1
|
Nasiri L, Vaez-Mahdavi MR, Hassanpour H, Ghazanfari T, Kaboudanian Ardestani S, Askari N, Ghaffarpour S, Zamani MS. Transcription of biological aging markers (ANRIL, P16 INK4a, TBX2, and TERRA) and their correlations with severity of sulfur mustard exposure in veterans. Drug Chem Toxicol 2024:1-9. [PMID: 39227349 DOI: 10.1080/01480545.2024.2395571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/09/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Sulfur mustard (SM) exposure has delayed harmful effects, including premature biological aging. This study aimed to evaluate the expression of aging markers (i.e., ANRIL, P16INK4a, TBX2, and TERRA) and assess their correlation with the severity of SM exposure in the long term. The study was conducted on two volunteer groups. 1) SM-exposed group, exposed to SM once in 1987 during the war; divided into three subgroups based on the injury severity, asymptomatic (without any clinical signs), mild, and severe; 2) Non-exposed group. In the SM-exposed group, ANRIL transcript was decreased, especially in subgroups of mild and severe. TBX2 transcript was also decreased in the total SM-exposed group. This decrease was more significant in the mild and severe subgroups than in asymptomatic ones. P16INK4a transcript was increased in the SM-exposed group, especially in the asymptomatic subgroup. The increase in TERRA transcript was also significant in all subgroups. There was a positive correlation between the TERRA transcript and the severity of injury, while this correlation was negative for the ANRIL. It is concluded that the delayed toxicity of SM may be associated with dysregulation of aging markers leading to premature cellular aging. These markers' alterations differed according to the severity of SM injury.
Collapse
Affiliation(s)
- Leila Nasiri
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Mohammad-Reza Vaez-Mahdavi
- Department of Health Equity, Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Physiology, Medical Faculty, Shahed University, Tehran, Iran
| | - Hossein Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Sussan Kaboudanian Ardestani
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Nayere Askari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahid Bahonar University, Kerman, Iran
| | - Sara Ghaffarpour
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | |
Collapse
|
2
|
Li B, Xiong W, Zuo W, Shi Y, Wang T, Chang L, Wu Y, Ma H, Bian Q, Chang ACY. Proximal telomeric decompaction due to telomere shortening drives FOXC1-dependent myocardial senescence. Nucleic Acids Res 2024; 52:6269-6284. [PMID: 38634789 PMCID: PMC11194093 DOI: 10.1093/nar/gkae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Telomeres, TTAGGGn DNA repeat sequences located at the ends of eukaryotic chromosomes, play a pivotal role in aging and are targets of DNA damage response. Although we and others have demonstrated presence of short telomeres in genetic cardiomyopathic and heart failure cardiomyocytes, little is known about the role of telomere lengths in cardiomyocyte. Here, we demonstrate that in heart failure patient cardiomyocytes, telomeres are shortened compared to healthy controls. We generated isogenic human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) with short telomeres (sTL-CMs) and normal telomeres (nTL-CMs) as model. Compared to nTL-CMs, short telomeres result in cardiac dysfunction and expression of senescent markers. Using Hi-C and RNASeq, we observe that short telomeres induced TAD insulation decrease near telomeric ends and this correlated with a transcription upregulation in sTL-CMs. FOXC1, a key transcription factor involved in early cardiogenesis, was upregulated in sTL-CMs and its protein levels were negatively correlated with telomere lengths in heart failure patients. Overexpression of FOXC1 induced hiPSC-CM aging, mitochondrial and contractile dysfunction; knockdown of FOXC1 rescued these phenotypes. Overall, the work presented demonstrate that increased chromatin accessibility due to telomere shortening resulted in the induction of FOXC1-dependent expression network responsible for contractile dysfunction and myocardial senescence.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Weiyao Xiong
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Wu Zuo
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yuanyuan Shi
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Teng Wang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Lingling Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yueheng Wu
- Department of Cardiovascular Medicine, Guangdong General Hospital, Guangzhou, Guangdong, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an 710032, China
| | - Qian Bian
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Alex C Y Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
3
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
4
|
Canale P, Campolo J, Borghini A, Andreassi MG. Long Telomeric Repeat-Containing RNA (TERRA): Biological Functions and Challenges in Vascular Aging and Disease. Biomedicines 2023; 11:3211. [PMID: 38137431 PMCID: PMC10740775 DOI: 10.3390/biomedicines11123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Telomere dysfunction is implicated in vascular aging and shorter leucocyte telomeres are associated with an increased risk of atherosclerosis, myocardial infarction, and heart failure. Another pathophysiological mechanism that explains the causal relationship between telomere shortening and atherosclerosis development focuses on the clonal hematopoiesis of indeterminate potential (CHIP), which represents a new and independent risk factor in atherosclerotic cardiovascular diseases. Since telomere attrition has a central role in driving vascular senescence, understanding telomere biology is essential to modulate the deleterious consequences of vascular aging and its cardiovascular disease-related manifestations. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for "TElomeric Repeat-containing RNA", actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the multiple biological functions of TERRA remain to be largely elucidated. In particular, the role of TERRA in vascular biology is surprisingly unknown. In this review, we discuss the current knowledge of TERRA and its roles in telomere biology. Additionally, we outline the pieces of evidence that exist regarding the relationship between TERRA dysregulation and disease. Finally, we speculate on how a comprehensive understanding of TERRA transcription in the cardiovascular system may provide valuable insights into telomere-associated vascular aging, offering great potential for new therapeutic approaches.
Collapse
Affiliation(s)
- Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milano, Italy;
| | - Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (P.C.); (A.B.)
| | | |
Collapse
|
5
|
Girasol MJ, Krasilnikova M, Marques CA, Damasceno JD, Lapsley C, Lemgruber L, Burchmore R, Beraldi D, Carruthers R, Briggs EM, McCulloch R. RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in Trypanosoma brucei. Proc Natl Acad Sci U S A 2023; 120:e2309306120. [PMID: 37988471 PMCID: PMC10691351 DOI: 10.1073/pnas.2309306120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 11/23/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.
Collapse
Affiliation(s)
- Mark John Girasol
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Faculty of the MD-PhD in Molecular Medicine Program, College of Medicine, University of the Philippines Manila, Manila1000, Philippines
| | - Marija Krasilnikova
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Catarina A. Marques
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Jeziel D. Damasceno
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Craig Lapsley
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Leandro Lemgruber
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Richard Burchmore
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Dario Beraldi
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Ross Carruthers
- College of Medical, Veterinary and Life Sciences, School of Cancer Sciences, University of Glasgow, GlasgowG12 0YN, United Kingdom
| | - Emma M. Briggs
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Richard McCulloch
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| |
Collapse
|
6
|
Girasol MJ, Briggs EM, Marques CA, Batista JM, Beraldi D, Burchmore R, Lemgruber L, McCulloch R. Immunoprecipitation of RNA-DNA hybrid interacting proteins in Trypanosoma brucei reveals conserved and novel activities, including in the control of surface antigen expression needed for immune evasion by antigenic variation. Nucleic Acids Res 2023; 51:11123-11141. [PMID: 37843098 PMCID: PMC10639054 DOI: 10.1093/nar/gkad836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of genomes that provide a diverse and growing range of activities. Understanding of these functions has been informed by characterising the proteins that interact with the hybrids, but all such analyses have so far focused on mammals, meaning it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes. The African trypanosome is a single-cell eukaryotic parasite of the Discoba grouping and displays substantial divergence in several aspects of core biology from its mammalian host. Here, we show that DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry recovers 602 putative interactors in T. brucei mammal- and insect-infective cells, some providing activities also found in mammals and some lineage-specific. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, alters T. brucei nuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each factor affects the operation of the parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids to T. brucei biology, including new functions in host immune evasion as well as activities likely fundamental to eukaryotic genome function.
