1
|
Kuznetsov AS, Zamaletdinov MF, Bershatsky YV, Urban AS, Bocharova OV, Bennasroune A, Maurice P, Bocharov EV, Efremov RG. Dimeric states of transmembrane domains of insulin and IGF-1R receptors: Structures and possible role in activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183417. [PMID: 32710851 DOI: 10.1016/j.bbamem.2020.183417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023]
Abstract
Despite the biological significance of insulin signaling, the molecular mechanisms of activation of the insulin receptor (IR) and other proteins from its family remain elusive. Current hypothesis on signal transduction suggests ligand-triggered structural changes in the extracellular domain followed by transmembrane (TM) domains closure and dimerization leading to trans-autophosphorylation and kinase activity in intracellular segments of the receptor. Using NMR spectroscopy, we detected dimerization of isolated TM segments of IR in different membrane-mimicking environments and observed multiple signals of NH groups of protein backbone possibly corresponding to several dimer conformations. Taking available experimental data as constraints, several atomistic models of dimeric TM domains of IR and insulin-like growth factor 1 (IGF-1R) receptors were elaborated. Molecular dynamics simulations of IR ectodomain revealed noticeable collective movements potentially responsible for closure of the C-termini of FnIII-3 domains and spatial approaching of TM helices upon insulin-induced receptor activation. In addition, we demonstrated that the intracellular part of the receptor does not impose restrictions on the positioning of TM helices in the membrane. Finally, we used two independent structure prediction methods to generate a series of dimer conformations followed by their cluster analysis and dimerization free energy estimation to select the best dimer models. Biological relevance of the later was further tested via comparison of the hydrophobic organization of TM helices for both wild-type receptors and their mutants. Based on these data, the ability of several segments from other proteins to functionally replace IR and/or IGF-1R TM domains was explained.
Collapse
Affiliation(s)
- Andrey S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow 101000, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudnyi 141700, Russian Federation
| | - Miftakh F Zamaletdinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation
| | - Yaroslav V Bershatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudnyi 141700, Russian Federation
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudnyi 141700, Russian Federation
| | - Olga V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudnyi 141700, Russian Federation
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudnyi 141700, Russian Federation
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow 101000, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, Dolgoprudnyi 141700, Russian Federation.
| |
Collapse
|
2
|
Hasan M, Patel D, Ellis N, Brown SP, Lewandowski JR, Dixon AM. Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane Fluidity and Cholesterol. J Membr Biol 2019; 252:357-369. [DOI: 10.1007/s00232-019-00075-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
3
|
pH dependent membrane binding of the Solanum tuberosum plant specific insert: An in silico study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2608-2618. [PMID: 30291921 DOI: 10.1016/j.bbamem.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
The Solanum tuberosum plant-specific insert (StPSI) has been shown to possess potent antimicrobial activity against both human and plant pathogens. Furthermore, in vitro, the StPSI is capable of fusing phospholipid vesicles, provided the conditions of net anionic vesicle charge and acidic pH are met. Constant pH replica-exchange simulations indicate several acidic residues on the dimer have highly perturbed pKas (<3.0; E15, D28, E85 & E100) due to involvement in salt bridges. After setting the pH of the system to either 3.0 or 7.4, all-atom simulations provided details of the effect of pH on secondary structural elements, particularly in the previously unresolved crystallographic structure of the loop section. Coarse-grained dimer-bilayer simulations demonstrated that at pH 7.4, the dimer had no affinity for neutral or anionic membranes over the course of 1 μs simulations. Conversely, at pH 3.0 two binding modes were observed. Mode 1 is mediated primarily via strong N-terminal interactions on one monomer only, whereas in mode 2, N- and C-terminal residues of one monomer and numerous polar and basic residues on the second monomer, particularly in the third helix, participate in membrane interactions. Mode 2 was accompanied by re-orientation of the dimer to a more vertical position with respect to helices 1 and 4, positioning the dimer for membrane interactions. These results offer the first examination at near-atomic resolution of residues mediating the StPSI-membrane interactions, and allow for the postulation of a possible fusion mechanism.
Collapse
|
4
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
5
|
Sarabipour S. Parallels and Distinctions in FGFR, VEGFR, and EGFR Mechanisms of Transmembrane Signaling. Biochemistry 2017. [DOI: 10.1021/acs.biochem.7b00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational
Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Therien JPD, Baenziger JE. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Sci Rep 2017; 7:450. [PMID: 28348412 PMCID: PMC5428567 DOI: 10.1038/s41598-017-00573-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 11/17/2022] Open
Abstract
Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.
Collapse
Affiliation(s)
- J P Daniel Therien
- Department of Biochemistry, Microbiology, and Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
7
|
Sato T. Chemical synthesis of transmembrane peptide and its application for research on the transmembrane-juxtamembrane region of membrane protein. Biopolymers 2017; 106:613-21. [PMID: 26573237 DOI: 10.1002/bip.22775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Membrane proteins possess one or more hydrophobic regions that span the membrane and interact with the lipids that constitute the membrane. The interactions between the transmembrane (TM) region and lipids affect the structure and function of these membrane proteins. Molecular characterization of synthetic TM peptides in lipid bilayers helps to understand how the TM region participates in the formation of the structure and in the function of membrane proteins. The use of synthetic peptides enables site-specific labeling and modification and allows for designing of an artificial TM sequence. Research involving such samples has resulted in significant increase in the knowledge of the mechanisms that govern membrane biology. In this review, the chemical synthesis of TM peptides has been discussed. The preparation of synthetic TM peptides is still not trivial; however, the accumulated knowledge summarized here should provide a basis for preparing samples for spectroscopic analyses. The application of synthetic TM peptides for gaining insights into the mechanism of signal transduction by receptor tyrosine kinase (RTK) has also been discussed. RTK is a single TM protein and is one of the difficult targets in structural biology as crystallization of the full-length receptor has not been successful. This review describes the structural characterization of the synthetic TM-juxtamembrane sequence and proposes a possible scheme for the structural changes in this region for the activation of ErbBs, the epidermal growth factor receptor family. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 613-621, 2016.
