1
|
Hsu HJ, Li YT, Lai XY, Yeh YC, Hu TY, Chang CC. State transitions of coupled G i-protein: Insights into internal water channel dynamics within dopamine receptor D3 from in silico submolecular analyses. Int J Biol Macromol 2024; 281:136283. [PMID: 39378922 DOI: 10.1016/j.ijbiomac.2024.136283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Dopamine is a crucial neurotransmitter in the central nervous system (CNS) that facilitates communication among neurons. Activation of dopamine receptors in the CNS regulates key functions such as movement, cognition, and emotion. Disruption of these receptors can result in severe neurological diseases. Although recent research has elucidated the structure of D3R in complex with Gi-protein, revealing the binding and activation mechanisms, the precise conformational changes induced by G-protein activation and GDP/GTP exchange remain unclear. In this study, atomic-level long-term molecular dynamics (MD) simulations were employed to investigate the dynamics of D3R in complex with different states of Gi-protein and β-arrestin. Our simulations revealed distinct molecular switches within D3R and fluctuations in the distance between Ras and helical domains of G-protein across different G-protein-D3R states. Notably, the D3R-GTP-Gi state exhibited increased activity compared with the D3R-empty-Gi state. Additionally, analyses of potential of mean force (PMF) and free energy landscapes for various systems revealed the formation of a continuous water channel exclusively in the D3R-Gi-GTP state. Furthermore, allosteric communication pathways were proposed for active D3R bound to Gi-protein. This study offers insights into the activation mechanism when Gi-protein interacts with active D3R, potentially aiding in developing selective drugs targeting the dopaminergic system.
Collapse
Affiliation(s)
- Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ya-Tzu Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Xing-Yan Lai
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Chen Yeh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Ting-Yu Hu
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan.
| |
Collapse
|
2
|
Jang W, Lu S, Xu X, Wu G, Lambert NA. The role of G protein conformation in receptor-G protein selectivity. Nat Chem Biol 2023; 19:687-694. [PMID: 36646958 PMCID: PMC10238660 DOI: 10.1038/s41589-022-01231-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
G protein-coupled receptors (GPCRs) selectively activate at least one of the four families of heterotrimeric G proteins, but the mechanism of coupling selectivity remains unclear. Structural studies emphasize structural complementarity of GPCRs and nucleotide-free G proteins, but selectivity is likely to be determined by transient intermediate-state complexes that exist before nucleotide release. Here we study coupling to nucleotide-decoupled G protein variants that can adopt conformations similar to receptor-bound G proteins without releasing nucleotide, and are therefore able to bypass intermediate-state complexes. We find that selectivity is degraded when nucleotide release is not required for GPCR-G protein complex formation, to the extent that most GPCRs interact with most nucleotide-decoupled G proteins. These findings demonstrate the absence of absolute structural incompatibility between noncognate receptor-G protein pairs, and are consistent with the hypothesis that transient intermediate states are partly responsible for coupling selectivity.
Collapse
Affiliation(s)
- Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Sumin Lu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Richter PK, Blázquez-Sánchez P, Zhao Z, Engelberger F, Wiebeler C, Künze G, Frank R, Krinke D, Frezzotti E, Lihanova Y, Falkenstein P, Matysik J, Zimmermann W, Sträter N, Sonnendecker C. Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product. Nat Commun 2023; 14:1905. [PMID: 37019924 PMCID: PMC10076380 DOI: 10.1038/s41467-023-37415-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
The recently discovered metagenomic-derived polyester hydrolase PHL7 is able to efficiently degrade amorphous polyethylene terephthalate (PET) in post-consumer plastic waste. We present the cocrystal structure of this hydrolase with its hydrolysis product terephthalic acid and elucidate the influence of 17 single mutations on the PET-hydrolytic activity and thermal stability of PHL7. The substrate-binding mode of terephthalic acid is similar to that of the thermophilic polyester hydrolase LCC and deviates from the mesophilic IsPETase. The subsite I modifications L93F and Q95Y, derived from LCC, increased the thermal stability, while exchange of H185S, derived from IsPETase, reduced the stability of PHL7. The subsite II residue H130 is suggested to represent an adaptation for high thermal stability, whereas L210 emerged as the main contributor to the observed high PET-hydrolytic activity. Variant L210T showed significantly higher activity, achieving a degradation rate of 20 µm h-1 with amorphous PET films.
Collapse
Affiliation(s)
- P Konstantin Richter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | | | - Ziyue Zhao
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - Felipe Engelberger
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Christian Wiebeler
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig, Germany
| | - Georg Künze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - Dana Krinke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - Emanuele Frezzotti
- Department of Chemical Life and Environmental Sciences, University of Parma, Parma, Italy
| | - Yuliia Lihanova
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | | | - Jörg Matysik
- Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
| | | | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany.
| | | |
Collapse
|
4
|
Sonnendecker C, Oeser J, Richter PK, Hille P, Zhao Z, Fischer C, Lippold H, Blázquez‐Sánchez P, Engelberger F, Ramírez‐Sarmiento CA, Oeser T, Lihanova Y, Frank R, Jahnke H, Billig S, Abel B, Sträter N, Matysik J, Zimmermann W. Low Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase. CHEMSUSCHEM 2022; 15:e202101062. [PMID: 34129279 PMCID: PMC9303343 DOI: 10.1002/cssc.202101062] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/14/2021] [Indexed: 06/01/2023]
Abstract
Earth is flooded with plastics and the need for sustainable recycling strategies for polymers has become increasingly urgent. Enzyme-based hydrolysis of post-consumer plastic is an emerging strategy for closed-loop recycling of polyethylene terephthalate (PET). The polyester hydrolase PHL7, isolated from a compost metagenome, completely hydrolyzes amorphous PET films, releasing 91 mg of terephthalic acid per hour and mg of enzyme. Vertical scanning interferometry shows degradation rates of the PET film of 6.8 μm h-1 . Structural analysis indicates the importance of leucine at position 210 for the extraordinarily high PET-hydrolyzing activity of PHL7. Within 24 h, 0.6 mgenzyme gPET -1 completely degrades post-consumer thermoform PET packaging in an aqueous buffer at 70 °C without any energy-intensive pretreatments. Terephthalic acid recovered from the enzymatic hydrolysate is then used to synthesize virgin PET, demonstrating the potential of polyester hydrolases as catalysts in sustainable PET recycling processes with a low carbon footprint.