Collapse
Affiliation(s)
- Mark J Girasol
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
- University of the Philippines Manila, College of Medicine, Manila, Philippines
| | - Emma M Briggs
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
| | - Catarina A Marques
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - José M Batista
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Dario Beraldi
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Richard Burchmore
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Leandro Lemgruber
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| | - Richard McCulloch
- University of Glasgow, College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, Glasgow, UK
| |
Collapse
|
7
|
Kalmykova A. Telomere Checkpoint in Development and Aging. Int J Mol Sci 2023; 24:15979. [PMID: 37958962 PMCID: PMC10647821 DOI: 10.3390/ijms242115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The maintenance of genome integrity through generations is largely determined by the stability of telomeres. Increasing evidence suggests that telomere dysfunction may trigger changes in cell fate, independently of telomere length. Telomeric multiple tandem repeats are potentially highly recombinogenic. Heterochromatin formation, transcriptional repression, the suppression of homologous recombination and chromosome end protection are all required for telomere stability. Genetic and epigenetic defects affecting telomere homeostasis may cause length-independent internal telomeric DNA damage. Growing evidence, including that based on Drosophila research, points to a telomere checkpoint mechanism that coordinates cell fate with telomere state. According to this scenario, telomeres, irrespective of their length, serve as a primary sensor of genome instability that is capable of triggering cell death or developmental arrest. Telomeric factors released from shortened or dysfunctional telomeres are thought to mediate these processes. Here, we discuss a novel signaling role for telomeric RNAs in cell fate and early development. Telomere checkpoint ensures genome stability in multicellular organisms but aggravates the aging process, promoting the accumulation of damaged and senescent cells.
Collapse
Affiliation(s)
- Alla Kalmykova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
9
|
Quttina M, Waiters KD, Khan AF, Karami S, Peidl AS, Babajide MF, Pennington J, Merchant FA, Bawa-Khalfe T. Exosc9 Initiates SUMO-Dependent lncRNA TERRA Degradation to Impact Telomeric Integrity in Endocrine Therapy Insensitive Hormone Receptor-Positive Breast Cancer. Cells 2023; 12:2495. [PMID: 37887339 PMCID: PMC10605189 DOI: 10.3390/cells12202495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly for lncRNA telomeric repeat-containing RNA (TERRA), as the TERRA-telomere R-loops dictate cell cycle progression and genomic stability. We now report that the exosome complex component Exosc9 degrades lncRNA TERRA in human mammary epithelial cells. Heterochromatin protein 1 alpha (HP1α) recruits Exosc9 to the telomeres; specifically, the SUMO-modified form of HP1α supports interaction with Exosc9 and, as previously reported, lncRNA TERRA. The telomeric enrichment of Exosc9 is cell cycle-dependent and consistent with the loss of telomeric TERRA in the S/G2 phase. Elevated Exosc9 is frequently observed and drives the growth of endocrine therapy-resistant (ET-R) HR+ breast cancer (BCa) cells. Specifically, the knockdown of Exosc9 inversely impacts telomeric R-loops and the integrity of the chromosome ends of ET-R cells. Consistently, Exosc9 levels dictate DNA damage and the sensitivity of ET-R BCa cells to PARP inhibitors. In this regard, Exosc9 may serve as a promising biomarker for predicting the response to PARP inhibitors as a targeted monotherapy for ET-R HR+ BCa.
Collapse
Affiliation(s)
- Maram Quttina
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
- Engineering Technology College of Technology, University of Houston at Sugarland, 13850 University Blvd, SAB1 Bldg, Rm 348, Sugarland, TX 77479, USA
| | - Kacie D. Waiters
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Ashfia Fatima Khan
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Samaneh Karami
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Anthony S. Peidl
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Mariam Funmi Babajide
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Justus Pennington
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Fatima A. Merchant
- Engineering Technology College of Technology, University of Houston at Sugarland, 13850 University Blvd, SAB1 Bldg, Rm 348, Sugarland, TX 77479, USA
| | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| |
Collapse
|
10
|
Bhowmick R, Hickson ID, Liu Y. Completing genome replication outside of S phase. Mol Cell 2023; 83:3596-3607. [PMID: 37716351 DOI: 10.1016/j.molcel.2023.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
11
|
Udroiu I, Marinaccio J, Sgura A. Inhibition of p53 and ATRX increases telomeric recombination in primary fibroblasts. FEBS Open Bio 2023; 13:1683-1698. [PMID: 37499040 PMCID: PMC10476563 DOI: 10.1002/2211-5463.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Telomere length can be maintained either by the telomerase enzyme or by alternative lengthening of telomeres (ALT), which is based on telomeric recombination. However, both mechanisms are inactive in most human somatic cells. ATRX has been previously identified as an ALT repressor gene. Nonetheless, TP53 is also deficient in most ALT cell lines, and previous works showed that it is an inhibitor of homologous recombination (HR). Despite this, the role of p53 as an ALT repressor has not been previously examined. Therefore, we investigated the effects of p53 and ATRX inhibition on normal human fibroblasts (devoid of any mutation), in the presence or absence of X-ray-induced telomeric damage. Performing immunofluorescence with antibodies for RAD51, H2AX, and TRF1 (for studying HR-mediated DNA damage repair) and CO-FISH (for telomeric sister chromatid exchanges), we observed that HR is a normal mechanism for the repair of telomeric damage, present also in noncancer cells. Moreover, we discovered that telomeric HR, as for HR in general, is significantly inhibited by p53. Indeed, we observed that inhibition of p53 drastically increases telomeric sister chromatid exchanges. We also confirmed that ATRX inhibition increases telomeric recombination. In particular, we observed an increase in crossover products, but a much higher increase in noncrossover products.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università "Roma Tre", Italy
| | | | | |
Collapse
|
12
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
13
|
Sohn EJ, Goralsky JA, Shay JW, Min J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers (Basel) 2023; 15:cancers15071945. [PMID: 37046606 PMCID: PMC10093677 DOI: 10.3390/cancers15071945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
As detailed by the end replication problem, the linear ends of a cell's chromosomes, known as telomeres, shorten with each successive round of replication until a cell enters into a state of growth arrest referred to as senescence. To maintain their immortal proliferation capacity, cancer cells must employ a telomere maintenance mechanism, such as telomerase activation or the Alternative Lengthening of Telomeres pathway (ALT). With only 10-15% of cancers utilizing the ALT mechanism, progress towards understanding its molecular components and associated hallmarks has only recently been made. This review analyzes the advances towards understanding the ALT pathway by: (1) detailing the mechanisms associated with engaging the ALT pathway as well as (2) identifying potential therapeutic targets of ALT that may lead to novel cancer therapeutic treatments. Collectively, these studies indicate that the ALT molecular mechanisms involve at least two distinct pathways induced by replication stress and damage at telomeres. We suggest exploiting tumor dependency on ALT is a promising field of study because it suggests new approaches to ALT-specific therapies for cancers with poorer prognosis. While substantial progress has been made in the ALT research field, additional progress will be required to realize these advances into clinical practices to treat ALT cancers and improve patient prognoses.
