1
|
McGarry J, Mintmier B, Metzger MC, Giri NC, Britt N, Basu P, Wilcoxen J. Insights into periplasmic nitrate reductase function under single turnover. J Biol Inorg Chem 2024; 29:811-819. [PMID: 39633165 DOI: 10.1007/s00775-024-02087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from Campylobacter jejuni under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.
Collapse
Affiliation(s)
- Jennifer McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas Britt
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Xiang Y, Song X, Yang Y, Deng S, Fu L, Yang C, Chen M, Pu J, Zhang H, Chai H. Comammox rather than AOB dominated the efficient autotrophic nitrification-denitrification process in an extremely oxygen-limited environment. WATER RESEARCH 2024; 268:122572. [PMID: 39383803 DOI: 10.1016/j.watres.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
The discovery of complete ammonia oxidizer (comammox) has challenged the traditional understanding of the two-step nitrification process. However, their functions in the oxygen-limited autotrophic nitrification-denitrification (OLAND) process remain unclear. In this study, OLAND was achieved using comammox-dominated nitrifying bacteria in an extremely oxygen-limited environment with a dissolved oxygen concentrations of 0.05 mg/L. The ammonia removal efficiency exceeded 97 %, and the total nitrogen removal efficiency reached 71 % when sodium bicarbonate was used as the carbon source. The pseudo-first- and second-order models were found to best fit the ammonia removal processes under low and high loads, respectively, suggesting distinct ammonia removal pathways. Full-length 16S rRNA gene sequencing and metagenomic results revealed that comammox-dominated under different oxygen levels, in conjunction with anammox and heterotrophic denitrifiers. The abundance of enzymes involved in energy metabolism indicates the coexistence of anammox and autotrophic nitrification-heterotrophic denitrification pathways. The binning results showed that comammox bacteria engaged in horizontal gene transfer with nitrifiers, anammox bacteria, and denitrifiers to adapt to an obligate environments. Therefore, this study demonstrated that comammox, anammox, and heterotrophic denitrifiers play important roles in the OLAND process and provide a reference for further reducing aeration energy in the autotrophic nitrogen removal process.
Collapse
Affiliation(s)
- Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Xiaoming Song
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Yilin Yang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Shuai Deng
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Liwei Fu
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China.
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
3
|
Egas RA, Kurth JM, Boeren S, Sousa DZ, Welte CU, Sánchez-Andrea I. A novel mechanism for dissimilatory nitrate reduction to ammonium in Acididesulfobacillus acetoxydans. mSystems 2024; 9:e0096723. [PMID: 38323850 PMCID: PMC10949509 DOI: 10.1128/msystems.00967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.
Collapse
Affiliation(s)
- Reinier A. Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julia M. Kurth
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Microcosm Earth Centre, Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environmental Sciences for Sustainability, IE University, Segovia, Spain
| |
Collapse
|
4
|
Roothans N, Gabriëls M, Abeel T, Pabst M, van Loosdrecht MCM, Laureni M. Aerobic denitrification as an N2O source from microbial communities. THE ISME JOURNAL 2024; 18:wrae116. [PMID: 38913498 PMCID: PMC11272060 DOI: 10.1093/ismejo/wrae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas of primarily microbial origin. Oxic and anoxic emissions are commonly ascribed to autotrophic nitrification and heterotrophic denitrification, respectively. Beyond this established dichotomy, we quantitatively show that heterotrophic denitrification can significantly contribute to aerobic nitrogen turnover and N2O emissions in complex microbiomes exposed to frequent oxic/anoxic transitions. Two planktonic, nitrification-inhibited enrichment cultures were established under continuous organic carbon and nitrate feeding, and cyclic oxygen availability. Over a third of the influent organic substrate was respired with nitrate as electron acceptor at high oxygen concentrations (>6.5 mg/L). N2O accounted for up to one-quarter of the nitrate reduced under oxic conditions. The enriched microorganisms maintained a constitutive abundance of denitrifying enzymes due to the oxic/anoxic frequencies exceeding their protein turnover-a common scenario in natural and engineered ecosystems. The aerobic denitrification rates are ascribed primarily to the residual activity of anaerobically synthesised enzymes. From an ecological perspective, the selection of organisms capable of sustaining significant denitrifying activity during aeration shows their competitive advantage over other heterotrophs under varying oxygen availabilities. Ultimately, we propose that the contribution of heterotrophic denitrification to aerobic nitrogen turnover and N2O emissions is currently underestimated in dynamic environments.