Collapse
Affiliation(s)
| | - Juliane Oeser
- Department of Microbiology and Bioprocess Technology Institute of BiochemistryLeipzig University04103LeipzigGermany
| | - P. Konstantin Richter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Patrick Hille
- Department of Microbiology and Bioprocess Technology Institute of BiochemistryLeipzig University04103LeipzigGermany
| | - Ziyue Zhao
- Institute of Analytical ChemistryLeipzig University04103LeipzigGermany
| | - Cornelius Fischer
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institut für Ressourcenökologie Abteilung Reaktiver TransportD-04318LeipzigGermany
| | - Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institut für Ressourcenökologie Abteilung Reaktiver TransportD-04318LeipzigGermany
| | - Paula Blázquez‐Sánchez
- Institute for Biological and Medical Engineering Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiago7820436Chile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)Santiago8331150Chile
| | - Felipe Engelberger
- Institute for Biological and Medical Engineering Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiago7820436Chile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)Santiago8331150Chile
| | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiago7820436Chile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)Santiago8331150Chile
| | - Thorsten Oeser
- Department of Microbiology and Bioprocess Technology Institute of BiochemistryLeipzig University04103LeipzigGermany
| | - Yuliia Lihanova
- Institute of Analytical ChemistryLeipzig University04103LeipzigGermany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine Molecular Biological-Biochemical Processing TechnologyLeipzig University04103LeipzigGermany
| | - Heinz‐Georg Jahnke
- Centre for Biotechnology and Biomedicine Molecular Biological-Biochemical Processing TechnologyLeipzig University04103LeipzigGermany
| | - Susan Billig
- Institute of Analytical ChemistryLeipzig University04103LeipzigGermany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM)Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry04103LeipzigGermany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and BiomedicineLeipzig University04103LeipzigGermany
| | - Jörg Matysik
- Institute of Analytical ChemistryLeipzig University04103LeipzigGermany
| | - Wolfgang Zimmermann
- Institute of Analytical ChemistryLeipzig University04103LeipzigGermany
- Department of Microbiology and Bioprocess Technology Institute of BiochemistryLeipzig University04103LeipzigGermany
| |
Collapse
|
5
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Ham D, Ahn D, Ashim J, Cho Y, Kim HR, Yu W, Chung KY. Conformational switch that induces GDP release from Gi. J Struct Biol 2021; 213:107694. [PMID: 33418033 DOI: 10.1016/j.jsb.2020.107694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, β, and γ subunits. Gα switches between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active states, and Gβγ interacts with the GDP-bound state. The GDP-binding regions are composed of two sites: the phosphate-binding and guanine-binding regions. The turnover of GDP and GTP is induced by guanine nucleotide-exchange factors (GEFs), including G protein-coupled receptors (GPCRs), Ric8A, and GIV/Girdin. However, the key structural factors for stabilizing the GDP-bound state of G proteins and the direct structural event for GDP release remain unclear. In this study, we investigated structural factors affecting GDP release by introducing point mutations in selected, conserved residues in Gαi3. We examined the effects of these mutations on the GDP/GTP turnover rate and the overall conformation of Gαi3 as well as the binding free energy between Gαi3 and GDP. We found that dynamic changes in the phosphate-binding regions are an immediate factor for the release of GDP.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Janbolat Ashim
- Department of Brain and Cognitive Sciences, DGIST, 333 Techno jungang-daero, Daegu 42988, Republic of Korea
| | - Yejin Cho
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, 333 Techno jungang-daero, Daegu 42988, Republic of Korea; Core Protein Resources Center, DGIST, 333 Techno jungang-daero, Daegu 42988, Republic of Korea.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Chang CC, Liou JW, Dass KTP, Li YT, Jiang SJ, Pan SF, Yeh YC, Hsu HJ. Internal water channel formation in CXCR4 is crucial for G i-protein coupling upon activation by CXCL12. Commun Chem 2020; 3:133. [PMID: 36703316 PMCID: PMC9814148 DOI: 10.1038/s42004-020-00383-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2020] [Indexed: 01/29/2023] Open
Abstract
Chemokine receptor CXCR4 is a major drug target for numerous diseases because of its involvement in the regulation of cell migration and the developmental process. In this study, atomic-level molecular dynamics simulations were used to determine the activation mechanism and internal water formation of CXCR4 in complex with chemokine CXCL12 and Gi-protein. The results indicated that CXCL12-bound CXCR4 underwent transmembrane 6 (TM6) outward movement and a decrease in tyrosine toggle switch by eliciting the breakage of hydrophobic layer to form a continuous internal water channel. In the GDP-bound Gαi-protein state, the rotation and translation of the α5-helix of Gαi-protein toward the cytoplasmic pocket of CXCR4 induced an increase in interdomain distance for GDP leaving. Finally, an internal water channel formation model was proposed based on our simulations for CXCL12-bound CXCR4 in complex with Gαi-protein upon activation for downstream signaling. This model could be useful in anticancer drug development.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | | | - Ya-Tzu Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Sheng-Feng Pan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Yu-Chen Yeh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan.
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
9
|
Giannakoulias S, Shringari SR, Liu C, Phan HAT, Barrett TM, Ferrie JJ, Petersson EJ. Rosetta Machine Learning Models Accurately Classify Positional Effects of Thioamides on Proteolysis. J Phys Chem B 2020; 124:8032-8041. [PMID: 32869996 DOI: 10.1021/acs.jpcb.0c05981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thioamide substitutions of the peptide backbone have been shown to stabilize therapeutic and imaging peptides toward proteolysis. In order to rationally design thioamide modifications, we have developed a novel Rosetta custom score function to classify thioamide positional effects on proteolysis in substrates of serine and cysteine proteases. Peptides of interest were docked into proteases using the FlexPepDock application in Rosetta. Docked complexes were modified to contain thioamides parametrized through the creation of custom atom types in Rosetta based on ab intio simulations. Thioamide complexes were simulated, and the resultant structural complexes provided features for machine learning classification as the decomposed values of the Rosetta score function. An ensemble, majority voting model was developed to be a robust predictor of previously unpublished thioamide proteolysis holdout data. Theoretical control simulations with pseudo-atoms that modulate only one physical characteristic of the thioamide show differential effects on prediction accuracy by the optimized voting classification model. These pseudo-atom model simulations, as well as statistical analyses of the full thioamide simulations, implicate steric effects on peptide binding as being primarily responsible for thioamide positional effects on proteolytic resistance.