Collapse
Affiliation(s)
- Eric J Sohn
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia A Goralsky
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Telomere Length Changes in Cancer: Insights on Carcinogenesis and Potential for Non-Invasive Diagnostic Strategies. Genes (Basel) 2023; 14:genes14030715. [PMID: 36980987 PMCID: PMC10047978 DOI: 10.3390/genes14030715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Telomere dynamics play a crucial role in the maintenance of chromosome integrity; changes in telomere length may thus contribute to the development of various diseases including cancer. Understanding the role of telomeric DNA in carcinogenesis and detecting the presence of cell-free telomeric DNA (cf-telDNA) in body fluids offer a potential biomarker for novel cancer screening and diagnostic strategies. Liquid biopsy is becoming increasingly popular due to its undeniable benefits over conventional invasive methods. However, the organization and function of cf-telDNA in the extracellular milieu are understudied. This paper provides a review based on 3,398,017 cancer patients, patients with other conditions, and control individuals with the aim to shed more light on the inconsistent nature of telomere lengthening/shortening in oncological contexts. To gain a better understanding of biological factors (e.g., telomerase activation, alternative lengthening of telomeres) affecting telomere homeostasis across different types of cancer, we summarize mechanisms responsible for telomere length maintenance. In conclusion, we compare tissue- and liquid biopsy-based approaches in cancer assessment and provide a brief outlook on the methodology used for telomere length evaluation, highlighting the advances of state-of-the-art approaches in the field.
Collapse
|
15
|
Pires VB, Lohner N, Wagner T, Wagner CB, Wilkens M, Hajikazemi M, Paeschke K, Butter F, Luke B. RNA-DNA hybrids prevent resection at dysfunctional telomeres. Cell Rep 2023; 42:112077. [PMID: 36729832 DOI: 10.1016/j.celrep.2023.112077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.
Collapse
Affiliation(s)
- Vanessa Borges Pires
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nina Lohner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Tina Wagner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Carolin B Wagner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maya Wilkens
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Haematology, Rheumatology and Clinical Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Haematology, Rheumatology and Clinical Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Falk Butter
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
17
|
Liu L, Zhang W, Zhong MQ, Jia MH, Jiang F, Zhang Y, Xiao CD, Xiao X, Shen XC. Tetraphenylethene derivative that discriminates parallel G-quadruplexes. RSC Adv 2022; 12:14765-14775. [PMID: 35702216 PMCID: PMC9109478 DOI: 10.1039/d2ra01433e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
G-Quadruplex (G4), as a non-canonical nucleic acid secondary structure, has been proved to be prevalent in genomes and plays important roles in many biological processes. Ligands targeting G4, especially small-molecular fluorescent light-up probes with selectivity for special conformations, are essential for studying the relationship between G4 folding and the cellular response. However, their development still remains challenging but is attracting massive attention. Here, we synthesized a new tetraphenylethene derivative, namely TPE-B, as a parallel G4 probe. Fluorescence experiments showed that TPE-B could give out a strong fluorescence response to the G4 structure. Moreover, it gave a much higher fluorescence intensity response to parallel G4s than anti-parallel ones, which indicated that TPE-B could serve as a special tool for probing parallel G4s. The circular dichroism (CD) spectra and melting curves showed that TPE-B could selectively bind and stabilize parallel G4s without changing their topology. ESI-MS studies showed that TPE-B could bind to parallel G4 with a 1 : 1 stoichiometry. The gel staining results showed that TPE-B was a good candidate for probing parallel G4s. Altogether, the TPE-B molecule may serve as a promising new probe that can discriminate parallel G4s. A tetraphenylethene derivative: 1,1′,1′′,1′′′-(((ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl)) tetrakis(oxy)) tetrakis(butane-4,1-diyl)) tetrakis(4-(dimethylamino) pyridin-1-ium) bromide (TPE-B) has been designed as a fluorescent light-up probe with high selectivity for parallel G-quadruplexes![]()
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University Guiyang 550025 P. R. China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Fei Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Yan Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University Guiyang Guizhou 550001 P. R. China
| | - Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China .,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University Guiyang 550025 P. R. China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China .,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, University Town Guian New District Guizhou 550025 P. R. China
| |
Collapse
|
18
|
Frasson I, Pirota V, Richter SN, Doria F. Multimeric G-quadruplexes: A review on their biological roles and targeting. Int J Biol Macromol 2022; 204:89-102. [PMID: 35124022 DOI: 10.1016/j.ijbiomac.2022.01.197] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
In human cells, nucleic acids adopt several non-canonical structures that regulate key cellular processes. Among them, G-quadruplexes (G4s) are stable structures that form in guanine-rich regions in vitro and in cells. G4 folded/unfolded state shapes numerous cellular processes, including genome replication, transcription, and translation. Moreover, G4 folding is involved in genomic instability. G4s have been described to multimerize, forming high-order structures in both DNA and/or RNA strands. Multimeric G4s can be formed by adjacent intramolecular G4s joined by stacking interactions or connected by short loops. Multimeric G4s can also originate from the assembly of guanines embedded on independent DNA or RNA strands. Notably, crucial regions of the human genome, such as the 3'-terminal overhang of the telomeric DNA as well as the open reading frame of genes involved in the preservation of neuron viability in the human central and peripheral nervous system are prone to form multimeric G4s. The biological importance of such structures has been recently described, with multimeric G4s playing potentially protective or deleterious effects in the pathogenic cascade of various diseases. Here, we portray the multifaceted scenario of multimeric G4s, in terms of structural properties, biological roles, and targeting strategies.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy; G4-INTERACT, USERN, v. le Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
19
|
DNA sequence-dependent formation of heterochromatin nanodomains. Nat Commun 2022; 13:1861. [PMID: 35387992 PMCID: PMC8986797 DOI: 10.1038/s41467-022-29360-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3–10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this issue by introducing the chromatin hierarchical lattice framework (ChromHL) that predicts chromatin state patterns with single-nucleotide resolution. ChromHL is applied to analyse four HND types in mouse embryonic stem cells that are defined by histone methylases SUV39H1/2 or GLP, transcription factor ADNP or chromatin remodeller ATRX. We find that HND patterns can be computed from PAX3/9, ADNP and LINE1 sequence motifs as nucleation sites and boundaries that are determined by DNA sequence (e.g. CTCF binding sites), cooperative interactions between nucleosomes as well as nucleosome-HP1 interactions. Thus, ChromHL rationalizes how patterns of H3K9me2/3 are established and changed via the activity of protein factors in processes like cell differentiation. The ability to predict epigenetic regulation is an important challenge in biology. Here the authors describe heterochromatin nanodomains (HNDs) and compare four different types of H3K9me2/3-marked HNDs in mouse embryonic stem cells. They further develop a computational framework to predict genome-wide HND maps from DNA sequence and protein concentrations, at single-nucleotide resolution.