Collapse
Affiliation(s)
- Nina Roothans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Minke Gabriëls
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, van Mourik Broekmanweg 6, Delft 2628 XE, the Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Michele Laureni
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
5
|
Wang S, Lyu T, Li S, Jiang Z, Dang Z, Zhu X, Hu W, Yue FJ, Ji G. Unignorable enzyme-specific isotope fractionation for nitrate source identification in aquatic ecosystem. CHEMOSPHERE 2024; 348:140771. [PMID: 38000558 DOI: 10.1016/j.chemosphere.2023.140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Nitrate contamination in aquatic systems is a widespread problem across the world. The isotopic composition (δ15N, δ18O) of nitrate and their isotope effect (15ε, 18ε) can facilitate the identification of the source and transformation of nitrate. Although previous researches claimed the isotope fractionations may change the original δ15N/δ18O values and further bias identification of nitrate sources, isotope effect was often ignored due to its complexity. To fill the gap between the understanding and application, it is crucial to develop a deep understanding of isotopic fractionation based on available evidence. In this regard, this study summarized the available methods to determine isotope effects, thereby systematically comparing the magnitude of isotope effects (15ε and 18ε) in nitrification, denitrification and anammox. We found that the enzymatic reaction plays the key role in isotope fractionations, which is significantly affected by the difference in the affinity, substrate channel properties and redox potential of active site. Due to the overlapping of microbial processes and accumulation of uncertainties, the significant isotope effects at small scales inevitably decrease in large-scale ecosystems. However, the proportionality of N and O isotope fractionation (δ18O/δ15N; 18ε/15ε) associated with nitrate reduction generally follows enzyme-specific proportionalities (i.e., Nar, 0.95; Nap, 0.57; eukNR, 0.98) in aquatic ecosystems, providing enzyme-specific constant factors for the identification of nitrate transformation. With these results, this study finally discussed feasible source portioning methods when considering the isotope effect and aimed to improve the accuracy in nitrate source identification.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Chen MJ, Chou CH, Hsiao TH, Wu TY, Li CY, Chen YL, Chao KH, Lee TH, Gicana RG, Shih CJ, Brandon-Mong GJ, Lai YL, Li PT, Tseng YL, Wang PH, Chiang YR. Clostridium innocuum, an opportunistic gut pathogen, inactivates host gut progesterone and arrests ovarian follicular development. Gut Microbes 2024; 16:2424911. [PMID: 39508647 PMCID: PMC11545266 DOI: 10.1080/19490976.2024.2424911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
\Levels of progesterone, an endogenous female hormone, increase after ovulation; progesterone is crucial in the luteal phase to maintain successful pregnancy and prevent early miscarriage. Both endogenous and exogenous progesterone are recycled between the liver and gut; thus, the gut microbiota regulate host progesterone levels by inhibiting enterohepatic progesterone circulation. Our data indicated Clostridium innocuum as a major species involved in gut progesterone metabolism in women with infertility. C. innocuum converts progesterone into the neurosteroid epipregnanolone (with negligible progestogenic activity). We purified and characterized the corresponding enzyme, namely NADPH-dependent 5β-dihydroprogesterone reductase, which is highly oxygen sensitive and whose corresponding genes are prevalent in C. innocuum. Moreover, C. innocuum-administered female C57BL/6 mice (aged 7 weeks) exhibited decreased plasma progesterone levels (~35%). Clostridium-specific antibiotics (metronidazole) restored low plasma progesterone levels in these mice. Furthermore, prolonged C. innocuum administration (12 weeks) arrested ovarian follicular development in female mice. Cytological and histological analyses indicated that C. innocuum may cause luteal phase insufficiency and affect menstrual regularity. Our findings suggest C. innocuum as a causal factor of progesterone resistance in women taking progesterone.
Collapse
Affiliation(s)
- Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Livia Shan-Yu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsun-Hsien Hsiao
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ying Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuang-Han Chao
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Ting Li
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Tseng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Xiang H, Hong Y, Wu J, Wang Y, Ye F, Ye J, Lu J, Long A. Denitrification contributes to N 2O emission in paddy soils. Front Microbiol 2023; 14:1218207. [PMID: 37396352 PMCID: PMC10313071 DOI: 10.3389/fmicb.2023.1218207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Denitrification is vital to nitrogen removal and N2O release in ecosystems; in this regard, paddy soils exhibit strong denitrifying ability. However, the underlying mechanism of N2O emission from denitrification in paddy soils is yet to be elucidated. In this study, the potential N2O emission rate, enzymatic activity for N2O production and reduction, gene abundance, and community composition during denitrification were investigated using the 15N isotope tracer technique combined with slurry incubation, enzymatic activity detection, quantitative polymerase chain reaction (qPCR), and metagenomic sequencing. Results of incubation experiments showed that the average potential N2O emission rates were 0.51 ± 0.20 μmol⋅N⋅kg-1⋅h-1, which constituted 2.16 ± 0.85% of the denitrification end-products. The enzymatic activity for N2O production was 2.77-8.94 times than that for N2O reduction, indicating an imbalance between N2O production and reduction. The gene abundance ratio of nir to nosZ from qPCR results further supported the imbalance. Results of metagenomic analysis showed that, although Proteobacteria was the common phylum for denitrification genes, other dominant community compositions varied for different denitrification genes. Gammaproteobacteria and other phyla containing the norB gene without nosZ genes, including Actinobacteria, Planctomycetes, Desulfobacterota, Cyanobacteria, Acidobacteria, Bacteroidetes, and Myxococcus, may contribute to N2O emission from paddy soils. Our results suggest that denitrification is highly modular, with different microbial communities collaborating to complete the denitrification process, thus resulting in an emission estimation of 13.67 ± 5.44 g N2O⋅m-2⋅yr-1 in surface paddy soils.
