1
|
Garfagnini T, Ferrari L, Koopman MB, Dekker FA, Halters S, Van Kappel E, Mayer G, Bressler S, Maurice MM, Rüdiger SGD, Friedler A. A Peptide Strategy for Inhibiting Different Protein Aggregation Pathways. Chemistry 2024; 30:e202400080. [PMID: 38972842 DOI: 10.1002/chem.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Protein aggregation correlates with many human diseases. Protein aggregates differ in structure and shape. Strategies to develop effective aggregation inhibitors that reach the clinic failed so far. Here, we developed a family of peptides targeting early aggregation stages for both amorphous and fibrillar aggregates of proteins unrelated in sequence and structure. They act on dynamic precursors before mechanistic differentiation takes place. Using peptide arrays, we first identified peptides inhibiting the amorphous aggregation of a molten globular, aggregation-prone mutant of the Axin tumor suppressor. Optimization revealed that the peptides activity did not depend on their sequences but rather on their molecular determinants: a composition of 20-30 % flexible, 30-40 % aliphatic and 20-30 % aromatic residues, a hydrophobicity/hydrophilicity ratio close to 1, and an even distribution of residues of different nature throughout the sequence. The peptides also suppressed fibrillation of Tau, a disordered protein that forms amyloids in Alzheimer's disease, and slowed down that of Huntingtin Exon1, an amyloidogenic protein in Huntington's disease, both entirely unrelated to Axin. Our compounds thus target early stages of different aggregation mechanisms, inhibiting both amorphous and amyloid aggregation. Such cross-mechanistic, multi-targeting aggregation inhibitors may be lead compounds for developing drug candidates against various protein aggregation diseases.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| | - Luca Ferrari
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria
| | - Margreet B Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Françoise A Dekker
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Sem Halters
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Eline Van Kappel
- Oncode Institute, Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584, Utrecht CH, The Netherlands
| | - Guy Mayer
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| | - Shachar Bressler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| | - Madelon M Maurice
- Oncode Institute, Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584, Utrecht CH, The Netherlands
| | - Stefan G D Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
- Science for Life, Utrecht University, Padualaan 8, 3584, Utrecht CH, The Netherlands
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 9190401, Jerusalem, Israel
| |
Collapse
|
2
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
3
|
Zhang R, Li S, Schippers K, Li Y, Eimers B, Lavrijsen M, Wang L, Cui G, Chen X, Peppelenbosch MP, Lebbink JH, Smits R. Analysis of Tumor-Associated AXIN1 Missense Mutations Identifies Variants That Activate β-Catenin Signaling. Cancer Res 2024; 84:1443-1459. [PMID: 38359148 PMCID: PMC11063763 DOI: 10.1158/0008-5472.can-23-2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
AXIN1 is a major component of the β-catenin destruction complex and is frequently mutated in various cancer types, particularly liver cancers. Truncating AXIN1 mutations are recognized to encode a defective protein that leads to β-catenin stabilization, but the functional consequences of missense mutations are not well characterized. Here, we first identified the GSK3β, β-catenin, and RGS/APC interaction domains of AXIN1 that are the most critical for proper β-catenin regulation. Analysis of 80 tumor-associated variants in these domains identified 18 that significantly affected β-catenin signaling. Coimmunoprecipitation experiments revealed that most of them lost binding to the binding partner corresponding to the mutated domain. A comprehensive protein structure analysis predicted the consequences of these mutations, which largely overlapped with the observed effects on β-catenin signaling in functional experiments. The structure analysis also predicted that loss-of-function mutations within the RGS/APC interaction domain either directly affected the interface for APC binding or were located within the hydrophobic core and destabilized the entire structure. In addition, truncated AXIN1 length inversely correlated with the β-catenin regulatory function, with longer proteins retaining more functionality. These analyses suggest that all AXIN1-truncating mutations at least partially affect β-catenin regulation, whereas this is only the case for a subset of missense mutations. Consistently, most colorectal and liver cancers carrying missense variants acquire mutations in other β-catenin regulatory genes such as APC and CTNNB1. These results will aid the functional annotation of AXIN1 mutations identified in large-scale sequencing efforts or in individual patients. SIGNIFICANCE Characterization of 80 tumor-associated missense variants of AXIN1 reveals a subset of 18 mutations that disrupt its β-catenin regulatory function, whereas the majority are passenger mutations.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Kelly Schippers
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Boaz Eimers
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Ling Wang
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Guofei Cui
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Joyce H.G. Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Terhal P, Venhuizen AJ, Lessel D, Tan WH, Alswaid A, Grün R, Alzaidan HI, von Kroge S, Ragab N, Hempel M, Kubisch C, Novais E, Cristobal A, Tripolszki K, Bauer P, Fischer-Zirnsak B, Nievelstein RAJ, van Dijk A, Nikkels P, Oheim R, Hahn H, Bertoli-Avella A, Maurice MM, Kornak U. AXIN1 bi-allelic variants disrupting the C-terminal DIX domain cause craniometadiaphyseal osteosclerosis with hip dysplasia. Am J Hum Genet 2023; 110:1470-1481. [PMID: 37582359 PMCID: PMC10502735 DOI: 10.1016/j.ajhg.2023.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the β-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.