Collapse
|
20
|
Abstract
It has recently been demonstrated that budding yeast telomeres are transcribed into TERRA, a long noncoding RNA. Due to the G-rich nature of the coding strand, TERRA has a tendency to form DNA-RNA hybrids and potentially R-loops, which in turn, promote repair at short telomeres. Here, we report two methods to detect DNA-RNA hybrids at yeast telomeres, namely, DRIP, which employs the S9.6 hybrid-recognizing antibody, and R-ChIP, which takes advantage of a catalytic dead form of RNase H1 (Rnh1-cd). We use cross-linked material for both protocols as we have found that this does not negatively affect recovered material, and furthermore allows the precipitation of other proteins from the identical cross-linked material. Although both methods are successful in terms of detecting DNA-RNA hybrids at telomeres, the R-ChIP method yields an approximately ten-fold increased enrichment.
Collapse
Affiliation(s)
- Carolin B Wagner
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
21
|
Wu W, He JN, Lan M, Zhang P, Chu WK. Transcription-Replication Collisions and Chromosome Fragility. Front Genet 2021; 12:804547. [PMID: 34956339 PMCID: PMC8703014 DOI: 10.3389/fgene.2021.804547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate replication of the entire genome is critical for cell division and propagation. Certain regions in the genome, such as fragile sites (common fragile sites, rare fragile sites, early replicating fragile sites), rDNA and telomeres, are intrinsically difficult to replicate, especially in the presence of replication stress caused by, for example, oncogene activation during tumor development. Therefore, these regions are particularly prone to deletions and chromosome rearrangements during tumorigenesis, rendering chromosome fragility. Although, the mechanism underlying their “difficult-to-replicate” nature and genomic instability is still not fully understood, accumulating evidence suggests transcription might be a major source of endogenous replication stress (RS) leading to chromosome fragility. Here, we provide an updated overview of how transcription affects chromosome fragility. Furthermore, we will use the well characterized common fragile sites (CFSs) as a model to discuss pathways involved in offsetting transcription-induced RS at these loci with a focus on the recently discovered atypical DNA synthesis repair pathway Mitotic DNA Synthesis (MiDAS).
Collapse
Affiliation(s)
- Wei Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Mengjiao Lan
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Kaur P, Barnes R, Pan H, Detwiler AC, Liu M, Mahn C, Hall J, Messenger Z, You C, Piehler J, Smart R, Riehn R, Opresko PL, Wang H. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Nucleic Acids Res 2021; 49:13000-13018. [PMID: 34883513 PMCID: PMC8682769 DOI: 10.1093/nar/gkab1142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2-TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein-DNA structures, and monitoring of DNA-DNA and DNA-RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA-dsDNA, dsDNA-ssDNA and dsDNA-ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Jonathan Hall
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Zach Messenger
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Changjiang You
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Robert C Smart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
23
|
Hu XX, Wang SQ, Gan SQ, Liu L, Zhong MQ, Jia MH, Jiang F, Xu Y, Xiao CD, Shen XC. A Small Ligand That Selectively Binds to the G-quadruplex at the Human Vascular Endothelial Growth Factor Internal Ribosomal Entry Site and Represses the Translation. Front Chem 2021; 9:781198. [PMID: 34858949 PMCID: PMC8630693 DOI: 10.3389/fchem.2021.781198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
G-quadruplexes are believed to have important biological functions, so many small molecules have been screened or developed for targeting G-quadruplexes. However, it is still a major challenge to find molecules that recognize specific G-quadruplexes. Here, by using a combination of surface plasmon resonance, electrospray ionization mass spectrometry, circular dichroism, Western blot, luciferase assay, and reverse transcriptase stop assay, we observed a small molecule, namely, oxymatrine (OMT) that could selectively bind to the RNA G-quadruplex in 5′-untranslated regions (UTRs) of human vascular endothelial growth factor (hVEGF), but could not bind to other G-quadruplexes. OMT could selectively repress the translation of VEGF in cervical cancer cells. Furthermore, it could recognize VEGF RNA G-quadruplexes in special conformations. The results indicate that OMT may serve as a potentially special tool for studying the VEGF RNA G-quadruplex in cells and as a valuable scaffold for the design of ligands that recognize different G-quadruplexes.
Collapse
Affiliation(s)
- Xiao-Xia Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Department of Physiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sheng-Quan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Shi-Quan Gan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Lei Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Fei Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, China
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,The Key Laboratory of Optimal Utilization of Natural Medicine Resources, Guizhou Medical University, Guiyang, China
| |
Collapse
|
24
|
Tarazón E, Pérez-Carrillo L, Giménez-Escamilla I, Ramos-Castellanos P, Martínez-Dolz L, Portolés M, Roselló-Lletí E. Relationships of Telomere Homeostasis with Oxidative Stress and Cardiac Dysfunction in Human Ischaemic Hearts. Antioxidants (Basel) 2021; 10:antiox10111750. [PMID: 34829621 PMCID: PMC8615212 DOI: 10.3390/antiox10111750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Although the roles of telomeres and oxidative stress in ischaemic cardiomyopathy (ICM) are known, mechanisms of telomere homeostasis and their relationship with oxidative stress are incompletely understood. We performed two RNA-seq analyses (mRNA n = 23; ncRNA n = 30) and protein validation on left ventricles of explanted hearts from ICM and control subjects. We observed dysregulation of the shelterin and cohesin complexes, which was related to an increase in the response to cellular oxidative stress. Moreover, we found alterations at mRNA level in the mechanisms of telomeric DNA repair. Specifically, increased RAD51D mRNA levels were correlated with left ventricular diameters. RAD51D protein levels were unaltered, however, and were inversely corelated with the miR-103a-3p upregulation. We also observed the overexpression of lncRNAs (TERRA and GUARDIN) involved in telomere protection in response to stress and alterations in their regulatory molecules. Expression of the TERRA transcription factor ATF7 was correlated with superoxide dismutase 1 expression and left ventricular diameters. The levels of GUARDIN and its transcription factor FOSL2 were correlated with those of catalase. Therefore, we showed specific alterations in the mechanisms of telomeric DNA repair and protection, and these alterations are related to an increase in the response mechanisms to oxidative stress and cardiac dysfunction in ICM.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-96-124-66-44 (E.T. & E.R.-L.)
| | - Lorena Pérez-Carrillo
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Isaac Giménez-Escamilla
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Pablo Ramos-Castellanos
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Luis Martínez-Dolz
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-96-124-66-44 (E.T. & E.R.-L.)
| |
Collapse
|
25
|
Mentegari E, Bertoletti F, Kissova M, Zucca E, Galli S, Tagliavini G, Garbelli A, Maffia A, Bione S, Ferrari E, d’Adda di Fagagna F, Francia S, Sabbioneda S, Chen LY, Lingner J, Bergoglio V, Hoffmann JS, Hübscher U, Crespan E, Maga G. A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres. Int J Mol Sci 2021; 22:ijms22052365. [PMID: 33673424 PMCID: PMC7956399 DOI: 10.3390/ijms22052365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.
