27/2022]
Abstract
Transcription in Archaea is catalyzed by an RNA polymerase that is most similar to eukaryotic RNA polymerases both in subunit composition and in transcription initiation factor requirements. Recent studies on archaeal transcription in diverse members of this domain have contributed new details concerning the functions of promoters and transcription factors in guiding initiation by RNA polymerase, and phylogenetic arguments have allowed modeling of archaeal transcription initiation complexes by comparison with recently described models of eukaryotic and bacterial transcription initiation complexes. Important new advances in reconstitution of archaeal transcription complexes from fully recombinant components is permitting testing of hypotheses derived from and informed by these structural models, and will help bring the study of archaeal transcription to the levels of understanding currently enjoyed by bacterial and eukaryotic RNA polymerase II transcription.
Collapse
Affiliation(s)
- Michael S Bartlett
- Department of Biology, Portland State University, SB2 Room 246, 1719 SW 10th Avenue, Portland, OR 97201, USA.
| |
Collapse
|
29
|
Freire-Picos MA, Krishnamurthy S, Sun ZW, Hampsey M. Evidence that the Tfg1/Tfg2 dimer interface of TFIIF lies near the active center of the RNA polymerase II initiation complex. Nucleic Acids Res 2005; 33:5045-52. [PMID: 16147988 PMCID: PMC1201334 DOI: 10.1093/nar/gki825] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 08/23/2005] [Accepted: 08/23/2005] [Indexed: 11/13/2022] Open
Abstract
The ssu71 alleles of the TFG1 gene, which encodes the largest subunit of TFIIF, were isolated as suppressors of a TFIIB defect that affects the accuracy of transcription start site selection in the yeast Saccharomyces cerevisiae. Here we report that ssu71-1 also suppresses the cell growth and start site defects associated with an altered form of the Rpb1 subunit of RNA polymerase II (RNAP II). The ssu71-1 and ssu71-2 alleles were cloned and found to encode single amino acid replacements of glycine-363, either glycine to aspartic acid (G363D) or glycine to arginine (G363R). Two other charged replacements, G363E and G363K, were constructed by site-directed mutagenesis and suppress both TFIIB E62K and Rpb1 N445S, whereas neither G363A nor G363P exhibited any effect. G363 is phylogenetically conserved and its counterpart in human TFIIF (RAP74 G112) is located within the RAP74/RAP30 dimerization domain. We propose that the TFIIF dimerization domain is located in proximity to the B-finger of TFIIB near the active center of RNAP II where the TFIIB-TFIIF-RNAP II interface plays a key role in start site selection.
Collapse
Affiliation(s)
- M. Angeles Freire-Picos
- Departamento de Bioloxía Celular e Molecular, Area de Bioquímica e Bioloxía MolecularCampus da Zapateira S/N 1071 A Coruña, Spain
- Department of Biochemistry, Division of Nucleic Acids Enzymology, UMDNJ-Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Shankarling Krishnamurthy
- Department of Biochemistry, Division of Nucleic Acids Enzymology, UMDNJ-Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Zu-Wen Sun
- Department of Biochemistry, Division of Nucleic Acids Enzymology, UMDNJ-Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Michael Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, UMDNJ-Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| |
Collapse
|
30
|
Buendía-Orozco J, Guerrero A, Pastor N. Model of the TBP–TFIIB Complex from Plasmodium falciparum: Interface Analysis and Perspectives as a New Target for Antimalarial Design. Arch Med Res 2005; 36:317-30. [PMID: 15950069 DOI: 10.1016/j.arcmed.2005.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/24/2005] [Indexed: 01/21/2023]
Abstract
BACKGROUND Malaria affects 200-300 million individuals per year worldwide. Plasmodium falciparum is the causative agent of the most severe and mortal type of malaria. The need for new antimalarials comes from the widespread resistance to those in current use. New antimalarial targets are required to increase chemical diversity and effectiveness of the drugs. The research for such new targets and drug chemotypes is aided by structure-based drug design. We present a model of the TBP-TFIIB complex from P. falciparum (pfTBP-pfTFIIB) and a detailed study of the interactions at the TBP-TFIIB interface. METHODS The model was built using standard methodology, optimized energetically and evaluated structurally. We carried out an analysis of the interface considering its evolution, available experimental data on TBP and TFIIB mutants, and the main conserved and non-conserved interactions. To support the perspective of using this complex as a new target for rational antimalarial design, we present the comparison of the pfTBP-pfTFIIB interface with its human homolog. RESULTS Despite the high residue conservation at the interface, we identified a potential region, composed of species-specific residues that can be used for rational antimalarial design. CONCLUSIONS Currently there are no antimalarial drugs targeted to stop the nuclear transcription process, a vital event for all replication stages of P. falciparum. Due to its absolute requirement in transcription initiation, we consider the pfTBP-pfTFIIB interface as a new potential target for novel antimalarial chemotypes.
