1
|
Bartocci A, Grazzi A, Awad N, Corringer PJ, Souza PCT, Cecchini M. A millisecond coarse-grained simulation approach to decipher allosteric cannabinoid binding at the glycine receptor α1. Nat Commun 2024; 15:9040. [PMID: 39426952 PMCID: PMC11490541 DOI: 10.1038/s41467-024-53098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Glycine receptors (GlyR) are regulated by small-molecule binding at several allosteric sites. Cannabinoids like tetrahydrocannabinol (THC) and N-arachidonyl-ethanol-amide (AEA) potentiate the GlyR response but their mechanism of action is not fully established. By combining millisecond coarse-grained (CG) MD simulations powered by Martini 3 with backmapping to all-atom representations, we have characterized the cannabinoid-binding site(s) at the zebrafish GlyR-α1 active state with atomic resolution. Based on hundreds of thousand ligand-binding events, we find that cannabinoids bind to the transmembrane domain of the receptor at both intrasubunit and intersubunit sites. For THC, the intrasubunit binding mode predicted in simulation is in excellent agreement with recent cryo-EM structures, while intersubunit binding recapitulates in full previous mutagenesis experiments. Intriguingly, AEA is predicted to bind at the same intersubunit site despite the strikingly different chemistry. Statistical analyses of the ligand-receptor interactions highlight potentially relevant residues for GlyR potentiation, offering experimentally testable predictions. The predictions for AEA have been validated by electrophysiology recordings of rationally designed mutants. The results highlight the existence of multiple cannabinoid-binding sites for the allosteric regulation of GlyR and put forward an effective strategy for the identification and structural characterization of allosteric binding sites.
Collapse
Affiliation(s)
- Alessio Bartocci
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123, Trento, Italy
| | - Andrea Grazzi
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France
- Department of Chemistry, University of Milan, Via C. Golgi 19, Milan, 20133, Italy
| | - Nour Awad
- Institut Pasteur, Université de Paris, CNRS UMR3571, Channel-Receptors Unit, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université de Paris, CNRS UMR3571, Channel-Receptors Unit, Paris, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France.
| |
Collapse
|
2
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. Structure 2024; 32:1621-1631.e3. [PMID: 39146932 DOI: 10.1016/j.str.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of mammalian neurotransmitter receptors. Recent resolution of heteromeric GlyR structures in multiple functional states raised fundamental questions regarding the gating mechanism of GlyR, and generally the Cys-loop family receptors. Here, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that, while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is sufficient for activation and necessary for high-efficacy gating. Differential glycine concentration dependence of desensitization rate, extent, and its recovery suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout the glycine gating cycle. This model likely applies generally to the Cys-loop receptors and informs on pharmaceutical endeavors.
Collapse
Affiliation(s)
- Xiaofen Liu
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Yan J, Chen L, Warshel A, Bai C. Exploring the Activation Process of the Glycine Receptor. J Am Chem Soc 2024; 146:26297-26312. [PMID: 39279763 DOI: 10.1021/jacs.4c08489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.
Collapse
Affiliation(s)
- Junfang Yan
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
4
|
Liu F, Li T, Gong H, Tian F, Bai Y, Wang H, Yang C, Li Y, Guo F, Liu S, Chen Q. Structural insights into the molecular effects of the anthelmintics monepantel and betaine on the Caenorhabditis elegans acetylcholine receptor ACR-23. EMBO J 2024; 43:3787-3806. [PMID: 39009676 PMCID: PMC11377560 DOI: 10.1038/s44318-024-00165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Anthelmintics are drugs used for controlling pathogenic helminths in animals and plants. The natural compound betaine and the recently developed synthetic compound monepantel are both anthelmintics that target the acetylcholine receptor ACR-23 and its homologs in nematodes. Here, we present cryo-electron microscopy structures of ACR-23 in apo, betaine-bound, and betaine- and monepantel-bound states. We show that ACR-23 forms a homo-pentameric channel, similar to some other pentameric ligand-gated ion channels (pLGICs). While betaine molecules are bound to the classical neurotransmitter sites in the inter-subunit interfaces in the extracellular domain, monepantel molecules are bound to allosteric sites formed in the inter-subunit interfaces in the transmembrane domain of the receptor. Although the pore remains closed in betaine-bound state, monepantel binding results in an open channel by wedging into the cleft between the transmembrane domains of two neighboring subunits, which causes dilation of the ion conduction pore. By combining structural analyses with site-directed mutagenesis, electrophysiology and in vivo locomotion assays, we provide insights into the mechanism of action of the anthelmintics monepantel and betaine.
Collapse
Affiliation(s)
- Fenglian Liu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Tianyu Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huihui Gong
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Fei Tian
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yan Bai
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Haowei Wang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Chonglin Yang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Sheng Liu
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518038, China.
| | - Qingfeng Chen
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Cecchini M, Corringer PJ, Changeux JP. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level. Annu Rev Biochem 2024; 93:339-366. [PMID: 38346274 DOI: 10.1146/annurev-biochem-030122-033116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.
Collapse
Affiliation(s)
- Marco Cecchini
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France
| | - Jean-Pierre Changeux
- Department of Neuroscience, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France;
| |
Collapse
|
6
|
Shen C, Zhang Y, Cui W, Zhao Y, Sheng D, Teng X, Shao M, Ichikawa M, Wang J, Hattori M. Structural insights into the allosteric inhibition of P2X4 receptors. Nat Commun 2023; 14:6437. [PMID: 37833294 PMCID: PMC10575874 DOI: 10.1038/s41467-023-42164-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
P2X receptors are ATP-activated cation channels, and the P2X4 subtype plays important roles in the immune system and the central nervous system, particularly in neuropathic pain. Therefore, P2X4 receptors are of increasing interest as potential drug targets. Here, we report the cryo-EM structures of the zebrafish P2X4 receptor in complex with two P2X4 subtype-specific antagonists, BX430 and BAY-1797. Both antagonists bind to the same allosteric site located at the subunit interface at the top of the extracellular domain. Structure-based mutational analysis by electrophysiology identified the important residues for the allosteric inhibition of both zebrafish and human P2X4 receptors. Structural comparison revealed the ligand-dependent structural rearrangement of the binding pocket to stabilize the binding of allosteric modulators, which in turn would prevent the structural changes of the extracellular domain associated with channel activation. Furthermore, comparison with the previously reported P2X structures of other subtypes provided mechanistic insights into subtype-specific allosteric inhibition.
Collapse
Affiliation(s)
- Cheng Shen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuqing Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenwen Cui
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Danqi Sheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyu Teng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Miaoqing Shao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Liu X, Wang W. Asymmetric gating of a human hetero-pentameric glycine receptor. Nat Commun 2023; 14:6377. [PMID: 37821459 PMCID: PMC10567788 DOI: 10.1038/s41467-023-42051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Hetero-pentameric Cys-loop receptors constitute a major type of neurotransmitter receptors that enable signal transmission and processing in the nervous system. Despite intense investigations into their working mechanism and pharmaceutical potentials, how neurotransmitters activate these receptors remains unclear due to the lack of high-resolution structural information in the activated open state. Here we report near-atomic resolution structures resolved in digitonin consistent with all principle functional states of the human α1β GlyR, which is a major Cys-loop receptor that mediates inhibitory neurotransmission in the central nervous system of adults. Glycine binding induces cooperative and symmetric structural rearrangements in the neurotransmitter-binding extracellular domain but asymmetrical pore dilation in the transmembrane domain. Symmetric response in the extracellular domain is consistent with electrophysiological data showing cooperative glycine activation and contribution from both α1 and β subunits. A set of functionally essential but differentially charged amino acid residues in the transmembrane domain of the α1 and β subunits explains asymmetric activation. These findings provide a foundation for understanding how the gating of the Cys-loop receptor family members diverges to accommodate specific physiological environments.
