1
|
The Dramatic Modulatory Role of the 2'N Substitution of the Terminal Amino Hexose of Globotetraosylceramide in Determining Binding by Members of the Verotoxin Family. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Abstract
Shiga toxin (Stx) is one of the most potent bacterial toxins known. Stx is found in Shigella dysenteriae 1 and in some serogroups of Escherichia coli (called Stx1 in E. coli). In addition to or instead of Stx1, some E. coli strains produce a second type of Stx, Stx2, that has the same mode of action as Stx/Stx1 but is antigenically distinct. Because subtypes of each toxin have been identified, the prototype toxin for each group is now designated Stx1a or Stx2a. The Stxs consist of two major subunits, an A subunit that joins noncovalently to a pentamer of five identical B subunits. The A subunit of the toxin injures the eukaryotic ribosome and halts protein synthesis in target cells. The function of the B pentamer is to bind to the cellular receptor, globotriaosylceramide, Gb3, found primarily on endothelial cells. The Stxs traffic in a retrograde manner within the cell, such that the A subunit of the toxin reaches the cytosol only after the toxin moves from the endosome to the Golgi and then to the endoplasmic reticulum. In humans infected with Stx-producing E. coli, the most serious manifestation of the disease, hemolytic-uremic syndrome, is more often associated with strains that produce Stx2a rather than Stx1a, and that relative toxicity is replicated in mice and baboons. Stx1a and Stx2a also exhibit differences in cytotoxicity to various cell types, bind dissimilarly to receptor analogs or mimics, induce differential chemokine responses, and have several distinctive structural characteristics.
Collapse
Affiliation(s)
- Angela R. Melton-Celsa
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814,
| |
Collapse
|
3
|
Pina DG, Stechmann B, Shnyrov VL, Cabanié L, Haicheur N, Tartour E, Johannes L. Correlation between Shiga toxin B-subunit stability and antigen crosspresentation: A mutational analysis. FEBS Lett 2007; 582:185-9. [DOI: 10.1016/j.febslet.2007.11.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 12/23/2022]
|
4
|
Pina DG, Johannes L, Castanho MARB. Shiga toxin B-subunit sequential binding to its natural receptor in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:628-36. [PMID: 17258170 DOI: 10.1016/j.bbamem.2006.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/13/2006] [Accepted: 12/05/2006] [Indexed: 11/30/2022]
Abstract
Shiga toxin B-subunit (STxB), a protein involved in the cell-binding and intracellular trafficking of Shiga holotoxin, binds to a specific glycolipid, the globotriaosyl ceramide (Gb(3)). Tryptophan residues of STxB, located at the protein-membrane interface, allow one to study its interaction with model membranes by means of spectroscopic methods with no need for chemical derivatisation with a fluorophore. The protein emits maximally around 346 nm and a blue shift of about 8 nm, as well as the occurrence of changes in the emission fluorescence intensity spectra, is indicative of insertion and partition into the membrane. However, the interaction seems to take place without pentamer dissociation. Acrylamide quenching experiments confirm tryptophan residues become less exposed to solvent when in the presence of vesicles, and the use of lipophilic probes suggests that they are located in a shallow position near the water/membrane interface. Fluorescence intensity and lifetime measurements upon STxB titration with Gb(3)-containing vesicles suggest a complex STxB/Gb(3) docking mechanism involving static quenching in the later stages. Based on our observations, a model of the protein-membrane interaction is proposed and the STxB membrane partition and binding constants were calculated.
Collapse
Affiliation(s)
- David G Pina
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande C8, 1749-016 Lisboa, Portugal.