Collapse
Affiliation(s)
- Paulien Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, 3584EA Utrecht, the Netherlands.
| | - Anton J Venhuizen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abdulrahman Alswaid
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, Riyadh 14611, Saudi Arabia; King Saud Bin Abdulaziz University For Health Sciences, Riyadh 22490, Saudi Arabia
| | - Regina Grün
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Hamad I Alzaidan
- Medical Genetics Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Nada Ragab
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eduardo Novais
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alba Cristobal
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | | | - Peter Bauer
- Centogene GmbH, 18055 Rostock, Germany; University Hospital Rostock, Internal Medicine, Hemato-oncology, 18057 Rostock, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rutger A J Nievelstein
- Department of Radiology & Nuclear Medicine, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Atty van Dijk
- Expert Center for Skeletal Dysplasia, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584EA Utrecht, the Netherlands
| | - Peter Nikkels
- Department of Pathology, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Madelon M Maurice
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany; Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
5
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Heinzl N, Koziel K, Maritschnegg E, Berger A, Pechriggl E, Fiegl H, Zeimet AG, Marth C, Zeillinger R, Concin N. A comparison of four technologies for detecting p53 aggregates in ovarian cancer. Front Oncol 2022; 12:976725. [PMID: 36158680 PMCID: PMC9493009 DOI: 10.3389/fonc.2022.976725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor protein p53 is mutated in half of all cancers and has been described to form amyloid-like structures, commonly known from key proteins in neurodegenerative diseases. Still, the clinical relevance of p53 aggregates remains largely unknown, which may be due to the lack of sensitive and specific detection methods. The aim of the present study was to compare the suitability of four different methodologies to specifically detect p53 aggregates: co-immunofluorescence (co-IF), proximity ligation assay (PLA), co-immunoprecipitation (co-IP), and the p53-Seprion-ELISA in cancer cell lines and epithelial ovarian cancer tissue samples. In 7 out of 10 (70%) cell lines, all applied techniques showed concordance. For the analysis of the tissue samples co-IF, co-IP, and p53-Seprion-ELISA were compared, resulting in 100% concordance in 23 out of 30 (76.7%) tissue samples. However, Co-IF lacked specificity as there were samples, which did not show p53 staining but abundant staining of amyloid proteins, highlighting that this method demonstrates that proteins share the same subcellular space, but does not specifically detect p53 aggregates. Overall, the PLA and the p53-Seprion-ELISA are the only two methods that allow the quantitative measurement of p53 aggregates. On the one hand, the PLA represents the ideal method for p53 aggregate detection in FFPE tissue, which is the gold-standard preservation method of clinical samples. On the other hand, when fresh-frozen tissue is available the p53-Seprion-ELISA should be preferred because of the shorter turnaround time and the possibility for high-throughput analysis. These methods may add to the understanding of amyloid-like p53 in cancer and could help stratify patients in future clinical trials targeting p53 aggregation.