Collapse
Affiliation(s)
- Xiaofen Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Prevost MS, Barilone N, Dejean de la Bâtie G, Pons S, Ayme G, England P, Gielen M, Bontems F, Pehau-Arnaudet G, Maskos U, Lafaye P, Corringer PJ. An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies. Nat Commun 2023; 14:5964. [PMID: 37749098 PMCID: PMC10520083 DOI: 10.1038/s41467-023-41734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
The human α7 nicotinic receptor is a pentameric channel mediating cellular and neuronal communication. It has attracted considerable interest in designing ligands for the treatment of neurological and psychiatric disorders. To develop a novel class of α7 ligands, we recently generated two nanobodies named E3 and C4, acting as positive allosteric modulator and silent allosteric ligand, respectively. Here, we solved the cryo-electron microscopy structures of the nanobody-receptor complexes. E3 and C4 bind to a common epitope involving two subunits at the apex of the receptor. They form by themselves a symmetric pentameric assembly that extends the extracellular domain. Unlike C4, the binding of E3 drives an agonist-bound conformation of the extracellular domain in the absence of an orthosteric agonist, and mutational analysis shows a key contribution of an N-linked sugar moiety in mediating E3 potentiation. The nanobody E3, by remotely controlling the global allosteric conformation of the receptor, implements an original mechanism of regulation that opens new avenues for drug design.
Collapse
Affiliation(s)
- Marie S Prevost
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France.
| | - Nathalie Barilone
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | | | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Patrick England
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Molecular Biophysics Platform, Paris, France
| | - Marc Gielen
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Sorbonne Université, Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology Unit, Paris, France
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Gérard Pehau-Arnaudet
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Core Facility, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems Unit, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Platform, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France.
| |
Collapse
|
9
|
Liu X, Wang W. Gating mechanism of the human α1β GlyR by glycine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552474. [PMID: 37609197 PMCID: PMC10441291 DOI: 10.1101/2023.08.08.552474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glycine receptors (GlyRs) are members of the Cys-loop receptors that constitute a major portion of neurotransmitter receptors in the human nervous system. GlyRs are found in the spinal cord and brain mediating locomotive, sensory and cognitive functions, and are targets for pharmaceutical development. GlyRs share a general gating scheme with Cys-loop receptor family members, but the underlying mechanism is unclear. Recent resolution of heteromeric GlyRs structures in multiple functional states identified an invariable 4:1 α:β subunit stoichiometry and provided snapshots in the gating cycle, challenging previous beliefs and raising the fundamental questions of how α and β subunit functions in glycine binding and channel activation. In addition, how a single glycine-bound extracellular domain conformation leads to structurally and functionally different open and desensitized states remained enigmatic. In this study, we characterized in detail equilibrium properties as well as the transition kinetics between functional states. We show that while all allosteric sites bind cooperatively to glycine, occupation of 2 sites at the α-α interfaces is necessary and sufficient for GlyR activation. We also demonstrate differential glycine concentration dependence of desensitization rate, extent, and its recovery, which suggests separate but concerted roles of ligand-binding and ionophore reorganization. Based on these observations and available structural information, we developed a comprehensive quantitative gating model that accurately predicts both equilibrium and kinetical properties throughout glycine gating cycle. This model likely applies generally to the Cys-loop receptor family and informs on pharmaceutical endeavors in function modulation of this receptor family.
Collapse
|
10
|
Breitinger U, Breitinger HG. Excitatory and inhibitory neuronal signaling in inflammatory and diabetic neuropathic pain. Mol Med 2023; 29:53. [PMID: 37069517 PMCID: PMC10111846 DOI: 10.1186/s10020-023-00647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, 11835, Egypt
| | | |
Collapse
|
11
|
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nat Commun 2023; 14:1363. [PMID: 36914669 PMCID: PMC10011588 DOI: 10.1038/s41467-023-37106-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1βBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1βGlyR and provide a framework for further study of this physiologically important channel.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Emily Klemm
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - David Seiferth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York, NY, 10027, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
12
|
Alvarez LD, Alves NRC. Molecular determinants of tetrahydrocannabinol binding to the glycine receptor. Proteins 2023; 91:400-411. [PMID: 36271319 DOI: 10.1002/prot.26438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The recognition of Cannabis as a source of new compounds suitable for medical use has attracted strong interest from the scientific community in its research, and substantial progress has accumulated regarding cannabinoids' activity; however, a thorough description of their molecular mechanisms of action remains a task to complete. Highlighting their complex pharmacology, the list of cannabinoids' interactors has vastly expanded beyond the canonical cannabinoid receptors. Among those, we have focused our study on the glycine receptor (GlyR), an ion channel involved in the modulation of nervous system responses, including, to our interest, sensitivity to peripheral pain. Here, we report the use of computational methods to investigate possible binding modes between the GlyR and Δ9 -tetrahydrocannabinol (THC). After obtaining a first pose for the THC binding from a biased molecular docking simulation and subsequently evaluating it by molecular dynamic simulations, we found a dynamic system with an identifiable representative binding mode characterized by the specific interaction with two transmembrane residues (Phe293 and Ser296). Complementarily, we assessed the role of membrane cholesterol in this interaction and positively established its relevance for THC binding to GlyR. Lastly, the use of restrained molecular dynamics simulations allowed us to refine the description of the binding mode and of the cholesterol effect. Altogether, our findings contribute to the current knowledge about the GlyR-THC mode of binding and propose a new starting point for future research on how cannabinoids in general, and THC in particular, modulate pain perception in view of its possible clinical applications.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, UMYMFOR, Buenos Aires, Argentina
| | - N R Carina Alves
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IFIBYNE, Buenos Aires, Argentina
| |
Collapse
|
13
|
Liu X, Wang W. Asymmetric gating of a human hetero-pentameric glycine receptor. RESEARCH SQUARE 2023:rs.3.rs-2386831. [PMID: 36711971 PMCID: PMC9882600 DOI: 10.21203/rs.3.rs-2386831/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hetero-pentameric Cys-loop receptors constitute a major type of neurotransmitter receptors that enable signal transmission and processing in the nervous system. Despite intense investigations in their working mechanism and pharmaceutical potentials, how neurotransmitters activate these receptors remain unclear due to the lack of high-resolution structural information in the activated open state. Here we report near-atomic resolution structures in all principle functional states of the human α1β GlyR, which is a major Cys-loop receptor that mediates inhibitory neurotransmission in the central nervous system of adults. Glycine binding induced cooperative and symmetric structural rearrangements in the neurotransmitter-binding extracellular domain, but asymmetrical pore dilation in the transmembrane domain. Symmetric response in the extracellular domain is consistent with electrophysiological data showing similar contribution to activation from all the α1 and β subunits. A set of functionally essential but differentially charged amino-acid residues in the transmembrane domain of the α1 and β subunits explains asymmetric activation. These findings point to a gating mechanism that is distinct from homomeric receptors but more compatible with heteromeric GlyRs being clustered at synapses through β subunit-scaffolding protein interactions. Such mechanism provides foundation for understanding how gating of the Cys-loop receptor members diverge to accommodate specific physiological environment.
Collapse
Affiliation(s)
- Xiaofen Liu
- University of Texas Southwestern Medical Center
| | - Weiwei Wang
- University of Texas Southwestern Medical Center
| |
Collapse
|
14
|
The mechanisms of chromogranin B-regulated Cl- homeostasis. Biochem Soc Trans 2022; 50:1659-1672. [PMID: 36511243 DOI: 10.1042/bst20220435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.
