1
|
Li P, Wu D, Yu X. Targeting dePARylation in cancer therapy. DNA Repair (Amst) 2025; 148:103824. [PMID: 40056493 DOI: 10.1016/j.dnarep.2025.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Poly(ADP-ribosyl)ation (PARylation), a reversible post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs), plays crucial roles in DNA replication and DNA damage repair. Since interfering PARylation induces selective cytotoxicity in tumor cells with homologous recombination defects, PARP inhibitors (PARPi) have significant clinical impacts in treating BRCA-mutant cancer patients. Likewise, dePARylation is also essential for optimal DNA damage response and genomic stability. This process is mediated by a group of dePARylation enzymes, such as poly(ADP-ribose) glycohydrolase (PARG). Currently, several novel PARG inhibitors have been developed and examined in preclinical and clinical studies, demonstrating promising anti-cancer activity distinct from PARP inhibitors. This review discusses the role of dePARylation in genome stability and the potential of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Bejan DS, Lacoursiere RE, Pruneda JN, Cohen MS. Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose. EMBO J 2025; 44:2211-2231. [PMID: 40000907 PMCID: PMC12000418 DOI: 10.1038/s44318-025-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The prevailing view on post-translational modifications (PTMs) is that a single amino acid is modified with a single PTM at any given time. However, recent work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation. For example, DELTEX E3 ligases were reported to ubiquitylate a hydroxyl group on free NAD+ and ADP-ribose in vitro, generating a noncanonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester. We call this process mono-ADP-ribosyl ubiquitylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that multiple PARPs are MARUbylated and extended with K11-linked polyubiquitin chains when exogenously expressed. Finally, we show that in response to type I interferon stimulation, MARUbylation can occur endogenously on PARP targets. Thus, MARUbylation represents a new dual PTM that broadens our understanding of the function of PARP-mediated ADP-ribosylation in cells.
Collapse
Affiliation(s)
- Daniel S Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rachel E Lacoursiere
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan N Pruneda
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Weixler L, Žaja R, Ikenga NJ, Siefert J, Mohan G, Aydin G, Wijngaarden S, Filippov DV, Lüscher B, Feijs-Žaja KLH. Family-wide analysis of human macrodomains reveals novel activities and identifies PARG as most efficient ADPr-RNA hydrolase. Commun Biol 2025; 8:453. [PMID: 40102620 PMCID: PMC11920425 DOI: 10.1038/s42003-025-07901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
ADP-ribosylation is well-known as protein posttranslational modification and was recently also identified as RNA posttranscriptional modification. When macrodomain proteins were identified as protein ADP-ribosylhydrolases, several ADP-ribosylation substrates were not yet identified. Therefore, the majority of macrodomain-containing proteins have not been tested towards these additional substrates and were considered to be inactive. Here, we compare in vitro activities of the human macrodomains on a range of ADP-ribosylated substrates. We confirm recent findings that PARP9macro1 and PARP14macro1 can remove ADP-ribose from acidic residues and provide evidence that also PARP14macro2 and PARP15macro2 can function as ADP-ribosylhydrolases. In addition, we find that both PARP9macro1 and PARP14macro1 are active as ADPr-RNA decapping protein domains. Notwithstanding these in vitro activities, our data furthermore indicate that in HEK293 cells, PARG is the major ADPr-RNA decapping enzyme. Our findings thus expand the spectrum of known catalytic activities of human macrodomains and demonstrate their different efficiencies towards nucleic acid substrates.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, Bonn, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany.
| | - Nonso J Ikenga
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Jonas Siefert
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Ganga Mohan
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Gülcan Aydin
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Einsteinweg 55, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Einsteinweg 55, Leiden, The Netherlands
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Karla L H Feijs-Žaja
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
4
|
Ryan AP, Delgado-Rodriguez SE, Daugherty MD. Zinc-finger PARP proteins ADP-ribosylate alphaviral proteins and are required for interferon-γ-mediated antiviral immunity. SCIENCE ADVANCES 2025; 11:eadm6812. [PMID: 39888989 PMCID: PMC11784840 DOI: 10.1126/sciadv.adm6812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2025] [Indexed: 02/02/2025]
Abstract
Viral manipulation of posttranslational modifications (PTMs) is critical to enable control over host defenses. Evidence suggests that one such PTM, adenosine 5'-diphosphate (ADP)-ribosylation, is important for viral replication, but the host and viral components involved are poorly understood. Here, we demonstrate that several human poly(ADP-ribose) polymerase (PARP) proteins, including the zinc-finger domain containing PARP7 (TiPARP) and PARP12, directly ADP-ribosylate the alphaviral nonstructural proteins (nsPs), nsP3 and nsP4. These same human PARP proteins inhibit alphavirus replication in a manner that can be antagonized by the ADP-ribosylhydrolase activity of the virally encoded macrodomain. Last, we find that knockdown of any of the three CCCH zinc-finger domain containing PARPs, PARP7, PARP12, or the enzymatically inactive PARP13 (ZAP/ZC3HAV1), attenuates the antiviral effects of interferon-γ on alphavirus replication. Combined with evolutionary analyses, these data suggest that zinc-finger PARPs share an ancestral antiviral function that can be antagonized by the activity of viral macrodomains, indicative of an ongoing evolutionary conflict between host ADP-ribosylation and viruses.