Collapse
Affiliation(s)
- Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sumant R Shringari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chunxiao Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Del Alamo D, Tessmer MH, Stein RA, Feix JB, Mchaourab HS, Meiler J. Rapid Simulation of Unprocessed DEER Decay Data for Protein Fold Prediction. Biophys J 2020; 118:366-375. [PMID: 31892409 PMCID: PMC6976798 DOI: 10.1016/j.bpj.2019.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still struggle to accurately predict de novo the structures of large proteins, membrane proteins, or proteins of complex topologies. Previous approaches have addressed these shortcomings by leveraging sparse distance data gathered using site-directed spin labeling and electron paramagnetic resonance spectroscopy to improve protein structure prediction and refinement outcomes. However, existing computational implementations entail compromises between coarse-grained models of the spin label that lower the resolution and explicit models that lead to resource-intense simulations. These methods are further limited by their reliance on distance distributions, which are calculated from a primary refocused echo decay signal and contain uncertainties that may require manual refinement. Here, we addressed these challenges by developing RosettaDEER, a scoring method within the Rosetta software suite capable of simulating double electron-electron resonance spectroscopy decay traces and distance distributions between spin labels fast enough to fold proteins de novo. We demonstrate that the accuracy of resulting distance distributions match or exceed those generated by more computationally intensive methods. Moreover, decay traces generated from these distributions recapitulate intermolecular background coupling parameters even when the time window of data collection is truncated. As a result, RosettaDEER can discriminate between poorly folded and native-like models by using decay traces that cannot be accurately converted into distance distributions using regularized fitting approaches. Finally, using two challenging test cases, we demonstrate that RosettaDEER leverages these experimental data for protein fold prediction more effectively than previous methods. These benchmarking results confirm that RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling applications built into the Rosetta software suite.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hassane S Mchaourab
- Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology; Institut for Drug Discovery, Leipzig University, Leipzig, Germany.
| |
Collapse
|
11
|
Du Y, Duc NM, Rasmussen SGF, Hilger D, Kubiak X, Wang L, Bohon J, Kim HR, Wegrecki M, Asuru A, Jeong KM, Lee J, Chance MR, Lodowski DT, Kobilka BK, Chung KY. Assembly of a GPCR-G Protein Complex. Cell 2019; 177:1232-1242.e11. [PMID: 31080064 DOI: 10.1016/j.cell.2019.04.022] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
The activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity. All of these complexes are stabilized in the nucleotide-free state, a condition that does not exist in living cells. In an effort to better understand the structural basis of coupling specificity, we used time-resolved structural mass spectrometry techniques to investigate GPCR-G protein complex formation and G-protein activation. Our results suggest that coupling specificity is determined by one or more transient intermediate states that serve as selectivity filters and precede the formation of the stable nucleotide-free GPCR-G protein complexes observed in crystal and cryo-EM structures.
Collapse
Affiliation(s)
- Yang Du
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Søren G F Rasmussen
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniel Hilger
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xavier Kubiak
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Liwen Wang
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Bohon
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Marcin Wegrecki
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Awuri Asuru
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kyung Min Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mark R Chance
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - David T Lodowski
- Department of Nutrition, Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Brian K Kobilka
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
12
|
Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M, Parra LP, Ramírez-Sarmiento CA. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase. Biophys J 2019; 114:1302-1312. [PMID: 29590588 DOI: 10.1016/j.bpj.2018.02.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic degradation.
Collapse
Affiliation(s)
- Tobias Fecker
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Engelberger
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.
| | - Loreto P Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Current status of multiscale simulations on GPCRs. Curr Opin Struct Biol 2019; 55:93-103. [DOI: 10.1016/j.sbi.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 01/14/2023]
|
14
|
Biebermann H, Kleinau G, Schnabel D, Bockenhauer D, Wilson LC, Tully I, Kiff S, Scheerer P, Reyes M, Paisdzior S, Gregory JW, Allgrove J, Krude H, Mannstadt M, Gardella TJ, Dattani M, Jüppner H, Grüters A. A New Multisystem Disorder Caused by the Gαs Mutation p.F376V. J Clin Endocrinol Metab 2019; 104:1079-1089. [PMID: 30312418 PMCID: PMC6380466 DOI: 10.1210/jc.2018-01250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/08/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT The α subunit of the stimulatory G protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, whereas somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright syndrome. OBJECTIVE We report two unrelated boys presenting with a new combination of clinical findings that suggest both gain and loss of Gαs function. DESIGN AND SETTING Clinical features were studied and sequencing of GNAS was performed. Signaling capacities of wild-type and mutant Gαs were determined in the presence of different G protein-coupled receptors (GPCRs) under basal and agonist-stimulated conditions. RESULTS Both unrelated patients presented with unexplained hyponatremia in infancy, followed by severe early onset gonadotrophin-independent precocious puberty and skeletal abnormalities. An identical heterozygous de novo variant (c.1136T>G; p.F376V) was found on the maternal GNAS allele in both patients; this resulted in a clinical phenotype that differed from known Gαs-related diseases and suggested gain of function at the vasopressin 2 receptor (V2R) and lutropin/choriogonadotropin receptor (LHCGR), yet increased serum PTH concentrations indicative of impaired proximal tubular PTH1 receptor (PTH1R) function. In vitro studies demonstrated that Gαs-F376V enhanced ligand-independent signaling at the PTH1R, LHCGR, and V2R and, at the same time, blunted ligand-dependent responses. Structural homology modeling suggested mutation-induced modifications at the C-terminal α5 helix of Gαs that are relevant for interaction with GPCRs and signal transduction. CONCLUSIONS The Gαs p.F376V mutation causes a previously unrecognized multisystem disorder.
Collapse
Affiliation(s)
- Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dirk Schnabel
- Department for Pediatric Endocrinology and Diabetology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Detlef Bockenhauer
- UCL Centre for Nephrology, London, United Kingdom
- Great Ormond Street Hospital for Children, Renal Unit, London, United Kingdom
| | - Louise C Wilson
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Ian Tully
- Department of Clinical Genetics, University Hospital of Wales, Cardiff, United Kingdom
| | - Sarah Kiff
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John W Gregory
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Allgrove
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehul Dattani
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Annette Grüters
- Department for Pediatric Endocrinology and Diabetology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- University Hospital Heidelberg, Heidelberg, Germany
- Correspondence and Reprint Requests: Annette Grüters, PhD, Charité-Universitätsmedizin, Department for Pediatric Endocrinology and Diabetes, Mittelallee 8, 13353 Berlin, Germany. E-mail:
| |
Collapse
|
15
|
Wang J, Miao Y. Recent advances in computational studies of GPCR-G protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:397-419. [PMID: 31036298 PMCID: PMC6986689 DOI: 10.1016/bs.apcsb.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions are key in cellular signaling. G protein-coupled receptors (GPCRs), the largest superfamily of human membrane proteins, are able to transduce extracellular signals (e.g., hormones and neurotransmitters) to intracellular proteins, in particular the G proteins. Since GPCRs serve as primary targets of ~1/3 of currently marketed drugs, it is important to understand mechanisms of GPCR signaling in order to design selective and potent drug molecules. This chapter focuses on recent advances in computational studies of the GPCR-G protein interactions using bioinformatics, protein-protein docking and molecular dynamics simulation approaches.
