1
|
Yu CW, Nguyen VC, Barroga NAM, Nakamura Y, Li HM. Plastid LPAT1 is an integral inner envelope membrane protein with the acyltransferase domain located in the stroma. PLANT CELL REPORTS 2024; 43:257. [PMID: 39382709 DOI: 10.1007/s00299-024-03347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
KEY MESSAGE The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations. However, localization and topology of the second-acting enzyme, lysophosphatidic acid acyltransferase 1 (LPAT1), which acylates the sn-2 position of glycerol-3-phosphate (G3P) to produce phosphatidic acid (PA), remain unclear. It is not known whether LPAT1 is located at the outer or the inner envelope membrane and whether its enzymatic domain faces the cytosol, the intermembrane space, or the stroma. Even the size of mature LPAT1 in chloroplasts is not known. More information is essential for understanding the pathways of metabolite flow and for future engineering endeavors to modify glycerolipid biosynthesis. We used LPAT1 preproteins translated in vitro for import assays to determine the precise size of the mature protein and found that the LPAT1 transit peptide is at least 85 residues in length, substantially longer than previously predicted. A construct comprising LPAT1 fused to the Venus fluorescent protein and driven by the LPAT1 promoter was used to complement an Arabidopsis lpat1 knockout mutant. To determine the sub-chloroplast location and topology of LPAT1, we performed protease treatment and alkaline extraction using chloroplasts containing in vitro-imported LPAT1 and chloroplasts isolated from LPAT1-Venus-complemented transgenic plants. We show that LPAT1 traverses the inner membrane via an N-terminal transmembrane domain, with its N terminus protruding into the intermembrane space and the C-terminal enzymatic domain residing in the stroma, hence displaying a different membrane topology from its bacterial homolog, PlsC.
Collapse
Affiliation(s)
- Chun-Wei Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Van C Nguyen
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Niña Alyssa M Barroga
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, USA
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Santoshi M, Bansia H, Hussain M, Jha AK, Nagaraja V. Identification of a 1-acyl-glycerol-3-phosphate acyltransferase from Mycobacterium tuberculosis, a key enzyme involved in triacylglycerol biosynthesis. Mol Microbiol 2024; 121:1164-1181. [PMID: 38676355 DOI: 10.1111/mmi.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.
Collapse
Affiliation(s)
- Meghna Santoshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Harsh Bansia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Muzammil Hussain
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Abodh Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
3
|
McClain MS, Boeglin WE, Algood HMS, Brash AR. Fatty acids of Helicobacter pylori lipoproteins CagT and Lpp20. Microbiol Spectr 2024; 12:e0047024. [PMID: 38501821 PMCID: PMC11064636 DOI: 10.1128/spectrum.00470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William E. Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Alan R. Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Mansueto G, Fusco G, Colonna G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024; 14:541. [PMID: 38785948 PMCID: PMC11118181 DOI: 10.3390/biom14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b protein (43 aa), using a protein-protein interaction network analysis. After pruning, we selected from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network of 551 nodes via STRING. We performed topological analysis and calculated topological distributions by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and the dysregulated processes within the limits of the poor knowledge that these sectors still impose.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università della Campania, L. Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Giovanni Colonna
- Medical Informatics AOU, Università della Campania, L. Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
5
|
Vasilopoulos G, Heflik L, Czolkoss S, Heinrichs F, Kleetz J, Yesilyurt C, Tischler D, Westhoff P, Exterkate M, Aktas M, Narberhaus F. Characterization of multiple lysophosphatidic acid acyltransferases in the plant pathogen Xanthomonas campestris. FEBS J 2024; 291:705-721. [PMID: 37943159 DOI: 10.1111/febs.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Phosphatidic acid (PA) is the precursor of most phospholipids like phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. In bacteria, its biosynthesis begins with the acylation of glycerol-3-phosphate to lysophosphatidic acid (LPA), which is further acylated to PA by the PlsC enzyme. Some bacteria, like the plant pathogen Xanthomonas campestris, use a similar pathway to acylate lysophosphatidylcholine to phosphatidylcholine (PC). Previous studies assigned two acyltransferases to PC formation. Here, we set out to study their activity and found a second much more prominent function of these enzymes in LPA to PA conversion. This PlsC-like activity was supported by the functional complementation of a temperature-sensitive plsC-deficient Escherichia coli strain. Biocomputational analysis revealed two further PlsC homologs in X. campestris. The cellular levels of the four PlsC-like proteins varied with respect to growth phase and growth temperature. To address the question whether these enzymes have redundant or specific functions, we purified two recombinant, detergent-solubilized enzymes in their active form, which enabled the first direct biochemical comparison of PlsC isoenzymes from the same organism. Overlapping but not identical acyl acceptor and acyl donor preferences suggest redundant and specialized functions of the X. campestris PlsC enzymes. The altered fatty acid composition in plsC mutant strains further supports the functional differentiation of these enzymes.