Collapse
Affiliation(s)
- Nicole Heinzl
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Koziel
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Elisabeth Maritschnegg
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Astrid Berger
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Elisabeth Pechriggl
- Institute for Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Alain G. Zeimet
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Marth
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nicole Concin, ; Robert Zeillinger,
| | - Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
- *Correspondence: Nicole Concin, ; Robert Zeillinger,
| |
Collapse
|
7
|
Onea G, Maitland MER, Wang X, Lajoie GA, Schild-Poulter C. Distinct assemblies and interactomes of the nuclear and cytoplasmic mammalian CTLH E3 ligase complex. J Cell Sci 2022; 135:276121. [PMID: 35833506 DOI: 10.1242/jcs.259638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The C-terminal to LisH (CTLH) complex is a newly discovered multi-subunit E3 ubiquitin ligase whose cellular functions are poorly characterized. While some CTLH subunits have been found to localize in both the nucleus and cytoplasm of mammalian cells, differences between the compartment-specific complexes have not been explored. Here, we show that the CTLH complex forms different molecular weight complexes in nuclear and cytoplasmic fractions. Loss of WDR26 severely decreases nuclear CTLH complex subunit levels and impairs higher-order CTLH complex formation, revealing WDR26 as a critical determinant of CTLH complex nuclear stability. Through affinity purification coupled to mass spectrometry (AP-MS) of endogenous CTLH complex member RanBPM from nuclear and cytoplasmic fractions, we identified over 170 compartment-specific interactors involved in various conserved biological processes such as ribonucleoprotein biogenesis and chromatin assembly. We validated the nuclear-specific RanBPM interaction with macroH2A1 and the cytoplasmic-specific interaction with Tankyrase-1/2. Overall, this study provides critical insights into CTLH complex function and composition in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| | - Matthew E R Maitland
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada.,Don Rix Protein Identification Facility, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada.,Don Rix Protein Identification Facility, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| |
Collapse
|
8
|
Maitland MER, Lajoie GA, Shaw GS, Schild-Poulter C. Structural and Functional Insights into GID/CTLH E3 Ligase Complexes. Int J Mol Sci 2022; 23:5863. [PMID: 35682545 PMCID: PMC9180843 DOI: 10.3390/ijms23115863] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Multi-subunit E3 ligases facilitate ubiquitin transfer by coordinating various substrate receptor subunits with a single catalytic center. Small molecules inducing targeted protein degradation have exploited such complexes, proving successful as therapeutics against previously undruggable targets. The C-terminal to LisH (CTLH) complex, also called the glucose-induced degradation deficient (GID) complex, is a multi-subunit E3 ligase complex highly conserved from Saccharomyces cerevisiae to humans, with roles in fundamental pathways controlling homeostasis and development in several species. However, we are only beginning to understand its mechanistic basis. Here, we review the literature of the CTLH complex from all organisms and place previous findings on individual subunits into context with recent breakthroughs on its structure and function.
Collapse
Affiliation(s)
- Matthew E. R. Maitland
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada;
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Gilles A. Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Gary S. Shaw
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| | - Caroline Schild-Poulter
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5B7, Canada;
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada; (G.A.L.); (G.S.S.)
| |
Collapse
|
9
|
Miete C, Solis GP, Koval A, Brückner M, Katanaev VL, Behrens J, Bernkopf DB. Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth. Nat Commun 2022; 13:674. [PMID: 35115535 PMCID: PMC8814139 DOI: 10.1038/s41467-022-28286-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/β-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated β-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.
Collapse
Affiliation(s)
- Cezanne Miete
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Gonzalo P Solis
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Martina Brückner
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
10
|
Santos J, Pallarès I, Iglesias V, Ventura S. Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Comput Struct Biotechnol J 2021; 19:4192-4206. [PMID: 34527192 PMCID: PMC8349759 DOI: 10.1016/j.csbj.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
The amyloid conformation is considered a fundamental state of proteins and the propensity to populate it a generic property of polypeptides. Multiple proteome-wide analyses addressed the presence of amyloidogenic regions in proteins, nurturing our understanding of their nature and biological implications. However, these analyses focused on highly aggregation-prone and hydrophobic stretches that are only marginally found in intrinsically disordered regions (IDRs). Here, we explore the prevalence of cryptic amyloidogenic regions (CARs) of polar nature in IDRs. CARs are widespread in IDRs and associated with IDPs function, with particular involvement in protein–protein interactions, but their presence is also connected to a risk of malfunction. By exploring this function/malfunction dichotomy, we speculate that ancestral CARs might have evolved into functional interacting regions playing a significant role in protein evolution at the origins of life.