Collapse
|
15
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
16
|
Lummis SCR, Dougherty DA. Expression of Mutant Glycine Receptors in Xenopus Oocytes Using Canonical and Non-Canonical Amino Acids Reveals Distinct Roles of Conserved Proline Residues. MEMBRANES 2022; 12:1012. [PMID: 36295771 PMCID: PMC9607081 DOI: 10.3390/membranes12101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Pentameric ligand-gated ion channels (pLGIC) play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular domain (ECD), a transmembrane domain (TMD) and an intracellular domain. The binding of the agonist to the ECD induces a structural change that is transduced to the TMD to open the channel. Molecular details of this process are emerging, but a comprehensive understanding is still lacking. Proline (Pro) is one amino acid that has attracted much interest; its unusual features generate bends in loops and kinks and bulges in helices, which can be essential for function in some pLGICs. Here, we explore the roles of four conserved Pros in the glycine receptor (GlyR), creating substitutions with canonical and noncanonical amino acids, characterizing them using two electrode voltage clamp electrophysiology in Xenopus oocytes, and interpreting changes in receptor parameters using structural data from the open and closed states of the receptor. The data reveal that for efficient function, the Pro in the α1β1 loop is needed to create a turn and to be the correct size and shape to interact with nearby residues; the peptide bond of the Pro in the Cys-loop requires the cis conformation; and the Pros in loop A and M1 allow efficient function because of their reduced hydrogen bonding capacity. These data are broadly consistent with data from other pLGICs, and therefore likely represent the important features of these Pros in all members of the family.
Collapse
Affiliation(s)
- Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Cerdan AH, Peverini L, Changeux JP, Corringer PJ, Cecchini M. Lateral fenestrations in the extracellular domain of the glycine receptor contribute to the main chloride permeation pathway. SCIENCE ADVANCES 2022; 8:eadc9340. [PMID: 36240268 PMCID: PMC9565810 DOI: 10.1126/sciadv.adc9340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Glycine receptors (GlyRs) are ligand-gated ion channels mediating signal transduction at chemical synapses. Since the early patch-clamp electrophysiology studies, the details of the ion permeation mechanism have remained elusive. Here, we combine molecular dynamics simulations of a zebrafish GlyR-α1 model devoid of the intracellular domain with mutagenesis and single-channel electrophysiology of the full-length human GlyR-α1. We show that lateral fenestrations between subunits in the extracellular domain provide the main translocation pathway for chloride ions to enter/exit a central water-filled vestibule at the entrance of the transmembrane channel. In addition, we provide evidence that these fenestrations are at the origin of current rectification in known anomalous mutants and design de novo two inward-rectifying channels by introducing mutations within them. These results demonstrate the central role of lateral fenestrations on synaptic neurotransmission.
Collapse
Affiliation(s)
- Adrien H. Cerdan
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Jean-Pierre Changeux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
- Collège de France, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| |
Collapse
|
18
|
Gallagher CI, Ha DA, Harvey RJ, Vandenberg RJ. Positive Allosteric Modulators of Glycine Receptors and Their Potential Use in Pain Therapies. Pharmacol Rev 2022; 74:933-961. [PMID: 36779343 PMCID: PMC9553105 DOI: 10.1124/pharmrev.122.000583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Glycine receptors are ligand-gated ion channels that mediate synaptic inhibition throughout the mammalian spinal cord, brainstem, and higher brain regions. They have recently emerged as promising targets for novel pain therapies due to their ability to produce antinociception by inhibiting nociceptive signals within the dorsal horn of the spinal cord. This has greatly enhanced the interest in developing positive allosteric modulators of glycine receptors. Several pharmaceutical companies and research facilities have attempted to identify new therapeutic leads by conducting large-scale screens of compound libraries, screening new derivatives from natural sources, or synthesizing novel compounds that mimic endogenous compounds with antinociceptive activity. Advances in structural techniques have also led to the publication of multiple high-resolution structures of the receptor, highlighting novel allosteric binding sites and providing additional information for previously identified binding sites. This has greatly enhanced our understanding of the functional properties of glycine receptors and expanded the structure activity relationships of novel pharmacophores. Despite this, glycine receptors are yet to be used as drug targets due to the difficulties in obtaining potent, selective modulators with favorable pharmacokinetic profiles that are devoid of side effects. This review presents a summary of the structural basis for how current compounds cause positive allosteric modulation of glycine receptors and discusses their therapeutic potential as analgesics. SIGNIFICANCE STATEMENT: Chronic pain is a major cause of disability, and in Western societies, this will only increase as the population ages. Despite the high level of prevalence and enormous socioeconomic burden incurred, treatment of chronic pain remains limited as it is often refractory to current analgesics, such as opioids. The National Institute for Drug Abuse has set finding effective, safe, nonaddictive strategies to manage chronic pain as their top priority. Positive allosteric modulators of glycine receptors may provide a therapeutic option.
Collapse
Affiliation(s)
- Casey I Gallagher
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Damien A Ha
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Harvey
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| | - Robert J Vandenberg
- Molecular Biomedicine, School of Medical Sciences, University of Sydney, Sydney, Australia (C.I.G., D.A.H., R.J.V.) and Biomedical Science, School of Health and Behavioural Sciences and Sunshine Coast Health Institute, University of the Sunshine Coast, Maroochydore, Australia (R.J.H.)
| |
Collapse
|
19
|
Simard JR, Michelsen K, Wang Y, Yang C, Youngblood B, Grubinska B, Taborn K, Gillie DJ, Cook K, Chung K, Long AM, Hall BE, Shaffer PL, Foti RS, Gingras J. Modulation of Ligand-Gated Glycine Receptors Via Functional Monoclonal Antibodies. J Pharmacol Exp Ther 2022; 383:56-69. [PMID: 35926871 DOI: 10.1124/jpet.121.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
Ion channels are targets of considerable therapeutic interest to address a wide variety of neurologic indications, including pain perception. Current pharmacological strategies have focused mostly on small molecule approaches that can be limited by selectivity requirements within members of a channel family or superfamily. Therapeutic antibodies have been proposed, designed, and characterized to alleviate this selectivity limitation; however, there are no Food and Drug Administration-approved therapeutic antibody-based drugs targeting ion channels on the market to date. Here, in an effort to identify novel classes of engineered ion channel modulators for potential neurologic therapeutic applications, we report the generation and characterization of six (EC50 < 25nM) Cys-loop receptor family monoclonal antibodies with modulatory function against rat and human glycine receptor alpha 1 (GlyRα1) and/or GlyRα3. These antibodies have activating (i.e., positive modulator) or inhibiting (i.e., negative modulator) profiles. Moreover, GlyRα3 selectivity was successfully achieved for two of the three positive modulators identified. When dosed intravenously, the antibodies achieved sufficient brain exposure to cover their calculated in vitro EC50 values. When compared head-to-head at identical exposures, the GlyRα3-selective antibody showed a more desirable safety profile over the nonselective antibody, thus demonstrating, for the first time, an advantage for GlyRα3-selectivity. Our data show that ligand-gated ion channels of the glycine receptor family within the central nervous system can be functionally modulated by engineered biologics in a dose-dependent manner and that, despite high protein homology between the alpha subunits, selectivity can be achieved within this receptor family, resulting in future therapeutic candidates with more desirable drug safety profiles. SIGNIFICANCE STATEMENT: This study presents immunization and multiplatform screening approaches to generate a diverse library of functional antibodies (agonist, potentiator, or inhibitory) raised against human glycine receptors (GlyRs). This study also demonstrates the feasibility of acquiring alpha subunit selectivity, a desirable therapeutic profile. When tested in vivo, these tool molecules demonstrated an increased safety profile in favor of GlyRα3-selectivity. These are the first reported functional GlyR antibodies that may open new avenues to treating central nervous system diseases with subunit selective biologics.