| | | | | |
Collapse
|
5
|
|
6
|
Pina DG, Gómez J, England P, Craescu CT, Johannes L, Shnyrov VL. Characterization of the non-native trifluoroethanol-induced intermediate conformational state of the Shiga toxin B-subunit. Biochimie 2006; 88:1199-207. [PMID: 16697101 DOI: 10.1016/j.biochi.2006.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/27/2006] [Indexed: 11/21/2022]
Abstract
The effect of increasing concentrations of 2,2,2-trifluoroethanol (TFE) on the conformational stability of the Shiga toxin B-subunit (STxB), a bacterial homopentameric protein involved in cell-surface binding and intracellular transport, has been studied by far-, near-UV circular dichroism (CD), intrinsic fluorescence, analytical ultracentrifugation, and differential scanning calorimetry (DSC) under equilibrium conditions. Our data show that the native structure of STxB is highly perturbed by the presence of TFE. In fact, at concentrations of TFE above 20% (v/v), the native pentameric conformation of the protein is cooperatively transformed into a helix-rich monomeric and partially folded conformational state with no significant tertiary structure. Additionally, no cooperative transition was detected upon a further increase in the TFE concentration (above 40% (v/v)). The thermal stability of STxB was investigated at several different TFE concentrations using DSC and CD spectroscopy. Thermal transitions at TFE concentrations of up to 20% (v/v) were successfully fitted to the two-state folding/unfolding coupled to oligomerization model consistent with the transition between a pentameric folded conformation to a monomeric state of the protein, which the presence of TFE stabilizes as a partially folded conformation.
Collapse
Affiliation(s)
- David G Pina
- Laboratoire trafic et signalisation, UMR 144 CNRS, Institut Curie, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
7
|
Kitova EN, Daneshfar R, Marcato P, Mulvey GL, Armstrong G, Klassen JS. Stability of the homopentameric B subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1957-68. [PMID: 16242954 DOI: 10.1016/j.jasms.2005.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 07/07/2005] [Accepted: 07/12/2005] [Indexed: 05/05/2023]
Abstract
The assembly of the B subunits of Shiga toxins (Stx) 1 and 2 and the influence of solution conditions (protein concentration, temperature, pH, and ionic strength) on it are investigated using temperature-controlled nanoflow electrospray (nano-ES) ionization and Fourier-transform ion cyclotron resonance mass spectrometry. Despite the similar higher order structure predicted by X-ray crystallography analysis, the B(5) homopentamers of Stx1 and Stx2 exhibit differences in stability under the solution conditions investigated. At solution temperatures ranging from 0 to 60 degrees C and subunit concentrations ranging from 5 to 85 microM, the Stx1 B subunit exists almost entirely as the homopentamer in aqueous solutions, independent of the ionic strength. In contrast, the degree of assembly of Stx2 B subunit is strongly dependent on temperature, subunit concentration, and ionic strength. At subunit concentrations of more than 50 microM, the Stx2 B subunit exists predominantly as a pentamer, although smaller multimers (dimer, trimer, and tetramer) are also evident. At lower concentrations, the Stx2 B subunit exists predominantly as monomer and dimer. The relative abundance of multimeric species of the Stx2 B subunit was insensitive to the ion source conditions, suggesting that gas-phase dissociation of the pentamer ions in the source does not influence the mass spectrum. Blackbody infrared radiative dissociation of the protonated B(5) ions of Stx2 at the +12 and +13 charge states proceeds, at reaction temperatures of 120 to 180 degrees C, predominantly by the ejection of a single subunit from the complex. Dissociation into dimer and trimer ions constitutes a minor pathway. It follows that the dimer and trimer ions and, likely, the monomer ions observed in the nano-ES mass spectra of Stx2 B subunit originated in solution and not from gas-phase reactions. It is concluded that, under the solution conditions investigated, the homopentamer of Stx2 B subunit is thermodynamically less stable than that of Stx1 B subunit. Arrhenius activation parameters determined for the protonated Stx2 B(5) ions at the +12 and +13 charge states were compared with values reported for the corresponding B(5) ions of Stx1 B subunit. In contrast to the differential stability of the Stx1 and Stx2 B pentamers in solution, the dissociation activation energies (E(a)) determined for the gaseous complexes are indistinguishable at a given charge state. The similarity in the E(a) values suggests that the protonated pentamer ions of both toxins are stabilized by similar intersubunit interactions in the gas phase, a result that is in agreement with the X-ray crystal structures of the holotoxins.