Collapse
Affiliation(s)
- Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
16
|
Li H, Yao XQ, Grant BJ. Comparative structural dynamic analysis of GTPases. PLoS Comput Biol 2018; 14:e1006364. [PMID: 30412578 PMCID: PMC6249014 DOI: 10.1371/journal.pcbi.1006364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/21/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
GTPases regulate a multitude of essential cellular processes ranging from movement and division to differentiation and neuronal activity. These ubiquitous enzymes operate by hydrolyzing GTP to GDP with associated conformational changes that modulate affinity for family-specific binding partners. There are three major GTPase superfamilies: Ras-like GTPases, heterotrimeric G proteins and protein-synthesizing GTPases. Although they contain similar nucleotide-binding sites, the detailed mechanisms by which these structurally and functionally diverse superfamilies operate remain unclear. Here we compare and contrast the structural dynamic mechanisms of each superfamily using extensive molecular dynamics (MD) simulations and subsequent network analysis approaches. In particular, dissection of the cross-correlations of atomic displacements in both the GTP and GDP-bound states of Ras, transducin and elongation factor EF-Tu reveals analogous dynamic features. This includes similar dynamic communities and subdomain structures (termed lobes). For all three proteins the GTP-bound state has stronger couplings between equivalent lobes. Network analysis further identifies common and family-specific residues mediating the state-specific coupling of distal functional sites. Mutational simulations demonstrate how disrupting these couplings leads to distal dynamic effects at the nucleotide-binding site of each family. Collectively our studies extend current understanding of GTPase allosteric mechanisms and highlight previously unappreciated similarities across functionally diverse families. GTPases are a large superfamily of essential enzymes that regulate a variety of cellular processes. They share a common core structure supporting nucleotide binding and hydrolysis, and are potentially descended from the same ancestor. Yet their biological functions diverge dramatically, ranging from cell division and movement to signal transduction and translation. It has been shown that conformational changes through binding to different substrates underlie the regulation of their activities. Here we investigate the conformational dynamics of three typical GTPases by in silico simulation. We find that these three GTPases possess overall similar substrate-associated dynamic features, beyond their distinct functions. Further identification of key common and family-specific elements in these three families helps us understand how enzymes are adapted to acquire distinct functions from a common core structure. Our results provide unprecedented insights into the functional mechanism of GTPases in general, which potentially facilitates novel protein design in the future.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States of America
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA, United States of America
| | - Barry J. Grant
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lokits AD, Indrischek H, Meiler J, Hamm HE, Stadler PF. Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa. BMC Evol Biol 2018; 18:51. [PMID: 29642851 PMCID: PMC5896119 DOI: 10.1186/s12862-018-1147-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Heterotrimeric G proteins are fundamental signaling proteins composed of three subunits, Gα and a Gβγ dimer. The role of Gα as a molecular switch is critical for transmitting and amplifying intracellular signaling cascades initiated by an activated G protein Coupled Receptor (GPCR). Despite their biochemical and therapeutic importance, the study of G protein evolution has been limited to the scope of a few model organisms. Furthermore, of the five primary Gα subfamilies, the underlying gene structure of only two families has been thoroughly investigated outside of Mammalia evolution. Therefore our understanding of Gα emergence and evolution across phylogeny remains incomplete. RESULTS We have computationally identified the presence and absence of every Gα gene (GNA-) across all major branches of Deuterostomia and evaluated the conservation of the underlying exon-intron structures across these phylogenetic groups. We provide evidence of mutually exclusive exon inclusion through alternative splicing in specific lineages. Variations of splice site conservation and isoforms were found for several paralogs which coincide with conserved, putative motifs of DNA-/RNA-binding proteins. In addition to our curated gene annotations, within Primates, we identified 15 retrotranspositions, many of which have undergone pseudogenization. Most importantly, we find numerous deviations from previous findings regarding the presence and absence of individual GNA- genes, nuanced differences in phyla-specific gene copy numbers, novel paralog duplications and subsequent intron gain and loss events. CONCLUSIONS Our curated annotations allow us to draw more accurate inferences regarding the emergence of all Gα family members across Metazoa and to present a new, updated theory of Gα evolution. Leveraging this, our results are critical for gaining new insights into the co-evolution of the Gα subunit and its many protein binding partners, especially therapeutically relevant G protein - GPCR signaling pathways which radiated in Vertebrata evolution.
Collapse
Affiliation(s)
- A. D. Lokits
- 0000 0001 2264 7217grid.152326.1Neuroscience Program, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Indrischek
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 2230 9752grid.9647.cComputational EvoDevo Group, Bioinformatics Department, Leipzig University, Leipzig, Germany
| | - J. Meiler
- 0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Chemistry Department, Vanderbilt University, Nashville, TN USA
| | - H. E. Hamm
- 0000 0004 1936 9916grid.412807.8Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN USA
| | - P. F. Stadler
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 0674 042Xgrid.5254.6Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark ,0000 0001 2286 1424grid.10420.37Institute for Theoretical Chemistry, University of Vienna, Wien, Austria ,0000 0001 2230 9752grid.9647.cIZBI-Interdisciplinary Center for Bioinformatics and LIFE-Leipzig Research Center for Civilization Diseases and Competence Center for Scalable Data Services and Solutions, University Leipzig, Leipzig, Germany ,grid.419532.8Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany ,0000 0001 1941 1940grid.209665.eSanta Fe Institute, Santa Fe, NM USA
| |
Collapse
|
18
|
Xia Y, Fischer AW, Teixeira P, Weiner B, Meiler J. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination. Structure 2018; 26:657-666.e2. [PMID: 29526436 PMCID: PMC5884713 DOI: 10.1016/j.str.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/14/2017] [Accepted: 02/05/2018] [Indexed: 01/12/2023]
Abstract
While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available.
Collapse
Affiliation(s)
- Yan Xia
- Department of Chemistry, Vanderbilt University, Stevenson Center, Station B 351822, Room 7330, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Axel W Fischer
- Department of Chemistry, Vanderbilt University, Stevenson Center, Station B 351822, Room 7330, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Pedro Teixeira
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Weiner
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Stevenson Center, Station B 351822, Room 7330, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Kaiser A, Hempel C, Wanka L, Schubert M, Hamm HE, Beck-Sickinger AG. G Protein Preassembly Rescues Efficacy of W6.48 Toggle Mutations in Neuropeptide Y2 Receptor. Mol Pharmacol 2018; 93:387-401. [DOI: 10.1124/mol.117.110544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
|
20
|
Schmidt P, Bender BJ, Kaiser A, Gulati K, Scheidt HA, Hamm HE, Meiler J, Beck-Sickinger AG, Huster D. Improved in Vitro Folding of the Y 2 G Protein-Coupled Receptor into Bicelles. Front Mol Biosci 2018; 4:100. [PMID: 29387686 PMCID: PMC5776092 DOI: 10.3389/fmolb.2017.00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/26/2022] Open
Abstract
Prerequisite for structural studies on G protein-coupled receptors is the preparation of highly concentrated, stable, and biologically active receptor samples in milligram amounts of protein. Here, we present an improved protocol for Escherichia coli expression, functional refolding, and reconstitution into bicelles of the human neuropeptide Y receptor type 2 (Y2R) for solution and solid-state NMR experiments. The isotopically labeled receptor is expressed in inclusion bodies and purified using SDS. We studied the details of an improved preparation protocol including the in vitro folding of the receptor, e.g., the native disulfide bridge formation, the exchange of the denaturating detergent SDS, and the functional reconstitution into bicelle environments of varying size. Full pharmacological functionality of the Y2R preparation was shown by a ligand affinity of 4 nM and G-protein activation. Further, simple NMR experiments are used to test sample quality in high micromolar concentration.