Collapse
Affiliation(s)
- Takeshi Sato
- Laboratory of Protein Organic Chemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Deng W, Li R. Juxtamembrane contribution to transmembrane signaling. Biopolymers 2016; 104:317-22. [PMID: 25846274 DOI: 10.1002/bip.22651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Signaling across the cell membrane mediated by transmembrane receptors plays an important role in diverse biological processes. Recent studies have indicated that, in a number of single-span transmembrane receptors, the intracellular juxtamembrane (JM) sequence linking the transmembrane helix with the rest of the cytoplasmic domain participates directly in the signaling process via several novel mechanisms. This review briefly highlights several modes of JM dynamics in the context of signal transduction that are shared by different types of transmembrane receptors.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
9
|
Wald T, Osickova A, Masin J, Liskova PM, Petry-Podgorska I, Matousek T, Sebo P, Osicka R. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog Dis 2016; 74:ftw008. [PMID: 26802078 DOI: 10.1093/femspd/ftw008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 11/13/2022] Open
Abstract
Adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) of the whooping cough agent Bordetella pertussis penetrates phagocytes expressing the integrin complement receptor 3 (CR3, CD11b/CD18, α(M)β(2) or Mac-1). CyaA translocates its adenylate cyclase (AC) enzyme domain into cell cytosol and catalyzes unregulated conversion of ATP to cAMP, thereby subverting cellular signaling. In parallel, CyaA forms small cation-selective membrane pores that permeabilize cells for potassium efflux, contributing to cytotoxicity of CyaA and eventually provoking colloid-osmotic cell lysis. To investigate whether the single-pass α-helical transmembrane segments of CR3 subunits CD11b and CD18 do directly participate in AC domain translocation and/or pore formation by the toxin, we expressed in CHO cells variants of CR3 that contained artificial transmembrane segments, or lacked the transmembrane segment(s) at all. The results demonstrate that the transmembrane segments of CR3 are not directly involved in the cytotoxic activities of CyaA but serve for maintaining CR3 in a conformation that is required for efficient toxin binding and action.
Collapse
Affiliation(s)
- Tomas Wald
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Petra M Liskova
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Inga Petry-Podgorska
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Tomas Matousek
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
10
|
Morrison EA, Robinson AE, Liu Y, Henzler-Wildman KA. Asymmetric protonation of EmrE. J Gen Physiol 2015; 146:445-61. [PMID: 26573622 PMCID: PMC4664823 DOI: 10.1085/jgp.201511404] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/13/2015] [Indexed: 01/26/2023] Open
Abstract
The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its "active-site" residues--glutamate 14 (Glu14) from each subunit--must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with (1)H-(15)N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Anne E Robinson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Yongjia Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine A Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
11
|
Oestereich F, Bittner HJ, Weise C, Grohmann L, Janke LK, Hildebrand PW, Multhaup G, Munter LM. Impact of amyloid precursor protein hydrophilic transmembrane residues on amyloid-beta generation. Biochemistry 2015; 54:2777-84. [PMID: 25875527 DOI: 10.1021/acs.biochem.5b00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amyloid-β (Aβ) peptides are likely the molecular cause of neurodegeneration observed in Alzheimer's disease. In the brain, Aβ42 and Aβ40 are toxic and the most important proteolytic fragments generated through sequential processing of the amyloid precursor protein (APP) by β- and γ-secretases. Impeding the generation of Aβ42 and Aβ40 is thus considered as a promising strategy to prevent Alzheimer's disease. We therefore wanted to determine key parameters of the APP transmembrane sequence enabling production of these Aβ species. Here we show that the hydrophilicity of amino acid residues G33, T43, and T48 critically determines the generation of Aβ42 and Aβ40 peptides (amino acid numbering according to Aβ nomenclature starting with aspartic acid 1). First, we performed a comprehensive mutational analysis of glycine residue G33 positioned within the N-terminal half of the APP transmembrane sequence by exchanging it against the 19 other amino acids. We found that hydrophilicity of the residue at position 33 positively correlated with Aβ42 and Aβ40 generation. Second, we analyzed two threonine residues at positions T43 and T48 in the C-terminal half of the APP-transmembrane sequence. Replacement of single threonine residues by hydrophobic valines inversely affected Aβ42 and Aβ40 generation. We observed that threonine mutants affected the initial γ-secretase cut, which is associated with levels of Aβ42 or Aβ40. Overall, hydrophilic residues of the APP transmembrane sequence decide on the exact initial γ-cut and the amounts of Aβ42 and Aβ40.
Collapse
Affiliation(s)
- Felix Oestereich
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.,∥Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - Heiko J Bittner
- §Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Weise
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa Grohmann
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa-Kristin Janke
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Peter W Hildebrand
- §Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerhard Multhaup
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa-Marie Munter
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
12
|
Cell Lines Expressing Recombinant Transmembrane Domain–Activated Receptor Kinases as Tools for Drug Discovery. ACTA ACUST UNITED AC 2014; 19:1350-61. [DOI: 10.1177/1087057114552414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many receptor tyrosine kinases (RTKs) represent bona fide drug targets in oncology. Effective compounds are available, but treatment invariably leads to resistance, often due to RTK mutations. The discovery of second-generation inhibitors requires cellular models of resistant RTKs. An approach using artificial transmembrane domains (TMDs) to activate RTKs was explored for the rapid generation of simple, ligand-independent cellular RTK assays, including resistance mutants. The RTKs epidermal growth factor receptor (EGFR), MET, and KIT were chosen in a proof-of-concept study. Their intracellular domains were inserted into a series of expression vectors encoding artificial TMDs, and they were tested for autophosphorylation activity in transient transfection assays. Active constructs could be identified for MET and EGFR, but not for KIT. Rat1 cell pools were generated expressing the MET or EGFR constructs, and their sensitivity to reference tool compounds was compared to that of MKN-45 or A431 cells. A good correlation between natural and recombinant cells led us to build a panel of clinically relevant MET mutant cell pools, based on the wild-type construct, which were then profiled via MET autophosphorylation and soft agar assays. In summary, a platform was established that allows for the rapid generation of cellular models for RTKs and their resistance mutants.
Collapse
|
13
|
Manni S, Kisko K, Schleier T, Missimer J, Ballmer-Hofer K. Functional and structural characterization of the kinase insert and the carboxy terminal domain in VEGF receptor 2 activation. FASEB J 2014; 28:4914-23. [PMID: 25114179 DOI: 10.1096/fj.14-256206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis. VEGF receptor 2 (VEGFR-2) is the major receptor involved in vasculogenesis and angiogenesis and regulates endothelial cell survival, migration, and mitogenesis. Ligand-mediated receptor dimerization instigates transmembrane signaling, thereby promoting activation of the intracellular kinase domain. The intracellular part of the receptor comprises the juxtamembrane domain, the catalytic kinase domain, the kinase insert domain (KID), and the carboxy terminal domain (CD). Here we show that the CD inhibits VEGFR-2 activity in the absence of ligand, whereas the KID, particularly a tyrosine residue in this domain (Y951), is indispensable for downstream signaling by the activated kinase. Because of the lack of crystallographic data for the complete kinase domain, we applied size-exclusion chromatography, multiangle laser scattering, analytical ultracentrifugation, and small-angle X-ray scattering to build and functionally validate structural models. Our data show substantial conformational changes of the kinase when it is switched from the inactive, unphosphorylated state to the active, phosphorylated state. Finally, we structurally characterized recombinantly produced protein complexes between VEGFR-2 and T cell-specific adapter protein, a molecule involved in downstream signaling by VEGFR-2.