Collapse
Affiliation(s)
- Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Pina DG, Johannes L. Cholera and Shiga toxin B-subunits: thermodynamic and structural considerations for function and biomedical applications. Toxicon 2005; 45:389-93. [PMID: 15733559 DOI: 10.1016/j.toxicon.2004.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The B-subunits of cholera and Shiga toxins are functionally and structurally related proteins with different chain lengths and no sequence similarity. They are responsible for toxin binding to specific glycosphingolipid receptors and intracellular toxin trafficking. Indeed, it is clearly established that B-subunits have the unique capacity of targeting the toxins to a poorly explored intracellular pathway, the retrograde route, allowing the transfer to the cytosol of the associated catalytic A-subunits, by retro-translocation from the endoplasmic reticulum. The B-subunits have also been used as vectors for antigen presentation in immunotherapeutic approaches. It is, however, not known if and how the B-subunits intervene in membrane translocation of the A-subunits and/or antigens to the cytosol. Therefore, it is important to characterise the driving force of pentamer formation, its conformational stability, and toxin-receptor interactions. This review summarises recent studies that have dealt with these topics.
Collapse
Affiliation(s)
- David G Pina
- Laboratoire Trafic et Signalisation, UMR 144 Curie/CNRS, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | |
Collapse
|
9
|
Zhang J, Tanha J, Hirama T, Khieu NH, To R, Tong-Sevinc H, Stone E, Brisson JR, MacKenzie CR. Pentamerization of single-domain antibodies from phage libraries: a novel strategy for the rapid generation of high-avidity antibody reagents. J Mol Biol 2004; 335:49-56. [PMID: 14659739 DOI: 10.1016/j.jmb.2003.09.034] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe a novel type of molecule in which single-domain antibodies (sdAbs) isolated from a nai;ve llama single domain antibody library are linked to an oligomerization domain to generate high-avidity, antigen-binding reagents. An sdAb is fused to the B-subunit of Escherichia coli verotoxin, or shiga-like toxin, which self-assembles to form a homopentamer and results in simultaneous sdAb pentamerization and introduction of avidity. Molecular modeling indicated that this fusion protein (PDB: 1OJF), termed pentabody, has structural flexibility for binding to surface-presented antigen. In the instance of an sdAb specific for a peptide antigen, pentamerization resulted in a dramatic increase in functional affinity for immobilized antigen. The pentabody was expressed in high yield in E.coli in a non-aggregated state, and exhibited excellent thermostability and protease resistance. This technology provides a relatively rapid means of generating novel antigen-binding molecules that bind strongly to immobilized antigen. It is expected that pentavalent sdAbs will have general applicability in proteomics, immunochemical staining, cancer diagnosis and other applications in which antigens are presented multivalently.
Collapse
Affiliation(s)
- Jianbing Zhang
- Institute for Biological Sciences, National Research Council of Canada, K1A 0R6, Ottawa, Ont., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yung A, Turnbull WB, Kalverda AP, Thompson GS, Homans SW, Kitov P, Bundle DR. Large-scale millisecond intersubunit dynamics in the B subunit homopentamer of the toxin derived from Escherichia coli O157. J Am Chem Soc 2004; 125:13058-62. [PMID: 14570478 DOI: 10.1021/ja0367288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here solution NMR relaxation measurements that show millisecond time-scale intersubunit dynamics in the homopentameric B subunit (VTB) of the toxin derived from Escherichia coli O157. These data are consistent with interconversion between an axially symmetric form and a low-abundance ( approximately 10%, 45 degrees C) higher energy form. The higher energy state is depopulated on binding of a novel bivalent analogue (P(k) dimer) of the natural carbohydrate acceptor globotriaosylceramide. The isothermal titration calorimetry isotherm for the binding of P(k) dimer to VTB is consistent with a five-site sequential binding model which assumes that cooperative effects arise through communication only between neighboring binding sites. The resulting thermodynamic parameters (K(a1) = 114 +/- 2.2 M(-1), K(a2) = 283 +/- 4.5 M(-1), DeltaH(1) degrees = -116.3 +/- 0.55 kJ/mol, and DeltaH(2) degrees = -50.3 +/- 0.11 kJ/mol) indicate favorable entropic cooperativity that has not previously been observed in multivalent systems.