Collapse
Key Words
- APR, Aggregation-prone region
- Aggregation
- Amyloid
- CARs, Cryptic amyloidogenic regions
- CD, Circular dichroism
- CR, Congo red
- Evolution
- FTIR, Fourier transform infrared
- IDPs, Intrinsically disordered proteins
- IDRs, Intrinsically disordered regions
- Intrinsically disordered proteins
- PBS, Phosphate buffer saline
- PPI, Protein-protein interactions
- Protein disorder
- Protein–protein interactions
- Rb, Retinoblastoma associated proteins
- RbC, Core region of Rb
- TEM, Transmission electron microscopy
- Th-T, Thioflavin-T
Collapse
Affiliation(s)
- Jaime Santos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Kumar V, Viswanathan GKK, Ralhan K, Gazit E, Segal D. Amyloidogenic Properties of Peptides Derived from the VHL Tumor Suppressor Protein. ChemMedChem 2021; 16:3565-3568. [PMID: 34431623 DOI: 10.1002/cmdc.202100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Indexed: 11/12/2022]
Abstract
The von Hippel-Lindau tumor suppressor protein (pVHL) is involved in maintaining cellular oxygen homeostasis through the regulated degradation of HIF-α. The intrinsically disordered nature of pVHL makes it prone to aggregation that impairs its function, and this is further aggravated in mutant versions of the protein, thus promoting tumor development. By using in silico analysis, we predicted six peptide fragments from pVHL to be amyloidogenic. This was verified for two of the peptides by biophysical approaches, which demonstrated self-assembly and formation of β-sheet-rich aggregates, which, under transmission electron microscopy, atomic force microscopy, and X-ray diffraction, displayed typical fibrillar amyloid characteristics. These motifs may serve as proxies for exploring the nature of pVHL aggregation.
Collapse
Affiliation(s)
- Vijay Kumar
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Guru Krishna Kumar Viswanathan
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Krittika Ralhan
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| | - Daniel Segal
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, 69978, Israel
| |
Collapse
|
13
|
Venhuizen AJ, van der Krift F, Maurice MM. Building a complex for destruction. Mol Cell 2021; 81:3241-3243. [PMID: 34416136 DOI: 10.1016/j.molcel.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ranes et al. (2021) report on an in vitro reconstituted β-catenin destruction complex and elucidate the contributions of full-length and cancer-related mutated core components to β-catenin turnover, thereby advancing our understanding of the inner workings of this tumor suppressor complex.
Collapse
Affiliation(s)
- Anton J Venhuizen
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Felix van der Krift
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands; Oncode Institute, the Netherlands
| | - Madelon M Maurice
- Center for Molecular Medicine, University Medical Center Utrecht, the Netherlands; Oncode Institute, the Netherlands.