Collapse
Affiliation(s)
- Jacob Buendía-Orozco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, Mexico
| | | | | |
Collapse
|
31
|
Hodges JL, Leslie JH, Mosammaparast N, Guo Y, Shabanowitz J, Hunt DF, Pemberton LF. Nuclear import of TFIIB is mediated by Kap114p, a karyopherin with multiple cargo-binding domains. Mol Biol Cell 2005; 16:3200-10. [PMID: 15888545 PMCID: PMC1165404 DOI: 10.1091/mbc.e04-11-0990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear import and export is mediated by an evolutionarily conserved family of soluble transport factors, the karyopherins (referred to as importins and exportins). The yeast karyopherin Kap114p has previously been shown to import histones H2A and H2B, Nap1p, and a component of the preinitiation complex (PIC), TBP. Using a proteomic approach, we have identified several potentially new cargoes for Kap114p. These cargoes include another PIC component, the general transcription factor IIB or Sua7p, which interacted directly with Kap114p. Consistent with its role as a Sua7p import factor, deletion of KAP114 led to specific mislocalization of Sua7p to the cytoplasm. An interaction between Sua7p and TBP was also detected in cytosol, raising the possibility that both Sua7p and TBP can be coimported by Kap114p. We have also shown that Kap114p possesses multiple overlapping binding sites for its partners, Sua7p, Nap1p, and H2A and H2B, as well as RanGTP and nucleoporins. In addition, we have assembled an in vitro complex containing Sua7p, Nap1p, and histones H2A and H2B, suggesting that this Kap may import several proteins simultaneously. The import of more than one cargo at a time would increase the efficiency of each import cycle and may allow the regulation of coimported cargoes.
Collapse
Affiliation(s)
- Jennifer L Hodges
- Center for Cell Signaling, Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
During the past few decades, it has become clear that microorganisms can thrive under the most diverse conditions, including extremes of temperature, pressure, salinity and pH. Most of these extremophilic organisms belong to the third domain of life, that of the Archaea. The organisms of this domain are of particular interest because most informational systems that are associated with archaeal genomes and their expression are reminiscent of those seen in Eucarya, whereas, most of their metabolic aspects are similar to those of Bacteria. A better understanding of the regulatory mechanisms of gene expression in Archaea will, therefore, help to integrate the body of knowledge regarding the regulatory mechanisms that underlie gene expression in all three domains of life.
Collapse
Affiliation(s)
- Mohamed Ouhammouch
- Center for Molecular Genetics and Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| |
Collapse
|
33
|
Abstract
Transcription by RNA polymerase II requires the assembly of the general transcription factors at the promoter to form a preinitiaiton complex. TFIIB (transcription factor IIB) plays a central role in this process, mediating the recruitment of RNA polymerase II and positioning it over the transcription start site. The assembly of TFIIB at the promoter can be a limiting event and several activator proteins have been shown to target TFIIB recruitment in the process of transcriptional stimulation. TFIIB is composed of two domains that engage in an intramolecular interaction. Indeed, the conformation of TFIIB has been found to underpin the function of this general transcription factor. Here we discuss our current understanding of TFIIB conformation and its role in transcription control.