Collapse
Affiliation(s)
- Anna Yung
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
A quantitative model is proposed for the analysis of the thermodynamic parameters of multivalent interactions in dilute solutions or with immobilized multimeric receptor. The model takes into account all bound species and describes multivalent binding via two microscopic binding energies corresponding to inter- and intramolecular interactions (Delta G(o)inter and Delta G(o)intra), the relative contributions of which depend on the distribution of complexes with different numbers of occupied binding sites. The third component of the overall free energy, which we call the "avidity entropy" term, is a function of the degeneracy of bound states, Omega(i), which is calculated on the basis of the topology of interaction and the distribution of all bound species. This term grows rapidly with the number of receptor sites and ligand multivalency, it always favors binding, and explains why multivalency can overcome the loss of conformational entropy when ligands displayed at the ends of long tethers are bound. The microscopic parameters and may be determined from the observed binding energies for a set of oligovalent ligands by nonlinear fitting with the theoretical model. Here binding data obtained from two series of oligovalent carbohydrate inhibitors for Shiga-like toxins were used to verify the theory. The decavalent and octavalent inhibitors exhibit subnanomolar activity and are the most active soluble inhibitors yet seen that block Shiga-like toxin binding to its native receptor. The theory developed here in conjunction with our protocol for the optimization of tether length provides a predictive approach to design and maximize the avidity of multivalent ligands.
Collapse
Affiliation(s)
- Pavel I Kitov
- Chemistry Department, University of Alberta, Edmonton, Canada T6G 2G2.
| | | |
Collapse
|
12
|
Kitov PI, Shimizu H, Homans SW, Bundle DR. Optimization of tether length in nonglycosidically linked bivalent ligands that target sites 2 and 1 of a Shiga-like toxin. J Am Chem Soc 2003; 125:3284-94. [PMID: 12630884 DOI: 10.1021/ja0258529] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of bivalent ligands for a Shiga-like toxin have been synthesized, their experimentally determined inhibitory activities were compared with a simplified thermodynamic model, and computer simulations were used to predict the optimal tether length in bivalent ligands. The design of the inhibitors exploits the proximity of the C-2' hydroxyl groups of two P(k)-trisaccharides when bound to two different, neighboring carbohydrate recognizing binding sites located on the surface of Shiga-like toxin. NMR studies of the complex between the toxin and bivalent ligands show that site 2 and site 1 of a single B subunit are simultaneously occupied by a tethered P(k)-trisaccharide dimer. A simplified thermodynamic treatment provides the intrinsic affinities and binding energies for the intermolecular and intramolecular association events and permits the deconvolution of the contributions to the relative binding energies for the set of bivalent ligands. Conformational analysis based on MD simulations for bivalent galabioside dimers containing different tethers demonstrated that the calculated local concentrations of the pendant ligand at the second binding site correlate with the experimentally determined relative affinity values of the respective bivalent ligands, thereby providing a predictive method to optimize tether length.
Collapse
Affiliation(s)
- Pavel I Kitov
- Chemistry Department, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | | | | | | |
Collapse
|
13
|
Soltyk AM, MacKenzie CR, Wolski VM, Hirama T, Kitov PI, Bundle DR, Brunton JL. A mutational analysis of the globotriaosylceramide-binding sites of verotoxin VT1. J Biol Chem 2002; 277:5351-9. [PMID: 11723119 DOI: 10.1074/jbc.m107472200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction.