Collapse
Affiliation(s)
- Sandro Manni
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Kaisa Kisko
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas Schleier
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Jack Missimer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
14
|
Manni S, Mineev KS, Usmanova D, Lyukmanova EN, Shulepko MA, Kirpichnikov MP, Winter J, Matkovic M, Deupi X, Arseniev AS, Ballmer-Hofer K. Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation. Structure 2014; 22:1077-1089. [PMID: 24980797 DOI: 10.1016/j.str.2014.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Transmembrane signaling by receptor tyrosine kinases (RTKs) entails ligand-mediated dimerization and structural rearrangement of the extracellular domains. RTK activation also depends on the specific orientation of the transmembrane domain (TMD) helices, as suggested by pathogenic, constitutively active RTK mutants. Such mutant TMDs carry polar amino acids promoting stable transmembrane helix dimerization, which is essential for kinase activation. We investigated the effect of polar amino acids introduced into the TMD of vascular endothelial growth factor receptor 2, regulating blood vessel homeostasis. Two mutants showed constitutive kinase activity, suggesting that precise TMD orientation is mandatory for kinase activation. Nuclear magnetic resonance spectroscopy revealed that TMD helices in activated constructs were rotated by 180° relative to the interface of the wild-type conformation, confirming that ligand-mediated receptor activation indeed results from transmembrane helix rearrangement. A molecular dynamics simulation confirmed the transmembrane helix arrangement of wild-type and mutant TMDs revealed by nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Sandro Manni
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dinara Usmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
| | - Jonas Winter
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Milos Matkovic
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Xavier Deupi
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland; Paul Scherrer Institute, Condensed Matter Theory Group, 5232 Villigen PSI, Switzerland
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Kurt Ballmer-Hofer
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
15
|
Peter B, Fanucchi S, Dirr HW. A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:405-14. [DOI: 10.1007/s00249-014-0972-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022]
|
16
|
Placone J, He L, Del Piccolo N, Hristova K. Strong dimerization of wild-type ErbB2/Neu transmembrane domain and the oncogenic Val664Glu mutant in mammalian plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2326-30. [PMID: 24631664 DOI: 10.1016/j.bbamem.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 12/29/2022]
Abstract
Here, we study the homodimerization of the transmembrane domain of Neu, as well as an oncogenic mutant (V664E), in vesicles derived from the plasma membrane of mammalian cells. For the characterization, we use a Förster resonance energy transfer (FRET)-based method termed Quantitative Imaging-FRET (QI-FRET), which yields the donor and acceptor concentrations in addition to the FRET efficiencies in individual plasma membrane-derived vesicles. Our results demonstrate that both the wild-type and the mutant are 100% dimeric, suggesting that the Neu TM helix dimerizes more efficiently than other RTK TM domains in mammalian membranes. Furthermore, the data suggest that the V664E mutation causes a very small, but statistically significant change in dimer structure. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Jesse Placone
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Nuala Del Piccolo
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
17
|
Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE. Architecture and membrane interactions of the EGF receptor. Cell 2013; 152:557-69. [PMID: 23374350 PMCID: PMC3680629 DOI: 10.1016/j.cell.2012.12.030] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/28/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
Dimerization-driven activation of the intracellular kinase domains of the epidermal growth factor receptor (EGFR) upon extracellular ligand binding is crucial to cellular pathways regulating proliferation, migration, and differentiation. Inactive EGFR can exist as both monomers and dimers, suggesting that the mechanism regulating EGFR activity may be subtle. The membrane itself may play a role but creates substantial difficulties for structural studies. Our molecular dynamics simulations of membrane-embedded EGFR suggest that, in ligand-bound dimers, the extracellular domains assume conformations favoring dimerization of the transmembrane helices near their N termini, dimerization of the juxtamembrane segments, and formation of asymmetric (active) kinase dimers. In ligand-free dimers, by holding apart the N termini of the transmembrane helices, the extracellular domains instead favor C-terminal dimerization of the transmembrane helices, juxtamembrane segment dissociation and membrane burial, and formation of symmetric (inactive) kinase dimers. Electrostatic interactions of EGFR's intracellular module with the membrane are critical in maintaining this coupling.
Collapse
|
18
|
Transmembrane helix orientation influences membrane binding of the intracellular juxtamembrane domain in Neu receptor peptides. Proc Natl Acad Sci U S A 2013; 110:1646-51. [PMID: 23319611 DOI: 10.1073/pnas.1215207110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane (TM) and juxtamembrane (JM) regions of the ErbB family receptor tyrosine kinases connect the extracellular ligand-binding domain to the intracellular kinase domain. Evidence for the role of these regions in the mechanism of receptor dimerization and activation is provided by TM-JM peptides corresponding to the Neu (or rat ErbB2) receptor. Solid-state NMR and fluorescence spectroscopy show that there are tight interactions of the JM sequence with negatively charged lipids, including phosphatidylinositol 4,5-bisphosphate, in TM-JM peptides corresponding to the wild-type receptor sequence. We observe a release of the JM sequence from the negatively charged membrane surface using peptides containing an activating V664E mutation within the TM domain or in peptides engineered to form TM helix dimers with Val664 in the interface. These results provide the basis of a mechanism for coupling ligand binding to kinase activation in the full-length receptor.