Collapse
Affiliation(s)
- L M Elsby
- School of Biological Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
34
|
Gutiérrez P, Osborne MJ, Siddiqui N, Trempe JF, Arrowsmith C, Gehring K. Structure of the archaeal translation initiation factor aIF2 beta from Methanobacterium thermoautotrophicum: implications for translation initiation. Protein Sci 2004; 13:659-67. [PMID: 14978306 PMCID: PMC2286745 DOI: 10.1110/ps.03506604] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
aIF2 beta is the archaeal homolog of eIF2 beta, a member of the eIF2 heterotrimeric complex, implicated in the delivery of Met-tRNA(i)(Met) to the 40S ribosomal subunit. We have determined the solution structure of the intact beta-subunit of aIF2 from Methanobacterium thermoautotrophicum. aIF2 beta is composed of an unfolded N terminus, a mixed alpha/beta core domain and a C-terminal zinc finger. NMR data shows the two folded domains display restricted mobility with respect to each other. Analysis of the aIF2 gamma structure docked to tRNA allowed the identification of a putative binding site for the beta-subunit in the ternary translation complex. Based on structural similarity and biochemical data, a role for the different secondary structure elements is suggested.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Binding Sites/genetics
- Cloning, Molecular
- Databases, Protein
- Guanosine Triphosphate/chemistry
- Guanosine Triphosphate/metabolism
- Methanobacterium/chemistry
- Methanobacterium/genetics
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Peptide Chain Initiation, Translational
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Recombinant Proteins/chemistry
- Sequence Homology, Amino Acid
- Static Electricity
- Structural Homology, Protein
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- Pablo Gutiérrez
- McGill University, Department of Biochemistry, McIntyre Medical Science Building, 3655 Promenade Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Chen HT, Hahn S. Mapping the Location of TFIIB within the RNA Polymerase II Transcription Preinitiation Complex. Cell 2004; 119:169-80. [PMID: 15479635 DOI: 10.1016/j.cell.2004.09.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 09/03/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Biochemical probes positioned on the surface of the general transcription factor TFIIB were used to probe the architecture of the RNA polymerase II (Pol II) transcription preinitiation complex (PIC). In PICs, the TFIIB linker and core domains are positioned over the central cleft and wall of Pol II. This positioning is not observed in the smaller Pol II-TFIIB complex. These results lead to a new model for the structure of the PIC, which agrees with most previously documented protein-DNA interactions within Pol II and archaea PICs. Specific interaction of the TFIIB core domain with Pol II positions and orients the promoter DNA over the Pol II central cleft, and TBP-DNA bending leads to bending of the promoter around the surface of Pol II. The TFIIF subunit Tfg1 was found in close proximity to the TFIIB B finger, linker, and core domains, suggesting that these two factors closely cooperate during initiation.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Avenue North, Seattle, WA 98109 USA
| | | |
Collapse
|
36
|
Okuda M, Tanaka A, Arai Y, Satoh M, Okamura H, Nagadoi A, Hanaoka F, Ohkuma Y, Nishimura Y. A novel zinc finger structure in the large subunit of human general transcription factor TFIIE. J Biol Chem 2004; 279:51395-403. [PMID: 15385556 DOI: 10.1074/jbc.m404722200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger domain in the large subunit of TFIIE (TFIIEalpha) is phylogenetically conserved and is essential for transcription. Here, we determined the solution structure of this domain by using NMR. It consisted of one alpha-helix and five beta-strands, showing novel features distinct from previously determined zinc-binding structures. We created point mutants of TFIIEalpha in this domain and examined their binding abilities to other general transcription factors as well as their transcription activities. Four Zn(2+)-ligand mutants, in which each of cysteine residues at positions 129, 132, 154, and 157 was replaced by alanine, possessed no transcription activities on a linearized template, whereas, on a supercoiled template, interesting functional asymmetry was observed: although the C-terminal two mutants abolished transcription activity (<5%), the N-terminal two mutants retained about 20% activities. The N-terminal two mutants bound stronger to the small subunit of TFIIF than the wild type and the C-terminal two mutants were impaired in their binding abilities to the XPB subunits of TFIIH. These suggest that the structural integrity of the zinc finger domain is essential for the TFIIE function, particularly in the transition from the transcription initiation to elongation and the conformational tuning of this domain for appropriate positioning of TFIIF, TFIIH, and polymerase II would be needed depending on the situation and timing.