Collapse
Affiliation(s)
- Anna M Soltyk
- Clinical Science Division, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Felitsyn N, Kitova EN, Klassen JS. Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. Anal Chem 2001; 73:4647-61. [PMID: 11605843 DOI: 10.1021/ac0103975] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blackbody infrared radiative dissociation technique was used to study the thermal decomposition of the gaseous B5 pentamer of the Shiga-like toxin I and its complexes with the Pk trisaccharide and a decavalent Pk-based oligosaccharide ligand (STARFISH, S). Dissociation of the protonated pentamer, (B5 + nH)n+ triple bond B5n+ where n = 11-14, proceeds almost exclusively by the loss of a single subunit (B) with a disproportionately large fraction (30-50%) of the parent ion charge. The degree of charge enrichment of the leaving subunit increases with increasing parent ion charge state. For n = 12-14, a distribution of product ion charge states is observed. The yields of the complementary pairs of product ions are sensitive to the reaction temperature, with higher temperatures favoring greater charge enrichment of the leaving subunit for +13 and +14, and the opposite effect for +12. These results indicate that some of the protons are rapidly exchanged between subunits in the gas phase. Dissociation of B5(14+) x S proceeds exclusively by the loss of one subunit, although the ligand increases the stability of the complex and also reduces the degree of charge enrichment in the ejected monomer. For B5(12+)(Pk)1-3, the loss of neutral Pk competes with loss of a subunit at low temperatures. Linear Arrhenius plots were obtained from the temperature-dependent dissociation rate constants measured for the loss of B from B5n+ and B514+ x S. The magnitude of the Arrhenius parameters is highly dependent on the charge state of the pentamer: Ea = 35 kcal/mol and A = 1,019 s(-1) (+14), 46 kcal/mol and 1,023 S(-1) (+13), 50 kcal/mol and 1026 s(-1) (+12), and 80 kcal/mol and 10(39) (+11). The Ea and A for B5(14+) x S are 59 kcal/mol and 10(30) s(-1), respectively. The reaction pathways leading to greater charge enrichment of the subunit lost from the B5(14+) and B5(13+) ions correspond to higher energy processes, however, these pathways are kinetically preferred at higher temperatures due to their large A factors. A simple electrostatic model, whereby charge enrichment leads to Coulombic repulsion-induced denaturation of the subunits and disruption of the intersubunit interactions, provides an explanation for the magnitude of the Arrhenius parameters and the origin of the asymmetric dissociation behavior of the complexes.
Collapse
Affiliation(s)
- N Felitsyn
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
15
|
Kitova EN, Kitov PI, Bundle DR, Klassen JS. The observation of multivalent complexes of Shiga-like toxin with globotriaoside and the determination of their stoichiometry by nanoelectrospray Fourier-transform ion cyclotron resonance mass spectrometry. Glycobiology 2001; 11:605-11. [PMID: 11447140 DOI: 10.1093/glycob/11.7.605] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We show by nanoelectrospray ionization (nanoES) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) that it is possible to observe oligosaccharide-protein complexes with dissociation constants in the millimolar range, such as P(k) trisaccharide (globotriaoside) complexed with the Shiga-like toxin (SLT) of pathogenic E. coli. It is further demonstrated that nanoES/FT-ICR MS is an exquisite method to study quantitative aspects of the association of mono- and polyvalent oligosaccharide ligands with multimeric proteins, such as the SLTs. At increasing trisaccharide:protein ratios it was shown that the B(5 )toxin subunit complexes with 5 P(k) trisaccharides and only after all 5 copies of site 2 are essentially filled do any of the remaining 10 receptor sites become occupied. From the distribution of bound P(k)'s at the five binding sites, it was possible to establish association constants for each of the five sites and to confirm that binding occurs noncooperatively, the association constants for each site are identical and that compared to site 1, site 2 exhibits a tenfold higher affinity for the globotriaoside synthetic ligand 1. The facile identification of the occupancy of binding sites represents information that is not readily available by other techniques. This sensitive and rapid estimation of association constants for protein-ligand complexes, which are free of unpredictable secondary effects that plague enzyme linked assays, is likely to find wide application.