| |
Collapse
|
14
|
Garfagnini T, Levi-Kalisman Y, Harries D, Friedler A. Osmolytes and crowders regulate aggregation of the cancer-related L106R mutant of the Axin protein. Biophys J 2021; 120:3455-3469. [PMID: 34087214 DOI: 10.1016/j.bpj.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Protein aggregation is involved in a variety of diseases, including neurodegenerative diseases and cancer. The cellular environment is crowded by a plethora of cosolutes comprising small molecules and biomacromolecules at high concentrations, which may influence the aggregation of proteins in vivo. To account for the effect of cosolutes on cancer-related protein aggregation, we studied their effect on the aggregation of the cancer-related L106R mutant of the Axin protein. Axin is a key player in the Wnt signaling pathway, and the L106R mutation in its RGS domain results in a native molten globule that tends to form native-like aggregates. This results in uncontrolled activation of the Wnt signaling pathway, leading to cancer. We monitored the aggregation process of Axin RGS L106R in vitro in the presence of a wide ensemble of cosolutes including polyols, amino acids, betaine, and polyethylene glycol crowders. Except myo-inositol, all polyols decreased RGS L106R aggregation, with carbohydrates exerting the strongest inhibition. Conversely, betaine and polyethylene glycols enhanced aggregation. These results are consistent with the reported effects of osmolytes and crowders on the stability of molten globular proteins and with both amorphous and amyloid aggregation mechanisms. We suggest a model of Axin L106R aggregation in vivo, whereby molecularly small osmolytes keep the protein as a free soluble molecule but the increased crowding of the bound state by macromolecules induces its aggregation at the nanoscale. To our knowledge, this is the first systematic study on the effect of osmolytes and crowders on a process of native-like aggregation involved in pathology, as it sheds light on the contribution of cosolutes to the onset of cancer as a protein misfolding disease and on the relevance of aggregation in the molecular etiology of cancer.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Levi-Kalisman
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology and The Alexander Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel; The Fritz Haber Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21:5-21. [PMID: 33097916 DOI: 10.1038/s41568-020-00307-z] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
16
|
de Man SMA, van Amerongen R. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handb Exp Pharmacol 2021; 269:137-173. [PMID: 34486095 DOI: 10.1007/164_2021_522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
WNT/CTNNB1 signaling is crucial for balancing cell proliferation and differentiation in all multicellular animals. CTNNB1 accumulation is the hallmark of WNT/CTNNB1 pathway activation and the key downstream event in both a physiological and an oncogenic context. In the absence of WNT stimulation, the cytoplasmic and nuclear levels of CTNNB1 are kept low because of its sequestration and phosphorylation by the so-called destruction complex, which targets CTNNB1 for proteasomal degradation. In the presence of WNT proteins, or as a result of oncogenic mutations, this process is impaired and CTNNB1 levels become elevated.Here we discuss recent advances in our understanding of destruction complex activity and inactivation, focusing on the individual components and interactions that ultimately control CTNNB1 turnover (in the "WNT off" situation) and stabilization (in the "WNT on" situation). We especially highlight the insights gleaned from recent quantitative, image-based studies, which paint an unprecedentedly detailed picture of the dynamic events that control destruction protein complex composition and function. We argue that these mechanistic details may reveal new opportunities for therapeutic intervention and could result in the destruction complex re-emerging as a target for therapy in cancer.
Collapse
Affiliation(s)
- Saskia Madelon Ada de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Janovská P, Normant E, Miskin H, Bryja V. Targeting Casein Kinase 1 (CK1) in Hematological Cancers. Int J Mol Sci 2020; 21:E9026. [PMID: 33261128 PMCID: PMC7730698 DOI: 10.3390/ijms21239026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials.
Collapse
Affiliation(s)
- Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | | | - Hari Miskin
- TG Therapeutics, New York, NY 10014, USA; (E.N.); (H.M.)
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| |
Collapse
|
18
|
Spit M, Fenderico N, Jordens I, Radaszkiewicz T, Lindeboom RGH, Bugter JM, Cristobal A, Ootes L, van Osch M, Janssen E, Boonekamp KE, Hanakova K, Potesil D, Zdrahal Z, Boj SF, Medema JP, Bryja V, Koo B, Vermeulen M, Maurice MM. RNF43 truncations trap CK1 to drive niche-independent self-renewal in cancer. EMBO J 2020; 39:e103932. [PMID: 32965059 PMCID: PMC7503102 DOI: 10.15252/embj.2019103932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Wnt/β-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce β-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing β-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.