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Integrated Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dixit V, Bini E, Drozda M, Blum P. Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus. Antimicrob Agents Chemother 2004; 48:1993-9. [PMID: 15155190 PMCID: PMC415588 DOI: 10.1128/aac.48.6.1993-1999.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/16/2003] [Accepted: 02/19/2004] [Indexed: 11/20/2022] Open
Abstract
Mercury has a long history as an antimicrobial agent effective against eukaryotic and prokaryotic organisms. Despite its prolonged use, the basis for mercury toxicity in prokaryotes is not well understood. Archaea, like bacteria, are prokaryotes but they use a simplified version of the eukaryotic transcription apparatus. This study examined the mechanism of mercury toxicity to the archaeal prokaryote Sulfolobus solfataricus. In vivo challenge with mercuric chloride instantaneously blocked cell division, eliciting a cytostatic response at submicromolar concentrations and a cytocidal response at micromolar concentrations. The cytostatic response was accompanied by a 70% reduction in bulk RNA synthesis and elevated rates of degradation of several transcripts, including tfb-1, tfb-2, and lacS. Whole-cell extracts prepared from mercuric chloride-treated cells or from cell extracts treated in vitro failed to support in vitro transcription of 16S rRNAp and lacSp promoters. Extract-mixing experiments with treated and untreated extracts excluded the occurrence of negative-acting factors in the mercury-treated cell extracts. Addition of transcription factor B (TFB), a general transcription factor homolog of eukaryotic TFIIB, to mercury-treated cell extracts restored >50% of in vitro transcription activity. Consistent with this finding, mercuric ion treatment of TFB in vitro inactivated its ability to restore the in vitro transcription activity of TFB-immunodepleted cell extracts. These findings indicate that the toxicity of mercuric ion in S. solfataricus is in part the consequence of transcription inhibition due to TFB-1 inactivation.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/genetics
- Archaeal Proteins/immunology
- Blotting, Northern
- Colony Count, Microbial
- DNA, Bacterial/drug effects
- DNA, Bacterial/genetics
- Mercury/toxicity
- Mice
- RNA, Bacterial/analysis
- RNA, Bacterial/biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/biosynthesis
- Recombinant Proteins/genetics
- Sulfolobus/drug effects
- Sulfolobus/genetics
- Sulfolobus/growth & development
- Transcription Factor TFIIB/genetics
- Transcription Factor TFIIB/immunology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Vidula Dixit
- George Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
38
|
Chen BS, Hampsey M. Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation. Mol Cell Biol 2004; 24:3983-91. [PMID: 15082791 PMCID: PMC387735 DOI: 10.1128/mcb.24.9.3983-3991.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 10/31/2003] [Accepted: 02/02/2004] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB is required for accurate initiation, although the mechanism by which RNA polymerase II (RNAP II) identifies initiation sites is not well understood. Here we describe results from genetic and biochemical analyses of an altered form of yeast TFIIB containing an arginine-78 --> cysteine (R78C) replacement in the "B-finger" domain. TFIIB R78C shifts start site selection downstream of normal and confers a cold-sensitive growth defect (Csm(-)). Suppression of the R78C Csm(-) phenotype identified a functional interaction between TFIIB and the Rpb2 subunit of RNAP II and defined a novel role for Rpb2 in start site selection. The rpb2 suppressor encodes a glycine-369 --> serine (G369S) replacement, located in the "lobe" domain of Rpb2 and near the Rpb9 subunit, which was identified previously as an effector of start site selection. The Rpb2-Rpb9 "lobe-jaw" region of RNAP II is downstream of the catalytic center and distal to the site of RNAP II-TFIIB interaction. A TFIIB R78C mutant extract was defective for promoter-specific run-on transcription but yielded an altered pattern of abortive initiation products, indicating that the R78C defect does not preclude initiation. The sua7-3 rpb2-101 double mutant was sensitive to 6-azauracil in vivo and to nucleoside triphosphate substrate depletion in vitro. In the context of the recent X-ray structure of the yeast RNAP II-TFIIB complex, these results define a functional interaction between the B-finger domain of TFIIB and the distal lobe-jaw region of RNAP II and provide insight into the mechanism of start site selection.