Collapse
Affiliation(s)
- Jeffrey R Simard
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Klaus Michelsen
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Yan Wang
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Chunhua Yang
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Beth Youngblood
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Barbara Grubinska
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Kristin Taborn
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Daniel J Gillie
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Kevin Cook
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Kyu Chung
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Alexander M Long
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Brian E Hall
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Paul L Shaffer
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Robert S Foti
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| | - Jacinthe Gingras
- Departments of Neuroscience (J.R.S., C.Y., B.Y. B.G., K.T., D.J.G., J.G.), Molecular Engineering (K.M., A.M.L., P.L.S.), Protein Technologies (Y.W., B.E.H.), and Pharmacokinetics and Drug Metabolism (R.S.F.), Amgen Research, Cambridge, Massachusetts; and Department of Pharmacokinetics and Drug Metabolism, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California (K.Co., K.Ch.)
| |
Collapse
|
20
|
Kumar A, Kindig K, Rao S, Zaki AM, Basak S, Sansom MSP, Biggin PC, Chakrapani S. Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Nat Commun 2022; 13:4862. [PMID: 35982060 PMCID: PMC9388682 DOI: 10.1038/s41467-022-32594-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kayla Kindig
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Zhu H. Structure and Mechanism of Glycine Receptor Elucidated by Cryo-Electron Microscopy. Front Pharmacol 2022; 13:925116. [PMID: 36016557 PMCID: PMC9395720 DOI: 10.3389/fphar.2022.925116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) are pentameric ion channels that mediate fast inhibitory neurotransmission. GlyRs are found in the central nervous system including the spinal cord, brain stem, and cerebellum, as well as in the retina, sperm, macrophages, hippocampus, cochlea, and liver. Due to their crucial roles in counter-balancing excitatory signals and pain signal transmission, GlyR dysfunction can lead to severe diseases, and as a result, compounds that modify GlyR activity may have tremendous therapeutic potential. Despite this potential, the development of GlyR-specific small-molecule ligands is lacking. Over the past few years, high-resolution structures of both homomeric and heteromeric GlyRs structures in various conformations have provided unprecedented details defining the pharmacology of ligand binding, subunit composition, and mechanisms of channel gating. These high-quality structures will undoubtedly help with the development of GlyR-targeted therapies.
Collapse
|
22
|
Mhashal AR, Yoluk O, Orellana L. Exploring the Conformational Impact of Glycine Receptor TM1-2 Mutations Through Coarse-Grained Analysis and Atomistic Simulations. Front Mol Biosci 2022; 9:890851. [PMID: 35836931 PMCID: PMC9275627 DOI: 10.3389/fmolb.2022.890851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (PLGICs) are a family of proteins that convert chemical signals into ion fluxes through cellular membranes. Their structures are highly conserved across all kingdoms from bacteria to eukaryotes. Beyond their classical roles in neurotransmission and neurological disorders, PLGICs have been recently related to cell proliferation and cancer. Here, we focus on the best characterized eukaryotic channel, the glycine receptor (GlyR), to investigate its mutational patterns in genomic-wide tumor screens and compare them with mutations linked to hyperekplexia (HPX), a Mendelian neuromotor disease that disrupts glycinergic currents. Our analysis highlights that cancer mutations significantly accumulate across TM1 and TM2, partially overlapping with HPX changes. Based on 3D-clustering, conservation, and phenotypic data, we select three mutations near the pore, expected to impact GlyR conformation, for further study by molecular dynamics (MD). Using principal components from experimental GlyR ensembles as framework, we explore the motions involved in transitions from the human closed and desensitized structures and how they are perturbed by mutations. Our MD simulations show that WT GlyR spontaneously explores opening and re-sensitization transitions that are significantly impaired by mutations, resulting in receptors with altered permeability and desensitization properties in agreement with HPX functional data.
Collapse
Affiliation(s)
| | | | - Laura Orellana
- Protein Dynamics and Cancer Lab, Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
23
|
Peiser-Oliver JM, Evans S, Adams DJ, Christie MJ, Vandenberg RJ, Mohammadi SA. Glycinergic Modulation of Pain in Behavioral Animal Models. Front Pharmacol 2022; 13:860903. [PMID: 35694265 PMCID: PMC9174897 DOI: 10.3389/fphar.2022.860903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Animal models of human pain conditions allow for detailed interrogation of known and hypothesized mechanisms of pain physiology in awake, behaving organisms. The importance of the glycinergic system for pain modulation is well known; however, manipulation of this system to treat and alleviate pain has not yet reached the sophistication required for the clinic. Here, we review the current literature on what animal behavioral studies have allowed us to elucidate about glycinergic pain modulation, and the progress toward clinical treatments so far. First, we outline the animal pain models that have been used, such as nerve injury models for neuropathic pain, chemogenic pain models for acute and inflammatory pain, and other models that mimic painful human pathologies such as diabetic neuropathy. We then discuss the genetic approaches to animal models that have identified the crucial glycinergic machinery involved in neuropathic and inflammatory pain. Specifically, two glycine receptor (GlyR) subtypes, GlyRα1(β) and GlyRα3(β), and the two glycine transporters (GlyT), GlyT1 and GlyT2. Finally, we review the different pharmacological approaches to manipulating the glycinergic system for pain management in animal models, such as partial vs. full agonism, reversibility, and multi-target approaches. We discuss the benefits and pitfalls of using animal models in drug development broadly, as well as the progress of glycinergic treatments from preclinical to clinical trials.
Collapse
Affiliation(s)
| | - Sally Evans
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | | | | | - Sarasa A. Mohammadi
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sarasa A. Mohammadi,
| |
Collapse
|
24
|
Koniuszewski F, Vogel FD, Bampali K, Fabjan J, Seidel T, Scholze P, Schmiedhofer PB, Langer T, Ernst M. Molecular Mingling: Multimodal Predictions of Ligand Promiscuity in Pentameric Ligand-Gated Ion Channels. Front Mol Biosci 2022; 9:860246. [PMID: 35615739 PMCID: PMC9124788 DOI: 10.3389/fmolb.2022.860246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 01/23/2023] Open
Abstract
Background: Human pentameric ligand-gated ion channels (pLGICs) comprise nicotinic acetylcholine receptors (nAChRs), 5-hydroxytryptamine type 3 receptors (5-HT3Rs), zinc-activated channels (ZAC), γ-aminobutyric acid type A receptors (GABAARs) and glycine receptors (GlyRs). They are recognized therapeutic targets of some of the most prescribed drugs like general anesthetics, anxiolytics, smoking cessation aids, antiemetics and many more. Currently, approximately 100 experimental structures of pLGICs with ligands bound exist in the protein data bank (PDB). These atomic-level 3D structures enable the generation of a comprehensive binding site inventory for the superfamily and the in silico prediction of binding site properties. Methods: A panel of high throughput in silico methods including pharmacophore screening, conformation analysis and descriptor calculation was applied to a selection of allosteric binding sites for which in vitro screens are lacking. Variant abundance near binding site forming regions and computational docking complement the approach. Results: The structural data reflects known and novel binding sites, some of which may be unique to individual receptors, while others are broadly conserved. The membrane spanning domain, comprising four highly conserved segments, contains ligand interaction sites for which in vitro assays suitable for high throughput screenings are critically lacking. This is also the case for structurally more variable novel sites in the extracellular domain. Our computational results suggest that the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) can utilize multiple pockets which are likely to exist on most superfamily members. Conclusion: With this study, we explore the potential for polypharmacology among pLGICs. Our data suggest that ligands can display two forms of promiscuity to an extent greater than what has been realized: 1) Ligands can interact with homologous sites in many members of the superfamily, which bears toxicological relevance. 2) Multiple pockets in distinct localizations of individual receptor subtypes share common ligands, which counteracts efforts to develop selective agents. Moreover, conformational states need to be considered for in silico drug screening, as certain binding sites display considerable flexibility. In total, this work contributes to a better understanding of polypharmacology across pLGICs and provides a basis for improved structure guided in silico drug development and drug derisking.