Collapse
Affiliation(s)
- Hua Xiang
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiguo Hong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Yu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Fei Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jiaqi Ye
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jing Lu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Boettger JD, Neubauer C, Kopf SH, Kubicki JD. Microbial Denitrification: Active Site and Reaction Path Models Predict New Isotopic Fingerprints. ACS EARTH & SPACE CHEMISTRY 2022; 6:2582-2594. [PMID: 36425342 PMCID: PMC9677970 DOI: 10.1021/acsearthspacechem.2c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The study of isotopic fingerprints in nitrate (δ15N, δ18O, Δ17O) has enabled pivotal insights into the global nitrogen cycle and revealed new knowledge gaps. Measuring populations of isotopic homologs of intact NO3 - ions (isotopologues) shows promise to advance the understanding of nitrogen cycling processes; however, we need new theory and predictions to guide laboratory experiments and field studies. We investigated the hypothesis that the isotopic composition of the residual nitrate pool is controlled by the N-O bond-breaking step in Nar dissimilatory nitrate reductase using molecular models of the enzyme active sites and associated kinetic isotope effects (KIEs). We integrated the molecular model results into reaction path models representing the reduction of nitrate under either closed-system or steady-state conditions. The predicted intrinsic KIE (15ε and 18ε) of the Nar active site matches observed fractionations in both culture and environmental studies. This is what would be expected if the isotopic composition of marine nitrate were controlled by dissimilatory nitrate reduction by Nar. For a closed system, the molecular models predict a pronounced negative 15N-18O clumping anomaly in residual nitrate. This signal could encode information about the amount of nitrate consumed in a closed system and thus constrain initial nitrate concentration and its isotopic composition. Similar clumped isotope anomalies can potentially be used to distinguish whether a system is open or closed to new nitrate addition. These mechanistic predictions can be tested and refined in combination with emerging ESI-Orbitrap measurements.
Collapse
Affiliation(s)
- Jason D. Boettger
- Department
of Earth, Environmental, and Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Cajetan Neubauer
- Department
of Geological Sciences & Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80303, United States
| | - Sebastian H. Kopf
- Department
of Geological Sciences & Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80303, United States
| | - James D. Kubicki
- Department
of Earth, Environmental, and Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
10
|
Dai X, Wang X, Gu J, Song Z, Guo H, Shi M, Li H. Mechanism associated with the positive effect of nanocellulose on nitrogen retention in a manure composting system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115308. [PMID: 35658259 DOI: 10.1016/j.jenvman.2022.115308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Additives can play important roles in effectively inhibiting nitrogen losses during livestock manure composting due to the activities of microbes. This study investigated the effects of adding nanocellulose at 300 mg/kg, 600 mg/kg, and 900 mg/kg (NC900) on nitrogen conversion, nitrogen conversion functional genes, and related microorganisms during composting. The results showed that compared with the control, nanocellulose hindered the ammoniation reaction. In addition, NC900 promoted nitrification, interfered with the denitrification process, and reduced the abundance of the nirK gene, thereby increasing the nitrate nitrogen content and decreasing ammonia spillover. NC900 promoted nitrogen fixation by increasing the abundance of members of Rhizobiales, which play important roles in nitrogen fixation. In general, compared with the control, NC900 improved the retention of nitrogen by controlling ammonia emissions. The results obtained in this study demonstrate that nanocellulose can be applied in the treatment of organic solid waste and agricultural production.
Collapse
Affiliation(s)
- Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meiling Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Guo K, Feng X, Sun W, Han S, Wu S, Gao H. NapB Restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants. Commun Biol 2022; 5:87. [PMID: 35064202 PMCID: PMC8782879 DOI: 10.1038/s42003-022-03034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochromes c (cyts c), essential for respiration and photosynthesis in eukaryotes, confer bacteria respiratory versatility for survival and growth in natural environments. In bacteria having a cyt c maturation (CCM) system, DsbD is required to mediate electron transport from the cytoplasm to CcmG of the Ccm apparatus. Here with cyt c-rich Shewanella oneidensis as the research model, we identify NapB, a cyt c per se, that suppresses the CCM defect of a dsbD mutant during anaerobiosis, when NapB is produced at elevated levels, a result of activation by cAMP-Crp. Data are then presented to suggest that NapB reduces CcmG, leading to the suppression. We further show that NapB proteins capable of rescuing CCM in the dsbD mutant form a small distinct clade. The study sheds light on multifunctionality of cyts c, and more importantly, unravels a self-salvation strategy through which bacteria have evolved to better adjust to the natural world. The DsbD protein is normally required for cytochrome c maturation (Ccm) in bacteria. With cytochrome c-rich Shewanella oneidensis as the research model, NapB, the small subunit of the nitrate reductase which is a cytochrome c per se, was found to suppress the Ccm defect resulting from DsbD loss under anaerobic conditions.
Collapse
|
12
|
Al-Attar S, Rendon J, Sidore M, Duneau JP, Seduk F, Biaso F, Grimaldi S, Guigliarelli B, Magalon A. Gating of Substrate Access and Long-Range Proton Transfer in Escherichia coli Nitrate Reductase A: The Essential Role of a Remote Glutamate Residue. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sinan Al-Attar
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Julia Rendon
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Marlon Sidore
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Jean-Pierre Duneau
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Farida Seduk
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Frédéric Biaso
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Stéphane Grimaldi
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Bruno Guigliarelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Axel Magalon
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| |
Collapse
|
13
|
Arias-Cartin R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. Identification and characterization of a non-canonical menaquinone-linked formate dehydrogenase. J Biol Chem 2021; 298:101384. [PMID: 34748728 PMCID: PMC8808070 DOI: 10.1016/j.jbc.2021.101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
The Molybdenum/Tungsten-bispyranopterin guanine dinucleotides (Mo/W-bisPGD) family of Formate Dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting owing to their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates employed by partner subunits interacting with the catalytic hub. Here, we unveiled two non-canonical FDHs in Bacillus subtilis which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the ForC catalytic subunit interacts with an unprecedented partner subunit, ForE, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The ForE essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic Mo/bisPGD cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a non-canonical FDH, which differs in terms of architecture, amino acid conservation around the Mo cofactor, and reactivity.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Alexandre Uzel
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Fabien Pierrel
- Grenoble Alpes Université, CNRS, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marianne Broc
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Université, CNRS, Plateforme Protéomique de l'IMM, IM2B Marseille Protéomique (MaP), 13009 Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Stéphane Grimaldi
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France.