Collapse
Affiliation(s)
- E N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | |
Collapse
|
16
|
Wacowich-Sgarbi SA, Ling CC, Otter A, Bundle DR. A tethered disaccharide trapped as its anti conformer calibrates the Karplus relationship for 3J(C,H) coupling constants. J Am Chem Soc 2001; 123:4362-3. [PMID: 11457214 DOI: 10.1021/ja005901m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S A Wacowich-Sgarbi
- Department of Chemistry, The University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | | | |
Collapse
|
17
|
Asensio JL, Siebert HC, von der Lieth CW, Laynez J, Bruix M, Soedjanaamadja U, Beintema JJ, Ca�ada FJ, Gabius HJ, Jim�nez-Barbero J. NMR investigations of protein-carbohydrate interactions: Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N?,N?-triacetylchitotriose. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000801)40:2<218::aid-prot50>3.0.co;2-p] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Espinosa JF, Asensio JL, García JL, Laynez J, Bruix M, Wright C, Siebert HC, Gabius HJ, Cañada FJ, Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N', N"-triacetylchitotriose. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3965-78. [PMID: 10866795 DOI: 10.1046/j.1432-1327.2000.01415.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The specific interaction of the isolated B domain of wheat germ agglutinin (WGA-B) with N,N',N"-triacetylchitotriose has been analyzed by 1H-NMR spectroscopy. The association constants for the binding of WGA-B to this trisaccharide have been determined from both 1H-NMR titration experiments and microcalorimetry methods. Entropy and enthalpy of binding have been obtained. The driving force for the binding process is provided by a negative DeltaH which is partially compensated by negative DeltaS. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 327 protein proton-proton distance constraints. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the refined solution conformation of this protein/carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein NOEs were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 35 refined structures was 1.05 A, while the heavy atom rmsd was 2.10 A. Focusing on the bound ligand, two different orientations of the trisaccharide within WGA-B binding site are possible. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to both complexes. A comparison of the three-dimensional structure of WGA-B in solution to that reported in the solid state and to those deduced for hevein and pseudohevein in solution has also been performed.
Collapse
Affiliation(s)
- J F Espinosa
- Instituto de Química Orgánica General, Centro de Investigaciones Biológicas, Instituto de Química Física Rocasolano, and Instituto de Estructura de la Materia, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Asensio JL, Cañada FJ, Siebert HC, Laynez J, Poveda A, Nieto PM, Soedjanaamadja UM, Gabius HJ, Jiménez-Barbero J. Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. CHEMISTRY & BIOLOGY 2000; 7:529-43. [PMID: 10903932 DOI: 10.1016/s1074-5521(00)00136-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many plants respond to pathogenic attack by producing defense proteins that are capable of reversible binding to chitin, a polysaccharide present in the cell wall of fungi and the exoskeleton of insects. Most of these chitin-binding proteins include a common structural motif of 30 to 43 residues organized around a conserved four-disulfide core, known as the 'hevein domain' or 'chitin-binding' motif. Although a number of structural and thermodynamic studies on hevein-type domains have been reported, these studies do not clarify how chitin recognition is achieved. RESULTS The specific interaction of hevein with several (GlcNAc)(n) oligomers has been studied using nuclear magnetic resonance (NMR), analytical ultracentrifugation and isothermal titration microcalorimetry (ITC). The data demonstrate that hevein binds (GlcNAc)(2-4) in 1:1 stoichiometry with millimolar affinity. In contrast, for (GlcNAc)(5), a significant increase in binding affinity is observed. Analytical ultracentrifugation studies on the hevein-(GlcNAc)(5,8) interaction allowed detection of protein-carbohydrate complexes with a ratio of 2:1 in solution. NMR structural studies on the hevein-(GlcNAc)(5) complex showed the existence of an extended binding site with at least five GlcNAc units directly involved in protein-sugar contacts. CONCLUSIONS The first detailed structural model for the hevein-chitin complex is presented on the basis of the analysis of NMR data. The resulting model, in combination with ITC and analytical ultracentrifugation data, conclusively shows that recognition of chitin by hevein domains is a dynamic process, which is not exclusively restricted to the binding of the nonreducing end of the polymer as previously thought. This allows chitin to bind with high affinity to a variable number of protein molecules, depending on the polysaccharide chain length. The biological process is multivalent.