Collapse
Affiliation(s)
- Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian D. Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Konstantina Bampali
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Philip B. Schmiedhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
25
|
Zlotos DP, Mandour YM, Jensen AA. Strychnine and its mono- and dimeric analogues: a pharmaco-chemical perspective. Nat Prod Rep 2022; 39:1910-1937. [PMID: 35380133 DOI: 10.1039/d1np00079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to November 2021Since its isolation in 1818, strychnine has attracted the attention of a plethora of chemists and pharmacologists who have established its structure, developed total syntheses, and examined its complex pharmacology. While numerous reviews on structure elucidation and total synthesis of strychnine are available, reports on structure-activity relationships (SARs) of this fascinating alkaloid are rare. In this review, we present and discuss structures, synthetic approaches, metabolic transformations, and the diverse pharmacological actions of strychnine and its mono- and dimeric analogues. Particular attention is given to its SARs at glycine receptors (GlyRs) in light of recently published high-resolution structures of strychnine-GlyR complexes. Other pharmacological actions of strychnine and its derivatives, such as their antagonistic properties at nicotinic acetylcholine receptors (nAChRs), allosteric modulation of muscarinic acetylcholine receptors as well as anti-cancer and anti-plasmodial effects are also critically reviewed, and possible future developments in the field are discussed.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt.
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
26
|
San Martín VP, Sazo A, Utreras E, Moraga-Cid G, Yévenes GE. Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain. Front Mol Neurosci 2022; 15:848642. [PMID: 35401105 PMCID: PMC8984470 DOI: 10.3389/fnmol.2022.848642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
Disruption of the inhibitory control provided by the glycinergic system is one of the major mechanisms underlying chronic pain. In line with this concept, recent studies have provided robust proof that pharmacological intervention of glycine receptors (GlyRs) restores the inhibitory function and exerts anti-nociceptive effects on preclinical models of chronic pain. A targeted regulation of the glycinergic system requires the identification of the GlyR subtypes involved in chronic pain states. Nevertheless, the roles of individual GlyR subunits in nociception and in chronic pain are yet not well defined. This review aims to provide a systematic outline on the contribution of GlyR subtypes in chronic pain mechanisms, with a particular focus on molecular pathways of spinal glycinergic dis-inhibition mediated by post-translational modifications at the receptor level. The current experimental evidence has shown that phosphorylation of synaptic α1β and α3β GlyRs are involved in processes of spinal glycinergic dis-inhibition triggered by chronic inflammatory pain. On the other hand, the participation of α2-containing GlyRs and of β subunits in pain signaling have been less studied and remain undefined. Although many questions in the field are still unresolved, future progress in GlyR research may soon open new exciting avenues into understanding and controlling chronic pain.
Collapse
Affiliation(s)
- Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Elías Utreras
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- *Correspondence: Gonzalo E. Yévenes,
| |
Collapse
|
27
|
Felsztyna I, Villarreal MA, García DA, Miguel V. Insect RDL Receptor Models for Virtual Screening: Impact of the Template Conformational State in Pentameric Ligand-Gated Ion Channels. ACS OMEGA 2022; 7:1988-2001. [PMID: 35071887 PMCID: PMC8771969 DOI: 10.1021/acsomega.1c05465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The RDL receptor is one of the most relevant protein targets for insecticide molecules. It belongs to the pentameric ligand-gated ion channel (pLGIC) family. Given that the experimental structures of pLGICs are difficult to obtain, homology modeling has been extensively used for these proteins, particularly for the RDL receptor. However, no detailed assessments of the usefulness of homology models for virtual screening (VS) have been carried out for pLGICs. The aim of this study was to evaluate which are the determinant factors for a good VS performance using RDL homology models, specially analyzing the impact of the template conformational state. Fifteen RDL homology models were obtained based on different pLGIC templates representing the closed, open, and desensitized states. A retrospective VS process was performed on each model, and their performance in the prioritization of active ligands was assessed. In addition, the three best-performing models among each of the conformations were subjected to molecular dynamics simulations (MDS) in complex with a representative active ligand. The models showed variations in their VS performance parameters that were related to the structural properties of the binding site. VS performance tended to improve in more constricted binding cavities. The best performance was obtained with a model based on a template in the closed conformation. MDS confirmed that the closed model was the one that best represented the interactions with an active ligand. These results imply that different templates should be evaluated and the structural variations between their channel conformational states should be specially examined, providing guidelines for the application of homology modeling for VS in other proteins of the pLGIC family.
Collapse
Affiliation(s)
- Iván Felsztyna
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Marcos A. Villarreal
- Facultad
de Ciencias Químicas, Departamento de Química Teórica
y Computacional, Universidad Nacional de
Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones en Físico-Química de Córdoba
(INFIQC), CONICET-Universidad Nacional de
Córdoba, Córdoba 5016, Argentina
| | - Daniel A. García
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Virginia Miguel
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| |
Collapse
|
28
|
Membrane polarization in non-neuronal cells as a potential mechanism of metabolic disruption by depolarizing insecticides. Food Chem Toxicol 2022; 160:112804. [PMID: 34990786 DOI: 10.1016/j.fct.2021.112804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023]
Abstract
A significant rise in the incidence of obesity and type 2 diabetes has occurred worldwide in the last two decades. Concurrently, a growing body of evidence suggests a connection between exposure to environmental pollutants, particularly insecticides, and the development of obesity and type 2 diabetes. This review summarizes key evidence of (1) the presence of different types of neuronal receptors - target sites for neurotoxic insecticides - in non-neuronal cells, (2) the activation of these receptors in non-neuronal cells by membrane-depolarizing insecticides, and (3) changes in metabolic functions, including lipid and glucose accumulation, associated with changes in membrane potential. Based on these findings, we propose that changes in membrane potential (Vmem) by certain insecticides serve as a novel regulator of lipid and glucose metabolism in non-excitable cells associated with obesity and type 2 diabetes.
Collapse
|
29
|
Yin X, Yang GF, Niu DB, Chen J, Liao M, Cao HQ, Sheng CW. Identification and pharmacological characterization of histamine-gated chloride channels in the fall armyworm, Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103698. [PMID: 34848284 DOI: 10.1016/j.ibmb.2021.103698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Histamine-gated chloride channels (HACls) mediate fast inhibitory neurotransmission in invertebrate nervous systems and have important roles in light reception, color processing, temperature preference and light-dark cycle. The fall armyworm, Spodoptera frugiperda is a main destructive pest of grain and row crops. However, the pharmacological characterization of HACls in S. frugiperda remain unknown. In this study, we identified two cDNAs encoding SfHACl1 and SfHACl2 in S. frugiperda. They had similar expression patterns and were most abundantly expressed in the head of larvae and at the egg stage. Electrophysiological analysis with the two-electrode voltage clamp method showed that histamine (HA) and γ-aminobutyric acid (GABA) activated inward currents when SfHACls were singly or collectively expressed with different ratios in Xenopus laevis oocytes. These channels were ≥2000-fold more sensitive to HA than to GABA. They were anion-selective channels, which were highly dependent on changes in external chloride concentrations, but insensitive to changes in external sodium concentrations. The insecticides abamectin (ABM) and emamectin benzoate (EB) also activated these channels with the EC50 to SfHACl1 lower than that to SfHACl2. And the EC50s of ABM and EB to the co-expressed channels gradually increased with increase in the injection ratio of SfHACl2 cRNA. Homology models and docking simulations revealed that HA bound to the large amino-terminal extracellular domain of SfHACl1 and SfHACl2 by forming 4 and 2 hydrogen bonds, respectively. The docking simulations of ABM and EB had similar binding sites in the transmembrane regions. Overall, these findings indicated that HACls act as targets for macrolide, and this study provides theoretical guidance for further derivatization of abamectin insecticides.
Collapse
Affiliation(s)
- Xue Yin
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Guo-Feng Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Duo-Bang Niu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Hai-Qun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Cheng-Wang Sheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
30
|
Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Int J Mol Sci 2021; 22:12072. [PMID: 34769504 PMCID: PMC8584574 DOI: 10.3390/ijms222112072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.