| |
Collapse
|
14
|
Meneghello M, Oliveira AR, Jacq‐Bailly A, Pereira IAC, Léger C, Fourmond V. Formate Dehydrogenases Reduce CO
2
Rather than HCO
3
−
: An Electrochemical Demonstration. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marta Meneghello
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade Nova de Lisboa Oeiras Portugal
| | - Aurore Jacq‐Bailly
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade Nova de Lisboa Oeiras Portugal
| | - Christophe Léger
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Vincent Fourmond
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| |
Collapse
|
15
|
Asamoto CK, Rempfert KR, Luu VH, Younkin AD, Kopf SH. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5537-5546. [PMID: 33687201 DOI: 10.1021/acs.est.0c07816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.
Collapse
Affiliation(s)
- Ciara K Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Victoria H Luu
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Adam D Younkin
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Meneghello M, Oliveira AR, Jacq‐Bailly A, Pereira IAC, Léger C, Fourmond V. Formate Dehydrogenases Reduce CO
2
Rather than HCO
3
−
: An Electrochemical Demonstration. Angew Chem Int Ed Engl 2021; 60:9964-9967. [DOI: 10.1002/anie.202101167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Meneghello
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade Nova de Lisboa Oeiras Portugal
| | - Aurore Jacq‐Bailly
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA) Universidade Nova de Lisboa Oeiras Portugal
| | - Christophe Léger
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| | - Vincent Fourmond
- CNRS Aix-Marseille Université BIP IMM IM2B 31 Chemin J. Aiguier, CS70071 13402 Marseille Cedex 20 France
| |
Collapse
|
17
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
18
|
Sulfite oxidation by the quinone-reducing molybdenum sulfite dehydrogenase SoeABC from the bacterium Aquifex aeolicus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148279. [DOI: 10.1016/j.bbabio.2020.148279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023]
|
19
|
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. A critical review of aerobic denitrification: Insights into the intracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139080. [PMID: 32417477 DOI: 10.1016/j.scitotenv.2020.139080] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/04/2020] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Aerobic denitrification is a novel biological nitrogen removal technology, which has been widely investigated as an alternative to the conventional denitrification and for its unique advantages. To fully comprehend aerobic denitrification, it is essential to clarify the regulatory mechanisms of intracellular electron transfer during aerobic denitrification. However, reports on intracellular electron transfer during aerobic denitrification are rather limited. Thus, the purpose of this review is to discuss the molecular mechanism of aerobic denitrification from the perspective of electron transfer, by summarizing the advancements in current research on electron transfer based on conventional denitrification. Firstly, the implication of aerobic denitrification is briefly discussed, and the status of current research on aerobic denitrification is summarized. Then, the occurring foundation and significance of aerobic denitrification are discussed based on a brief review of the key components involved in the electron transfer of denitrifying enzymes. Moreover, a strategy for enhancing the efficiency of aerobic denitrification is proposed on the basis of the regulatory mechanisms of denitrification enzymes. Finally, scientific outlooks are given for further investigation on aerobic denitrification in the future. This review could help clarify the mechanism of aerobic denitrification from the perspective of electron transfer.
Collapse
Affiliation(s)
- Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China; Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
20
|
Wang T, Li Y, Zhang L, Liu W, Zhu Y. Salt tolerance of nitrate reductase in Halomonas sp. B01. Folia Microbiol (Praha) 2020; 65:909-916. [PMID: 32483684 DOI: 10.1007/s12223-020-00801-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
A systematic study on the lack of dissimilatory nitrate reductase (NAR) properties in Halomonas strains had been reported so far. The effects of different factors on Halomonas sp. B01 NAR activity were investigated. The salt tolerance of NAR was characterized. The denitrification process under high salt conditions was reported. Halomonas sp. B01 expressed membrane-bound NAR under induced culture by nitrate. The optimum pH of the enzyme reaction system was 8, and the optimum temperature was 30 °C. The mRNA expression abundance of narH in NAR encoding gene was highest in the 60 g/L NaCl inducing matrix. The NaCl concentration of optimum growth and induction of NAR were both 60 g/L. The ectoine added to the NAR vitro enzyme reaction system could maintain NAR activity under high NaCl concentration. In the range of 0-60 g/L NaCl, the NAR activity was stable at 17.7 (± 0.3) U/mg. The denitrification was performed by Halomonas sp. B01 at 60 g/L NaCl, and the denitrification rate reached 97.1% at 24 h. This study reveals for the first time the NAR properties of Halomonas strains, which provides a theoretical and technical basis for the nitrogen removal of high-salt nitrogenous wastewater using this strain.