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
39
|
Glossop JA, Dafforn TR, Roberts SGE. A conformational change in TFIIB is required for activator-mediated assembly of the preinitiation complex. Nucleic Acids Res 2004; 32:1829-35. [PMID: 15037660 PMCID: PMC390344 DOI: 10.1093/nar/gkh504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/14/2022] Open
Abstract
TFIIB plays a pivotal role during assembly of the RNA polymerase II transcription preinitiation complex. TFIIB is composed of two domains that engage in an intramolecular interaction that can be disrupted by the VP16 activation domain. In this study, we describe a novel human TFIIB derivative harbouring two point mutations in the highly conserved N-terminal charged cluster domain. This mutant, TFIIB R53E:R66E, exhibits an enhanced affinity in its intramolecular interaction when compared with wild-type TFIIB. Consistent with this, the mutant displays a significantly reduced affinity for VP16. However, its ability to complex with TATA-binding protein at a model promoter is equivalent to that of wild-type TFIIB. Furthermore, this TFIIB derivative is able to support high order preinitiation complex assembly in the absence of an activator. Strikingly though, an activator fails to recruit the TFIIB mutant to the promoter. Taken together, our results show that a TFIIB conformational change is critical for the formation of activator-dependent transcription complexes.
Collapse
Affiliation(s)
- James A Glossop
- School of Biological Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
40
|
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. A Novel Zinc-binding Motif Revealed by Solution Structures of DNA-binding Domains of Arabidopsis SBP-family Transcription Factors. J Mol Biol 2004; 337:49-63. [PMID: 15001351 DOI: 10.1016/j.jmb.2004.01.015] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/09/2004] [Accepted: 01/14/2004] [Indexed: 11/30/2022]
Abstract
SQUAMOSA promoter binding proteins (SBPs) form a major family of plant-specific transcription factors related to flower development. Although SBPs are heterogeneous in primary structure, they share a highly conserved DNA-binding domain (DBD) that has been suggested to be zinc binding. Here we report the NMR solution structures of DBDs of two SBPs of Arabidopsis thaliana, SPL4 and SPL7. The two share essentially the same structural features. Each structure contains two zinc-binding sites consisting of eight Cys or His residues in a Cys3HisCys2HisCys or Cys6HisCys sequence motif in which the first four residues coordinate to one zinc and the last four coordinate to the other. These structures are dissimilar to other known zinc-binding structures, and thus represent a novel type of zinc-binding motif. The electrostatic profile on the surface suggested that a continuous region, including all the conserved basic residues, is involved in the DNA binding, the mode of which is likely to be novel as well.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Age Dimension Research Center, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bushnell DA, Westover KD, Davis RE, Kornberg RD. Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms. Science 2004; 303:983-8. [PMID: 14963322 DOI: 10.1126/science.1090838] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Hybridization
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- TATA Box
- TATA-Box Binding Protein/chemistry
- TATA-Box Binding Protein/metabolism
- Templates, Genetic
- Transcription Factor TFIIB/chemistry
- Transcription Factor TFIIB/metabolism
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Zinc/chemistry
Collapse
Affiliation(s)
- David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | |
Collapse
|
42
|