Collapse
Affiliation(s)
- Maureen Spit
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nicola Fenderico
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ingrid Jordens
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Tomasz Radaszkiewicz
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Rik GH Lindeboom
- Department of Molecular Biology and Oncode InstituteFaculty of ScienceRadboud Institute for Molecular Life SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Jeroen M Bugter
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Alba Cristobal
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lars Ootes
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max van Osch
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Eline Janssen
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Kim E Boonekamp
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Katerina Hanakova
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - David Potesil
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Zbynek Zdrahal
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Sylvia F Boj
- Hubrecht Organoid TechnologyUtrechtThe Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology and Oncode InstituteCenter for Experimental and Molecular MedicineAmsterdam UMCCancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| | - Vitezslav Bryja
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Bon‐Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Michiel Vermeulen
- Department of Molecular Biology and Oncode InstituteFaculty of ScienceRadboud Institute for Molecular Life SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Madelon M Maurice
- Department of Cell Biology and Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
19
|
Gavagan M, Fagnan E, Speltz EB, Zalatan JG. The Scaffold Protein Axin Promotes Signaling Specificity within the Wnt Pathway by Suppressing Competing Kinase Reactions. Cell Syst 2020; 10:515-525.e5. [PMID: 32553184 DOI: 10.1016/j.cels.2020.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/02/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
Scaffold proteins are thought to promote signaling specificity by accelerating reactions between bound kinase and substrate proteins. To test the long-standing hypothesis that the scaffold protein Axin accelerates glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation of β-catenin in the Wnt signaling network, we measured GSK3β reaction rates with multiple substrates in a minimal, biochemically reconstituted system. We observed an unexpectedly small, ∼2-fold Axin-mediated rate increase for the β-catenin reaction when measured in isolation. In contrast, when both β-catenin and non-Wnt pathway substrates are present, Axin accelerates the β-catenin reaction by preventing competition with alternative substrates. At high competitor concentrations, Axin produces >10-fold rate effects. Thus, while Axin alone does not markedly accelerate the β-catenin reaction, in physiological settings where multiple GSK3β substrates are present, Axin may promote signaling specificity by suppressing interactions with competing, non-Wnt pathway targets. This mechanism for scaffold-mediated control of competition enables a shared kinase to perform distinct functions in multiple signaling networks.
Collapse
Affiliation(s)
- Maire Gavagan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin Fagnan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth B Speltz
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat Commun 2020; 11:571. [PMID: 31996674 PMCID: PMC6989696 DOI: 10.1038/s41467-019-13745-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of the Tau protein into fibrils defines progression of neurodegenerative diseases, including Alzheimer’s Disease. The molecular basis for potentially toxic reactions of Tau aggregates is poorly understood. Here we show that π-stacking by Arginine side-chains drives protein binding to Tau fibrils. We mapped an aggregation-dependent interaction pattern of Tau. Fibrils recruit specifically aberrant interactors characterised by intrinsically disordered regions of atypical sequence features. Arginine residues are key to initiate these aberrant interactions. Crucial for scavenging is the guanidinium group of its side chain, not its charge, indicating a key role of π-stacking chemistry for driving aberrant fibril interactions. Remarkably, despite the non-hydrophobic interaction mode, the molecular chaperone Hsp90 can modulate aberrant fibril binding. Together, our data present a molecular mode of action for derailment of protein-protein interaction by neurotoxic fibrils. Tau fibril formation is a hallmark of Alzheimer’s disease. Here the authors reveal an aggregation-dependent protein interaction pattern of Tau and further show that π-stacking of the arginine side-chains drives aberrant protein binding to Tau fibrils.
Collapse
|
21
|
An aggregon in conductin/axin2 regulates Wnt/β-catenin signaling and holds potential for cancer therapy. Nat Commun 2019; 10:4251. [PMID: 31534175 PMCID: PMC6751202 DOI: 10.1038/s41467-019-12203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
The paralogous scaffold proteins axin and conductin/axin2 are key factors in the negative regulation of the Wnt pathway transcription factor β-catenin, thereby representing interesting targets for signaling regulation. Polymerization of axin proteins is essential for their activity in suppressing Wnt/β-catenin signaling. Notably, conductin shows less polymerization and lower activity than axin. By domain swapping between axin and conductin we here identify an aggregation site in the conductin RGS domain which prevents conductin polymerization. Induction of conductin polymerization by point mutations of this aggregon results in enhanced inhibition of Wnt/β-catenin signaling. Importantly, we identify a short peptide which induces conductin polymerization via masking the aggregon, thereby enhancing β-catenin degradation, inhibiting β-catenin-dependent transcription and repressing growth of colorectal cancer cells. Our study reveals a mechanism for regulating signaling pathways via the polymerization status of scaffold proteins and suggests a strategy for targeted colorectal cancer therapy. Polymerization of axin proteins is essential to suppress Wnt/β-catenin signaling. Here, the authors identify an aggregation site in the conductin/axin2 RGS domain that prevents its polymerization and show that a short peptide masking this aggregon promotes polymerization of conductin/axin2, downregulation of Wnt pathway activity and growth inhibition of colorectal cancer cells.