Collapse
Affiliation(s)
- Andrew P. Ryan
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sofia E. Delgado-Rodriguez
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Zhang Z, Das C. Insights into mechanisms of ubiquitin ADP-ribosylation reversal. Biochem Soc Trans 2024; 52:2525-2537. [PMID: 39584475 DOI: 10.1042/bst20240896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation. Among the various regulatory effectors, the macrodomain effector MavL has been recently shown to reverse the Ub ADP-ribosylation and regenerate intact Ub. Here, we briefly outline emerging knowledge on ubiquitination and ADP-ribosylation and tap into cases of direct cross-talk between these two PTMs. The chemistry of ADP-ribose in the context of the PTM and the reversal mechanisms of ADP-ribosylation are then highlighted. Lastly, focusing on recent structural studies on the MavL-mediated reversal of Ub ADP-ribosylation, we strive to deduce distinct mechanisms regarding the catalysis and product release of this reaction.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
6
|
Minnee H, Codée JDC, Filippov DV. Mono-ADP-Ribosylation of Peptides: An Overview of Synthetic and Chemoenzymatic Methodologies. Chembiochem 2024; 25:e202400440. [PMID: 38984757 PMCID: PMC11664928 DOI: 10.1002/cbic.202400440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Adenosine diphosphate (ADP)-ribosylation is a ubiquitous post-translational modification that regulates vital biological processes like histone reorganization and DNA-damage repair through the modification of various amino acid residues. Due to advances in mass-spectrometry, the collection of long-known ADP-ribose (ADPr) acceptor sites, e. g. arginine, cysteine and glutamic acid, has been expanded with serine, tyrosine and histidine, among others. Well-defined ADPr-peptides are valuable tools for investigating the exact structures, mechanisms of action and interaction partners of the different flavors of this modification. This review provides a comprehensive overview of synthetic and chemoenzymatic methodologies that enabled the construction of peptides mono-ADP-ribosylated on various amino acids, and close mimetics thereof.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityLeiden2300 RANetherlands
| |
Collapse
|
7
|
Zhang L, Zhang XN, Ansari AJ, Zhang Y. An NAD + with Dually Modified Adenine for Labeling ADP-Ribosylation-Specific Proteins. Tetrahedron 2024; 168:134361. [PMID: 39553786 PMCID: PMC11563119 DOI: 10.1016/j.tet.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein adenosine diphosphate (ADP)-ribosylation participates in various pivotal cellular events. Its readers and erasers play key roles in modulating ADP-ribosylation-based signaling pathways. Unambiguous assignments of readers and erasers to individual ADP-ribosylated proteins provide insightful knowledge on ADP-ribosylation biology and require the development of tools and technologies for this goal. Herein, we report the design and the synthesis of a nicotinamide adenine dinucleotide (NAD+) carrying a photoactive and a clickable group. Functioning as a substrate for poly-ADP-ribosylation (PARylation), this NAD+ mimic with dually modified adenine enables covalent crosslinking and labeling of proteins bound to PARylation, representing a new photoaffinity probe for studying this critical post-translational modification.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Arshad J. Ansari
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Stephens E, Chen LC, Ansari AJ, Shen K, Zhang L, Guillen SG, Wang CCC, Zhang Y. Discovery of PARP1-Sparing Inhibitors for Protein ADP-Ribosylation. ACS Med Chem Lett 2024; 15:1940-1946. [PMID: 39563804 PMCID: PMC11571001 DOI: 10.1021/acsmedchemlett.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) that catalyze cellular ADP-ribosylation play important roles in human health. PARP inhibitors have found success in the clinic for cancer treatment. However, isoform-specific inhibitors are needed for improved safety. Here, we report the unexpected discovery of nicotinamide mimics that block non-PARP1-catalyzed ADP-ribosylation at micromolar concentrations. These PARP1-sparing PARP inhibitors represent first-in-class probes for ADP-ribosylation, shedding light on the selective inhibition of PARPs.
Collapse
Affiliation(s)
- Elisa
N. Stephens
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Liang-Chieh Chen
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Arshad J. Ansari
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Kaiyu Shen
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lei Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Steven G. Guillen
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yong Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90089, United States
- Research
Center for Liver Diseases, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:315-337. [PMID: 39221603 PMCID: PMC11604531 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
10
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
11
|
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains. J Biol Chem 2024; 300:107770. [PMID: 39270823 PMCID: PMC11490716 DOI: 10.1016/j.jbc.2024.107770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.
Collapse
Affiliation(s)
- Antonio Ariza
- School of Biosciences, University of Sheffield, Sheffield, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Qiang Liu
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China; Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Beijing, China
| | - Nathan P Cowieson
- Harwell Science and Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
12
|
Zhang Z, Uribe I, Davis KA, McPherson RL, Larson GP, Badiee M, Tran V, Ledwith MP, Feltman E, Yú S, Caì Y, Chang CY, Yang X, Ma Z, Chang P, Kuhn JH, Leung AKL, Mehle A. Global remodeling of ADP-ribosylation by PARP1 suppresses influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613696. [PMID: 39345583 PMCID: PMC11430048 DOI: 10.1101/2024.09.19.613696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ADP-ribosylation is a highly dynamic and fully reversible post-translational modification performed by poly(ADP-ribose) polymerases (PARPs) that modulates protein function, abundance, localization and turnover. Here we show that influenza A virus infection causes a rapid and dramatic upregulation of global ADP-ribosylation that inhibits viral replication. Mass spectrometry defined for the first time the global ADP-ribosylome during infection, creating an infection-specific profile with almost 4,300 modification sites on ~1,080 host proteins, as well as over 100 modification sites on viral proteins. Our data indicate that the global increase likely reflects a change in the form of ADP-ribosylation rather than modification of new targets. Functional assays demonstrated that modification of the viral replication machinery antagonizes its activity and further revealed that the anti-viral activity of PARPs and ADP-ribosylation is counteracted by the influenza A virus protein NS1, assigning a new activity to the primary viral antagonist of innate immunity. We identified PARP1 as the enzyme producing the majority of poly(ADP-ribose) present during infection. Influenza A virus replicated faster in cells lacking PARP1, linking PARP1 and ADP-ribosylation to the anti-viral phenotype. Together, these data establish ADP-ribosylation as an anti-viral innate immune-like response to viral infection antagonized by a previously unknown activity of NS1.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gloria P Larson
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Elizabeth Feltman
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhuo Ma
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- Lead Contact
| |
Collapse
|
13
|
Fábián Z, Kakulidis ES, Hendriks IA, Kühbacher U, Larsen NB, Oliva-Santiago M, Wang J, Leng X, Dirac-Svejstrup AB, Svejstrup JQ, Nielsen ML, Caldecott K, Duxin JP. PARP1-dependent DNA-protein crosslink repair. Nat Commun 2024; 15:6641. [PMID: 39103378 PMCID: PMC11300803 DOI: 10.1038/s41467-024-50912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.