Zhao X, Herr W. Role of the inhibitory DNA-binding surface of human TATA-binding protein in recruitment of human TFIIB family members. Mol Cell Biol 2003; 23:8152-60. [PMID: 14585974 PMCID: PMC262358 DOI: 10.1128/mcb.23.22.8152-8160.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TATA box recognition by TATA-binding protein (TBP) is a key step in transcriptional initiation complex assembly on TATA-box-containing RNA polymerase (Pol) II and III promoters. This process is inhibited by the inhibitory DNA-binding (IDB) surface on the human TBP core domain (TBP(CORE)) and is stimulated by promoter-specific basal transcription factors, such as two human TFIIB family members, the Pol II factor TFIIB and the Pol III factor Brf2, which is required for transcription from TATA-box-containing Pol III promoters. In contrast, the third TFIIB family member, Brf1, which is required for transcription from TATA-less Pol III promoters, does not stimulate TBP binding to the TATA box. We show here that in addition to its role in regulating TBP binding to a TATA box, the TBP IDB surface is unexpectedly involved in TBP association with all three TFIIB family members. Interestingly, the loss of IDB function has specific and diverse effects on each TFIIB family member. Indeed, the IDB and prototypical TFIIB contact surfaces of TBP, which lie on opposite sides of the TBP(CORE), cooperate to form the wild-type TFIIB-TBP-TATA box complex. These results reveal how, through differential usage of opposite surfaces of the TBP(CORE), TBP can achieve versatility in the assembly of Pol II and Pol III promoter complexes with TFIIB family proteins.
Collapse
Affiliation(s)
- Xuemei Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
43
|
Bartlett MS, Thomm M, Geiduschek EP. Topography of the euryarchaeal transcription initiation complex. J Biol Chem 2003; 279:5894-903. [PMID: 14617625 DOI: 10.1074/jbc.m311429200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.
Collapse
Affiliation(s)
- Michael S Bartlett
- Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
44
|
Renfrow MB, Naryshkin N, Lewis LM, Chen HT, Ebright RH, Scott RA. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J Biol Chem 2003; 279:2825-31. [PMID: 14597623 DOI: 10.1074/jbc.m311433200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation in all three domains of life requires the assembly of large multiprotein complexes at DNA promoters before RNA polymerase (RNAP)-catalyzed transcript synthesis. Core RNAP subunits show homology among the three domains of life, and recent structural information supports this homology. General transcription factors are required for productive transcription initiation complex formation. The archaeal general transcription factors TATA-element-binding protein (TBP), which mediates promoter recognition, and transcription factor B (TFB), which mediates recruitment of RNAP, show extensive homology to eukaryal TBP and TFIIB. Crystallographic information is becoming available for fragments of transcription initiation complexes (e.g. RNAP, TBP-TFB-DNA, TBP-TFIIB-DNA), but understanding the molecular topography of complete initiation complexes still requires biochemical and biophysical characterization of protein-protein and protein-DNA interactions. In published work, systematic site-specific protein-DNA photocrosslinking has been used to define positions of RNAP subunits and general transcription factors in bacterial and eukaryal initiation complexes. In this work, we have used systematic site-specific protein-DNA photocrosslinking to define positions of RNAP subunits and general transcription factors in an archaeal initiation complex. Employing a set of 41 derivatized DNA fragments, each having a phenyl azide photoactivable crosslinking agent incorporated at a single, defined site within positions -40 to +1 of the gdh promoter of the hyperthermophilic marine archaea, Pyrococcus furiosus (Pf), we have determined the locations of PfRNAP subunits PfTBP and PfTFB relative to promoter DNA. The resulting topographical information supports the striking homology with the eukaryal initiation complex and permits one major new conclusion, which is that PfTFB interacts with promoter DNA not only in the TATA-element region but also in the transcription-bubble region, near the transcription start site. Comparison with crystallographic information implicates the PfTFB N-terminal domain in the interaction with the transcription-bubble region. The results are discussed in relation to the known effects of substitutions in the TFB and TFIIB N-terminal domains on transcription initiation and transcription start-site selection.