Collapse
Affiliation(s)
- Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
| | - Nicolas Pierre Friedrich Mueller
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Carla Molteni
- Physics Department, King’s College London, London WC2R 2LS, UK;
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
31
|
Oliveras JM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1,6-Naphthyridin-2(1 H)-ones: Synthesis and Biomedical Applications. Pharmaceuticals (Basel) 2021; 14:1029. [PMID: 34681253 PMCID: PMC8539032 DOI: 10.3390/ph14101029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Naphthyridines, also known as diazanaphthalenes, are a group of heterocyclic compounds that include six isomeric bicyclic systems containing two pyridine rings. 1,6-Naphthyridines are one of the members of such a family capable of providing ligands for several receptors in the body. Among such structures, 1,6-naphthyridin-2(1H)-ones (7) are a subfamily that includes more than 17,000 compounds (with a single or double bond between C3 and C4) included in more than 1000 references (most of them patents). This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, C7, and C8 of 1,6-naphthyridin-2(1H)-ones, the synthetic methods used for their synthesis (both starting from a preformed pyridine or pyridone ring), and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (J.M.O.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
32
|
Teng G, Zhang F, Li Z, Zhang C, Zhang L, Chen L, Zhou T, Yue L, Zhang J. Quantitative Electrophysiological Evaluation of the Analgesic Efficacy of Two Lappaconitine Derivatives: A Window into Antinociceptive Drug Mechanisms. Neurosci Bull 2021; 37:1555-1569. [PMID: 34550562 DOI: 10.1007/s12264-021-00774-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022] Open
Abstract
Quantitative evaluation of analgesic efficacy improves understanding of the antinociceptive mechanisms of new analgesics and provides important guidance for their development. Lappaconitine (LA), a potent analgesic drug extracted from the root of natural Aconitum species, has been clinically used for years because of its effective analgesic and non-addictive properties. However, being limited to ethological experiments, previous studies have mainly investigated the analgesic effect of LA at the behavioral level, and the associated antinociceptive mechanisms are still unclear. In this study, electrocorticogram (ECoG) technology was used to investigate the analgesic effects of two homologous derivatives of LA, Lappaconitine hydrobromide (LAH) and Lappaconitine trifluoroacetate (LAF), on Sprague-Dawley rats subjected to nociceptive laser stimuli, and to further explore their antinociceptive mechanisms. We found that both LAH and LAF were effective in reducing pain, as manifested in the remarkable reduction of nocifensive behaviors and laser-evoked potentials (LEPs) amplitudes (N2 and P2 waves, and gamma-band oscillations), and significantly prolonged latencies of the LEP-N2/P2. These changes in LEPs reflect the similar antinociceptive mechanism of LAF and LAH, i.e., inhibition of the fast signaling pathways. In addition, there were no changes in the auditory-evoked potential (AEP-N1 component) before and after LAF or LAH treatment, suggesting that neither drug had a central anesthetic effect. Importantly, compared with LAH, LAF was superior in its effects on the magnitudes of gamma-band oscillations and the resting-state spectra, which may be associated with their differences in the octanol/water partition coefficient, degree of dissociation, toxicity, and glycine receptor regulation. Altogether, jointly applying nociceptive laser stimuli and ECoG recordings in rats, we provide solid neural evidence for the analgesic efficacy and antinociceptive mechanisms of derivatives of LA.
Collapse
Affiliation(s)
- Guixiang Teng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China
| | - Fengrui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenjiang Li
- School of Psychology, Jiangxi Normal University, Nanchang, 330022, China
| | - Chun Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China
| | - Tao Zhou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China. .,The Rural Development Academy, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
33
|
Werynska K, Gingras J, Benke D, Scheurer L, Neumann E, Zeilhofer HU. A Glra3 phosphodeficient mouse mutant establishes the critical role of protein kinase A-dependent phosphorylation and inhibition of glycine receptors in spinal inflammatory hyperalgesia. Pain 2021; 162:2436-2445. [PMID: 34264571 PMCID: PMC8374710 DOI: 10.1097/j.pain.0000000000002236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/04/2022]
Abstract
ABSTRACT Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, ie, at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. To address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyRs in inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Jacinthe Gingras
- Department of Neuroscience, Amgen Inc, Cambridge, MA, United States
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zürich, Switzerland. Dr. Gingras is now with Homology Medicines, Inc, Bedford, MA, United States
| |
Collapse
|
34
|
Yu H, Bai XC, Wang W. Characterization of the subunit composition and structure of adult human glycine receptors. Neuron 2021; 109:2707-2716.e6. [PMID: 34473954 DOI: 10.1016/j.neuron.2021.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
The strychnine-sensitive pentameric glycine receptor (GlyR) mediates fast inhibitory neurotransmission in the mammalian nervous system. Only heteromeric GlyRs mediate synaptic transmission, as they contain the β subunit that permits clustering at the synapse through its interaction with scaffolding proteins. Here, we show that α2 and β subunits assemble with an unexpected 4:1 stoichiometry to produce GlyR with native electrophysiological properties. We determined structures in multiple functional states at 3.6-3.8 Å resolutions and show how 4:1 stoichiometry is consistent with the structural features of α2β GlyR. Furthermore, we show that one single β subunit in each GlyR gives rise to the characteristic electrophysiological properties of heteromeric GlyR, while more β subunits render GlyR non-conductive. A single β subunit ensures a univalent GlyR-scaffold linkage, which means the scaffold alone regulates the cluster properties.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
36
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
37
|
Zeilhofer HU, Werynska K, Gingras J, Yévenes GE. Glycine Receptors in Spinal Nociceptive Control-An Update. Biomolecules 2021; 11:846. [PMID: 34204137 PMCID: PMC8228028 DOI: 10.3390/biom11060846] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir Prelog Weg, CH-8093 Zürich, Switzerland
- Drug Discovery Network Zurich, University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland;
| | - Jacinthe Gingras
- Homology Medicines Inc., 1 Patriots Park, Bedford, MA 01730, USA;
| | - Gonzalo E. Yévenes
- Department of Physiology, University of Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8320000, Chile
| |
Collapse
|
38
|
Solorza J, Oliva CA, Castillo K, Amestica G, Maldifassi MC, López-Cortés XA, Barra R, Stehberg J, Piesche M, Sáez-Briones P, González W, Arenas-Salinas M, Mariqueo TA. Effects of Interleukin-1β in Glycinergic Transmission at the Central Amygdala. Front Pharmacol 2021; 12:613105. [PMID: 33746753 PMCID: PMC7973117 DOI: 10.3389/fphar.2021.613105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1β is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1β may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) β subunit (βGlyR); however, no studies have evaluated the effect of IL-1β on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1β may modulate GlyR-mediated inhibitory activity via interactions with the βGlyR subunit. Our results show that the application of IL-1β (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1β modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the βGlyR subunit. The present results suggest that IL-1β in the CeA controls glycinergic neurotransmission, possibly via interactions with the βGlyR subunit. This effect could be relevant for understanding how IL-1β released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.