Collapse
|
22
|
The mammalian CTLH complex is an E3 ubiquitin ligase that targets its subunit muskelin for degradation. Sci Rep 2019; 9:9864. [PMID: 31285494 PMCID: PMC6614414 DOI: 10.1038/s41598-019-46279-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The multi-subunit C-terminal to LisH (CTLH) complex is the mammalian homologue of the yeast Gid E3 ubiquitin ligase complex. In this study, we investigated the human CTLH complex and characterized its E3 ligase activity. We confirm that the complex immunoprecipitated from human cells comprises RanBPM, ARMC8 α/β, muskelin, WDR26, GID4 and the RING domain proteins RMND5A and MAEA. We find that loss of expression of individual subunits compromises the stability of other complex members and that MAEA and RMND5A protein levels are interdependent. Using in vitro ubiquitination assays, we demonstrate that the CTLH complex has E3 ligase activity which is dependent on RMND5A and MAEA. We report that the complex can pair with UBE2D1, UBE2D2 and UBE2D3 E2 enzymes and that recombinant RMND5A mediates K48 and K63 poly-ubiquitin chains. Finally, we show a proteasome-dependent increase in the protein levels of CTLH complex member muskelin in RMND5A KO cells. Furthermore, muskelin ubiquitination is dependent on RMND5A, suggesting that it may be a target of the complex. Overall, we further the characterization of the CTLH complex as an E3 ubiquitin ligase complex in human cells and reveal a potential autoregulation mechanism.
Collapse
|
23
|
Pang Y, Liu Z, Liu S. Identification of Key Potential Targets and Pathway for Arsenic Trioxide by Systemic Bioinformatics Analysis in Pancreatic Cancer. Pathol Oncol Res 2018; 25:681-690. [PMID: 30506130 DOI: 10.1007/s12253-018-0543-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/16/2018] [Indexed: 11/26/2022]
Abstract
Arsenic trioxide is an approved chemotheraputic agent for the treatment of acute promyelocytic leukemia (APL). Recently, numerous studies suggested that arsenic trioxide acts as anti-cancer roles in various human malignancies. However, the molecular mechanisms are not fully elucidated. In this study, we explored the critical targets of arsenic trioxide and their interaction network systematically by searching the publicly available published database like DrugBank (DB) and STRING. Seven direct protein targets (DPTs) and 111 DPT-associated genes were identified. The enrichment analysis of arsenic trioxide associated genes/proteins revealed 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these pathways, phosphatidylinositol-4,5-bisphosphate-3-kinase -Akt (PI3K-Akt) single pathway and pancreatic cancer pathway are highly correlated with arsenic trioxide and have 5 overlapped targets. Then we investigated the gene alternation of selected critical genes in pancreatic cancer studies using cBio portal. These results indicated that arsenic trioxide could act anti-tumor function through PI3K-Akt single pathway and identified critical genes might be therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Yanan Pang
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zhiyong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
25
|
Gammons M, Bienz M. Multiprotein complexes governing Wnt signal transduction. Curr Opin Cell Biol 2018; 51:42-49. [PMID: 29153704 DOI: 10.1016/j.ceb.2017.10.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022]
Abstract
Three multiprotein complexes have key roles in transducing Wnt signals from the plasma membrane to the cell nucleus - the β-catenin destruction complex, or Axin degradasome, which targets the Wnt effector β-catenin for proteasomal degradation in the absence of Wnt; the Wnt signalosome, assembled by polymerization of Dishevelled upon Wnt engaging its receptors, to inactivate the Axin degradasome, which allows β-catenin to accumulate; and the Wnt enhanceosome which enables β-catenin to gain access to target genes, to relieve their transcriptional repression by Groucho/TLE. This review focuses on recent advances that have highlighted mechanistic principles governing the assembly and function of these complexes.