Collapse
Affiliation(s)
- Matthew B Renfrow
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-2256, USA
| | | | | | | | | | | |
Collapse
|
45
|
Meinhart A, Blobel J, Cramer P. An Extended Winged Helix Domain in General Transcription Factor E/IIEα. J Biol Chem 2003; 278:48267-74. [PMID: 13679366 DOI: 10.1074/jbc.m307874200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of eukaryotic mRNA transcription requires melting of promoter DNA with the help of the general transcription factors TFIIE and TFIIH. Here we define a conserved and functionally essential N-terminal domain in TFE, the archaeal homolog of the large TFIIE subunit alpha. X-ray crystallography shows that this TFE domain adopts a winged helix-turn-helix (winged helix) fold, extended by specific alpha-helices at the N and C termini. Although the winged helix fold is often found in DNA-binding proteins, we show that TFE is not a typical DNA-binding winged helix protein, because its putative DNA-binding face shows a negatively charged groove and an unusually long wing, and because the domain lacks DNA-binding activity in vitro. The groove and a conserved hydrophobic surface patch on the additional N-terminal alpha-helix may, however, allow for interactions with other general transcription factors and RNA polymerase. Homology modeling shows that the TFE domain is conserved in TFIIE alpha, including the potential functional surfaces.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- DNA-Directed RNA Polymerases/chemistry
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Selenomethionine/metabolism
- Sequence Homology, Amino Acid
- Sigma Factor/metabolism
- Sulfolobus/metabolism
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Anton Meinhart
- Institute of Biochemistry, Gene Center, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
46
|
Abstract
RNA polymerase II (Pol II) is recruited to promoters by interaction with general transcription factors. The zinc ribbon domain of the general factor TFIIB is essential for Pol II recruitment. Site-specific photocrosslinking and directed hydroxyl radical probing were used to map the location of the TFIIB zinc ribbon domain on Pol II within the transcription preinitiation complex (PIC). These results, along with mutational analysis, suggest that in the PIC, the TFIIB ribbon domain interacts with a surface of the Pol II Dock domain where it overlaps the RNA exit point. This surface is best conserved in polymerases that require a TFIIB-like factor. Our results suggest a general mechanism for interaction of TFIIB-like factors and RNA polymerases and a mechanism for the function of the ribbon domain.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Avenue N., Mail Stop A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
47
|
Männistö RH, Grahn AM, Bamford DH, Bamford JKH. Transcription of bacteriophage PM2 involves phage-encoded regulators of heterologous origin. J Bacteriol 2003; 185:3278-87. [PMID: 12754225 PMCID: PMC155381 DOI: 10.1128/jb.185.11.3278-3287.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage PM2 is the only described member of the Corticoviridae family. It is an icosahedral dsDNA virus with a membrane residing underneath the protein coat. PM2 infects some gram-negative Pseudoalteromonas spp. In the present study, we mapped the viral promoters and showed that the PM2 genome consists of three operons. Four new virus genes were assigned based on their function in transcription. Proteins P15 and P16 are shown to repress early transcription, and proteins P13 and P14 are shown to activate late transcription events. The early regulatory region, containing genes for proteins P15 and P16, as well as the newly identified early promoter region in PM2, has significant sequence similarity with the Pseudoalteromonas pAS28 plasmid. P14, the transcription activator for the structural genes, has a zinc finger motif homologous to archaeal and eukaryotic TFIIS-type regulatory factors.