Collapse
Affiliation(s)
- Elisa Mentegari
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Federica Bertoletti
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Miroslava Kissova
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Elisa Zucca
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Silvia Galli
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Giulia Tagliavini
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Antonio Maffia
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Silvia Bione
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; (E.F.); (U.H.)
| | - Fabrizio d’Adda di Fagagna
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
- IFOM-The FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sofia Francia
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
| | - Liuh-Yow Chen
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland; (L.-Y.C.); (J.L.)
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Frontiers in Genetics National Center of Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland; (L.-Y.C.); (J.L.)
| | - Valerie Bergoglio
- UMR1037 INSERM, Cancer Research Center of Toulouse, 2 Avenue Curien, 31037 Toulouse, France;
| | - Jean-Sébastien Hoffmann
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France;
| | - Ulrich Hübscher
- Department of Molecular Mechanisms of Disease, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; (E.F.); (U.H.)
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
- Correspondence: (E.C.); (G.M.)
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, 27100 Pavia, Italy; (E.M.); (F.B.); (M.K.); (E.Z.); (S.G.); (G.T.); (A.G.); (A.M.); (S.B.); (F.d.d.F.); (S.F.); (S.S.)
- Correspondence: (E.C.); (G.M.)
| |
Collapse
|
26
|
TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep 2021; 11:3509. [PMID: 33568696 PMCID: PMC7876106 DOI: 10.1038/s41598-021-82406-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Telomere dysfunction causes chromosomal instability which is associated with many cancers and age-related diseases. The non-coding telomeric repeat-containing RNA (TERRA) forms a structural and regulatory component of the telomere that is implicated in telomere maintenance and chromosomal end protection. The basic N-terminal Gly/Arg-rich (GAR) domain of telomeric repeat-binding factor 2 (TRF2) can bind TERRA but the structural basis and significance of this interaction remains poorly understood. Here, we show that TRF2 GAR recognizes G-quadruplex features of TERRA. We show that small molecules that disrupt the TERRA-TRF2 GAR complex, such as N-methyl mesoporphyrin IX (NMM) or genetic deletion of TRF2 GAR domain, result in the loss of TERRA, and the induction of γH2AX-associated telomeric DNA damage associated with decreased telomere length, and increased telomere aberrations, including telomere fragility. Taken together, our data indicates that the G-quadruplex structure of TERRA is an important recognition element for TRF2 GAR domain and this interaction between TRF2 GAR and TERRA is essential to maintain telomere stability.
Collapse
|
27
|
Shen M, Young A, Autexier C. PCNA, a focus on replication stress and the alternative lengthening of telomeres pathway. DNA Repair (Amst) 2021; 100:103055. [PMID: 33581499 DOI: 10.1016/j.dnarep.2021.103055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT+ cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT+ telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT+ telomeres.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Adrian Young
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
28
|
Ray SK, Mukherjee S. LncRNAs as Architects in Cancer Biomarkers with Interface of Epitranscriptomics- Incipient Targets in Cancer Therapy. Curr Cancer Drug Targets 2021; 21:416-427. [PMID: 33413062 DOI: 10.2174/1568009620666210106122421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Long non-coding RNAs (LncRNAs) epitomize a class of non-coding regulatory RNAs with more than 200 nucleotides, which are long and situated in the nucleus or cytoplasm and rarely encode proteins. Accruing evidence signposts that lncRNAs act as molecular switches in different cellular activities like differentiation, apoptosis, as well as reprogramming of cellular states by modifying gene expression patterns. The revelation of immense numbers of lncRNA with their wide variety of expression patterns in different kinds of malignancy, tumor explicitness, and their steadiness in circulating body fluids deliver an innovative groundwork for emerging diagnosis and treatments for cancer. Mechanisms associating lncRNAs in carcinogenesis are conquered by deregulation of cellular signaling pathways and altered epitranscriptome along with their expression. Specified these attributes, it becomes clear that the improvement of new tools to identify lncRNAs with higher affectability will be fundamental to allow the identification of the expression pattern of lncRNAs in various kinds of malignant growth and may likewise be utilized to envisage cancer prognosis in addition to the patients' outcome. Improvement of RNA targeting-based therapeutics is delivering incredible prospects to modulate lncRNAs for anti-cancer initiatives. Henceforth, lncRNAs can be used exclusively as possible cancer biomarkers for early diagnosis and anticipation of malignancy, as well as metastasis. In addition to the basic curative targets and along these, lncRNAs hold resilient assurance towards the revelation of innovative diagnostics and therapeutics for malignant growth with the interface of epitranscriptomics information. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis, regulation, and lncRNA-associated epigenetics of cancer along with targeting lncRNAs with potential approaches for impending diagnosis and therapeutic intervention in malignancies.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
29
|
Berlyoung AS, Armitage BA. Assembly and Characterization of RNA/DNA Hetero-G-Quadruplexes. Biochemistry 2020; 59:4072-4080. [PMID: 33048532 DOI: 10.1021/acs.biochem.0c00657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient association of guanine-rich RNA and DNA in the form of hetero-G-quadruplexes (RDQs) has emerged as an important mechanism for regulating genome transcription and replication but relatively little is known about the structure and biophysical properties of RDQs compared with DNA and RNA homo-G-quadruplexes. Herein, we report the assembly and characterization of three RDQs based on sequence motifs found in human telomeres and mitochondrial nucleic acids. Stable RDQs were assembled using a duplex scaffold, which prevented segregation of the DNA and RNA strands into separate homo-GQs. Each of the RDQs exhibited UV melting temperatures above 50 °C in 100 mM KCl and predominantly parallel morphologies, evidently driven by the RNA component. The fluorogenic dye thioflavin T binds to each RDQ with low micromolar KD values, similar to its binding to RNA and DNA homo-GQs. These results establish a method for assembling RDQs that should be amenable to screening compounds and libraries to identify selective RDQ-binding small molecules, oligonucleotides, and proteins.