Collapse
Affiliation(s)
- J L Asensio
- CSIC, Instituto de Química Orgánica General, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peter MG, Lingwood CA. Apparent cooperativity in multivalent verotoxin-globotriaosyl ceramide binding: kinetic and saturation binding studies with [(125)I]verotoxin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1501:116-24. [PMID: 10838185 DOI: 10.1016/s0925-4439(00)00011-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Verotoxin (VT) binding to the trisaccharide portion of globotriaosyl ceramide (Gb(3)) is believed to be a crucial step in the development of hemolytic uremic syndrome (HUS) commonly known as 'Hamburger disease'. This interaction is the initial step in the binding process and defines the specificity of verotoxin binding to cellular membranes. Although molecular modeling, co-crystallization and co-NMR studies with VT and the trisaccharide moiety of Gb(3) have indicated potential multiple sites for Gb(3) binding, little is known about their direct effects on kinetic and equilibrium binding. Here we describe how the binding of radiolabeled VT ([(125)I]VT1) to Gb(3) in a microtiter well format, is driven by two different association rate constants (k(+1a)=0.0075 and k(+1b)=0.275 min(-1) nM(-1)) with the high affinity site representing 15% of the total specific binding sites. Binding was reversible at room temperature, reached equilibrium after 2-3 h, and non-specific binding was less than 5%. Equilibrium binding studies defined by [(125)I]VT1 saturation binding to 15, 30, 60 and 120 ng Gb(3)/well, showed the presence of a single site with dissociation constants (K(d)s) ranging between 0.5 and 3 nM. However, the maximum density of specific [(125)I]VT1 binding sites (B(max)) did not directly correlate with the Gb(3) concentration per well: the most[(125)I]VT1 binding was observed for 60 ng Gb(3) (B(max)=1.28 nM; compared to 0. 23 nM for 30 ng Gb(3) and 0.65 nM for 120 ng Gb(3)). Furthermore, while Hill coefficients (n(H)) for 15, 30 and 120 ng Gb(3) were close to unity indicating single interactions, for the saturation isotherm for 60 ng Gb(3)/well n(H) was 1.4. Subsequent Scatchard analysis yielded a concave downward curve for [(125)I]VT1 binding to 60 ng Gb(3)/well, suggesting positive co-operativity. We present, for the first time, conclusive binding data confirming the presence of at least two discrete Gb(3) binding sites: these multivalent interactions between verotoxin VT-1 and Gb(3) were described by association reactions driven by two distinct rate constants, as well as by the positive co-operativity governing binding at a restricted receptor concentration. These results imply that the concentration of Gb(3) on the surface of target cells can have a complex, non-linear effect on verotoxin binding and thereby, on sensitivity to cytotoxicity.
Collapse
Affiliation(s)
- M G Peter
- Department of Infection, Immunity, Injury and Repair, Research Institute, The Hospital for Sick Children, Toronto, Ont., Canada
| | | |
Collapse
|
21
|
Shimizu H, Donohue-Rolfe A, Homans SW. Derivation of the Bound-State Conformation of a Ligand in a Weakly Aligned Ligand−Protein Complex. J Am Chem Soc 1999. [DOI: 10.1021/ja990586t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Shimizu
- School of Biomedical Sciences University of St. Andrews North Haugh, St. Andrews, KY16 9ST U.K. Department of Comparative Medicine Tufts University School of Veterinary Medicine 200 Westboro Road, North Grafton, Massachusetts 01536
| | - Art Donohue-Rolfe
- School of Biomedical Sciences University of St. Andrews North Haugh, St. Andrews, KY16 9ST U.K. Department of Comparative Medicine Tufts University School of Veterinary Medicine 200 Westboro Road, North Grafton, Massachusetts 01536
| | - Steve W. Homans
- School of Biomedical Sciences University of St. Andrews North Haugh, St. Andrews, KY16 9ST U.K. Department of Comparative Medicine Tufts University School of Veterinary Medicine 200 Westboro Road, North Grafton, Massachusetts 01536
| |
Collapse
|
22
|
Abstract
A growing number of important molecular recognition events are being shown to involve the interactions between proteins and glycolipids. Glycolipids are molecules in which one or more monosaccharides are glycosidically linked to a lipid moiety. The lipid moiety is generally buried in the cell membrane or other bilayer, leaving the oligosaccharide moiety exposed but in close proximity to the bilayer surface. This presents a unique environment for protein-carbohydrate interactions, and studies to determine the influence of the bilayer on these phenomena are in their infancy. One important property of the bilayer is the ability to orient and cluster glycolipid species, as strong interactions in biological systems are often achieved through multivalency arising from the simultaneous association of two or more proteins and receptors. This is especially true of protein-carbohydrate binding because of the unusually low affinities that characterize the monovalent interactions. More recent studies have also shown that the composition of the lipid bilayer is a critical parameter in protein-glycolipid recognition. The fluidity of the bilayer allows for correct geometric positioning of the oligosaccharide head group relative to the binding sites on the protein. In addition, there are activity-based and structural data demonstrating the impact of the bilayer microenvironment on the modulation of oligosaccharide presentation. The use of model membranes in biosensor-based methods has supplied decisive evidence of the importance of the membrane in receptor presentation. These data can be correlated with three-dimensional structural information from X-ray crystallography, NMR, and molecular mechanics to provide insight into specific protein-carbohydrate inter--actions at the bilayer.