Collapse
Affiliation(s)
- Peter Schmidt
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Brian J Bender
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Holger A Scheidt
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Daniel Huster
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| |
Collapse
|
21
|
Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 2018; 25:4-12. [PMID: 29323277 PMCID: PMC6535338 DOI: 10.1038/s41594-017-0011-7] [Citation(s) in RCA: 574] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
G-protein-coupled receptors (GPCRs) relay numerous extracellular signals by triggering intracellular signaling through coupling with G proteins and arrestins. Recent breakthroughs in the structural determination of GPCRs and GPCR-transducer complexes represent important steps toward deciphering GPCR signal transduction at a molecular level. A full understanding of the molecular basis of GPCR-mediated signaling requires elucidation of the dynamics of receptors and their transducer complexes as well as their energy landscapes and conformational transition rates. Here, we summarize current insights into the structural plasticity of GPCR-G-protein and GPCR-arrestin complexes that underlies the regulation of the receptor's intracellular signaling profile.
Collapse
Affiliation(s)
- Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017; 18:ijms18122519. [PMID: 29186792 PMCID: PMC5751122 DOI: 10.3390/ijms18122519] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies shed light on the conformational changes that accompany GPCR activation and the structural state of the receptor necessary for the interactions with the three classes of proteins that preferentially bind active GPCRs, G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. Importantly, structural and biophysical studies also revealed activation-related conformational changes in these three types of signal transducers. Here, we summarize what is already known and point out questions that still need to be answered. Clear understanding of the structural basis of signaling by GPCRs and their interaction partners would pave the way to designing signaling-biased proteins with scientific and therapeutic potential.
Collapse
|
23
|
Zhu Y, Zhang L, Zhang XC, Zhao Y. Structural dynamics of G iα protein revealed by single molecule FRET. Biochem Biophys Res Commun 2017; 491:603-608. [PMID: 28760338 DOI: 10.1016/j.bbrc.2017.07.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023]
Abstract
The heterotrimeric G proteins (Gαβγ) act as molecular switches to mediate signal transduction from G protein-coupled receptors to downstream effectors. Upon interaction with an activated receptor, G protein exchanges its bound GDP with GTP, stimulating downstream signal transmission. Release of GDP requires a structural rearrangement between the GTPase domain and helical domain of the Gα subunit. Here, we used single molecule fluorescence resonance energy transfer (smFRET) technique to study the conformational dynamics of these two domains in the apo state and in the binding of different ligands. Direct imaging of individual molecules showed that the Giα subunit is highly dynamic, and at least three major conformations of Giα could be observed in the apo state. Upon binding of GDP, Giα becomes dramatically less dynamic, resulting in a closed conformation between the two domains. We postulate that changes between the three conformations are sequential, and the three conformations appear to have distinct affinities toward GDP.
Collapse
Affiliation(s)
- Yongping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongfang Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
24
|
Budday D, Fonseca R, Leyendecker S, van den Bedem H. Frustration-guided motion planning reveals conformational transitions in proteins. Proteins 2017; 85:1795-1807. [DOI: 10.1002/prot.25333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 06/07/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Dominik Budday
- Chair of Applied Dynamics, University of Erlangen-Nuremberg; Erlangen Germany
| | - Rasmus Fonseca
- Department of Molecular and Cellular Physiology; Stanford University; California Menlo Park
- Biosciences Division; SLAC National Accelerator Laboratory, Stanford University; California Menlo Park
| | - Sigrid Leyendecker
- Chair of Applied Dynamics, University of Erlangen-Nuremberg; Erlangen Germany
| | - Henry van den Bedem
- Biosciences Division; SLAC National Accelerator Laboratory, Stanford University; California Menlo Park
| |
Collapse
|
25
|
de Opakua AI, Parag-Sharma K, DiGiacomo V, Merino N, Leyme A, Marivin A, Villate M, Nguyen LT, de la Cruz-Morcillo MA, Blanco-Canosa JB, Ramachandran S, Baillie GS, Cerione RA, Blanco FJ, Garcia-Marcos M. Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif. Nat Commun 2017; 8:15163. [PMID: 28516903 PMCID: PMC5454376 DOI: 10.1038/ncomms15163] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation. Nonreceptor guanine-nucleotide exchange factors (GEFs) are emerging as important regulators of heterotrimeric G proteins. Here, the authors present structural and mechanistic insights into how a class of nonreceptor GEFs containing the Ga-Binding and Activating motif interact and modulate G proteins.
Collapse
Affiliation(s)
| | - Kshitij Parag-Sharma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, 08028 Barcelona, Spain
| | - Sekar Ramachandran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, Department of Molecular Pharmacology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Francisco J Blanco
- CIC bioGUNE, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48160 Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
26
|
Blank A. A new approach to distance measurements between two spin labels in the >10 nm range. Phys Chem Chem Phys 2017; 19:5222-5229. [PMID: 28149986 DOI: 10.1039/c6cp07597e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ESR spectroscopy can be efficiently used to acquire the distance between two spin labels placed on a macromolecule by measuring their mutual dipolar interaction frequency, as long as the distance is not greater than ∼10 nm. Any hope to significantly increase this figure is hampered by the fact that all available spin labels have a phase memory time (Tm), restricted to the microseconds range, which provides a limited window during which the dipolar interaction frequency can be measured. Thus, due to the inverse cubic dependence of the dipolar frequency over the labels' separation distance, evaluating much larger distances, e.g. 20 nm, would require to have a Tm that is ∼200 microsecond, clearly beyond any hope. Here we propose a new approach to greatly enhancing the maximum measured distance available by relying on another type of dipole interaction-mediated mechanism called spin diffusion. This mechanism operates and can be evaluated during the spin lattice relaxation time, T1 (commonly in the milliseconds range), rather than only during Tm. Up until recently, the observation of spin diffusion in solid electron spin systems was considered experimentally impractical. However, recent developments have enabled its direct measurement by means of high sensitivity pulsed ESR that employs intense short magnetic field gradients, thus opening the door to the subsequent utilization of these capabilities. The manuscript presents the subject of spin diffusion, the ways it can be directly measured, and a theoretical discussion on how intramolecular spin-pair distance, even in the range of 20-30 nm, could be accurately extracted from spin diffusion measurements.