Collapse
Affiliation(s)
- April S Berlyoung
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Xiao CD, He ZY, Guo CX, Shen XC, Xu Y. Conformation of G-quadruplex Controlled by Click Reaction. Molecules 2020; 25:molecules25184339. [PMID: 32971833 PMCID: PMC7570587 DOI: 10.3390/molecules25184339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are non-canonical four stranded secondary structures possessing great biological importance. Controlling G-quadruplex conformation for further regulating biological processes is both exciting and challenging. In this study, we described a method for regulating G-quadruplex conformation by click chemistry for the first time. 8-ethynyl-2'-deoxyguanosine was synthesized and incorporated into a 12-nt telomere DNA sequence. Such a sequence, at first, formed mixed parallel/anti-parallel G-quadruplexes, while it changed to anti-parallel after reaction with azidobenzene. Meanwhile, the click reaction can give the sequence intense fluorescence.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China;
- Correspondence: (C.-D.X.); (Y.X.); Tel.: +86-0851-88416160 (C.-D.X.); +81-985-85-0993 (Y.X.)
| | - Zhi-Yong He
- Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan;
| | - Chuan-Xin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group Co. Ltd., Jiading, Shanghai 201805, China;
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China;
| | - Yan Xu
- Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyo-take, Miyazaki 889-1692, Japan;
- Correspondence: (C.-D.X.); (Y.X.); Tel.: +86-0851-88416160 (C.-D.X.); +81-985-85-0993 (Y.X.)
| |
Collapse
|
31
|
Gylling HM, Gonzalez-Aguilera C, Smith MA, Kaczorowski DC, Groth A, Lund AH. Repeat RNAs associate with replication forks and post-replicative DNA. RNA (NEW YORK, N.Y.) 2020; 26:1104-1117. [PMID: 32393525 PMCID: PMC7430672 DOI: 10.1261/rna.074757.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.
Collapse
Affiliation(s)
- Helene M Gylling
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, 2200, Denmark
| | | | - Martin A Smith
- Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- St-Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales 2010, Australia
| | | | - Anja Groth
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, 2200, Denmark
- The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
32
|
Coulon S, Vaurs M. Telomeric Transcription and Telomere Rearrangements in Quiescent Cells. J Mol Biol 2020; 432:4220-4231. [PMID: 32061930 DOI: 10.1016/j.jmb.2020.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Despite the condensed nature of terminal sequences, the telomeres are transcribed into a group of noncoding RNAs, including the TElomeric Repeat-containing RNA (TERRA). Since the discovery of TERRA, its evolutionary conserved function has been confirmed, and its involvement in telomere length regulation, heterochromatin establishment, and telomere recombination has been demonstrated. We previously reported that TERRA is upregulated in quiescent fission yeast cells, although the global transcription is highly reduced. Elevated telomeric transcription was also detected when telomeres detach from the nuclear periphery. These intriguing observations unveil unexpected facets of telomeric transcription in arrested cells. In this review, we present the different aspects of TERRA transcription during quiescence and discuss their implications for telomere maintenance and cell fate.
Collapse
Affiliation(s)
- Stéphane Coulon
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France.
| | - Mélina Vaurs
- CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue contre le Cancer, Marseille, F-13009, France
| |
Collapse
|
33
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
34
|
Brieño-Enríquez MA, Moak SL, Abud-Flores A, Cohen PE. Characterization of telomeric repeat-containing RNA (TERRA) localization and protein interactions in primordial germ cells of the mouse†. Biol Reprod 2020; 100:950-962. [PMID: 30423030 DOI: 10.1093/biolre/ioy243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. They consist of telomeric DNA repeats (TTAGGG), the shelterin protein complex, and telomeric repeat-containing RNA (TERRA). Proposed TERRA functions are wide ranging and include telomere maintenance, telomerase inhibition, genomic stability, and alternative lengthening of telomere. However, the presence and role of TERRA in primordial germ cells (PGCs), the embryonic precursors of germ cells, is unknown. Using RNA-fluorescence in situ hybridization, we identify TERRA transcripts in female PGCs at 11.5, 12.5, and 13.5 days postcoitum. In male PGCs, the earliest detection TERRA was at 12.5 dpc where we observed cells with either zero or one TERRA focus. Using qRT-PCR, we evaluated chromosome-specific TERRA expression. Female PGCs showed TERRA expression at 11.5 dpc from eight different chromosome subtelomeric regions (chromosomes 1, 2, 7, 9, 11, 13, 17, and 18) while in male PGCs, TERRA expression was confined to the chromosome 17. Most TERRA transcription in 13.5 dpc male PGCs arose from chromosomes 2 and 6. TERRA interacting proteins were evaluated using identification of direct RNA interacting proteins (iDRiP), which identified 48 in female and 26 in male protein interactors from PGCs at 13.5 dpc. We validated two different proteins: the splicing factor, proline- and glutamine-rich (SFPQ) in PGCs and non-POU domain-containing octamer-binding protein (NONO) in somatic cells. Taken together, our data indicate that TERRA expression and interactome during PGC development are regulated in a dynamic fashion that is dependent on gestational age and sex.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Steffanie L Moak
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Anyul Abud-Flores
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
35
|
Langston RE, Palazzola D, Bonnell E, Wellinger RJ, Weinert T. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 2020; 16:e1008733. [PMID: 32287268 PMCID: PMC7205313 DOI: 10.1371/journal.pgen.1008733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/07/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes. Eukaryotic chromosomes are linear molecules with specialized end structures called telomeres. Telomeres contain both unique repetitive DNA sequences and specialized proteins that solve several biological problems by differentiating chromosomal ends from internal breaks, thus preventing chromosome instability. When telomeres are defective, the entire chromosome can become unstable and change, causing mutations and pathology (cancer, aging, etc.). Here we study how a defect in specific telomere proteins causes chromosomal rearrangements, using the model organism Saccharomyces cerevisiae (budding or brewer’s yeast). We find that when specific telomere proteins are defective, errors in DNA replication generate a type of damage that likely involves extensive single-stranded DNA that forms inherently unstable chromosomes, subject to many subsequent instances of instability (e.g. allelic recombinants, chromosome loss, truncations, dicentrics). The telomere protein Cdc13 is part of a protein complex called CST that is conserved in most organisms including mammalian cells. The technical capacity of studies in budding yeast allow a detailed, real-time examination of how telomere defects compromise chromosome stability in a single cell cycle, generating lessons likely relevant to how human telomeres keep human chromosomes stable.
Collapse
Affiliation(s)
- Rachel E. Langston
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominic Palazzola
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
36
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
37
|
Lalonde M, Chartrand P. TERRA, a Multifaceted Regulator of Telomerase Activity at Telomeres. J Mol Biol 2020; 432:4232-4243. [PMID: 32084415 DOI: 10.1016/j.jmb.2020.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
In eukaryotes, telomeres are repetitive sequences at the end of chromosomes, which are maintained in a constitutive heterochromatin state. It is now known that telomeres can be actively transcribed, leading to the production of a telomeric repeat-containing noncoding RNA called TERRA. Due to its sequence complementarity to the telomerase template, it was suggested early on that TERRA could be an inhibitor of telomerase. Since then, TERRA has been shown to be involved in heterochromatin formation at telomeres, to invade telomeric dsDNA and form R-loops, and even to promote telomerase recruitment at short telomeres. All these functions depend on the diverse capacities of this lncRNA to bind various cofactors, act as a scaffold, and promote higher-order complexes in cells. In this review, it will be highlighted as to how these properties of TERRA work together to regulate telomerase activity at telomeres.