Collapse
|
19
|
Prasanna X, Praveen PJ, Sengupta D. Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants. Phys Chem Chem Phys 2013; 15:19031-41. [DOI: 10.1039/c3cp52447g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Beevers AJ, Nash A, Salazar-Cancino M, Scott DJ, Notman R, Dixon AM. Effects of the Oncogenic V664E Mutation on Membrane Insertion, Structure, and Sequence-Dependent Interactions of the Neu Transmembrane Domain in Micelles and Model Membranes: An Integrated Biophysical and Simulation Study. Biochemistry 2012; 51:2558-68. [DOI: 10.1021/bi201269w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - David J. Scott
- Department of Biosciences, University of Nottingham, Nottingham, U.K
| | | | | |
Collapse
|
21
|
Itaya M, Brett IC, Smith SO. Synthesis, purification, and characterization of single helix membrane peptides and proteins for NMR spectroscopy. Methods Mol Biol 2012; 831:333-57. [PMID: 22167682 DOI: 10.1007/978-1-61779-480-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Membrane proteins function as receptors, channels, transporters, and enzymes. These proteins are generally difficult to express and purify in a functional form due to the hydrophobic nature of their membrane spanning sequences. Studies on membrane proteins with a single membrane spanning helix have been particularly challenging. Single-pass membrane proteins will often form dimers or higher order oligomers in cell membranes as a result of sequence motifs that mediate specific transmembrane helix interactions. Understanding the structural basis for helix association provides insights into how these proteins function. Nevertheless, nonspecific association or aggregation of hydrophobic membrane spanning sequences can occur when isolated transmembrane domains are reconstituted into membrane bilayers or solubilized into detergent micelles for structural studies by solid-state or solution NMR spectroscopy. Here, we outline the methods used to synthesize, purify, and characterize single transmembrane segments for structural studies. Two synthetic strategies are discussed. The first strategy is to express hydrophobic peptides as protein chimera attached to the maltose binding protein. The second strategy is by direct chemical synthesis. Purification is carried out by several complementary chromatography methods. The peptides are solubilized in detergent for solution NMR studies or reconstituted into model membranes for solid-state NMR studies. We describe the methods used to characterize the reconstitution of these systems prior to NMR structural studies to establish if there is nonspecific aggregation.
Collapse
Affiliation(s)
- Miki Itaya
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|
22
|
High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation. J Mol Biol 2011; 412:43-54. [PMID: 21767549 DOI: 10.1016/j.jmb.2011.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 12/21/2022]
Abstract
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells.
Collapse
|
23
|
Bowie JU. Membrane protein folding: how important are hydrogen bonds? Curr Opin Struct Biol 2010; 21:42-9. [PMID: 21075614 DOI: 10.1016/j.sbi.2010.10.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
Water is an inhospitable environment for protein hydrogen bonds because it is polarizable and capable of forming competitive hydrogen bonds. In contrast, the apolar core of a biological membrane seems like an ideal environment for hydrogen bonds, and it has long been assumed that hydrogen bonding should be a powerful force driving membrane protein folding. Nevertheless, while backbone hydrogen bonds may be much stronger in membrane proteins, experimental measurements indicate that side chain hydrogen bond strengths are not strikingly different in membrane and water soluble proteins. How is this possible? I argue that model compounds in apolar solvents do not adequately describe the system because the protein itself is ignored. The protein chain provides a rich source of competitive hydrogen bonds and a polarizable environment that can weaken hydrogen bonds. Thus, just like water soluble proteins, evolution can drive the creation of potent hydrogen bonds in membrane proteins where necessary, but mitigating forces in their environment must still be overcome.
Collapse
Affiliation(s)
- James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
24
|
Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2010; 48:1-11. [PMID: 20596883 DOI: 10.1007/s10858-010-9432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly [(13)C, (15)N]-labeled F(o) c from E. coli (EF(o) c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the (13)C and (15)N signals were assigned. The obtained chemical shifts suggested that EF(o) c takes on a hairpin-type helix-loop-helix structure in membranes as in an organic solution. The results on the magnetization transfer between the EF(o) c and deuterated lipids indicated that Ile55, Ala62, Gly69 and F76 were lined up on the outer surface of the oligomer. This is in good agreement with the cross-linking results previously reported by Fillingame and his colleagues. This agreement reveals that the reconstituted EF(o) c oligomer takes on a ring structure similar to the intact one in vivo. On the other hand, analysis of the (13)C nuclei distance of [3-(13)C]Ala24 and [4-(13)C]Asp61 in the F(o) c-ring did not agree with the model structures proposed for the EF(o) c-decamer and dodecamer. Interestingly, the carboxyl group of the essential Asp61 in the membrane-embedded EF(o) c-ring turned out to be protonated as COOH even at neutral pH. The hydrophobic surface of the EF(o) c-ring carries relatively short side chains in its central region, which may allow soft and smooth interactions with the hydrocarbon chains of lipids in the liquid-crystalline state.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
FGFR3 mutational status and protein expression in patients with bladder cancer in a Jordanian population. Cancer Epidemiol 2010; 34:724-32. [PMID: 20542753 DOI: 10.1016/j.canep.2010.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/01/2010] [Accepted: 05/08/2010] [Indexed: 11/22/2022]
Abstract
Bladder cancer accounts for nearly 5% of all newly diagnosed cancers in Jordan, with a much higher frequency in males. Recent studies have shown that activating mutations in FGFR3 are the most common findings in non-invasive low grade bladder tumors. In this study, we, retrospectively, investigated a cohort of 121 bladder cancer patients with various grades and stages of the tumor for molecular changes in FGFR3. Overexpression of FGFR3 was observed in 49%, 34%, 15%, and 2% of pTa, pT1, pT2, and pT3 cases, respectively. Further, FGFR3 expression was positive in 45%, 26%, and 30% of G1, G2 and G3 cases, respectively. Mutational analysis of exons 7, 10 and 15 of FGFR3 identified four previously reported mutations, namely R248C (n=4; 10%), S249C (n=23; 59%), Y375C (n=7; 18%), G382R (n=4; 10%), and one novel mutation, G382E (n=1; 3%). Our results indicate that both mutations and overexpression of FGFR3 are correlated together, and are more prevalent in early stage (pTa and pT1) and low grade (G1 and G2) bladder tumors. Survival analysis showed no contribution of changes in FGFR3 on the patient's survival. Multivariate Cox proportional hazards model analysis of overall survival for the following variables: age, gender, stage and grade of tumor, and FGFR3 (expression and mutation) revealed that age, stage and grade of tumor are independent predictors of overall survival in patients with bladder cancer. Our work is the first to address the molecular status of FGFR3 in Jordanian patients with bladder cancer, and provides further support for FGFR3 as a key player in the initiation of bladder tumors.