Collapse
Affiliation(s)
- Te Wang
- Environmental Science and Engineering College, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, People's Republic of China.,Liaoning Institute of Science and Technology, 176 Xianghuai Road, Benxi, 117004, People's Republic of China
| | - Yujing Li
- Environmental Science and Engineering College, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, People's Republic of China
| | - Linghua Zhang
- Environmental Science and Engineering College, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, People's Republic of China.
| | - Weifeng Liu
- Environmental Science and Engineering College, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, People's Republic of China
| | - Yimin Zhu
- Environmental Science and Engineering College, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, People's Republic of China
| |
Collapse
|
21
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
22
|
Yang X, Chen Y, Guo F, Liu X, Su X, He Q. Metagenomic analysis of the biotoxicity of titanium dioxide nanoparticles to microbial nitrogen transformation in constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121376. [PMID: 31611016 DOI: 10.1016/j.jhazmat.2019.121376] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 05/23/2023]
Abstract
Extensive use of titanium dioxide nanoparticles (TiO2 NPs) in various products has increased the release of these particles into wastewater, posing potential environmental risks. As an ecological wastewater treatment facility, constructed wetland (CW) is an important sink of NPs. However, little is known about the effects of NPs on microbial nitrogen transformation and related genes in CWs. In this study, short-term (5 days) and long-term (60 days) exposure experiments were conducted to investigate the effect of TiO2 NPs (0, 1, and 50 mg/L) on microbial nitrogen removal in CWs. The results showed that nitrogen removal efficiency was decreased by 35%-51% after long-term exposure to TiO2 NPs. Metagenomic analysis further confirmed that TiO2 NPs declined the relative abundance of functional genes and those enzyme encoding genes involved in the nitrogen metabolism pathway and glycolysis metabolism process. Furthermore, our data proved that the indigent glycolysis metabolism process resulted in the shortage of electron (NADH) and energy sources (ATP), causing inefficient nitrogen removal. Overall, these results revealed that the accumulation of TiO2 NPs altered the genetic expression of biofilm in CWs, which had significant impacts on biological nitrogen transformation.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China.
| | - Fucheng Guo
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Xiaobo Liu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| | - Xiaoxuan Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
23
|
Mintmier B, McGarry JM, Sparacino-Watkins CE, Sallmen J, Fischer-Schrader K, Magalon A, McCormick JR, Stolz JF, Schwarz G, Bain DJ, Basu P. Molecular cloning, expression and biochemical characterization of periplasmic nitrate reductase from Campylobacter jejuni. FEMS Microbiol Lett 2019; 365:5040225. [PMID: 29931366 DOI: 10.1093/femsle/fny151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni, a human gastrointestinal pathogen, uses nitrate for growth under microaerophilic conditions using periplasmic nitrate reductase (Nap). The catalytic subunit, NapA, contains two prosthetic groups, an iron sulfur cluster and a molybdenum cofactor. Here we describe the cloning, expression, purification, and Michaelis-Menten kinetics (kcat of 5.91 ± 0.18 s-1 and a KM (nitrate) of 3.40 ± 0.44 μM) in solution using methyl viologen as an electron donor. The data suggest that the high affinity of NapA for nitrate could support growth of C. jejuni on nitrate in the gastrointestinal tract. Site-directed mutagenesis was used and the codon for the molybdenum coordinating cysteine residue has been exchanged for serine. The resulting variant NapA is 4-fold less active than the native enzyme confirming the importance of this residue. The properties of the C. jejuni enzyme reported here represent the first isolation and characterization of an epsilonproteobacterial NapA. Therefore, the fundamental knowledge of Nap has been expanded.
Collapse
Affiliation(s)
- Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | - Jennifer M McGarry
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | - Joseph Sallmen
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, 13402 Marseille, France
| | - Joseph R McCormick
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Günter Schwarz
- Institute for Biochemistry, University of Cologne, Cologne 50674, Germany
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, PA 15260, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
24
|
Barrio M, Fourmond V. Redox (In)activations of Metalloenzymes: A Protein Film Voltammetry Approach. ChemElectroChem 2019. [DOI: 10.1002/celc.201901028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melisa Barrio
- CNRSAix-Marseille Université, BIP UMR 7281 31 chemin J. Aiguier F-13402 Marseille cedex 20 France
| | - Vincent Fourmond
- CNRSAix-Marseille Université, BIP UMR 7281 31 chemin J. Aiguier F-13402 Marseille cedex 20 France
| |
Collapse
|
25
|
Shi LD, Wang M, Han YL, Lai CY, Shapleigh JP, Zhao HP. Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms. Appl Microbiol Biotechnol 2019; 103:9119-9129. [DOI: 10.1007/s00253-019-10111-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
|
26
|
|
27
|
Zeamari K, Gerbaud G, Grosse S, Fourmond V, Chaspoul F, Biaso F, Arnoux P, Sabaty M, Pignol D, Guigliarelli B, Burlat B. Tuning the redox properties of a [4Fe-4S] center to modulate the activity of Mo-bisPGD periplasmic nitrate reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:402-413. [DOI: 10.1016/j.bbabio.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 11/15/2022]
|
28
|
Valasatava Y, Rosato A, Furnham N, Thornton JM, Andreini C. To what extent do structural changes in catalytic metal sites affect enzyme function? J Inorg Biochem 2018; 179:40-53. [PMID: 29161638 PMCID: PMC5760197 DOI: 10.1016/j.jinorgbio.2017.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023]
Abstract
About half of known enzymatic reactions involve metals. Enzymes belonging to the same superfamily often evolve to catalyze different reactions on the same structural scaffold. The work presented here investigates how functional differentiation, within superfamilies that contain metalloenzymes, relates to structural changes at the catalytic metal site. In general, when the catalytic metal site is unchanged across the enzymes of a superfamily, the functional differentiation within the superfamily tends to be low and the mechanism conserved. Conversely, all types of structural changes in the metal binding site are observed for superfamilies with high functional differentiation. Overall, the catalytic role of the metal ions appears to be one of the most conserved features of the enzyme mechanism within metalloenzyme superfamilies. In particular, when the catalytic role of the metal ion does not involve a redox reaction (i.e. there is no exchange of electrons with the substrate), this role is almost always maintained even when the site undergoes significant structural changes. In these enzymes, functional diversification is most often associated with modifications in the surrounding protein matrix, which has changed so much that the enzyme chemistry is significantly altered. On the other hand, in more than 50% of the examples where the metal has a redox role in catalysis, changes at the metal site modify its catalytic role. Further, we find that there are no examples in our dataset where metal sites with a redox role are lost during evolution. SYNOPSIS In this paper we investigate how functional diversity within superfamilies of metalloenzymes relates to structural changes at the catalytic metal site. Evolution tends to strictly conserve the metal site. When changes occur, they do not modify the catalytic role of non-redox metals whereas they affect the role of redox-active metals.