Collapse
Affiliation(s)
- Melissa Gammons
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
26
|
van Kappel EC, Maurice MM. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol 2017. [PMID: 28634996 PMCID: PMC5727331 DOI: 10.1111/bph.13922] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The β‐catenin destruction complex is a dynamic cytosolic multiprotein assembly that provides a key node in Wnt signalling regulation. The core components of the destruction complex comprise the scaffold proteins axin and adenomatous polyposis coli and the Ser/Thr kinases casein kinase 1 and glycogen synthase kinase 3. In unstimulated cells, the destruction complex efficiently drives degradation of the transcriptional coactivator β‐catenin, thereby preventing the activation of the Wnt/β‐catenin pathway. Mutational inactivation of the destruction complex is a major pathway in the pathogenesis of cancer. Here, we review recent insights in the regulation of the β‐catenin destruction complex, including newly identified interaction interfaces, regulatory elements and post‐translationally controlled mechanisms. In addition, we discuss how mutations in core destruction complex components deregulate Wnt signalling via distinct mechanisms and how these findings open up potential therapeutic approaches to restore destruction complex activity in cancer cells. Linked Articles This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc
Collapse
Affiliation(s)
- Eline C van Kappel
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
Flanagan DJ, Vincan E, Phesse TJ. Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. Br J Pharmacol 2017; 174:4666-4683. [PMID: 28568899 DOI: 10.1111/bph.13890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer persists as a frequent and deadly disease that claims over 700 000 lives annually. Gastric cancer is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal cancers, making it therapeutically challenging. As such, and largely attributed to late-stage diagnosis, gastric cancer patients show only partial response to standard chemo and targeted molecular therapies, highlighting an urgent need to develop new targeted therapies for this disease. Wnt signalling has a well-documented history in the genesis of many cancers and is, therefore, an attractive therapeutic target. As such, drug discovery has focused on developing inhibitors that target multiple nodes of the Wnt signalling cascade, some of which have progressed to clinical trials. The collective efforts of patient genomic profiling has uncovered genetic lesions to multiple components of the Wnt pathway in gastric cancer patients, which strongly suggest that Wnt-targeted therapies could offer therapeutic benefits for gastric cancer patients. These data have been supported by studies in mouse models of gastric cancer, which identify Wnt signalling as a driver of gastric tumourigenesis. Here, we review the current literature regarding Wnt signalling in gastric cancer and highlight the suitability of each class of Wnt inhibitor as a potential treatment for gastric cancer patients, in relation to the type of Wnt deregulation observed. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Toby J Phesse
- Molecular Oncology Laboratory, University of Melbourne, Melbourne, VIC, Australia.,Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia.,Cell Signalling and Cancer Laboratory, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
28
|
Minde D, Dunker AK, Lilley KS. Time, space, and disorder in the expanding proteome universe. Proteomics 2017; 17:1600399. [PMID: 28145059 PMCID: PMC5573936 DOI: 10.1002/pmic.201600399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
Abstract
Proteins are highly dynamic entities. Their myriad functions require specific structures, but proteins' dynamic nature ranges all the way from the local mobility of their amino acid constituents to mobility within and well beyond single cells. A truly comprehensive view of the dynamic structural proteome includes: (i) alternative sequences, (ii) alternative conformations, (iii) alternative interactions with a range of biomolecules, (iv) cellular localizations, (v) alternative behaviors in different cell types. While these aspects have traditionally been explored one protein at a time, we highlight recently emerging global approaches that accelerate comprehensive insights into these facets of the dynamic nature of protein structure. Computational tools that integrate and expand on multiple orthogonal data types promise to enable the transition from a disjointed list of static snapshots to a structurally explicit understanding of the dynamics of cellular mechanisms.
Collapse
Affiliation(s)
- David‐Paul Minde
- Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - A. Keith Dunker
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
| | - Kathryn S. Lilley
- Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|