Collapse
Affiliation(s)
- A Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
27
|
Duc NM, Kim HR, Chung KY. Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation. Biomol Ther (Seoul) 2017; 25:4-11. [PMID: 28035078 PMCID: PMC5207459 DOI: 10.4062/biomolther.2016.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 12/05/2022] Open
Abstract
Heterotrimeric G proteins are key intracellular coordinators that receive signals from cells through activation of cognate G protein-coupled receptors (GPCRs). The details of their atomic interactions and structural mechanisms have been described by many biochemical and biophysical studies. Specifically, a framework for understanding conformational changes in the receptor upon ligand binding and associated G protein activation was provided by description of the crystal structure of the β2-adrenoceptor-Gs complex in 2011. This review focused on recent findings in the conformational dynamics of G proteins and GPCRs during activation processes.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Periole X. Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chem Rev 2016; 117:156-185. [PMID: 28073248 DOI: 10.1021/acs.chemrev.6b00344] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) are central to many fundamental cellular signaling pathways. They transduce signals from the outside to the inside of cells in physiological processes ranging from vision to immune response. It is extremely challenging to look at them individually using conventional experimental techniques. Recently, a pseudo atomistic molecular model has emerged as a valuable tool to access information on GPCRs, more specifically on their interactions with their environment in their native cell membrane and the consequences on their supramolecular organization. This approach uses the Martini coarse grain (CG) model to describe the receptors, lipids, and solvent in molecular dynamics (MD) simulations and in enough detail to allow conserving the chemical specificity of the different molecules. The elimination of unnecessary degrees of freedom has opened up large-scale simulations of the lipid-mediated supramolecular organization of GPCRs. Here, after introducing the Martini CGMD method, we review these studies carried out on various members of the GPCR family, including rhodopsin (visual receptor), opioid receptors, adrenergic receptors, adenosine receptors, dopamine receptor, and sphingosine 1-phosphate receptor. These studies have brought to light an interesting set of novel biophysical principles. The insights range from revealing localized and heterogeneous deformations of the membrane bilayer at the surface of the protein, specific interactions of lipid molecules with individual GPCRs, to the effect of the membrane matrix on global GPCR self-assembly. The review ends with an overview of the lessons learned from the use of the CGMD method, the biophysical-chemical findings on lipid-protein interplay.
Collapse
Affiliation(s)
- Xavier Periole
- Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
29
|
Mahoney JP, Sunahara RK. Mechanistic insights into GPCR-G protein interactions. Curr Opin Struct Biol 2016; 41:247-254. [PMID: 27871057 DOI: 10.1016/j.sbi.2016.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 01/24/2023]
Abstract
G protein-coupled receptors (GPCRs) respond to extracellular stimuli and interact with several intracellular binding partners to elicit cellular responses, including heterotrimeric G proteins. Recent structural and biophysical studies have highlighted the dynamic nature of GPCRs and G proteins and have identified specific conformational changes important for receptor-mediated nucleotide exchange on Gα. While domain separation within Gα is necessary for GDP release, opening the inter-domain interface is insufficient to stimulate nucleotide exchange. Rather, an activated receptor promotes GDP release by allosterically disrupting the nucleotide-binding site via interactions with the Gα N-termini and C-termini. Highlighting the allosteric nature of GPCRs, recent studies suggest that agonist binding alone poorly stabilizes an active conformation of several receptors. Rather, full stabilization of the receptor in an active state requires formation of the agonist-receptor-G protein ternary complex. In turn, nucleotide-free Gα is able to stabilize conformational changes around the receptor's agonist-binding site to enhance agonist affinity.
Collapse
Affiliation(s)
- Jacob P Mahoney
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Roger K Sunahara
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
30
|
Carpenter B, Tate CG. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Eng Des Sel 2016; 29:583-594. [PMID: 27672048 PMCID: PMC5181381 DOI: 10.1093/protein/gzw049] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/01/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging. Here, we describe the design of a minimal G protein, mini-Gs, which is composed solely of the GTPase domain from the adenylate cyclase stimulating G protein Gs. Mini-Gs is a small, soluble protein, which efficiently couples GPCRs in the absence of Gβγ subunits. We engineered mini-Gs, using rational design mutagenesis, to form a stable complex with detergent-solubilised β1-adrenergic receptor (β1AR). Mini G proteins induce similar pharmacological and structural changes in GPCRs as heterotrimeric G proteins, but eliminate many of the problems associated with crystallisation of these complexes, specifically their large size, conformational dynamics and instability in detergent. They are therefore novel tools, which will facilitate the biochemical and structural characterisation of GPCRs in their active conformation.
Collapse
Affiliation(s)
- Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus , Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus , Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
31
|
Affiliation(s)
- Naomi R. Latorraca
- Department of Computer Science, ‡Biophysics Program, §Department of Molecular
and Cellular
Physiology, and ∥Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - A. J. Venkatakrishnan
- Department of Computer Science, ‡Biophysics Program, §Department of Molecular
and Cellular
Physiology, and ∥Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ron O. Dror
- Department of Computer Science, ‡Biophysics Program, §Department of Molecular
and Cellular
Physiology, and ∥Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
Semack A, Malik RU, Sivaramakrishnan S. G Protein-selective GPCR Conformations Measured Using FRET Sensors in a Live Cell Suspension Fluorometer Assay. J Vis Exp 2016. [PMID: 27684955 DOI: 10.3791/54696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fӧrster resonance energy transfer (FRET)-based studies have become increasingly common in the investigation of GPCR signaling. Our research group developed an intra-molecular FRET sensor to detect the interaction between Gα subunits and GPCRs in live cells following agonist stimulation. Here, we detail the protocol for detecting changes in FRET between the β2-adrenergic receptor and the Gαs C-terminus peptide upon treatment with 100 µM isoproterenol hydrochloride as previously characterized(1). Our FRET sensor is a single polypeptide consisting serially of a full-length GPCR, a FRET acceptor fluorophore (mCitrine), an ER/K SPASM (systematic protein affinity strength modulation) linker, a FRET donor fluorophore (mCerulean), and a Gα C-terminal peptide. This protocol will detail cell preparation, transfection conditions, equipment setup, assay execution, and data analysis. This experimental design detects small changes in FRET indicative of protein-protein interactions, and can also be used to compare the strength of interaction across ligands and GPCR-G protein pairings. To enhance the signal-to-noise in our measurements, this protocol requires heightened precision in all steps, and is presented here to enable reproducible execution.