Collapse
Affiliation(s)
- Yana Valasatava
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Janet M Thornton
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
29
|
Silva J, Aivio S, Knobel PA, Bailey LJ, Casali A, Vinaixa M, Garcia-Cao I, Coyaud É, Jourdain AA, Pérez-Ferreros P, Rojas AM, Antolin-Fontes A, Samino-Gené S, Raught B, González-Reyes A, Ribas de Pouplana L, Doherty AJ, Yanes O, Stracker TH. EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation. Nat Cell Biol 2018; 20:162-174. [PMID: 29335528 DOI: 10.1038/s41556-017-0016-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Mitochondria are subcellular organelles that are critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, and on their coordinated translation, import and respiratory complex assembly. Here, we characterize EXD2 (exonuclease 3'-5' domain-containing 2), a nuclear-encoded gene, and show that it is targeted to the mitochondria and prevents the aberrant association of messenger RNAs with the mitochondrial ribosome. Loss of EXD2 results in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of the Drosophila melanogaster EXD2 orthologue (CG6744) causes developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that is reversed with an antioxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and ageing.
Collapse
Affiliation(s)
- Joana Silva
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Suvi Aivio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department for Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Andreu Casali
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria Vinaixa
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexis A Jourdain
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pablo Pérez-Ferreros
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,EMBL Australia, University of New South Wales, Lowy Cancer Research Center, Single Molecule Science Node, Sydney and Arc Center of Excellence in Advance Molecular Imaging, Sydney, New South Wales, Australia
| | - Ana M Rojas
- Computational Biology and Bioinformatics Group, Institute of Biomedicine of Seville (IBIS/CSIC/US/JA), Campus Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Albert Antolin-Fontes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sara Samino-Gené
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain.,Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
30
|
Srivastava AP, Hardy EP, Allen JP, Vaccaro BJ, Johnson MK, Knaff DB. Identification of the Ferredoxin-Binding Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase. Biochemistry 2017; 56:5582-5592. [PMID: 28520412 DOI: 10.1021/acs.biochem.7b00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in silico model for the 1:1 ferredoxin (Fd)/nitrate reductase (NR) complex, using the known structure of Synechocystis sp. PCC 6803 Fd and the in silico model of Synechococcus sp. PCC 7942 NR, is used to map the interaction sites that define the interface between Fd and NR. To test the electrostatic interactions predicted by the model complex, five positively charged NR amino acids (Arg43, Arg46, Arg197, Lys201, and Lys614) and a negatively charged amino acid (Glu219) were altered using site-directed mutagenesis and characterized by activity measurements, metal analysis, and electron paramagnetic resonance (EPR) studies. All of the charge replacement variants retained wild-type levels of activity with reduced methyl viologen (MV), but a significant decrease in activity was observed for the R43Q, R46Q, K201Q, and K614Q variants when reduced Fd served as the electron donor. EPR analysis as well as the Fe and Mo analyses showed that loss of activity observed with these variants was not the consequence of perturbation of the Mo center or [4Fe-4S] cluster. Therefore, the loss of the Fd-linked specific activity observed with these variants can be explained only by invoking a role for Arg43, Arg46, Lys201, and Lys614 in Fd binding. The R43Q, R46Q, K201Q, and K614Q NR variants also showed a decreased binding affinity for Fd, compared to that of wild-type NR, supporting a key role of these four positively charged residues in the productive binding of Fd.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - Emily P Hardy
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - James P Allen
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Brian J Vaccaro
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States.,Center for Biotechnology and Genomics, Texas Tech University , Lubbock, Texas 79409-3132, United States
| |
Collapse
|
31
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Maia LB, Moura I, Moura JJ. Molybdenum and tungsten-containing formate dehydrogenases: Aiming to inspire a catalyst for carbon dioxide utilization. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Coelho C, Romão MJ. Structural and mechanistic insights on nitrate reductases. Protein Sci 2015; 24:1901-11. [PMID: 26362109 DOI: 10.1002/pro.2801] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/04/2015] [Indexed: 01/31/2023]
Abstract
Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data.