Collapse
|
26
|
Fiedler S, Broecker J, Keller S. Protein folding in membranes. Cell Mol Life Sci 2010; 67:1779-98. [PMID: 20101433 PMCID: PMC11115603 DOI: 10.1007/s00018-010-0259-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/01/2010] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
Separation of cells and organelles by bilayer membranes is a fundamental principle of life. Cellular membranes contain a baffling variety of proteins, which fulfil vital functions as receptors and signal transducers, channels and transporters, motors and anchors. The vast majority of membrane-bound proteins contain bundles of alpha-helical transmembrane domains. Understanding how these proteins adopt their native, biologically active structures in the complex milieu of a membrane is therefore a major challenge in today's life sciences. Here, we review recent progress in the folding, unfolding and refolding of alpha-helical membrane proteins and compare the molecular interactions that stabilise proteins in lipid bilayers. We also provide a critical discussion of a detergent denaturation assay that is increasingly used to determine membrane-protein stability but is not devoid of conceptual difficulties.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jana Broecker
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sandro Keller
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
27
|
Bocharov EV, Volynsky PE, Pavlov KV, Efremov RG, Arseniev AS. Structure elucidation of dimeric transmembrane domains of bitopic proteins. Cell Adh Migr 2010; 4:284-98. [PMID: 20421711 DOI: 10.4161/cam.4.2.11930] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Division of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.
| | | | | | | | | |
Collapse
|
28
|
Li E, Hristova K. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics. Cell Adh Migr 2010; 4:249-54. [PMID: 20168077 DOI: 10.4161/cam.4.2.10725] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization.
Collapse
Affiliation(s)
- Edwin Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
29
|
Cymer F, Schneider D. Transmembrane helix-helix interactions involved in ErbB receptor signaling. Cell Adh Migr 2010; 4:299-312. [PMID: 20212358 DOI: 10.4161/cam.4.2.11191] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Among the many transmembrane receptor classes, the receptor tyrosine kinases represent an important superfamily, involved in many cellular processes like embryogenesis, development and cell division. Deregulation and dysfunctions of these receptors can lead to various forms of cancer and other diseases. Mostly, only fragmented knowledge exists about functioning of the entire receptors, and many studies have been performed on isolated receptor domains. In this review we focus on the function of the ErbB family of receptor tyrosine kinases with a special emphasis on the role of the transmembrane domain and on the mechanisms underlying regulated and deregulated signaling. Many general aspects of ErbB receptor structure and function have been analyzed and described. All human ErbBs appear to form homo- and heterodimers within cellular membranes and the single transmembrane domain of the receptors is involved in dimerization. Additionally, only defined structures of the transmembrane helix dimer allows signaling of ErbB receptors.
Collapse
Affiliation(s)
- Florian Cymer
- Albert-Ludwigs-University Freiburg, Department of Biochemistry and Molecular Biology, ZBMZ, and Fakultät für Biologie, Freiburg, Germany
| | | |
Collapse
|
30
|
Beevers AJ, Damianoglou A, Oates J, Rodger A, Dixon AM. Sequence-Dependent Oligomerization of the Neu Transmembrane Domain Suggests Inhibition of “Conformational Switching” by an Oncogenic Mutant. Biochemistry 2010; 49:2811-20. [DOI: 10.1021/bi902087v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew J. Beevers
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Joanne Oates
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Ann M. Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
31
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
32
|
Shahidullah K, Krishnakumar SS, London E. The effect of hydrophilic substitutions and anionic lipids upon the transverse positioning of the transmembrane helix of the ErbB2 (neu) protein incorporated into model membrane vesicles. J Mol Biol 2009; 396:209-20. [PMID: 19931543 DOI: 10.1016/j.jmb.2009.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
The sequence of the transmembrane (TM) helix of ErbB2, a member of the epidermal growth factor receptor (ErbB) family, can influence its activity. In this report, the sequence and lipid dependence of the transverse position of a model-membrane-inserted peptides containing the ErbB2 TM helix and some of the juxtamembrane (JM) residues were studied. For the ErbB2 TM helix inserted into phosphatidylcholine vesicles, the activating V664E mutation was found to induce a transverse shift involving the movement of the E residue toward the membrane surface. This shortened the effective length of the TM-spanning portion of the sequence. The transverse shift was observed with the E664 residue in both the uncharged and charged states, but the extent of the shift was larger when the E residue was charged. When a series of hydrophilic residues was substituted for V664, the resulting transverse shifts at pH 7.0 decreased in the order D,H>E>Q>K>G>V. Except for His, this order is strongly correlated to that reported for the degree to which these substitutions induce cellular transformation when introduced into full-length ErbB2. To examine the effect of lipid on transverse shift, we studied the uncharged V664Q mutation. The presence of 20% of the anionic lipid DOPS (dioleoylphosphatidylserine) in the model membrane vesicles, which introduces a physiologically relevant level of anionic lipid, did not affect the degree of transverse shift. However, in the case of a peptide containing a V674Q substitution, in which the Q is closer to the C-terminus of the ErbB2 TM helix than the N-terminus, transverse shift was suppressed in vesicles containing 20% DOPS. This suggests that the interaction of the cationic JM residues flanking the C-terminus of the ErbB2 TM helix interact with anionic lipids to anchor the C-terminal end of the TM helix. This anchoring site may act as a pivot that amplifies transverse movements of the ErbB2 TM segment to induce a large swinging-type motion in the extracellular domain of the protein, affecting ErbB2 activity. Interactions interrupting C-terminal JM residue association with anionic lipid might partly impact ErbB2 activity by disrupting this pivoting.
Collapse
Affiliation(s)
- Khurshida Shahidullah
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
33
|
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis. VEGFs are predominantly produced by endothelial, hematopoietic, and stromal cells in response to hypoxia and upon stimulation by growth factors such as transforming growth factor beta (TGFbeta), interleukins, or platelet-derived growth factors (PDGFs). VEGFs specifically interact with one or several receptor tyrosine kinases (RTKs), VEGF receptor-1, -2, and -3 (VEGFR-1, -2, -3), and with distinct coreceptors such as neuropilins or heparan sulfate glycosaminoglycans. VEGF receptors are classified as type V RTKs whose extracellular domains consists of seven immunoglobulin-like (Ig-like) domains. VEGF receptors are activated upon ligand-mediated dimerization. However, little was known about the mechanism of receptor activation at the structural level until recently. New data published by several labs for VEGF and the related type III RTKs now suggest that both ligand-receptor as well as homotypic receptor-receptor interactions stabilize ligand-induced receptor dimers. These data support the idea that structural changes induced in the extracellular domain upon ligand binding instigate transmembrane signaling by properly positioning the intracellular kinase domains in active receptor dimers.