Collapse
Affiliation(s)
- Ansley Semack
- Genetics, Cell Biology, and Development, University of Minnesota
| | - Rabia U Malik
- Department of Cell and Developmental Biology, University of Michigan
| | | |
Collapse
|
33
|
Shivnaraine RV, Fernandes DD, Ji H, Li Y, Kelly B, Zhang Z, Han YR, Huang F, Sankar KS, Dubins DN, Rocheleau JV, Wells JW, Gradinaru CC. Single-Molecule Analysis of the Supramolecular Organization of the M2 Muscarinic Receptor and the Gαi1 Protein. J Am Chem Soc 2016; 138:11583-98. [DOI: 10.1021/jacs.6b04032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rabindra V. Shivnaraine
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Dennis D. Fernandes
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Huiqiao Ji
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yuchong Li
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Brendan Kelly
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Krembil Research
Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Zhenfu Zhang
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yi Rang Han
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fei Huang
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Krishana S. Sankar
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David N. Dubins
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jonathan V. Rocheleau
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute
of Biomedical and Biomaterial Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - James W. Wells
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Claudiu C. Gradinaru
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
34
|
Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model. PLoS One 2016; 11:e0159528. [PMID: 27483005 PMCID: PMC4970668 DOI: 10.1371/journal.pone.0159528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023] Open
Abstract
Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle.
Collapse
|
35
|
Sprang SR. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers 2016; 105:449-62. [PMID: 26996924 PMCID: PMC5319639 DOI: 10.1002/bip.22836] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
This review addresses the regulatory consequences of the binding of GTP to the alpha subunits (Gα) of heterotrimeric G proteins, the reaction mechanism of GTP hydrolysis catalyzed by Gα and the means by which GTPase activating proteins (GAPs) stimulate the GTPase activity of Gα. The high energy of GTP binding is used to restrain and stabilize the conformation of the Gα switch segments, particularly switch II, to afford stable complementary to the surfaces of Gα effectors, while excluding interaction with Gβγ, the regulatory binding partner of GDP-bound Gα. Upon GTP hydrolysis, the energy of these conformational restraints is dissipated and the two switch segments, particularly switch II, become flexible and are able to adopt a conformation suitable for tight binding to Gβγ. Catalytic site pre-organization presents a significant activation energy barrier to Gα GTPase activity. The glutamine residue near the N-terminus of switch II (Glncat ) must adopt a conformation in which it orients and stabilizes the γ phosphate and the water nucleophile for an in-line attack. The transition state is probably loose with dissociative character; phosphoryl transfer may be concerted. The catalytic arginine in switch I (Argcat ), together with amide hydrogen bonds from the phosphate binding loop, stabilize charge at the β-γ bridge oxygen of the leaving group. GAPs that harbor "regulator of protein signaling" (RGS) domains, or structurally unrelated domains within G protein effectors that function as GAPs, accelerate catalysis by stabilizing the pre-transition state for Gα-catalyzed GTP hydrolysis, primarily by restraining Argcat and Glncat to their catalytic conformations. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 449-462, 2016.
Collapse
Affiliation(s)
- Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, Telephone: (406) 243-6028, Fax: (406) 243-6024,
| |
Collapse
|
36
|
Kaya AI, Lokits AD, Gilbert JA, Iverson TM, Meiler J, Hamm HE. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor. J Biol Chem 2016; 291:19674-86. [PMID: 27462082 DOI: 10.1074/jbc.m116.745513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.
Collapse
Affiliation(s)
| | | | | | - T M Iverson
- From the Departments of Pharmacology, Biochemistry, and
| | - Jens Meiler
- From the Departments of Pharmacology, Chemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | |
Collapse
|
37
|
Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proc Natl Acad Sci U S A 2016; 113:E3629-38. [PMID: 27298341 DOI: 10.1073/pnas.1604125113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein-coupled receptor (GPCR) activation. Agonist-receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape.
Collapse
|
38
|
Guilfoyle AP, Deshpande CN, Font Sadurni J, Ash MR, Tourle S, Schenk G, Maher MJ, Jormakka M. A GTPase chimera illustrates an uncoupled nucleotide affinity and release rate, providing insight into the activation mechanism. Biophys J 2016; 107:L45-L48. [PMID: 25517170 DOI: 10.1016/j.bpj.2014.10.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.
Collapse
Affiliation(s)
- Amy P Guilfoyle
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chandrika N Deshpande
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Josep Font Sadurni
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Miriam-Rose Ash
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Samuel Tourle
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Megan J Maher
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Mika Jormakka
- Structural Biology Program, Centenary Institute, Sydney, New South Wales, Australia; Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
39
|
Tesmer JJG. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nat Rev Mol Cell Biol 2016; 17:439-50. [PMID: 27093944 DOI: 10.1038/nrm.2016.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A revolution in the analysis of seven transmembrane domain (7TM) receptors has provided detailed information about how these physiologically important signalling proteins interact with extracellular cues. However, it has proved much more challenging to understand how 7TM receptors convey information to their principal intracellular targets: heterotrimeric G proteins, G protein-coupled receptor kinases and arrestins. Recent structures now suggest a common mechanism that enables these structurally diverse cytoplasmic proteins to 'hitch a ride' on hundreds of different activated 7TM receptors in order to instigate physiological change.