Collapse
Affiliation(s)
- Catarina Coelho
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO@REQUIMTE, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria João Romão
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO@REQUIMTE, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
35
|
Srivastava AP, Allen JP, Vaccaro BJ, Hirasawa M, Alkul S, Johnson MK, Knaff DB. Identification of Amino Acids at the Catalytic Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase. Biochemistry 2015; 54:5557-68. [PMID: 26305228 DOI: 10.1021/acs.biochem.5b00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in silico model of the ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942, and information about active sites in related enzymes, had identified Cys148, Met149, Met306, Asp163, and Arg351 as amino acids likely to be involved in either nitrate binding, prosthetic group binding, or catalysis. Site-directed mutagenesis was used to alter each of these residues, and differences in enzyme activity and substrate binding of the purified variants were analyzed. In addition, the effects of these replacements on the assembly and properties of the Mo cofactor and [4Fe-4S] centers were investigated using Mo and Fe determinations, coupled with electron paramagnetic resonance spectroscopy. The C148A, M149A, M306A, D163N, and R351Q variants were all inactive with either the physiological electron donor, reduced ferredoxin, or the nonphysiological electron donor, reduced methyl viologen, as the source of electrons, and all exhibited changes in the properties of the Mo cofactor. Charge-conserving D163E and R351K variants were also inactive, suggesting that specific amino acids are required at these two positions. The implications for the role of these five conserved active-site residues in light of these new results and previous structural, spectroscopic, and mutagenesis studies for related periplasmic nitrate reductases are discussed.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - James P Allen
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Brian J Vaccaro
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - Masakazu Hirasawa
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - Suzanne Alkul
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States.,Center for Biotechnology and Genomics, Texas Tech University , Lubbock, Texas 79409-3132, United States
| |
Collapse
|
36
|
Maiti BK, Maia LB, Silveira CM, Todorovic S, Carreira C, Carepo MSP, Grazina R, Moura I, Pauleta SR, Moura JJG. Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes. J Biol Inorg Chem 2015; 20:821-9. [PMID: 25948393 DOI: 10.1007/s00775-015-1268-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022]
Abstract
Molybdenum is found in the active site of enzymes usually coordinated by one or two pyranopterin molecules. Here, we mimic an enzyme with a mononuclear molybdenum-bis pyranopterin center by incorporating molybdenum in rubredoxin. In the molybdenum-substituted rubredoxin, the metal ion is coordinated by four sulfurs from conserved cysteine residues of the apo-rubredoxin and two other exogenous ligands, oxygen and thiol, forming a Mo((VI))-(S-Cys)4(O)(X) complex, where X represents -OH or -SR. The rubredoxin molybdenum center is stabilized in a Mo(VI) oxidation state, but can be reduced to Mo(IV) via Mo(V) by dithionite, being a suitable model for the spectroscopic properties of resting and reduced forms of molybdenum-bis pyranopterin-containing enzymes. Preliminary experiments indicate that the molybdenum site built in rubredoxin can promote oxo transfer reactions, as exemplified with the oxidation of arsenite to arsenate.
Collapse
Affiliation(s)
- Biplab K Maiti
- UCIBIO, REQUIMTE, Departamento Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
38
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
39
|
Jacques JG, Burlat B, Arnoux P, Sabaty M, Guigliarelli B, Léger C, Pignol D, Fourmond V. Kinetics of substrate inhibition of periplasmic nitrate reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1801-9. [DOI: 10.1016/j.bbabio.2014.05.357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 11/26/2022]
|
40
|
Rothery RA, Weiner JH. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination. J Biol Inorg Chem 2014; 20:349-72. [PMID: 25267303 DOI: 10.1007/s00775-014-1194-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
In this review, we test the hypothesis that pyranopterin coordination plays a critical role in defining substrate reactivities in the four families of mononuclear molybdenum and tungsten enzymes (Mo/W-enzymes). Enzyme families containing a single pyranopterin dithiolene chelate have been demonstrated to have reactivity towards two (sulfite oxidase, SUOX-fold) and five (xanthine dehydrogenase, XDH-fold) types of substrate, whereas the major family of enzymes containing a bis-pyranopterin dithiolene chelate (dimethylsulfoxide reductase, DMSOR-fold) is reactive towards eight types of substrate. A second bis-pyranopterin enzyme (aldehyde oxidoreductase, AOR-fold) family catalyzes a single type of reaction. The diversity of reactions catalyzed by each family correlates with active site variability, and also with the number of pyranopterins and their coordination by the protein. In the case of the AOR-fold enzymes, inflexibility of pyranopterin coordination correlates with their limited substrate specificity (oxidation of aldehydes). In examples of the SUOX-fold and DMSOR-fold enzymes, we observe three types of histidine-containing charge-transfer relays that can: (1) connect the piperazine ring of the pyranopterin to the substrate-binding site (SUOX-fold enzymes); (2) provide inter-pyranopterin communication (DMSOR-fold enzymes); and (3) connect a pyran ring oxygen to deeply buried water molecules (the DMSOR-fold NarGHI-type nitrate reductases). Finally, sequence data mining reveals a number of bacterial species whose predicted proteomes contain large numbers (up to 64) of Mo/W-enzymes, with the DMSOR-fold enzymes being dominant. These analyses also reveal an inverse correlation between Mo/W-enzyme content and pathogenicity.