Collapse
Affiliation(s)
- Edward Stuttfeld
- Paul Scherrer Institut, Biomolecular Research, Molecular Cell Biology, Villigen, Switzerland
| | | |
Collapse
|
34
|
Munro M, Akkam Y, Curtin KD. Mutational analysis of Drosophila basigin function in the visual system. Gene 2009; 449:50-8. [PMID: 19782733 DOI: 10.1016/j.gene.2009.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 01/31/2023]
Abstract
Drosophila basigin is a cell-surface glycoprotein of the Ig superfamily and a member of a protein family that includes mammalian EMMPRIN/CD147/basigin, neuroplastin, and embigin. Our previous work on Drosophila basigin has shown that it is required for normal photoreceptor cell structure and normal neuron-glia interaction in the fly visual system. Specifically, the photoreceptor neurons of mosaic animals that are mutant in the eye for basigin show altered cell structure with nuclei, mitochondria and rER misplaced and variable axon diameter compared to wild-type. In addition, glia cells in the optic lamina that contact photoreceptor axons are misplaced and show altered structure. All these defects are rescued by expression of either transgenic fly basigin or transgenic mouse basigin in the photoreceptors demonstrating that mouse basigin can functionally replace fly basigin. To determine what regions of the basigin protein are required for each of these functions, we have created mutant basigin transgenes coding for proteins that are altered in conserved residues, introduced these into the fly genome, and tested them for their ability to rescue both photoreceptor cell structure defects and neuron-glia interaction defects of basigin. The results suggest that the highly conserved transmembrane domain and the extracellular domains are crucial for basigin function in the visual system while the short intracellular tail may not play a role in these functions.
Collapse
Affiliation(s)
- Michelle Munro
- Department of Biological Sciences, 601 SCEN, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
35
|
Finger C, Escher C, Schneider D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal 2009; 2:ra56. [PMID: 19797273 DOI: 10.1126/scisignal.2000547] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transmembrane signaling by receptor tyrosine kinases typically involves a dynamic receptor monomer-dimer equilibrium in which ligand binding to soluble extracellular domains triggers receptor dimerization and subsequent signaling events. Although the role in signal transduction of the single transmembrane helices of individual receptors, which connect the extracellular with the intracellular protein domains, is not understood in detail, we show here that the single transmembrane domains of all 58 human receptor tyrosine kinases alone have an intrinsic propensity to form stable dimeric structures within a membrane. Thus, defined interactions of the transmembrane domains are most likely generally involved in signaling by all human receptor tyrosine kinases.
Collapse
Affiliation(s)
- Carmen Finger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
36
|
Dosch DD, Ballmer-Hofer K. Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. FASEB J 2009; 24:32-8. [PMID: 19726758 DOI: 10.1096/fj.09-132670] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factors (VEGFs) activate cellular receptor tyrosine kinases (RTKs) such as VEGFR-1, -2, and -3. These receptors are activated upon ligand binding to the extracellular receptor domain (ECD), resulting in receptor dimerization and activation of the intracellular kinase domain. Here we investigated the molecular mechanism of activation of the human VEGFR-2 expressed in human HEK293, monkey COS-1, and porcine aortic endothelial cells. To study the role of dimerization in receptor activation we created a series of dimerization-promoting transmembrane domain (TMD) mutants lacking the extracellular domain. The TMDs consisted of 23 valine and 2 glutamic acid residues spaced 7 aa apart in different positions of the transmembrane helix. All TMDs dimerized VEGFR-2, each in a specific orientation, giving rise to a series of either active or inactive receptor dimers. One particular TMD, V6/13E, gave rise to highly active kinase dimers, while all the other dimerizing TMD mutant receptors had 6- to 10-fold lower activity. When the V6/13E TMD was introduced into the full-length receptor in place of the native TMD, it promoted ligand-independent activation. Nonactivating TMDs, on the other hand, gave rise to inactive receptor mutants, both in the absence and in the presence of VEGF. These data demonstrate that dimerization is necessary, but not sufficient, for receptor activation, and that ligand-mediated receptor activation requires specific orientation of receptor monomers. Our study also shows that dimerization is mimicked by distinct dimerization-promoting TMDs that position the intracellular kinase domain either in an active or inactive conformation.
Collapse
|
37
|
Peng WC, Lin X, Torres J. The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues. Protein Sci 2009; 18:450-9. [PMID: 19165726 DOI: 10.1002/pro.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR subfamily of the receptor tyrosine kinases (RTKs) involved in signaling across the plasma membrane. Generally, ligand binding leads to receptor dimerization and activation. Dimerization involves the transmembrane (TM) domain, where mutations can lead to constitutive activation in certain cancer types and also in skeletal malformations. Thus, it has been postulated that FGFR homodimerization must be inherently weak to allow regulation, a feature reminiscent of alpha and beta integrin TM interactions. However, we show herein that in FGFR3-TM, four C-terminal residues, CRLR, have a profound destabilizing effect in an otherwise strongly dimerizing TM peptide. In the absence of these four residues, the dimerizing propensity of FGFR3-TM is comparable to glycophorin, as shown using various detergents. In addition, the expected enhanced dimerization induced by the mutation associated to the Crouzon syndrome A391E, was observed only when these four C-terminal residues were present. In the absence of these four residues, A391E was dimer-destabilizing. Finally, using site specific infrared dichroism and convergence with evolutionary conservation data, we have determined the backbone model of the FGFR3-TM homodimer in model lipid bilayers. This model is consistent with, and correlates with the effects of, most known pathological mutations found in FGFR-TM.
Collapse
|
38
|
Langosch D, Arkin IT. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 2009; 18:1343-58. [PMID: 19530249 PMCID: PMC2775205 DOI: 10.1002/pro.154] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/23/2022]
Abstract
Within 1 or 2 decades, the reputation of membrane-spanning alpha-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein-protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come.
Collapse
Affiliation(s)
- Dieter Langosch
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | |
Collapse
|
39
|
The Asn505 mutation of the c-MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c-Mpl protein due to strong amino acid polarity. Blood 2009; 114:3325-8. [PMID: 19483125 DOI: 10.1182/blood-2008-04-149047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously reported that a dominant-positive activating mutation (Asn505) in the transmembrane domain (TMD) of c-MPL, which encodes the thrombopoietin receptor, caused familial essential thrombocythemia. Here, we show that the Asn505 mutation induces both autonomous dimerization of c-Mpl and signal activation in the absence of its ligand. Signal activation was preserved in a truncated mutant of Asn505 that lacked the extracellular domain of c-MPL. We also found that the substitution of the amino acid (AA) residue at position 505 with others of strong polarity (Glu, Asp, or Gln) also resulted in activated dimerization without ligand stimulation. Overall, these data show that the Asn505 mutation transduced the signal through the autonomous dimerization of the c-MPL protein due to strong AA polarity. This finding provides a new insight into the mechanism of disease causation by mutations in the TMD of cytokine/hematopoietic receptors.