Collapse
Affiliation(s)
- Zita Fábián
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ellen S Kakulidis
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ivo A Hendriks
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ulrike Kühbacher
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Nicolai B Larsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Marta Oliva-Santiago
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Junhui Wang
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Xueyuan Leng
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Michael L Nielsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Keith Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RH, UK
| | - Julien P Duxin
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Feijs-Žaja KLH, Ikenga NJ, Žaja R. Pathological and physiological roles of ADP-ribosylation: established functions and new insights. Biol Chem 2024:hsz-2024-0057. [PMID: 39066732 DOI: 10.1515/hsz-2024-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
The posttranslational modification of proteins with poly(ADP-ribose) was discovered in the sixties. Since then, we have learned that the enzymes involved, the so-called poly(ADP-ribosyl)polymerases (PARPs), are transferases which use cofactor NAD+ to transfer ADP-ribose to their targets. Few PARPs are able to create poly(ADP-ribose), whereas the majority transfers a single ADP-ribose. In the last decade, hydrolases were discovered which reverse mono(ADP-ribosyl)ation, detection methods were developed and new substrates were defined, including nucleic acids. Despite the continued effort, relatively little is still known about the biological function of most PARPs. In this review, we summarise key functions of ADP-ribosylation and introduce emerging insights.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nonso J Ikenga
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Roko Žaja
- 9165 Institute of Biochemistry and Molecular Biology, RWTH Aachen University , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
15
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
16
|
Ribeiro VC, Russo LC, Hoch NC. PARP14 is regulated by the PARP9/DTX3L complex and promotes interferon γ-induced ADP-ribosylation. EMBO J 2024; 43:2908-2928. [PMID: 38834852 PMCID: PMC11251048 DOI: 10.1038/s44318-024-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
Collapse
Affiliation(s)
| | | | - Nícolas Carlos Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
17
|
Shi Y, Masic V, Mosaiab T, Rajaratman P, Hartley-Tassell L, Sorbello M, Goulart CC, Vasquez E, Mishra BP, Holt S, Gu W, Kobe B, Ve T. Structural characterization of macro domain-containing Thoeris antiphage defense systems. SCIENCE ADVANCES 2024; 10:eadn3310. [PMID: 38924412 PMCID: PMC11204291 DOI: 10.1126/sciadv.adn3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Thoeris defense systems protect bacteria from infection by phages via abortive infection. In these systems, ThsB proteins serve as sensors of infection and generate signaling nucleotides that activate ThsA effectors. Silent information regulator and SMF/DprA-LOG (SIR2-SLOG) containing ThsA effectors are activated by cyclic ADP-ribose (ADPR) isomers 2'cADPR and 3'cADPR, triggering abortive infection via nicotinamide adenine dinucleotide (NAD+) depletion. Here, we characterize Thoeris systems with transmembrane and macro domain (TM-macro)-containing ThsA effectors. We demonstrate that ThsA macro domains bind ADPR and imidazole adenine dinucleotide (IAD), but not 2'cADPR or 3'cADPR. Combining crystallography, in silico predictions, and site-directed mutagenesis, we show that ThsA macro domains form nucleotide-induced higher-order oligomers, enabling TM domain clustering. We demonstrate that ThsB can produce both ADPR and IAD, and we identify a ThsA TM-macro-specific ThsB subfamily with an active site resembling deoxy-nucleotide and deoxy-nucleoside processing enzymes. Collectively, our study demonstrates that Thoeris systems with SIR2-SLOG and TM-macro ThsA effectors trigger abortive infection via distinct mechanisms.
Collapse
Affiliation(s)
- Yun Shi
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Veronika Masic
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Tamim Mosaiab
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Premraj Rajaratman
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | | | - Mitchell Sorbello
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cassia C. Goulart
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Eduardo Vasquez
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Biswa P. Mishra
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Stephanie Holt
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
18
|
Bejan DS, Lacoursiere RE, Pruneda JN, Cohen MS. Discovery of ester-linked ubiquitylation of PARP10 mono-ADP-ribosylation in cells: a dual post-translational modification on Glu/Asp side chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600929. [PMID: 38979324 PMCID: PMC11230417 DOI: 10.1101/2024.06.27.600929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The prevailing view on post-translational modifications (PTMs) is that amino acid side chains in proteins are modified with a single PTM at any given time. However, a growing body of work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation, where specialized E3 ligases ubiquitylate targets for proteasomal degradation in an ADP-ribosylation-dependent manner. More recently, the DELTEX family of E3 ligases was reported to catalyze ubiquitylation of the 3'- hydroxy group of the adenine-proximal ribose of free NAD + and ADP-ribose in vitro , generating a non-canonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester (MARUbe). We term this process m ono- A DP-ribosyl ub iquit ylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that PARP10 MARUbylation is extended with K11-linked polyubiquitin chains. Finally, mechanistic studies using proteasomal and ubiquitin-activating enzyme inhibitors demonstrated that PARP10 MARUbylation leads to its proteasomal degradation, providing a functional role for this new PTM in regulating protein turnover.
Collapse
|
19
|
Liu YT, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Ke D, Zhou H, Che Y, Tang QZ. Macrod1 suppresses diabetic cardiomyopathy via regulating PARP1-NAD +-SIRT3 pathway. Acta Pharmacol Sin 2024; 45:1175-1188. [PMID: 38459256 PMCID: PMC11130259 DOI: 10.1038/s41401-024-01247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with oxidative stress, inflammation and apoptosis in the heart. MACRO domain containing 1 (Macrod1) is an ADP-ribosylhydrolase 1 that is highly enriched in mitochondria, participating in the pathogenesis of cardiovascular diseases. In this study, we investigated the role of Macrod1 in DCM. A mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injection of streptozotocin (STZ). We showed that Macrod1 expression levels were significantly downregulated in cardiac tissue of DCM mice. Reduced expression of Macrod1 was also observed in neonatal rat cardiomyocytes (NRCMs) treated with palmitic acid (PA, 400 μM) in vitro. Knockout of Macrod1 in DCM mice not only worsened glycemic control, but also aggravated cardiac remodeling, mitochondrial dysfunction, NAD+ consumption and oxidative stress, whereas cardiac-specific overexpression of Macrod1 partially reversed these pathological processes. In PA-treated NRCMs, overexpression of Macrod1 significantly inhibited PARP1 expression and restored NAD+ levels, activating SIRT3 to resist oxidative stress. Supplementation with the NAD+ precursor Niacin (50 μM) alleviated oxidative stress in PA-stimulated cardiomyocytes. We revealed that Macrod1 reduced NAD+ consumption by inhibiting PARP1 expression, thereby activating SIRT3 and anti-oxidative stress signaling. This study identifies Macrod1 as a novel target for DCM treatment. Targeting the PARP1-NAD+-SIRT3 axis may open a novel avenue to development of new intervention strategies in DCM. Schematic illustration of macrod1 ameliorating diabetic cardiomyopathy oxidative stress via PARP1-NAD+-SIRT3 axis.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Da Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
20
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
21
|
Ouyang F, Yuan P, Ju Y, Chen W, Peng Z, Xu H. Alzheimer's disease as a causal risk factor for diabetic retinopathy: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1340608. [PMID: 38699385 PMCID: PMC11064697 DOI: 10.3389/fendo.2024.1340608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives This study aims to investigate the causal relationship between Alzheimer's Disease (AD) and Diabetic Retinopathy (DR). Methods Employing Mendelian Randomization (MR), Generalized Summary-data-based Mendelian Randomization (GSMR), and the MR-Steiger test, this study scrutinizes the genetic underpinnings of the hypothesized causal association between AD and DR, as well as its Proliferative DR (PDR) and Non-Proliferative DR (NPDR) subtypes. Comprehensive data from Genome-Wide Association Studies (GWAS) were analyzed, specifically AD data from the Psychiatric Genomics Consortium (71,880 cases/383,378 controls), and DR, PDR, and NPDR data from both the FinnGen consortium (FinnGen release R8, DR: 5,988 cases/314,042 controls; PDR: 8,383 cases/329,756 controls; NPDR: 3,446 cases/314,042 controls) and the IEU OpenGWAS (DR: 14,584 cases/176,010 controls; PDR: 8,681 cases/204,208 controls; NPDR: 2,026 cases/204,208 controls). The study also incorporated Functional Mapping and Annotation (FUMA) for an in-depth analysis of the GWAS results. Results The MR analyses revealed that genetic susceptibility to AD significantly increases the risk of DR, as evidenced by GWAS data from the FinnGen consortium (OR: 2.5090; 95% confidence interval (CI):1.2102-5.2018, false discovery rate P-value (PFDR)=0.0201; GSMR: bxy=0.8936, bxy_se=0.3759, P=0.0174), NPDR (OR: 2.7455; 95% CI: 1.3178-5.7197, PFDR=0.0166; GSMR: bxy=0.9682, bxy_se=0.3802, P=0.0126), and PDR (OR: 2.3098; 95% CI: 1.2411-4.2986, PFDR=0.0164; GSMR: bxy=0.7962, bxy_se=0.3205, P=0.0129) using DR GWAS from FinnGen consortium. These results were corroborated by DR GWAS datasets from IEU OpenGWAS. The MR-Steiger test confirmed a significant association of all identified instrumental variables (IVs) with AD. While a potential causal effect of DR and its subtypes on AD was identified, the robustness of these results was constrained by a low power value. FUMA analysis identified OARD1, NFYA, TREM1 as shared risk genes between DR and AD, suggesting a potential genetic overlap between these complex diseases. Discussion This study underscores the contribution of AD to an increased risk of DR, as well as NPDR and PDR subtypes, underscoring the necessity of a holistic approach in the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Fu Ouyang
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yaxin Ju
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Chen
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zijun Peng
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
22
|
Abugable AA, Antar S, El-Khamisy SF. Chromosomal single-strand break repair and neurological disease: Implications on transcription and emerging genomic tools. DNA Repair (Amst) 2024; 135:103629. [PMID: 38266593 DOI: 10.1016/j.dnarep.2024.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.