Collapse
Affiliation(s)
- Richard A Rothery
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | |
Collapse
|
41
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
42
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 587] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
44
|
Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains. Biochem Soc Trans 2014; 41:1249-53. [PMID: 24059515 DOI: 10.1042/bst20130147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Respiratory and photosynthetic electron transfer chains are dependent on vectorial electron transfer through a series of redox proteins. Examples include electron transfer from NapC to NapAB nitrate reductase in Paracoccus denitrificans and from CymA to Fcc3 (flavocytochrome c3) fumarate reductase in Shewanella oneidensis MR-1. In the present article, we demonstrate that graphite electrodes can serve as surfaces for the stepwise adsorption of NapC and NapAB, and the stepwise adsorption of CymA and Fcc3. Aspects of the catalytic properties of these assemblies are different from those of NapAB and Fcc3 adsorbed in isolation. We propose that this is due to the formation of NapC-NapAB and of CymA-Fcc3 complexes that are capable of supporting vectorial electron transfer.
Collapse
|
45
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
46
|
Dow JM, Grahl S, Ward R, Evans R, Byron O, Norman DG, Palmer T, Sargent F. Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone. FEBS J 2013; 281:246-60. [PMID: 24314029 PMCID: PMC4159696 DOI: 10.1111/febs.12592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
Abstract
Escherichia coli is a Gram‐negative bacterium that can use nitrate during anaerobic respiration. The catalytic subunit of the periplasmic nitrate reductase NapA contains two types of redox cofactor and is exported across the cytoplasmic membrane by the twin‐arginine protein transport pathway. NapD is a small cytoplasmic protein that is essential for the activity of the periplasmic nitrate reductase and binds tightly to the twin‐arginine signal peptide of NapA. Here we show, using spin labelling and EPR, that the isolated twin‐arginine signal peptide of NapA is structured in its unbound form and undergoes a small but significant conformational change upon interaction with NapD. In addition, a complex comprising the full‐length NapA protein and NapD could be isolated by engineering an affinity tag onto NapD only. Analytical ultracentrifugation demonstrated that the two proteins in the NapDA complex were present in a 1 : 1 molar ratio, and small angle X‐ray scattering analysis of the complex indicated that NapA was at least partially folded when bound by its NapD partner. A NapDA complex could not be isolated in the absence of the NapA Tat signal peptide. Taken together, this work indicates that the NapD chaperone binds primarily at the NapA signal peptide in this system and points towards a role for NapD in the insertion of the molybdenum cofactor. Structured digital abstract NapD and NapAbind by x ray scattering (View interaction) NapA and NapD physically interact by molecular sieving (View interaction) NapA and NapDbind by electron paramagnetic resonance (View interaction)
Collapse
Affiliation(s)
- Jennifer M Dow
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:277-86. [PMID: 24212053 DOI: 10.1016/j.bbabio.2013.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
In Rhodobacter sphaeroides periplasmic nitrate reductase NapAB, the major Mo(V) form (the "high g" species) in air-purified samples is inactive and requires reduction to irreversibly convert into a catalytically competent form (Fourmond et al., J. Phys. Chem., 2008). In the present work, we study the kinetics of the activation process by combining EPR spectroscopy and direct electrochemistry. Upon reduction, the Mo (V) "high g" resting EPR signal slowly decays while the other redox centers of the protein are rapidly reduced, which we interpret as a slow and gated (or coupled) intramolecular electron transfer between the [4Fe-4S] center and the Mo cofactor in the inactive enzyme. Besides, we detect spin-spin interactions between the Mo(V) ion and the [4Fe-4S](1+) cluster which are modified upon activation of the enzyme, while the EPR signatures associated to the Mo cofactor remain almost unchanged. This shows that the activation process, which modifies the exchange coupling pathway between the Mo and the [4Fe-4S](1+) centers, occurs further away than in the first coordination sphere of the Mo ion. Relying on structural data and studies on Mo-pyranopterin and models, we propose a molecular mechanism of activation which involves the pyranopterin moiety of the molybdenum cofactor that is proximal to the [4Fe-4S] cluster. The mechanism implies both the cyclization of the pyran ring and the reduction of the oxidized pterin to give the competent tricyclic tetrahydropyranopterin form.
Collapse
|
48
|
Freely diffusing versus adsorbed protein: Which better mimics the cellular state of a redox protein? Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Srivastava AP, Hirasawa M, Bhalla M, Chung JS, Allen JP, Johnson MK, Tripathy JN, Rubio LM, Vaccaro B, Subramanian S, Flores E, Zabet-Moghaddam M, Stitle K, Knaff DB. Roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 2013; 52:4343-53. [PMID: 23692082 DOI: 10.1021/bi400354n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of four conserved basic amino acids in the reaction catalyzed by the ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 have been investigated using site-directed mutagenesis in combination with measurements of steady-state kinetics, substrate-binding affinities, and spectroscopic properties of the enzyme's two prosthetic groups. Replacement of either Lys58 or Arg70 by glutamine leads to a complete loss of activity, both with the physiological electron donor, reduced ferredoxin, and with a nonphysiological electron donor, reduced methyl viologen. More conservative, charge-maintaining K58R and R70K variants were also completely inactive. Replacement of Lys130 by glutamine produced a variant that retained 26% of the wild-type activity with methyl viologen as the electron donor and 22% of the wild-type activity with ferredoxin as the electron donor, while replacement by arginine produces a variant that retains a significantly higher percentage of the wild-type activity with both electron donors. In contrast, replacement of Arg146 by glutamine had minimal effect on the activity of the enzyme. These results, along with substrate-binding and spectroscopic measurements, are discussed in terms of an in silico structural model for the enzyme.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Induced peroxidase activity of haem containing nitrate reductases revealed by protein film electrochemistry. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|