Collapse
Affiliation(s)
- Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada.
| |
Collapse
|
38
|
Srivastava R. Chemical reactivity theory (CRT) study of small drug-like biologically active molecules. J Biomol Struct Dyn 2020; 39:943-952. [DOI: 10.1080/07391102.2020.1725642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruby Srivastava
- Bioinformatics, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
39
|
Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 2020; 21:167-178. [PMID: 32005969 DOI: 10.1038/s41580-019-0206-3] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.
Collapse
|
40
|
Udroiu I, Sgura A. Alternative Lengthening of Telomeres and Chromatin Status. Genes (Basel) 2019; 11:genes11010045. [PMID: 31905921 PMCID: PMC7016797 DOI: 10.3390/genes11010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Telomere length is maintained by either telomerase, a reverse transcriptase, or alternative lengthening of telomeres (ALT), a mechanism that utilizes homologous recombination (HR) proteins. Since access to DNA for HR enzymes is regulated by the chromatin status, it is expected that telomere elongation is linked to epigenetic modifications. The aim of this review is to elucidate the epigenetic features of ALT-positive cells. In order to do this, it is first necessary to understand the telomeric chromatin peculiarities. So far, the epigenetic nature of telomeres is still controversial: some authors describe them as heterochromatic, while for others, they are euchromatic. Similarly, ALT activity should be characterized by the loss (according to most researchers) or formation (as claimed by a minority) of heterochromatin in telomeres. Besides reviewing the main works in this field and the most recent findings, some hypotheses involving the role of telomere non-canonical sequences and the possible spatial heterogeneity of telomeres are given.
Collapse
|
41
|
Denham J. Telomere regulation: lessons learnt from mice and men, potential opportunities in horses. Anim Genet 2019; 51:3-13. [PMID: 31637754 DOI: 10.1111/age.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
Telomeres are genetically conserved nucleoprotein complexes located at the ends of chromosomes that preserve genomic stability. In large mammals, somatic cell telomeres shorten with age, owing to the end replication problem and lack of telomere-lengthening events (e.g. telomerase and ALT activity). Therefore, telomere length reflects cellular replicative reserve and mitotic potential. Environmental insults can accelerate telomere attrition in response to cell division and DNA damage. As such, telomere shortening is considered one of the major hallmarks of ageing. Much effort has been dedicated to understanding the environmental perturbations that accelerate telomere attrition and therapeutic strategies to preserve or extend telomeres. As telomere dynamics seem to reflect cumulative cellular stress, telomere length could serve as a biomarker of animal welfare. The assessment of telomere dynamics (i.e. rate of shortening) in conjunction with telomere-regulating genes and telomerase activity in racehorses could monitor long-term animal health, yet it could also provide some unique opportunities to address particular limitations with the use of other animal models in telomere research. Considering the ongoing efforts to optimise the health and welfare of equine athletes, the purpose of this review is to discuss the potential utility of assessing telomere length in Thoroughbred racehorses. A brief review of telomere biology in large and small mammals will be provided, followed by discussion on the biological implications of telomere length and environmental (e.g. lifestyle) factors that accelerate or attenuate telomere attrition. Finally, the utility of quantifying telomere dynamics in horses will be offered with directions for future research.
Collapse
Affiliation(s)
- J Denham
- School of Health and Biomedical Sciences, Bundoora West Campus, RMIT University, Room 53, Level 4, Building 202, Bundoora, VIC, 3083, Australia
| |
Collapse
|
42
|
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019; 213:431-447. [PMID: 31405990 PMCID: PMC6781888 DOI: 10.1534/genetics.119.302606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Henrietta W Bennett
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), 8093, Switzerland
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028, Portugal
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| |
Collapse
|
43
|
Olivier M, Charbonnel C, Amiard S, White CI, Gallego ME. RAD51 and RTEL1 compensate telomere loss in the absence of telomerase. Nucleic Acids Res 2019; 46:2432-2445. [PMID: 29346668 PMCID: PMC5861403 DOI: 10.1093/nar/gkx1322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 11/23/2022] Open
Abstract
Replicative erosion of telomeres is naturally compensated by telomerase and studies in yeast and vertebrates show that homologous recombination can compensate for the absence of telomerase. We show that RAD51 protein, which catalyzes the key strand-invasion step of homologous recombination, is localized at Arabidopsis telomeres in absence of telomerase. Blocking the strand-transfer activity of the RAD51 in telomerase mutant plants results in a strikingly earlier onset of developmental defects, accompanied by increased numbers of end-to-end chromosome fusions. Imposing replication stress through knockout of RNaseH2 increases numbers of chromosome fusions and reduces the survival of these plants deficient for telomerase and homologous recombination. This finding suggests that RAD51-dependent homologous recombination acts as an essential backup to the telomerase for compensation of replicative telomere loss to ensure genome stability. Furthermore, we show that this positive role of RAD51 in telomere stability is dependent on the RTEL1 helicase. We propose that a RAD51 dependent break-induced replication process is activated in cells lacking telomerase activity, with RTEL1 responsible for D-loop dissolution after telomere replication.
Collapse
Affiliation(s)
- Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293 - INSERM U1103 - Université Clermont Auvergne, Faculté de Médecine. 28, place Henri Dunant - BP38 63001 Clermont-Ferrand Cedex 1, France
| | - Cyril Charbonnel
- Génétique, Reproduction et Développement, UMR CNRS 6293 - INSERM U1103 - Université Clermont Auvergne, Faculté de Médecine. 28, place Henri Dunant - BP38 63001 Clermont-Ferrand Cedex 1, France
| | - Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293 - INSERM U1103 - Université Clermont Auvergne, Faculté de Médecine. 28, place Henri Dunant - BP38 63001 Clermont-Ferrand Cedex 1, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293 - INSERM U1103 - Université Clermont Auvergne, Faculté de Médecine. 28, place Henri Dunant - BP38 63001 Clermont-Ferrand Cedex 1, France
| | - Maria E Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293 - INSERM U1103 - Université Clermont Auvergne, Faculté de Médecine. 28, place Henri Dunant - BP38 63001 Clermont-Ferrand Cedex 1, France
| |
Collapse
|
44
|
Mazzolini R, Gonzàlez N, Garcia-Garijo A, Millanes-Romero A, Peiró S, Smith S, García de Herreros A, Canudas S. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2019; 46:146-158. [PMID: 29059385 PMCID: PMC5758914 DOI: 10.1093/nar/gkx958] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Núria Gonzàlez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andrea Garcia-Garijo
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alba Millanes-Romero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York University, USA
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Canudas
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Unitat de Nutrició Humana, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain.,CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
45
|
Ren Y, Zhao C, He Y, Xu H, Min X. Long non-coding RNA bladder cancer-associated transcript 2 contributes to disease progression, chemoresistance and poor survival of patients with colorectal cancer. Oncol Lett 2019; 18:2050-2058. [PMID: 31423277 DOI: 10.3892/ol.2019.10487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-associated mortality worldwide. Long non-coding RNAs (lncRNAs) have been revealed to modulate various biological cell processes, and are involved in the initiation and progression of different diseases, including CRC. However, the role of lncRNA bladder cancer-associated transcript 2 (BLACAT2) in CRC has not been defined. The present study aimed to investigate the role of BLACAT2 in CRC. The present study measured the expression levels of BLACAT2 in CRC cells and tissues by reverse-transcription-quantitative polymerase chain reaction, and associations among BLACAT2 expression levels, important clinicopathological parameters and patient survival were statistically evaluated. The functional role of BLACAT2 in metastasis, proliferation and drug resistance was also detected. BLACAT2 was overexpressed in CRC cells and tissues, and high BLACAT2 expression was associated with larger tumor size, and more advanced lymph node (N), metastasis (M) and tumor-NM stages. Additionally, survival analysis demonstrated that patients with high BLACAT2 expression exhibited poor overall survival. Notably, high BLACAT2 expression was identified as an independent risk factor for overall survival. Migration and invasion assays revealed that BLACAT2 promoted migration and invasion, respectively. In addition, overexpression of BLACAT2 increased colony numbers and optical density values of CRC cells in a colony formation assay and an MTT assay, respectively. Furthermore, BLACAT2 levels were significantly increased in 5-fluorouracil-resistant cells, and overexpression of BLACAT2 was markedly associated with a low cell inhibition rate. In conclusion, BLACAT2 overexpression may contribute to the metastasis, proliferation and chemoresistance of CRC cells, and high BLACAT2 expression may be a promising prognostic marker for patients with CRC.