Collapse
Affiliation(s)
- Arwa A Abugable
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK
| | - Sarah Antar
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, University of Sheffield, Sheffield, UK; The healthy Lifespan and Neuroscience Institutes, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
23
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
24
|
Zhu K, Suskiewicz MJ, Chatrin C, Strømland Ø, Dorsey B, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on nucleic acids. Nucleic Acids Res 2024; 52:801-815. [PMID: 38000390 PMCID: PMC10810221 DOI: 10.1093/nar/gkad1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bryan W Dorsey
- Ribon Therapeutics, 35 Cambridgepark Dr., Suite 300, Cambridge MA 02140, USA
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Minnee H, Rack JGM, van der Marel GA, Overkleeft HS, Codée JDC, Ahel I, Filippov DV. Solid-Phase Synthesis and Biological Evaluation of Peptides ADP-Ribosylated at Histidine. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 136:e202313317. [PMID: 38516349 PMCID: PMC10952255 DOI: 10.1002/ange.202313317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 03/23/2024]
Abstract
The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| | - Johannes G. M. Rack
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
- Current address: Medical Research Council Centre for Medical Mycology at the University of ExeterUniversity of Exeter, Geoffrey Pope BuildingStocker RoadExeterEX4 4QDUK
| | | | - Herman S. Overkleeft
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300LeidenThe Netherlands
| |
Collapse
|
26
|
Minnee H, Rack JGM, van der Marel GA, Overkleeft HS, Codée JDC, Ahel I, Filippov DV. Solid-Phase Synthesis and Biological Evaluation of Peptides ADP-Ribosylated at Histidine. Angew Chem Int Ed Engl 2024; 63:e202313317. [PMID: 37903139 PMCID: PMC10952301 DOI: 10.1002/anie.202313317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| | - Johannes G. M. Rack
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
- Current address: Medical Research Council Centre for Medical Mycology at the University of ExeterUniversity of Exeter, Geoffrey Pope BuildingStocker RoadExeterEX4 4QDUK
| | | | - Herman S. Overkleeft
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| | - Jeroen D. C. Codée
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| | - Ivan Ahel
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordOX1 3REUK
| | - Dmitri V. Filippov
- Bio-Organic SynthesisLeiden Institute of ChemistryLeiden UniversityRA-2300Leiden (TheNetherlands
| |
Collapse
|
27
|
Wang C, Cui Y, Xu T, Zhou Y, Yang R, Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem Pharmacol 2023; 218:115923. [PMID: 37981175 DOI: 10.1016/j.bcp.2023.115923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role in a wide variety of cellular processes to coordinate catabolic and anabolic pathways and regulate cell growth and fate. There is increasing evidence showing that abnormal glycogen synthase kinase 3 (GSK-3) is associated with the pathogenesis and progression of many disorders, such as cancer, diabetes, psychiatric diseases, and neurodegenerative diseases. In this review, we summarize recent findings about the regulatory role of GSK-3 in the occurrence and development of multiple neurodegenerative diseases, mainly focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The aim of this study is to provide new insight into the shared working mechanism of GSK-3 as a therapeutic target of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chengfeng Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Tong Xu
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China; Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China; Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China.
| | - Rong Yang
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China.
| | - Ting Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
28
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
29
|
Ortega Granda O, Alvarez K, Mate-Perez MJ, Canard B, Ferron F, Rabah N. Macro1 domain residue F156: A hallmark of SARS-CoV-2 de-MARylation specificity. Virology 2023; 587:109845. [PMID: 37517331 DOI: 10.1016/j.virol.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
SARS-CoV-2 is a large, enveloped and positive sense single stranded RNA virus. Its genome codes for 16 non-structural proteins. The largest protein of this complex is nsp3, that contains a well conserved Macro1 domain. Viral Macro domains were shown to bind to mono-ADP-ribose (MAR) and poly-ADP-ribose (PAR) in their free form or conjugated to protein substrates. They carry ADP-ribose hydrolase activities implicated in the regulation of innate immunity. SARS-CoV-2 and SARS-CoV show widely different induction and handling of the host interferon response. Herein, we have conducted a mutational study on the key amino-acid residue F156 in SARS-CoV-2, pinpointed by bioinformatic and structural studies, and its cognate residue N157 in SARS-CoV. Our data suggest that the exchange of these residues slightly modifies ADP-ribose binding, but drastically impacts de-MARylation activity. Alanine substitutions at this position hampers PAR binding, abolishes MAR hydrolysis of SARS-CoV-2, and reduces by 70% this activity in the case of SARS-CoV.
Collapse
Affiliation(s)
| | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Nadia Rabah
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Previous Affiliation: Université de Toulon, 83130, La Garde, France.
| |
Collapse
|
30
|
Groslambert J, Prokhorova E, Wondisford AR, Tromans-Coia C, Giansanti C, Jansen J, Timinszky G, Dobbelstein M, Ahel D, O'Sullivan RJ, Ahel I. The interplay of TARG1 and PARG protects against genomic instability. Cell Rep 2023; 42:113113. [PMID: 37676774 PMCID: PMC10933786 DOI: 10.1016/j.celrep.2023.113113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
The timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation. We reveal its function in the DNA damage response and show that the loss of TARG1 sensitizes cells to inhibitors of topoisomerase II, ATR, and PARP. Furthermore, we find a PARP1-mediated synthetic lethal interaction between TARG1 and PARG, driven by the toxic accumulation of ADP-ribosylation, that induces replication stress and genomic instability. Finally, we show that histone PARylation factor 1 (HPF1) deficiency exacerbates the toxicity and genomic instability induced by excessive ADP-ribosylation, suggesting a close crosstalk between components of the serine- and aspartate/glutamate-linked ADP-ribosylation pathways. Altogether, our data identify TARG1 as a potential biomarker for the response of cancer cells to PARP and PARG inhibition and establish that the interplay of TARG1 and PARG protects cells against genomic instability.