Collapse
Affiliation(s)
- Jocelyn Solorza
- Center for Medical Research, Laboratory of Neuropharmacology, School of Medicine, Universidad de Talca, Talca, Chile.,Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Carolina A Oliva
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gabriela Amestica
- Center for Medical Research, Laboratory of Neuropharmacology, School of Medicine, Universidad de Talca, Talca, Chile
| | - María Constanza Maldifassi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Xaviera A López-Cortés
- Department of Computer Science and Industries, Faculty of Engineering Science, Universidad Católica del Maule, Talca, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jimmy Stehberg
- Faculty of Biological Sciences and Faculty of Medicine, Instituto de Ciencias Biomédicas, Universidad Andres Bello, Santiago, Chile
| | - Matthias Piesche
- Laboratory of Biomedical Research, Medicine Faculty, Universidad Católica del Maule, Talca, Chile.,Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Patricio Sáez-Briones
- Laboratory of Neuropharmacology and Behavior, School of Medicine, Faculty of Medical Sciences, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Mauricio Arenas-Salinas
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Trinidad A Mariqueo
- Center for Medical Research, Laboratory of Neuropharmacology, School of Medicine, Universidad de Talca, Talca, Chile
| |
Collapse
|
39
|
Zlotos DP, Abdelmalek CM, Botros LS, Banoub MM, Mandour YM, Breitinger U, El Nady A, Breitinger HG, Sotriffer C, Villmann C, Jensen AA, Holzgrabe U. C-2-Linked Dimeric Strychnine Analogues as Bivalent Ligands Targeting Glycine Receptors. JOURNAL OF NATURAL PRODUCTS 2021; 84:382-394. [PMID: 33596384 DOI: 10.1021/acs.jnatprod.0c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strychnine is the prototypic antagonist of glycine receptors, a family of pentameric ligand-gated ion channels. Recent high-resolution structures of homomeric glycine receptors have confirmed the presence of five orthosteric binding sites located in the extracellular subunit interfaces of the receptor complex that are targeted by strychnine. Here, we report the synthesis and extensive pharmacological evaluation of bivalent ligands composed of two strychnine pharmacophores connected by appropriate spacers optimized toward simultaneous binding to two adjacent orthosteric sites of homomeric α1 glycine receptors. In all bivalent ligands, the two strychnine units were linked through C-2 by amide spacers of various lengths ranging from 6 to 69 atoms. Characterization of the compounds in two functional assays and in a radioligand binding assay indicated that compound 11a, with a spacer consisting of 57 atoms, may be capable of bridging the homomeric α1 GlyRs by simultaneous occupation of two adjacent strychnine-binding sites. The findings are supported by docking experiments to the crystal structure of the homomeric glycine receptor. Based on its unique binding mode, its relatively high binding affinity and antagonist potency, and its slow binding kinetics, the bivalent strychnine analogue 11a could be a valuable tool to study the functional properties of glycine receptors.
Collapse
Affiliation(s)
- Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Carine M Abdelmalek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Liza S Botros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Maha M Banoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Yasmine M Mandour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, 11865 Cairo, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Ahmed El Nady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, 11835 Cairo, Egypt
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078 Würzburg, Germany
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
40
|
Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, Gouaux E. Mechanism of gating and partial agonist action in the glycine receptor. Cell 2021; 184:957-968.e21. [PMID: 33567265 PMCID: PMC8115384 DOI: 10.1016/j.cell.2021.01.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.
Collapse
Affiliation(s)
- Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | - Timo Greiner
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | - Juan Du
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wei Lü
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK.
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Subunit-Specific Photocontrol of Glycine Receptors by Azobenzene-Nitrazepam Photoswitcher. eNeuro 2021; 8:ENEURO.0294-20.2020. [PMID: 33298457 PMCID: PMC7877471 DOI: 10.1523/eneuro.0294-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Photopharmacology is a unique approach that through a combination of photochemistry methods and advanced life science techniques allows the study and control of specific biological processes, ranging from intracellular pathways to brain circuits. Recently, a first photochromic channel blocker of anion-selective GABAA receptors, the azobenzene-nitrazepam-based photochromic compound (Azo-NZ1), has been described. In the present study, using patch-clamp technique in heterologous system and in mice brain slices, site-directed mutagenesis and molecular modeling we provide evidence of the interaction of Azo-NZ1 with glycine receptors (GlyRs) and determine the molecular basis of this interaction. Glycinergic synaptic neurotransmission determines an important inhibitory drive in the vertebrate nervous system and plays a crucial role in the control of neuronal circuits in the spinal cord and brain stem. GlyRs are involved in locomotion, pain sensation, breathing, and auditory function, as well as in the development of such disorders as hyperekplexia, epilepsy, and autism. Here, we demonstrate that Azo-NZ1 blocks in a UV-dependent manner the activity of α2 GlyRs (GlyR2), while being barely active on α1 GlyRs (GlyR1). The site of Azo-NZ1 action is in the chloride-selective pore of GlyR at the 2’ position of transmembrane helix 2 and amino acids forming this site determine the difference in Azo-NZ1 blocking activity between GlyR2 and GlyR1. This subunit-specific modulation is also shown on motoneurons of brainstem slices from neonatal mice that switch during development from expressing “fetal” GlyR2 to “adult” GlyR1 receptors.
Collapse
|
42
|
Ivica J, Lape R, Jazbec V, Yu J, Zhu H, Gouaux E, Gold MG, Sivilotti LG. The intracellular domain of homomeric glycine receptors modulates agonist efficacy. J Biol Chem 2021; 296:100387. [PMID: 33617876 PMCID: PMC7995613 DOI: 10.1074/jbc.ra119.012358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, β-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.
Collapse
Key Words
- 5-ht3, 5-hydroxytryptamine type 3
- dmem, dulbecco’s modified eagle’s medium
- ecd, extracellular domain
- glyr, glycine receptor
- icd, intracellular domain
- popen, open probability
- pdb, protein data bank
- plgic, pentameric ligand-gated ion channels
- tm, transmembrane
- zf, zebrafish
Collapse
Affiliation(s)
- Josip Ivica
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Gouaux
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
43
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
44
|
Zhang Y, Wang K, Yu Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J Med Chem 2020; 63:15258-15278. [PMID: 33253554 DOI: 10.1021/acs.jmedchem.0c01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ion channels have been characterized as promising drug targets for treatment of numerous human diseases. Functions of ion channels can be fine-tuned by allosteric modulators, which interact with channels and modulate their activities by binding to sites spatially discrete from those of orthosteric ligands. Positive and negative allosteric modulators have presented a plethora of potential therapeutic advantages over traditionally orthosteric agonists and antagonists in terms of selectivity and safety. This thematic review highlights the discovery of representative allosteric modulators for ligand-gated and voltage-gated ion channels, discussing in particular their identifications, locations, and therapeutic uses in the treatment of a range of channelopathies. Additionally, structures and functions of selected ion channels are briefly described to aid in the rational design of channel modulators. Overall, allosteric modulation represents an innovative targeting approach, and the corresponding modulators provide an abundant but challenging landscape for novel therapeutics targeting ligand-gated and voltage-gated ion channels.
Collapse
Affiliation(s)
- Yanyun Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
45
|
Maldonado-Hernández R, Quesada O, Colón-Sáez JO, Lasalde-Dominicci JA. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies. Anal Biochem 2020; 610:113887. [PMID: 32763308 DOI: 10.1016/j.ab.2020.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of β-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-β-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-β-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.
Collapse
Affiliation(s)
- Rafael Maldonado-Hernández
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - José O Colón-Sáez
- Pharmaceutical Sciences, University of Puerto Rico Medical Science Campus, Puerto Rico
| | - José A Lasalde-Dominicci
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Puerto Rico.
| |
Collapse
|
46
|
Interaction between GABA A receptor α 1 and β 2 subunits at the N-terminal peripheral regions is crucial for receptor binding and gating. Biochem Pharmacol 2020; 183:114338. [PMID: 33189674 DOI: 10.1016/j.bcp.2020.114338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Pentameric ligand gated ion channels (pLGICs) are crucial in electrochemical signaling but exact molecular mechanisms of their activation remain elusive. So far, major effort focused on the top-down molecular pathway between the ligand binding site and the channel gate. However, recent studies revealed that pLGIC activation is associated with coordinated subunit twisting in the membrane plane. This suggests a key role of intersubunit interactions but the underlying mechanisms remain largely unknown. Herein, we investigated a "peripheral" subunit interface region of GABAA receptor where structural modeling indicated interaction between N-terminal α1F14 and β2F31 residues. Our experiments underscored a crucial role of this interaction in ligand binding and gating, especially preactivation and opening, showing that the intersubunit cross-talk taking place outside (above) the top-down pathway can be strongly involved in receptor activation. Thus, described here intersubunit interaction appears to operate across a particularly long distance, affecting vast portions of the macromolecule.