Collapse
Affiliation(s)
- John J G Tesmer
- Life Sciences Institute and Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| |
Collapse
|
40
|
Pachov DV, Fonseca R, Arnol D, Bernauer J, van den Bedem H. Coupled Motions in β2AR:Gαs Conformational Ensembles. J Chem Theory Comput 2016; 12:946-56. [DOI: 10.1021/acs.jctc.5b00995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dimitar V. Pachov
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Division
of Biosciences, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Rasmus Fonseca
- Division
of Biosciences, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
- AMIB
INRIA - Bioinformatics group, LIX, École Polytechnique, 91128 Palaiseau, France
| | - Damien Arnol
- INRIA Saclay-Île de France, 1 rue Honoré d'Estienne
d'Orves, Bâtiment Alan Turing, Campus de l'École
Polytechnique, 91120 Palaiseau, France
- Laboratoire
d'Informatique de l'École Polytechnique (LIX), CNRS
UMR 7161, École Polytechnique, 91128 Palaiseau, France
| | - Julie Bernauer
- INRIA Saclay-Île de France, 1 rue Honoré d'Estienne
d'Orves, Bâtiment Alan Turing, Campus de l'École
Polytechnique, 91120 Palaiseau, France
- Laboratoire
d'Informatique de l'École Polytechnique (LIX), CNRS
UMR 7161, École Polytechnique, 91128 Palaiseau, France
| | - Henry van den Bedem
- Division
of Biosciences, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
41
|
Wei R, Oeser T, Schmidt J, Meier R, Barth M, Then J, Zimmermann W. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol Bioeng 2016; 113:1658-65. [DOI: 10.1002/bit.25941] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ren Wei
- Department of Microbiology and Bioprocess Technology; Institute of Biochemistry; Leipzig University; Johannisallee 21-23 04103 Leipzig Germany
| | - Thorsten Oeser
- Department of Microbiology and Bioprocess Technology; Institute of Biochemistry; Leipzig University; Johannisallee 21-23 04103 Leipzig Germany
| | - Juliane Schmidt
- Department of Microbiology and Bioprocess Technology; Institute of Biochemistry; Leipzig University; Johannisallee 21-23 04103 Leipzig Germany
| | - René Meier
- Department of Biochemistry and Bioorganic Chemistry; Institute of Biochemistry; Leipzig University; Leipzig Germany
| | - Markus Barth
- Department of Microbiology and Bioprocess Technology; Institute of Biochemistry; Leipzig University; Johannisallee 21-23 04103 Leipzig Germany
| | - Johannes Then
- Department of Microbiology and Bioprocess Technology; Institute of Biochemistry; Leipzig University; Johannisallee 21-23 04103 Leipzig Germany
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology; Institute of Biochemistry; Leipzig University; Johannisallee 21-23 04103 Leipzig Germany
| |
Collapse
|
42
|
Yao XQ, Malik RU, Griggs NW, Skjærven L, Traynor JR, Sivaramakrishnan S, Grant BJ. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins. J Biol Chem 2015; 291:4742-53. [PMID: 26703464 DOI: 10.1074/jbc.m115.702605] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- From the Department of Computational Medicine and Bioinformatics
| | - Rabia U Malik
- Cell and Developmental Biology, and the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Lars Skjærven
- the Department of Biomedicine, University of Bergen, 5020 Bergen, Norway, and
| | - John R Traynor
- Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sivaraj Sivaramakrishnan
- the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Barry J Grant
- From the Department of Computational Medicine and Bioinformatics,
| |
Collapse
|
43
|
Characterization of the Domain Orientations of E. coli 5'-Nucleotidase by Fitting an Ensemble of Conformers to DEER Distance Distributions. Structure 2015; 24:43-56. [PMID: 26724996 DOI: 10.1016/j.str.2015.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 01/04/2023]
Abstract
Escherichia coli 5'-nucleotidase is a two-domain enzyme exhibiting a unique 96° domain motion that is required for catalysis. Here we present an integrated structural biology study that combines DEER distance distributions with structural information from X-ray crystallography and computational biology to describe the population of presumably almost isoenergetic open and closed states in solution. Ensembles of models that best represent the experimental distance distributions are determined by a Monte Carlo search algorithm. As a result, predominantly open conformations are observed in the unliganded state indicating that the majority of enzyme molecules await substrate binding for the catalytic cycle. The addition of a substrate analog yields ensembles with an almost equal mixture of open and closed states. Thus, in the presence of substrate, efficient catalysis is provided by the simultaneous appearance of open conformers (binding substrate or releasing product) and closed conformers (enabling the turnover of the substrate).
Collapse
|
44
|
The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 2015; 6:10156. [PMID: 26658454 PMCID: PMC4682109 DOI: 10.1038/ncomms10156] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.
Collapse
|
45
|
Rose AS, Zachariae U, Grubmüller H, Hofmann KP, Scheerer P, Hildebrand PW. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction. PLoS One 2015; 10:e0143399. [PMID: 26606751 PMCID: PMC4659624 DOI: 10.1371/journal.pone.0143399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.
Collapse
Affiliation(s)
- Alexander S. Rose
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Team ProteiInformatics, Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
| | - Ulrich Zachariae
- Dep. of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- Computational Biology, School of Life Sciences, and Physics, School of Science and Engineering, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Helmut Grubmüller
- Dep. of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Klaus Peter Hofmann
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Centre of Biophysics and Bioinformatics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Team Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Team ProteiInformatics, Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
| |
Collapse
|
46
|
Fischer AW, Alexander NS, Woetzel N, Karakas M, Weiner BE, Meiler J. BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints. Proteins 2015; 83:1947-62. [PMID: 25820805 PMCID: PMC5064833 DOI: 10.1002/prot.24801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 11/05/2022]
Abstract
For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data.
Collapse
Affiliation(s)
- Axel W Fischer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Nathan S Alexander
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Nils Woetzel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Mert Karakas
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Brian E Weiner
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
47
|
Blankenship E, Vahedi-Faridi A, Lodowski DT. The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation. Structure 2015; 23:2358-2364. [PMID: 26526852 DOI: 10.1016/j.str.2015.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 11/15/2022]
Abstract
Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. We present the 2.3-Å resolution structure of native source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent-mediated hydrogen-bonding network with the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When considered along with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation.
Collapse
Affiliation(s)
- Elise Blankenship
- Department of Nutrition, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ardeschir Vahedi-Faridi
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - David T Lodowski
- Department of Nutrition, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Sun D, Flock T, Deupi X, Maeda S, Matkovic M, Mendieta S, Mayer D, Dawson R, Schertler GFX, Madan Babu M, Veprintsev DB. Probing Gαi1 protein activation at single-amino acid resolution. Nat Struct Mol Biol 2015; 22:686-694. [PMID: 26258638 PMCID: PMC4876908 DOI: 10.1038/nsmb.3070] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/17/2015] [Indexed: 11/08/2022]
Abstract
We present comprehensive maps at single-amino acid resolution of the residues stabilizing the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-β3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-β6. Key residues in this cluster are Y320, which is crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the interdomain interface and release of GDP.
Collapse
Affiliation(s)
- Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Tilman Flock
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Condensed Matter Theory Group, Paul Scherrer Institut, Villigen, Switzerland
| | - Shoji Maeda
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Milos Matkovic
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Sandro Mendieta
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger Dawson
- F. Hoffmann-La Roche AG, Pharma Research & Early Development, Discovery Technologies, Basel, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. Universal allosteric mechanism for Gα activation by GPCRs. Nature 2015; 524:173-179. [PMID: 26147082 PMCID: PMC4866443 DOI: 10.1038/nature14663] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are ∼800 human GPCRs and 16 different Gα genes, this raises the question of whether a universal allosteric mechanism governs Gα activation. Here we show that different GPCRs interact with and activate Gα proteins through a highly conserved mechanism. Comparison of Gα with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR-Gα system diversified rapidly, while conserving the allosteric activation mechanism.
Collapse
Affiliation(s)
- Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dmitry B. Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
50
|
Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, Arlow DH, Philippsen A, Villanueva N, Yang Z, Lerch MT, Hubbell WL, Kobilka BK, Sunahara RK, Shaw DE. SIGNAL TRANSDUCTION. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 2015; 348:1361-5. [PMID: 26089515 DOI: 10.1126/science.aaa5264] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein α subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.
Collapse
Affiliation(s)
- Ron O Dror
- D. E. Shaw Research, New York, NY 10036, USA.
| | | | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Nicolas Villanueva
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michael T Lerch
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|