Collapse
Affiliation(s)
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Callum Tromans-Coia
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Celeste Giansanti
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6276 Szeged, Hungary
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
31
|
Đukić N, Strømland Ø, Elsborg JD, Munnur D, Zhu K, Schuller M, Chatrin C, Kar P, Duma L, Suyari O, Rack JGM, Baretić D, Crudgington DRK, Groslambert J, Fowler G, Wijngaarden S, Prokhorova E, Rehwinkel J, Schüler H, Filippov DV, Sanyal S, Ahel D, Nielsen ML, Smith R, Ahel I. PARP14 is a PARP with both ADP-ribosyl transferase and hydrolase activities. SCIENCE ADVANCES 2023; 9:eadi2687. [PMID: 37703374 PMCID: PMC10499325 DOI: 10.1126/sciadv.adi2687] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.
Collapse
Affiliation(s)
- Nina Đukić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Øyvind Strømland
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Jonas Damgaard Elsborg
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Chatrin Chatrin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Pulak Kar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Johannes Gregor Matthias Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Domagoj Baretić
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | - Gerissa Fowler
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Herwig Schüler
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
32
|
Torretta A, Chatzicharalampous C, Ebenwaldner C, Schüler H. PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. J Biol Chem 2023; 299:105096. [PMID: 37507011 PMCID: PMC10470015 DOI: 10.1016/j.jbc.2023.105096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
PARP14/BAL2 is a large multidomain enzyme involved in signaling pathways with relevance to cancer, inflammation, and infection. Inhibition of its mono-ADP-ribosylating PARP homology domain and its three ADP-ribosyl binding macro domains has been regarded as a potential means of therapeutic intervention. Macrodomains-2 and -3 are known to stably bind to ADP-ribosylated target proteins, but the function of macrodomain-1 has remained somewhat elusive. Here, we used biochemical assays of ADP-ribosylation levels to characterize PARP14 macrodomain-1 and the homologous macrodomain-1 of PARP9. Our results show that both macrodomains display an ADP-ribosyl glycohydrolase activity that is not directed toward specific protein side chains. PARP14 macrodomain-1 is unable to degrade poly(ADP-ribose), the enzymatic product of PARP1. The F926A mutation of PARP14 and the F244A mutation of PARP9 strongly reduced ADP-ribosyl glycohydrolase activity of the respective macrodomains, suggesting mechanistic homology to the Mac1 domain of the SARS-CoV-2 Nsp3 protein. This study adds two new enzymes to the previously known six human ADP-ribosyl glycohydrolases. Our results have key implications for how PARP14 and PARP9 will be studied and how their functions will be understood.
Collapse
Affiliation(s)
- Archimede Torretta
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden
| | | | - Carmen Ebenwaldner
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden
| | - Herwig Schüler
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden.
| |
Collapse
|
33
|
Javed Z, Nguyen HH, Harker KK, Mohr CM, Vano P, Wallace SR, Silvers C, Sim C, Turumella S, Flinn A, Moritz A, Carter-O’Connell I. Using TLC-MALDI-TOF to Interrogate In Vitro Peptidyl Proximal Preferences of PARP14 and Glycohydrolase Specificity. Molecules 2023; 28:6061. [PMID: 37630315 PMCID: PMC10459978 DOI: 10.3390/molecules28166061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD+) to target proteins is mediated by a class of human diphtheria toxin-like ADP-ribosyltransferases (ARTDs; previously referred to as poly-ADP-ribose polymerases or PARPs) and the removal of ADPr is catalyzed by a family of glycohydrolases. Although thousands of potential ADPr modification sites have been identified using high-throughput mass-spectrometry, relatively little is known about the sequence specificity encoded near the modification site. Herein, we present a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method that facilitates the in vitro analysis of proximal factors that guide ARTD target selection. We identify a minimal 5-mer peptide sequence that is necessary and sufficient to drive glutamate/aspartate targeting using PARP14 while highlighting the importance of the adjacent residues in PARP14 targeting. We measure the stability of the resultant ester bond and show that non-enzymatic removal is pH and temperature dependent, sequence independent, and occurs within hours. Finally, we use the ADPr-peptides to highlight differential activities within the glycohydrolase family and their sequence preferences. Our results highlight (1) the utility of MALDI-TOF in analyzing proximal ARTD-substrate interactions and (2) the importance of peptide sequences in governing ADPr transfer and removal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ian Carter-O’Connell
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA (C.M.M.); (P.V.)
| |
Collapse
|
34
|
Minnee H, Chung H, Rack JG, van der Marel GA, Overkleeft HS, Codée JDC, Ahel I, Filippov DV. Four of a Kind: A Complete Collection of ADP-Ribosylated Histidine Isosteres Using Cu(I)- and Ru(II)-Catalyzed Click Chemistry. J Org Chem 2023; 88:10801-10809. [PMID: 37464783 PMCID: PMC10407933 DOI: 10.1021/acs.joc.3c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 07/20/2023]
Abstract
Adenosine diphosphate ribosylation (ADP-ribosylation) is a crucial post-translational modification involved in important regulatory mechanisms of numerous cellular pathways including histone maintenance and DNA damage repair. To study this modification, well-defined ADP-ribosylated peptides, proteins, and close analogues thereof have been invaluable tools. Recently, proteomics studies have revealed histidine residues to be ADP-ribosylated. We describe here the synthesis of a complete set of triazole-isosteres of ADP-ribosylated histidine to serve as probes for ADP-ribosylating biomachinery. By exploiting Cu(I)- and Ru(II)-catalyzed click chemistry between a propargylglycine building block and an α- or β-configured azidoribose, we have successfully assembled the α- and β-configured 1,4- and 1,5-triazoles, mimicking N(τ)- and N(π)-ADP-ribosylated histidine, respectively. The ribosylated building blocks could be incorporated into a peptide sequence using standard solid-phase peptide synthesis and transformed on resin into the ADP-ribosylated fragments to provide a total of four ADP-ribosyl triazole conjugates, which were evaluated for their chemical and enzymatic stability. The 1,5-triazole analogues mimicking the N(π)-substituted histidines proved susceptible to base-induced epimerization and the ADP-ribosyl α-1,5-triazole linkage could be cleaved by the (ADP-ribosyl)hydrolase ARH3.