Collapse
Affiliation(s)
- S V Evans
- Department of Biochemistry, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | | |
Collapse
|
23
|
Mammen M, Choi SK, Whitesides GM. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981016)110:20<2908::aid-ange2908>3.0.co;2-2] [Citation(s) in RCA: 522] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Milton MJ, Bundle DR. Observation of the Anti Conformation of a Glycosidic Linkage in an Antibody-Bound Oligosaccharide. J Am Chem Soc 1998. [DOI: 10.1021/ja982263n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark J. Milton
- Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2 Canada
| | - David R. Bundle
- Department of Chemistry, University of Alberta Edmonton, Alberta T6G 2G2 Canada
| |
Collapse
|
25
|
Shimizu H, Brown JM, Homans SW, Field RA. Chemical synthesis of 13C-labelled ganglioside Gb3 trisaccharide from [U-13C]-D-glucose. Tetrahedron 1998. [DOI: 10.1016/s0040-4020(98)00577-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Asensio JL, Cañada FJ, Bruix M, González C, Khiar N, Rodríguez-Romero A, Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl beta-chitobioside. Glycobiology 1998; 8:569-77. [PMID: 9592123 DOI: 10.1093/glycob/8.6.569] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The specific interaction of hevein with GlcNAc-containing oligosaccharides has been analyzed by1H-NMR spectroscopy. The association constants for the binding of hevein to a variety of ligands have been estimated from1H-NMR titration experiments. The association constants increase in the order GlcNAc-alpha(1-->6)-Man < GlcNAc < benzyl-beta-GlcNAc < p-nitrophenyl-beta-GlcNAc < chitobiose < p-nitrophenyl-beta-chitobioside < methyl-beta-chitobioside < chitotriose. Entropy and enthalpy of binding for different complexes have been obtained from van't Hoff analysis. The driving force for the binding process is provided by a negative DeltaH0which is partially compensated by negative DeltaS0. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 475 accurate protein proton-proton distance constraints after employing the MARDIGRAS program. In addition, 15 unambiguous protein/carbohydrate NOEs were detected. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the highly refined solution conformation of this protein-carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein nOe's were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 20 refined structures was 0.055 nm, while the heavy atom rmsd was 0.116 nm. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to the complex. A comparison of the three-dimensional structure of hevein in solution to those reported for wheat germ agglutinin (WGA) and hevein itself in the solid state has also been performed. The polypeptide conformation has also been compared to the NMR-derived structure of a smaller antifungical peptide, Ac-AMP2.
Collapse
Affiliation(s)
- J L Asensio
- Instituto de Química Orgánica General, CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Glycoconjugate chemistry and glycobiology were rapidly evolving scientific disciplines in the 1980s. Their impact, however, on understanding fundamental biological processes was not immediately forthcoming. Within the past 12-18 months, there has been a resurgence in the field with major discoveries leading to powerful new insights into the complex role of glycoconjugates in biological processes.
Collapse
Affiliation(s)
- T W Rademacher
- Department of Molecular Pathology, University College London, UK.
| |
Collapse
|
28
|
Poveda A, Jiménez-Barbero J. NMR studies of carbohydrate–protein interactions in solution. Chem Soc Rev 1998. [DOI: 10.1039/a827133z] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|