Collapse
|
47
|
The anticonvulsant zonisamide positively modulates recombinant and native glycine receptors at clinically relevant concentrations. Neuropharmacology 2020; 182:108371. [PMID: 33122032 DOI: 10.1016/j.neuropharm.2020.108371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022]
Abstract
GABAA and glycine receptors mediate fast synaptic inhibitory neurotransmission. Despite studies showing that activation of cerebral glycine receptors could be a potential strategy in the treatment of epilepsy, few studies have assessed the effects of existing anticonvulsant therapies on recombinant or native glycine receptors. We, therefore, evaluated the actions of a series of anticonvulsants at recombinant human homo-oligomeric glycine receptor α1, α2 and α3 subtypes expressed in Xenopus oocytes using two-electrode voltage-clamp methods, and then assessed the most effective drug at native glycine receptors from entorhinal cortex neurons using whole-cell voltage-clamp recordings. Ganaxolone, tiagabine and zonisamide positively modulated glycine induced currents at recombinant homomeric glycine receptors. Of these, zonisamide was the most efficacious and exhibited an EC50 value ranging between 450 and 560 μM at α1, α2 and α3 subtypes. These values were not significantly different indicating a non-selective modulation of glycine receptors. Using a therapeutic concentration of zonisamide (100 μM), the potency of glycine was significantly shifted from 106 to 56 μM at α1, 185 to 112 μM at α2, and 245 to 91 μM at α3 receptors. Furthermore, zonisamide (100 μM) potentiated exogenous homomeric and heteromeric glycine mediated currents from layer II pyramidal cells of the lateral or medial entorhinal cortex. As therapeutic concentrations of zonisamide positively modulate recombinant and native glycine receptors, we propose that the anticonvulsant effects of zonisamide may, at least in part, be mediated via this action.
Collapse
|
48
|
Gielen M, Barilone N, Corringer PJ. The desensitization pathway of GABA A receptors, one subunit at a time. Nat Commun 2020; 11:5369. [PMID: 33097732 PMCID: PMC7585415 DOI: 10.1038/s41467-020-19218-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors mediate most inhibitory synaptic transmission in the brain of vertebrates. Following GABA binding and fast activation, these receptors undergo a slower desensitization, the conformational pathway of which remains largely elusive. To explore the mechanism of desensitization, we used concatemeric α1β2γ2 GABAA receptors to selectively introduce gain-of-desensitization mutations one subunit at a time. A library of twenty-six mutant combinations was generated and their bi-exponential macroscopic desensitization rates measured. Introducing mutations at the different subunits shows a strongly asymmetric pattern with a key contribution of the γ2 subunit, and combining mutations results in marked synergistic effects indicating a non-concerted mechanism. Kinetic modelling indeed suggests a pathway where subunits move independently, the desensitization of two subunits being required to occlude the pore. Our work thus hints towards a very diverse and labile conformational landscape during desensitization, with potential implications in physiology and pharmacology.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France.
- Sorbonne Université, 21 rue de l'École de Médecine, 75006, Paris, France.
| | - Nathalie Barilone
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, CNRS UMR 3571, 25 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
49
|
Hussein RA, Ahmed M, Sticht H, Breitinger HG, Breitinger U. Fine-Tuning of Neuronal Ion Channels-Mapping of Residues Involved in Glucose Sensitivity of Recombinant Human Glycine Receptors. ACS Chem Neurosci 2020; 11:3474-3483. [PMID: 33007159 DOI: 10.1021/acschemneuro.0c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The inhibitory glycine receptor (GlyR) mediates synaptic inhibition in the spinal cord, brain stem, and other regions of the mammalian central nervous system. Glucose was shown to potentiate α1 GlyRs by interacting with K143. Here, additional amino acids involved in glucose modulation were identified using a structure-based approach of site-directed mutagenesis followed by whole-cell patch-clamp analysis. We identified two additional lysine residues in the α1 GlyR extracellular domain, K16 and K281, that were involved in glucose modulation. Mutation of either residue to alanine abolished glucose potentiation. Residue K281 is located in the same pocket as K143 and could thus contribute to glucose binding. The double mutant K143A-K281A showed a 6-fold increase of EC50, while EC50 of both single mutants K143A and K281A was only slightly increased (1.7- and 1.3-fold, respectively). K16 is located at an analgesic binding site that is distant from the agonist or glucose sites, and the K16A mutation may generate a receptor species that is not potentiated. GlyR position α1-S267 is close to the postulated glucose binding site and known for interactions with ethanol and anesthetics. In the presence of glucose, GlyR α1 mutants S267A, S267I, and S267R showed potentiation, no effect, and reduction of current responses, respectively. This pattern follows that of ethanol modulation and suggests that the interaction sites of glucose and ethanol are identical or located close to each other. Our results support the presence of a distinct binding site for glucose on the glycine receptor, overlapping with the ivermectin/ethanol binding pocket near the transmembrane region and the TM2-3 loop.
Collapse
Affiliation(s)
- Rama Ashraf Hussein
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Marwa Ahmed
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Hans-Georg Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, The German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo 11835, Egypt
| |
Collapse
|
50
|
Aubrey KR, Sheipouri D, Balle T, Vandenberg RJ, Otsu Y. Glutamate, d-(-)-2-Amino-5-Phosphonopentanoic Acid, and N-Methyl-d-Aspartate Do Not Directly Modulate Glycine Receptors. Mol Pharmacol 2020; 98:719-729. [PMID: 33051383 DOI: 10.1124/molpharm.120.000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Replication studies play an essential role in corroborating research findings and ensuring that subsequent experimental works are interpreted correctly. A previously published paper indicated that the neurotransmitter glutamate, along with the compounds N-methyl-d-aspartate (NMDA) and d-(-)-2-amino-5-phosphonopentanoic acid (AP5), acts as positive allosteric modulators of inhibitory glycine receptors. The paper further suggested that this form of modulation would play a role in setting the spinal inhibitory tone and influencing sensory signaling, as spillover of glutamate onto nearby glycinergic synapses would permit rapid crosstalk between excitatory and inhibitory synapses. Here, we attempted to replicate this finding in primary cultured spinal cord neurons, spinal cord slice, and Xenopus laevis oocytes expressing recombinant human glycine receptors. Despite extensive efforts, we were unable to reproduce the finding that glutamate, AP5, and NMDA positively modulate glycine receptor currents. We paid careful attention to critical aspects of the original study design and took into account receptor saturation and protocol deviations such as animal species. Finally, we explored possible explanations for the experimental discrepancy. We found that solution contamination with a high-affinity modulator such as zinc is most likely to account for the error, and we suggest methods for preventing this kind of misinterpretation in future studies aimed at characterizing high-affinity modulators of the glycine receptor. SIGNIFICANCE STATEMENT: A previous study indicates that glutamate spillover onto inhibitory synapses can directly interact with glycine receptors to enhance inhibitory signalling. This finding has important implications for baseline spinal transmission and may play a role when chronic pain develops. However, we failed to replicate the results and did not observe glutamate, d-(-)-2-amino-5-phosphonopentanoic acid, or N-methyl-d-aspartate modulation of native or recombinant glycine receptors. We ruled out various sources for the discrepancy and found that the most likely cause is solution contamination.
Collapse
Affiliation(s)
- Karin R Aubrey
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Diba Sheipouri
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Thomas Balle
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Robert J Vandenberg
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| | - Yo Otsu
- Pain Management Research Institute (K.R.A., Y.O.), Kolling Institute of Medical Research, Royal North Shore Hospital and Northern Clinical School, Faculty of Medicine and Health (K.R.A., Y.O.), Pharmacology, Faculty of Medicine and Health (D.S., R.J.V.), Sydney Pharmacy School, Faculty of Medicine and Health (T.B.), and Brain and Mind Centre (T.B.), The University of Sydney, Sydney, Australia
| |
Collapse
|