Collapse
Affiliation(s)
- Hugo Minnee
- Bio-Organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hayley Chung
- Bio-Organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | | | - Gijsbert A. van der Marel
- Bio-Organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Herman S. Overkleeft
- Bio-Organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Jeroen D. C. Codée
- Bio-Organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Ivan Ahel
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, U.K.
| | - Dmitri V. Filippov
- Bio-Organic
Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| |
Collapse
|
35
|
Kim YJ, Cho YS. Genetic association study identifies genetic variants for non-alcoholic fatty liver without comorbidities in the Korean population. Genes Genomics 2023; 45:847-854. [PMID: 37133724 DOI: 10.1007/s13258-023-01391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver (NAFL) refers to a disease in which fat builds up in the liver, similar to what occurs for those who drink a lot of alcohol, even in cases of not drinking alcohol at all or only in a small amount. Along with non-alcoholic steatohepatitis (NASH), NAFL is a type of non-alcoholic fatty liver disease (NAFLD). Currently, the prevalence of NAFLD is increasing worldwide. A wide range of comorbidities that can increase the risk of NAFLD includes obesity, type 2 diabetes, dyslipidemia, and metabolic syndrome. OBJECTIVE This study aimed to discover genetic variants for NAFL in the Korean population. METHODS Differing from previous studies, we conducted a genome-wide association study for NAFL in the selected subjects without comorbidities to rule out bias due to the inclusion of confounding effects of comorbidities. We grouped 424 NAFL cases and 5,402 controls from the Korean Genome and Epidemiology Study (KoGES) subjects without comorbidities such as dyslipidemia, type 2 diabetes, and metabolic syndrome. All subjects including cases and controls did not consume alcohol at all, or consumed less than 20 g/day for men and less than 10 g/day for women. RESULTS The logistic association analysis adjusting for sex, age, BMI, and waist circumference identified one novel genome-wide significant variant (rs7996045, P = 2.3 × 10-8) for NAFL. This variant was located in the intron of CLDN10 and was not detected using previous conventional approaches in which confounding effects resulting from comorbidities were not considered in the study design stage. In addition, we detected several genetic variants showing suggestive association for NAFL (P < 10-5). CONCLUSION The unique strategy in our association analysis of excluding major confounding factors provides, for the first time, an insight into the genuine genetic basis influencing NAFL.
Collapse
Affiliation(s)
- Yeon Jun Kim
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
36
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
37
|
Tashiro K, Wijngaarden S, Mohapatra J, Rack JGM, Ahel I, Filippov DV, Liszczak G. Chemoenzymatic and Synthetic Approaches To Investigate Aspartate- and Glutamate-ADP-Ribosylation. J Am Chem Soc 2023; 145:14000-14009. [PMID: 37315125 PMCID: PMC11065122 DOI: 10.1021/jacs.3c03771] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report here chemoenzymatic and fully synthetic methodologies to modify aspartate and glutamate side chains with ADP-ribose at specific sites on peptides. Structural analysis of aspartate and glutamate ADP-ribosylated peptides reveals near-quantitative migration of the side chain linkage from the anomeric carbon to the 2″- or 3″-ADP-ribose hydroxyl moieties. We find that this linkage migration pattern is unique to aspartate and glutamate ADP-ribosylation and propose that the observed isomer distribution profile is present in biochemical and cellular environments. After defining distinct stability properties of aspartate and glutamate ADP-ribosylation, we devise methods to install homogenous ADP-ribose chains at specific glutamate sites and assemble glutamate-modified peptides into full-length proteins. By implementing these technologies, we show that histone H2B E2 tri-ADP-ribosylation is able to stimulate the chromatin remodeler ALC1 with similar efficiency to histone serine ADP-ribosylation. Our work reveals fundamental principles of aspartate and glutamate ADP-ribosylation and enables new strategies to interrogate the biochemical consequences of this widespread protein modification.
Collapse
Affiliation(s)
- Kyuto Tashiro
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Sven Wijngaarden
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jugal Mohapatra
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Dmitri V Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
38
|
Dasovich M, Leung AKL. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools. Mol Cell 2023; 83:1552-1572. [PMID: 37119811 PMCID: PMC10202152 DOI: 10.1016/j.molcel.2023.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
PARPs catalyze ADP-ribosylation-a post-translational modification that plays crucial roles in biological processes, including DNA repair, transcription, immune regulation, and condensate formation. ADP-ribosylation can be added to a wide range of amino acids with varying lengths and chemical structures, making it a complex and diverse modification. Despite this complexity, significant progress has been made in developing chemical biology methods to analyze ADP-ribosylated molecules and their binding proteins on a proteome-wide scale. Additionally, high-throughput assays have been developed to measure the activity of enzymes that add or remove ADP-ribosylation, leading to the development of inhibitors and new avenues for therapy. Real-time monitoring of ADP-ribosylation dynamics can be achieved using genetically encoded reporters, and next-generation detection reagents have improved the precision of immunoassays for specific forms of ADP-ribosylation. Further development and refinement of these tools will continue to advance our understanding of the functions and mechanisms of ADP-ribosylation in health and disease.
Collapse
Affiliation(s)
- Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Delgado-Rodriguez SE, Ryan AP, Daugherty MD. Recurrent Loss of Macrodomain Activity in Host Immunity and Viral Proteins. Pathogens 2023; 12:674. [PMID: 37242344 PMCID: PMC10221186 DOI: 10.3390/pathogens12050674] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host-virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.
Collapse
Affiliation(s)
| | | | - Matthew D. Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California—San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Salas-Perez F, Assmann TS, Ramos-Lopez O, Martínez JA, Riezu-Boj JI, Milagro FI. Crosstalk between Gut Microbiota and Epigenetic Markers in Obesity Development: Relationship between Ruminococcus, BMI, and MACROD2/ SEL1L2 Methylation. Nutrients 2023; 15:1550. [PMID: 37049393 PMCID: PMC10097304 DOI: 10.3390/nu15071550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Changes in gut microbiota composition and in epigenetic mechanisms have been proposed to play important roles in energy homeostasis, and the onset and development of obesity. However, the crosstalk between epigenetic markers and the gut microbiome in obesity remains unclear. The main objective of this study was to establish a link between the gut microbiota and DNA methylation patterns in subjects with obesity by identifying differentially methylated DNA regions (DMRs) that could be potentially regulated by the gut microbiota. DNA methylation and bacterial DNA sequencing analysis were performed on 342 subjects with a BMI between 18 and 40 kg/m2. DNA methylation analyses identified a total of 2648 DMRs associated with BMI, while ten bacterial genera were associated with BMI. Interestingly, only the abundance of Ruminococcus was associated with one BMI-related DMR, which is located between the MACROD2/SEL1L2 genes. The Ruminococcus abundance negatively correlated with BMI, while the hypermethylated DMR was associated with reduced MACROD2 protein levels in serum. Additionally, the mediation test showed that 19% of the effect of Ruminococcus abundance on BMI is mediated by the methylation of the MACROD2/SEL1L2 DMR. These findings support the hypothesis that a crosstalk between gut microbiota and epigenetic markers may be contributing to obesity development.