Collapse
Affiliation(s)
- Riina H Männistö
- Department of Biosciences and Institute of Biotechnology, Viikki Biocenter, FIN-00014, University of Helsinki, Finland
| | | | | | | |
Collapse
|
48
|
Zeng X, Zhang D, Dorsey M, Ma J. Hypomutable regions of yeast TFIIB in a unigenic evolution test represent structural domains. Gene 2003; 309:49-56. [PMID: 12727357 DOI: 10.1016/s0378-1119(03)00492-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As genome sequences of many organisms - including humans - are being decoded, there is a great need for genetic tools to analyze newly discovered genes/proteins. A 'unigenic evolution' approach has been previously proposed for dissecting protein domains, which is based on the assumption that functionally important regions of a protein may tolerate missense mutations less well than other regions. We describe a unigenic evolution analysis of general transcription factor IIB (TFIIB) - a protein that is well characterized both structurally and functionally - to better understand the molecular basis of this genetic approach. The overall distribution profile of hypomutable regions within yeast TFIIB correlates extremely well with the known compact structural domains, suggesting that the unigenic evolution approach can help reveal structural properties of a protein. We further show that a small region located immediately carboxyl-terminal to the zinc ribbon motif is functionally important despite its strong hypermutability. Our study further demonstrates the usefulness of the unigenic evolution approach in dissecting protein domains, but suggests that the mutability of different regions of a protein in such a test is determined primarily by their structural properties.
Collapse
Affiliation(s)
- Xiao Zeng
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
49
|
Logan DT, Mulliez E, Larsson KM, Bodevin S, Atta M, Garnaud PE, Sjoberg BM, Fontecave M. A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase. Proc Natl Acad Sci U S A 2003; 100:3826-31. [PMID: 12655046 PMCID: PMC153006 DOI: 10.1073/pnas.0736456100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Indexed: 11/18/2022] Open
Abstract
A Zn(Cys)(4) center has been found in the C-terminal region of the crystal structure of the anaerobic class III ribonucleotide reductase (RNR) from bacteriophage T4. The metal center is structurally related to the zinc ribbon motif and to rubredoxin and rubrerythrin. Mutant enzymes of the homologous RNR from Escherichia coli, in which the coordinating cysteines, conserved in almost all known class III RNR sequences, have been mutated into alanines, are shown to be inactive as the result of their inability to generate the catalytically essential glycyl radical. The possible roles of the metal center are discussed in relationship to the currently proposed reaction mechanism for generation of the glycyl radical in class III RNRs.
Collapse
Affiliation(s)
- Derek T Logan
- Department of Molecular Biophysics, Lund University, Box 124, 221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003; 31:532-50. [PMID: 12527760 PMCID: PMC140525 DOI: 10.1093/nar/gkg161] [Citation(s) in RCA: 644] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 09/13/2002] [Accepted: 11/18/2002] [Indexed: 11/13/2022] Open
Abstract
Zinc fingers are small protein domains in which zinc plays a structural role contributing to the stability of the domain. Zinc fingers are structurally diverse and are present among proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins and small molecules. Here we present a comprehensive classification of zinc finger spatial structures. We find that each available zinc finger structure can be placed into one of eight fold groups that we define based on the structural properties in the vicinity of the zinc-binding site. Three of these fold groups comprise the majority of zinc fingers, namely, C2H2-like finger, treble clef finger and the zinc ribbon. Evolutionary relatedness of proteins within fold groups is not implied, but each group is divided into families of potential homologs. We compare our classification to existing groupings of zinc fingers and find that we define more encompassing fold groups, which bring together proteins whose similarities have previously remained unappreciated. We analyze functional properties of different zinc fingers and overlay them onto our classification. The classification helps in understanding the relationship between the structure, function and evolutionary history of these domains. The results are available as an online database of zinc finger structures.
Collapse
Affiliation(s)
- S Sri Krishna
- Department of Biochemistry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.
| | | | | |
Collapse
|