Collapse
|
40
|
Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, Arseniev AS. Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J Biol Chem 2008; 283:29385-95. [PMID: 18728013 PMCID: PMC2662025 DOI: 10.1074/jbc.m803089200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 08/13/2008] [Indexed: 01/13/2023] Open
Abstract
Eph receptors are found in a wide variety of cells in developing and mature tissues and represent the largest family of receptor tyrosine kinases, regulating cell shape, movements, and attachment. The receptor tyrosine kinases conduct biochemical signals across plasma membrane via lateral dimerization in which their transmembrane domains play an important role. Structural-dynamic properties of the homodimeric transmembrane domain of the EphA1 receptor were investigated with the aid of solution NMR in lipid bicelles and molecular dynamics in explicit lipid bilayer. EphA1 transmembrane segments associate in a right-handed parallel alpha-helical bundle, region (544-569)(2), through the N-terminal glycine zipper motif A(550)X(3)G(554)X(3)G(558). Under acidic conditions, the N terminus of the transmembrane helix is stabilized by an N-capping box formed by the uncharged carboxyl group of Glu(547), whereas its deprotonation results in a rearrangement of hydrogen bonds, fractional unfolding of the helix, and a realignment of the helix-helix packing with appearance of additional minor dimer conformation utilizing seemingly the C-terminal GG4-like dimerization motif A(560)X(3)G(564). This can be interpreted as the ability of the EphA1 receptor to adjust its response to ligand binding according to extracellular pH. The dependence of the pK(a) value of Glu(547) and the dimer conformational equilibrium on the lipid head charge suggests that both local environment and membrane surface potential can modulate dimerization and activation of the receptor. This makes the EphA1 receptor unique among the Eph family, implying its possible physiological role as an "extracellular pH sensor," and can have relevant physiological implications.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Division of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
He L, Hristova K. Pathogenic activation of receptor tyrosine kinases in mammalian membranes. J Mol Biol 2008; 384:1130-42. [PMID: 18976668 DOI: 10.1016/j.jmb.2008.10.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
Abstract
The mechanism of receptor tyrosine kinase (RTK) over-activation due to mutations in their transmembrane (TM) domain is not well understood, and different mechansims have been proposed to contribute to pathogenesis. Here, we address the effect of two such pathogenic mutations (V664E in Neu and A391E in fibroblast growth factor receptor 3 (FGFR3)) on receptor activation in mammalian cells. We develop a quantitative description of receptor activation in terms of free energies of activation, and generate mathematical predictions of active fractions as a function of receptor expression. We test the mathematical predictions by comparing them to Western blot measurements of active fractions of Neu and chimeric Neu_FGFR3 receptors in CHO cells. We show that the predictions describe the experimental data, thus yielding a quantitative measure of receptor over-activation due to the two mutations studied. In CHO cells, the V664E mutation increases the Neu activation propensity by about -1.1 kcal/mol, while the increase due to the A391E mutation is about -0.7 kcal/mol. The two values are similar, and likely represent Glu-mediated stabilization of the active dimeric state. Thus, an increase of the order of approximately -1 kcal/mol may be sufficient to transform normal signaling processes into pathogenic processes. The results of this study increase our knowledge of the mechanism behind RTK-mediated pathologies, and highlight the potential utility of inhibitors that target the dimerization process. They also suggest the cellular response to stimuli can be understood and predicted based on quantitative knowledge of interaction strengths between proteins involved in signaling.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
42
|
Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS. Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State. J Biol Chem 2008; 283:6950-6. [DOI: 10.1074/jbc.m709202200] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
44
|
Krishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. J Mol Biol 2007; 374:1251-69. [PMID: 17997412 DOI: 10.1016/j.jmb.2007.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/18/2022]
Abstract
The ability of hydrophilic residues to shift the transverse position of transmembrane (TM) helices within bilayers was studied in model membrane vesicles. Transverse shifts were detected by fluorescence measurements of the membrane depth of a Trp residue at the center of a hydrophobic sequence. They were also estimated from the effective length of the TM-spanning sequence, derived from the stability of the TM configuration under conditions of negative hydrophobic mismatch. Hydrophilic residues (at the fifth position in a 21-residue hydrophobic sequence composed of alternating Leu and Ala residues and flanked on both ends by two Lys) induced transverse shifts that moved the hydrophilic residue closer to the membrane surface. At pH 7, the dependence of the extent of shift upon the identity of the hydrophilic residue increased in the order: L < G approximately = Y approximately = T < R approximately = H < S < P < K < E approximately = Q < N < D. By varying pH, shifts with ionizable residues fully charged or uncharged were measured, and the extent of shift increased in the order: L < G approximately = Y approximately = H(o) approximately = T < E(o) approximately = R < S < P < K+ < Q approximately = D(o) approximately = H+ < N approximately = E- < D-. The dependence of transverse shifts upon hydrophilic residue identity was consistent with the hypothesis that shift magnitude is largely controlled by the combination of side chain hydrophilicity, ionization state, and ability to position polar groups near the bilayer surface (snorkeling). Additional experiments showed that shift was also modulated by the position of the hydrophilic residue in the sequence and the hydrophobicity of the sequence moved out of the bilayer core upon shifting. Combined, these studies show that the insertion boundaries of TM helices are very sensitive to sequence, and can be altered even by weakly hydrophilic residues. Thus, many TM helices may have the capacity to exist in more than one transverse position. Knowledge of the magnitudes of transverse shifts induced by different hydrophilic residues should be useful for design of mutagenesis studies measuring the effect of transverse TM helix position upon function.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
45
|
Riese DJ, Gallo RM, Settleman J. Mutational activation of ErbB family receptor tyrosine kinases: insights into mechanisms of signal transduction and tumorigenesis. Bioessays 2007; 29:558-65. [PMID: 17508401 PMCID: PMC2789424 DOI: 10.1002/bies.20582] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Signaling by the Epidermal Growth Factor Receptor (EGFR) and related ErbB family receptor tyrosine kinases can be deregulated in human malignancies as the result of mutations in the genes that encode these receptors. The recent identification of EGFR mutations that correlate with sensitivity and resistance to EGFR tyrosine kinase inhibitors in lung and colon tumors has renewed interest in such activating mutations. Here we review current models for ligand stimulation of receptor dimerization and for activation of receptor signaling by receptor dimerization. In the context of these models, we discuss ErbB receptor mutations that affect ligand binding and those that cause constitutive receptor phosphorylation and signaling as a result of constitutive receptor dimerization. We discuss mutations in the cytoplasmic regions that affect enzymatic activity, substrate specificity and coupling to effectors and downstream signaling pathways. Finally, we discuss how emergent mechanisms of ErbB receptor mutational activation could impact the search for clinically relevant ErbB receptor mutations.