Collapse
Affiliation(s)
| | - Taís Silveira Assmann
- Graduate Program in Medical Sciences, Endocrinology, Department of Internal Medicine, Faculty of Medicine, Federal University of do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - J. Alfredo Martínez
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
| | - Jose Ignacio Riezu-Boj
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
41
|
Javed Z, Nguyen HH, Harker K, Mohr CM, Vano P, Wallace SR, Silvers C, Sim C, Turumella S, Flinn A, Carter-O’Connell I. Identification of a Novel PARP14 Site Motif and Glycohydrolase Specificity Using TLC-MALDI-TOF. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533863. [PMID: 36993563 PMCID: PMC10055325 DOI: 10.1101/2023.03.22.533863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD+) to target proteins is mediated by a class of human poly-ADP-ribose polymerases, PARPs, and removal of ADPr is catalyzed by a family of glycohydrolases. Although thousands of potential ADPr modification sites have been identified using high-throughput mass-spectrometry, relatively little is known about sequence specificity encoded near the modification site. Herein, we present a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method that facilitates the discovery and validation of ADPr site motifs. We identify a minimal 5-mer peptide sequence that is sufficient to drive PARP14 specific activity while highlighting the importance of the adjacent residues in PARP14 targeting. We measure the stability of the resultant ester bond and show that non-enzymatic removal is sequence independent and occurs within hours. Finally, we use the ADPr-peptide to highlight differential activities within the glycohydrolase family and their sequence specificities. Our results highlight: 1) the utility of MALDI-TOF in motif discovery and 2) the importance of peptide sequence in governing ADPr transfer and removal.
Collapse
Affiliation(s)
- Zeeshan Javed
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Hannah H. Nguyen
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Kiana Harker
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Christian M. Mohr
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Pia Vano
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Sean R. Wallace
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Clarissa Silvers
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Colin Sim
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Soumya Turumella
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Ally Flinn
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| | - Ian Carter-O’Connell
- Santa Clara University, Department of Chemistry and Biochemistry, Santa Clara, California, 95053, United States
| |
Collapse
|
42
|
Mono-ADP-ribosylation by PARP10 inhibits Chikungunya virus nsP2 proteolytic activity and viral replication. Cell Mol Life Sci 2023; 80:72. [PMID: 36840772 PMCID: PMC9959937 DOI: 10.1007/s00018-023-04717-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.
Collapse
|
43
|
Kato J, Yamashita S, Ishiwata-Endo H, Oka S, Yu ZX, Liu C, Springer DA, Noguchi A, Peiravi M, Hoffmann V, Lizak MJ, Medearis M, Kim IK, Moss J. ADP-ribose-acceptor hydrolase 2 ( Arh2 ) deficiency results in cardiac dysfunction, tumorigenesis, inflammation, and decreased survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527494. [PMID: 36798189 PMCID: PMC9934554 DOI: 10.1101/2023.02.07.527494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
ADP-ribosylation is a reversible reaction with ADP-ribosyltransferases catalyzing the forward reaction and ADP-ribose-acceptor hydrolases (ARHs) hydrolyzing the ADP-ribose acceptor bond. ARH2 is a member of the 39-kDa ARH family (ARH1-3), which is expressed in heart and skeletal muscle. ARH2 failed to exhibit any in vitro enzymatic activity. To determine its possible in vivo activities, Arh2 -knockout (KO) and - heterozygous (Het) mice were generated using CRISPR-Cas9. Arh2 -KO mice exhibited decreased cardiac contractility by MRI, echocardiography and dobutamine stress with cardiomegaly and abnormal motor function. Arh2 -Het mice showed results similar to those seen in Arh2 -KO mice except for cardiomegaly. Arh2 -KO and -Het mice and mouse embryonic fibroblasts (MEFs) developed spontaneous tumors and subcutaneous tumors in nude mice. We identified 13 mutations in Arh2 -Het MEFs and heterozygous tumors, corresponding to human ARH2 mutations in cancers obtained from COSMIC. Of interest, the L116R mutation in Arh2 gene plays a critical role in aggressive tumorigenesis in nude mice, corresponding to human ARH2 mutations in stomach adenocarcinoma. Both genders of Arh2 -KO and -Het mice showed increased unexpectedly deaths and decreased survival rate during a 24-month observation, caused by tumor, inflammation, non-inflammation (e.g., cardiomegaly, dental dysplasia), and congenital diseases. Thus, Arh2 plays a pivotal role in cardiac function, tumorigenesis, inflammation, and overall survival.
Collapse
|
44
|
Ishiwata-Endo H, Kato J, Oda H, Sun J, Yu ZX, Liu C, Springer DA, Dagur P, Lizak MJ, Murphy E, Moss J. Mono-ADP-ribosyltransferase 1 ( Artc1 )-deficiency decreases tumorigenesis, increases inflammation, decreases cardiac contractility, and reduces survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527366. [PMID: 36945646 PMCID: PMC10028742 DOI: 10.1101/2023.02.06.527366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD + to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does Arh1 deficiency. In this study, Artc1 -KO and Artc1/Arh1 -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- α . In a xenograft model using tumorigenic Arh1 -KO mouse embryonic fibroblasts (MEFs), tumorigenicity was decreased in Artc1 -KO and heterozygous recipient mice, with tumor infiltration by CD8 + T cells and macrophages, leading to necroptosis, suggesting that ARTC1 promotes the tumor microenvironment. Furthermore, Artc1/Arh1 -double-KO MEFs showed decreased tumorigenesis in nude mice, showing that tumor cells as well as tumor microenvironment require ARTC1. By echocardiography and MRI, Artc1 -KO and heterozygous mice showed male-specific, reduced myocardial contractility. Furthermore, Artc1 -KO male hearts exhibited enhanced susceptibility to myocardial ischemia-reperfusion-induced injury with increased receptor-interacting protein kinase 3 (RIP3) protein levels compared to WT mice, suggesting that ARTC1 suppresses necroptosis. Overall survival rate of Artc1 -KO was less than their Artc1 -WT counterparts, primarily due to enhanced immune response and inflammation. Thus, anti-ARTC1 agents may reduce tumorigenesis but may increase multi-organ inflammation and decrease cardiac contractility.
Collapse
|
45
|
Zhang K, Peng T, Tao X, Tian M, Li Y, Wang Z, Ma S, Hu S, Pan X, Xue J, Luo J, Wu Q, Fu Y, Li S. Structural insights into caspase ADPR deacylization catalyzed by a bacterial effector and host calmodulin. Mol Cell 2022; 82:4712-4726.e7. [PMID: 36423631 DOI: 10.1016/j.molcel.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.