Collapse
Affiliation(s)
- Yongjun Ren
- Department of Interventional Radiology, Sichuan Key Laboratory of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Caixia Zhao
- Department of Oncology, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Yi He
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hao Xu
- Department of Interventional Radiology, Sichuan Key Laboratory of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xuli Min
- Department of Interventional Radiology, Sichuan Key Laboratory of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
46
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
47
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
48
|
Bae SU, Park WJ, Jeong WK, Baek SK, Lee HW, Lee JH. Prognostic impact of telomeric repeat-containing RNA expression on long-term oncologic outcomes in colorectal cancer. Medicine (Baltimore) 2019; 98:e14932. [PMID: 30946316 PMCID: PMC6456115 DOI: 10.1097/md.0000000000014932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Telomeres are transcribed into long, noncoding telomeric repeat-containing RNAs (TERRA) that have been implicated in the regulation of telomerase, the enzyme that lengthens telomeres, in heterochromatin formation at telomeres, and in telomere stability. This study aimed to evaluate the correlation between TERRA expression and long-term oncologic outcomes in colorectal cancer (CRC).We evaluated 18p TERRA expression and telomere length using quantitative real-time PCR in 60 patients who underwent surgical resection for CRC between June 2008 and November 2010.Patients were grouped according to 18p TERRA expression, with 29 (48.3%) and 31 (51.7%) patients in the low and high TERRA expression groups, respectively. The median follow-up period was 80 months (range 2-103). The 18p TERRA expression was marginally significantly associated with preoperative carcinoembryonic antigen (CEA; P = .082) and was significantly associated with telomere length (P < .05). Multivariate analysis revealed that preoperative CEA (hazard ratio [HR], 2.728; 95% confidence interval [CI], 0.832-8.944, P = .098) and 18p TERRA expression (HR, 0.113; 95% CI, 0.011-1.126, P = .071) were marginally significant independent prognostic factors for overall survival (OS), whereas preoperative CEA (HR, 4.254; 95% CI, 1.394-12.985, P = .011) and 18p TERRA expression (HR, 0.108; 95% CI, 0.011-1.037, P = .054) were significant independent prognostic factors for disease-free survival (DFS). According to our prognostic model with 2 prognostic factors, the OS and DFS rate increased to 76.2% and 80.63%, respectively, in patients with high 18p TERRA expression and CEA levels ≤5 (P = .178, P = .057, respectively).18p TERRA expression was marginally significantly associated with preoperative CEA and significantly associated with telomere length, rendering it a potential prognostic factor for long-term oncologic outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | | | - Hye-Won Lee
- Department of Pathology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, Republic of Korea
| | | |
Collapse
|
49
|
Heterogeneous Nuclear Ribonucleoproteins A1 and A2 Function in Telomerase-Dependent Maintenance of Telomeres. Cancers (Basel) 2019; 11:cancers11030334. [PMID: 30857208 PMCID: PMC6468650 DOI: 10.3390/cancers11030334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
The A/B subfamily of heterogeneous nuclear ribonucleoproteins (hnRNPs A/B), which includes hnRNP A1, A2/B1, and A3, plays an important role in cell proliferation. The simultaneous suppression of hnRNP A1/A2, but not the suppression of hnRNP A1 or A2 alone, has been shown to inhibit cell proliferation and induce apoptosis in cancer cells, but not in mortal normal cells. However, the molecular basis for such a differential inhibition of cell proliferation remains unknown. Here, we show that the simultaneous suppression of hnRNP A1 and hnRNP A2 resulted in dysfunctional telomeres and induced DNA damage responses in cancer cells. The inhibition of apoptosis did not alleviate the inhibition of cell proliferation nor the formation of dysfunctional telomeres in cancer cells depleted of hnRNP A1/A2. Moreover, while proliferation of mortal normal fibroblasts was not sensitive to the depletion of hnRNP A1/A2, the ectopic expression of hTERT in normal fibroblasts rendered these cells sensitive to proliferation inhibition, which was associated with the production of dysfunctional telomeres. Our study demonstrates that hnRNP A1 and A2 function to maintain telomeres in telomerase-expressing cells only, suggesting that the maintenance of functional telomeres in telomerase-expressing cancer cells employs factors that differ from those used in the telomerase-negative normal cells.
Collapse
|
50
|
Majello B, Gorini F, Saccà CD, Amente S. Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer. Cancers (Basel) 2019; 11:cancers11030324. [PMID: 30866496 PMCID: PMC6468368 DOI: 10.3390/cancers11030324] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Studies of alterations in histone methylation in cancer have led to the identification of histone methyltransferases and demethylases as novel targets for therapy. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), demethylates H3K4me1/2, or H3K9me1/2 in a context-dependent manner. In addition to the well-studied role of LSD1 in the epigenetic regulation of histone methylation changes, LSD1 regulates the methylation dynamic of several non-histone proteins and participates in the assembly of different long noncoding RNA (lncRNA_ complexes. LSD1 is highly expressed in various cancers, playing a pivotal role in different cancer-related processes. Here, we summarized recent findings on the role of LSD1 in the regulation of different biological processes in cancer cells through dynamic methylation of non-histone proteins and physical association with dedicated lncRNA.
Collapse
Affiliation(s)
- Barbara Majello
- Department of Biology, University of Naples 'Federico II', 80126 Naples, Italy.
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', 80131 Naples, Italy.
| | | | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', 80131 Naples, Italy.
| |
Collapse
|