Collapse
Affiliation(s)
- David J Riese
- Purdue University School of Pharmacy and Purdue Cancer Research Center, 201 S. University Street, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
46
|
Stanley AM, Fleming KG. The role of a hydrogen bonding network in the transmembrane beta-barrel OMPLA. J Mol Biol 2007; 370:912-24. [PMID: 17555765 DOI: 10.1016/j.jmb.2007.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/04/2007] [Accepted: 05/06/2007] [Indexed: 11/27/2022]
Abstract
The hydrogen bonding of polar side-chains has emerged as an important theme for membrane protein interactions. The crystal structure of the dimeric state of the transmembrane beta-barrel protein outer membrane phospholipase A (OMPLA) revealed an intermolecular hydrogen bond mediated by a highly conserved glutamine side-chain (Q94). It has been shown that the introduction of a polar residue can drive the association of model helices, and by extension it was presumed that the glutamine hydrogen bond played a key role in stabilizing the OMPLA dimer. However, a thermodynamic investigation using sedimentation equilibrium ultracentrifugation in detergent micelles reveals that the hydrogen bond plays only a very modest role in stabilizing the dimer. The Q94 side-chain is hydrogen bonded intramolecularly to residues Y92 and S96, but amino acid substitutions at these positions suggest these intramolecular interactions are not responsible for attenuating the strength of the intermolecular Q94 hydrogen bond. Other substitutions suggested that hydration of the local environment around Q94 may be responsible for the modest strength of the hydrogen bond. Heat inactivation experiments with the variants suggest that the Y92-Q94-S96 network may instead be important for thermal stability of the monomer. These results highlight the context dependence and broad range of interactions that can be mediated by polar residues in membrane proteins.
Collapse
Affiliation(s)
- Ann Marie Stanley
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
47
|
Mukherjee A, Bhimalapuram P, Bagchi B. Orientation-dependent potential of mean force for protein folding. J Chem Phys 2007; 123:014901. [PMID: 16035863 DOI: 10.1063/1.1940058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a solvent-implicit minimalistic model potential among the amino acid residues of proteins, obtained by using the known native structures [deposited in the Protein Data Bank (PDB)]. In this model, the amino acid side chains are represented by a single ellipsoidal site, defined by the group of atoms about the center of mass of the side chain. These ellipsoidal sites interact with other sites through an orientation-dependent interaction potential which we construct in the following fashion. First, the site-site potential of mean force (PMF) between heavy atoms is calculated [following F. Melo and E. Feytsman, J. Mol. Biol. 267, 207 (1997)] from statistics of their distance separation obtained from crystal structures. These site-site potentials are then used to calculate the distance and the orientation-dependent potential between side chains of all the amino acid residues (AAR). The distance and orientation dependencies show several interesting results. For example, we find that the PMF between two hydrophobic AARs, such as phenylalanine, is strongly attractive at short distances (after the obvious repulsive region at very short separation) and is characterized by a deep minimum, for specific orientations. For the interaction between two hydrophilic AARs, such a deep minimum is absent and in addition, the potential interestingly reveals the combined effect of polar (charge) and hydrophobic interactions among some of these AARs. The effectiveness of our potential has been tested by calculating the Z-scores for a large set of proteins. The calculated Z-scores show high negative values for most of them, signifying the success of the potential to identify the native structure from among a large number of its decoy states.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India 560 012
| | | | | |
Collapse
|
48
|
Aller P, Garnier N, Genest M. Transmembrane Helix Packing of ErbB/Neu Receptor in Membrane Environment: A Molecular Dynamics Study. J Biomol Struct Dyn 2006; 24:209-28. [PMID: 17054379 DOI: 10.1080/07391102.2006.10507114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dimerization or oligomerization of the ErbB/Neu receptors are necessary but not sufficient for initiation of receptor signaling. The two intracellular domains must be properly oriented for the juxtaposition of the kinase domains allowing trans-phosphorylation. This suggests that the transmembrane (TM) domain acts as a guide for defining the proper orientation of the intracellular domains. Two structural models, with the two helices either in left-handed or in right-handed coiling have been proposed as the TM domain structure of the active receptor. Because experimental data do not distinguish clearly helix-helix packing, molecular dynamics (MD) simulations are used to investigate the energetic factors that drive Neu TM-TM interactions of the wild and the oncogenic receptor (Val664/Glu mutation) in DMPC or in POPC environments. MD results indicate that helix-lipid interactions in the bilayer core are extremely similar in the two environments and raise the role of the juxtamembrane residues in helix insertion and helix-helix packing. The TM domain shows a greater propensity to adopt a left-handed structure in DMPC, with helices in optimal position for strong inter-helical Hbonds induced by the Glu mutation. In POPC, the right-handed structure is preferentially formed with the participation of water in inter-helical Hbonds. The two structural arrangements of the Neu(TM) helices both with GG4 residue motif in close contact at the interface are permissible in the membrane environment. According to the hypothesis of a monomer-dimer equilibrium of the proteins it is likely that the bilayer imposes structural constraints that favor dimerization-competent structure responsible of the proper topology necessary for receptor activation.
Collapse
Affiliation(s)
- Pierre Aller
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans and to INSERM, rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
49
|
Beevers AJ, Kukol A. Systematic molecular dynamics searching in a lipid bilayer: Application to the glycophorin A and oncogenic ErbB-2 transmembrane domains. J Mol Graph Model 2006; 25:226-33. [PMID: 16434222 DOI: 10.1016/j.jmgm.2005.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/15/2005] [Accepted: 12/19/2005] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations of proteins in a lipid bilayer environment are usually undertaken with one or a few starting structures. Here we report a search protocol for systematically exploring the possible interactions in helical bundle transmembrane proteins, a frequently occurring structural motif. The search protocol correctly identifies the experimentally known structure of the dimeric human glycophorin A transmembrane domain as the lowest energy structure among five different models without any prior assumptions, whilst an identical in vacuo search fails to identify the correct structure. The lowest energy structure from the search in a lipid bilayer has a root mean square deviation of 1.1A to the experimental structure. We have applied the same search protocol to the unknown transmembrane structure of the oncogenic mutant ErbB-2 protein, a member of the family of epidermal growth factor receptors. Resulting structures show the role of glutamic acid hydrogen bonding and close helical packing. Water molecules may also play a key role in stabilisation of the transmembrane helix association.
Collapse
Affiliation(s)
- Andrew J Beevers
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
50
|
Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MSP, Berks BC, Palmer T. Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 2006; 281:34072-85. [PMID: 16973610 DOI: 10.1074/jbc.m607295200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.
Collapse
Affiliation(s)
- Philip A Lee
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|