Collapse
Affiliation(s)
- Kuo Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Ting Peng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Xinyuan Tao
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanxin Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shuaifei Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Shufan Hu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518055, Guangdong, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiwei Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qiulan Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
46
|
14-3-3 Activated Bacterial Exotoxins AexT and ExoT Share Actin and the SH2 Domains of CRK Proteins as Targets for ADP-Ribosylation. Pathogens 2022; 11:pathogens11121497. [PMID: 36558830 PMCID: PMC9787417 DOI: 10.3390/pathogens11121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial exotoxins with ADP-ribosyltransferase activity can be divided into distinct clades based on their domain organization. Exotoxins from several clades are known to modify actin at Arg177; but of the 14-3-3 dependent exotoxins only Aeromonas salmonicida exoenzyme T (AexT) has been reported to ADP-ribosylate actin. Given the extensive similarity among the 14-3-3 dependent exotoxins, we initiated a structural and biochemical comparison of these proteins. Structural modeling of AexT indicated a target binding site that shared homology with Pseudomonas aeruginosa Exoenzyme T (ExoT) but not with Exoenzyme S (ExoS). Biochemical analyses confirmed that the catalytic activities of both exotoxins were stimulated by agmatine, indicating that they ADP-ribosylate arginine residues in their targets. Side-by-side comparison of target protein modification showed that AexT had activity toward the SH2 domain of the Crk-like protein (CRKL), a known target for ExoT. We found that both AexT and ExoT ADP-ribosylated actin and in both cases, the modification compromised actin polymerization. Our results indicate that AexT and ExoT are functional homologs that affect cytoskeletal integrity via actin and signaling pathways to the cytoskeleton.
Collapse
|
47
|
Weixler L, Ikenga NJ, Voorneveld J, Aydin G, Bolte TMHR, Momoh J, Bütepage M, Golzmann A, Lüscher B, Filippov DV, Žaja R, Feijs KLH. Protein and RNA ADP-ribosylation detection is influenced by sample preparation and reagents used. Life Sci Alliance 2022; 6:6/1/e202201455. [PMID: 36368907 PMCID: PMC9652768 DOI: 10.26508/lsa.202201455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
The modification of substrates with ADP-ribose (ADPr) is important in, for example, antiviral immunity and cancer. Recently, several reagents were developed to detect ADP-ribosylation; however, it is unknown whether they recognise ADPr, specific amino acid-ADPr linkages, or ADPr with the surrounding protein backbone. We first optimised methods to prepare extracts containing ADPr-proteins and observe that depending on the amino acid modified, the modification is heatlabile. We tested the reactivity of available reagents with diverse ADP-ribosylated protein and RNA substrates and observed that not all reagents are equally suited for all substrates. Next, we determined cross-reactivity with adenylylated RNA, AMPylated proteins, and metabolites, including NADH, which are detected by some reagents. Lastly, we analysed ADP-ribosylation using confocal microscopy, where depending on the fixation method, either mitochondrion, nucleus, or nucleolus is stained. This study allows future work dissecting the function of ADP-ribosylation in cells, both on protein and on RNA substrates, as we optimised sample preparation methods and have defined the reagents suitable for specific methods and substrates.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Nonso Josephat Ikenga
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Jim Voorneveld
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Leiden, Netherlands
| | - Gülcan Aydin
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Timo MHR Bolte
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Jeffrey Momoh
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Alexandra Golzmann
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Leiden, Netherlands
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Karla LH Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany,Correspondence: ;
| |
Collapse
|
48
|
Weixler L, Feijs KLH, Zaja R. ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs. Nucleic Acids Res 2022; 50:9426-9441. [PMID: 36018800 PMCID: PMC9458441 DOI: 10.1093/nar/gkac711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
RNA function relies heavily on posttranscriptional modifications. Recently, it was shown that certain PARPs and TRPT1 can ADP-ribosylate RNA in vitro. Traditionally, intracellular ADP-ribosylation has been considered mainly as a protein posttranslational modification. To date, it is not clear whether RNA ADP-ribosylation occurs in cells. Here we present evidence that different RNA species are ADP-ribosylated in human cells. The modification of cellular RNA is mediated by several transferases such as TRPT1, PARP10, PARP11, PARP12 and PARP15 and is counteracted by different hydrolases including TARG1, PARG and ARH3. In addition, diverse cellular stressors can modulate the content of ADP-ribosylated RNA in cells. We next investigated potential consequences of ADP-ribosylation for RNA and found that ADPr-capped mRNA is protected against XRN1 mediated degradation but is not translated. T4 RNA ligase 1 can ligate ADPr-RNA in absence of ATP, resulting in the incorporation of an abasic site. We thus provide the first evidence of RNA ADP-ribosylation in mammalian cells and postulate potential functions of this novel RNA modification.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Karla L H Feijs
- Correspondence may also be addressed to Karla L.H. Feijs. Tel: +49 2418080692; Fax: +49 2418082427;
| | - Roko Zaja
- To whom correspondence should be addressed. Tel: +49 2418037944; Fax: +49 2418082427;
| |
Collapse
|
49
|
Methyltransferase Setdb1 Promotes Osteoblast Proliferation by Epigenetically Silencing Macrod2 with the Assistance of Atf7ip. Cells 2022; 11:cells11162580. [PMID: 36010655 PMCID: PMC9406310 DOI: 10.3390/cells11162580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Bone loss caused by mechanical unloading is a threat to prolonged space flight and human health. Epigenetic modifications play a crucial role in varied biological processes, but the mechanism of histone modification on unloading-induced bone loss has rarely been studied. Here, we discovered for the first time that the methyltransferase Setdb1 was downregulated under the mechanical unloading both in vitro and in vivo so as to attenuate osteoblast proliferation. Furthermore, we found these interesting processes depended on the repression of Macrod2 expression triggered by Setdb1 catalyzing the formation of H3K9me3 in the promoter region. Mechanically, we revealed that Macrod2 was upregulated under mechanical unloading and suppressed osteoblast proliferation through the GSK-3β/β-catenin signaling pathway. Moreover, Atf7ip cooperatively contributed to osteoblast proliferation by changing the localization of Setdb1 under mechanical loading. In summary, this research elucidated the role of the Atf7ip/Setdb1/Macrod2 axis in osteoblast proliferation under mechanical unloading for the first time, which can be a potential protective strategy against unloading-induced bone loss.
Collapse
|
50
|
Li P, Lei Y, Qi J, Liu W, Yao K. Functional roles of ADP-ribosylation writers, readers and erasers. Front Cell Dev Biol 2022; 10:941356. [PMID: 36035988 PMCID: PMC9404506 DOI: 10.3389/fcell.2022.941356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
ADP-ribosylation is a reversible post-translational modification (PTM) tightly regulated by the dynamic interplay between its writers, readers and erasers. As an intricate and versatile PTM, ADP-ribosylation plays critical roles in various physiological and pathological processes. In this review, we discuss the major players involved in the ADP-ribosylation cycle, which may facilitate the investigation of the ADP-ribosylation function and contribute to the understanding and treatment of ADP-ribosylation associated disease.
Collapse
|