Collapse
Affiliation(s)
- Georgios Vasilopoulos
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Lukas Heflik
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Simon Czolkoss
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Florian Heinrichs
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Julia Kleetz
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Cansel Yesilyurt
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Dirk Tischler
- Faculty of Biology and Biotechnology, Microbial Biotechnology, Ruhr University Bochum, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
| | - Marten Exterkate
- Faculty of Mathematics and Natural Sciences, Membrane Biogenesis and Lipidomics, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Meriyem Aktas
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Franz Narberhaus
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| |
Collapse
|
6
|
Liu S, Silvano E, Li M, Mausz M, Rihtman B, Guillonneau R, Geiger O, Scanlan DJ, Chen Y. Aminolipids in bacterial membranes and the natural environment. THE ISME JOURNAL 2024; 18:wrae229. [PMID: 39520271 PMCID: PMC11631085 DOI: 10.1093/ismejo/wrae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions.
Collapse
Affiliation(s)
- Shengwei Liu
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mingyu Li
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michaela Mausz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard Guillonneau
- Faculty of Science and Technology, Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Santos TCB, Futerman AH. The fats of the matter: Lipids in prebiotic chemistry and in origin of life studies. Prog Lipid Res 2023; 92:101253. [PMID: 37659458 DOI: 10.1016/j.plipres.2023.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The unique biophysical and biochemical properties of lipids render them crucial in most models of the origin of life (OoL). Many studies have attempted to delineate the prebiotic pathways by which lipids were formed, how micelles and vesicles were generated, and how these micelles and vesicles became selectively permeable towards the chemical precursors required to initiate and support biochemistry and inheritance. Our analysis of a number of such studies highlights the extremely narrow and limited range of conditions by which an experiment is considered to have successfully modeled a role for lipids in an OoL experiment. This is in line with a recent proposal that bias is introduced into OoL studies by the extent and the kind of human intervention. It is self-evident that OoL studies can only be performed by human intervention, and we now discuss the possibility that some assumptions and simplifications inherent in such experimental approaches do not permit determination of mechanistic insight into the roles of lipids in the OoL. With these limitations in mind, we suggest that more nuanced experimental approaches than those currently pursued may be required to elucidate the generation and function of lipids, micelles and vesicles in the OoL.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Angala SK, Carreras-Gonzalez A, Huc-Claustre E, Anso I, Kaur D, Jones V, Palčeková Z, Belardinelli JM, de Sousa-d'Auria C, Shi L, Slama N, Houssin C, Quémard A, McNeil M, Guerin ME, Jackson M. Acylation of glycerolipids in mycobacteria. Nat Commun 2023; 14:6694. [PMID: 37872138 PMCID: PMC10593935 DOI: 10.1038/s41467-023-42478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
We report on the existence of two phosphatidic acid biosynthetic pathways in mycobacteria, a classical one wherein the acylation of the sn-1 position of glycerol-3-phosphate (G3P) precedes that of sn-2 and another wherein acylations proceed in the reverse order. Two unique acyltransferases, PlsM and PlsB2, participate in both pathways and hold the key to the unusual positional distribution of acyl chains typifying mycobacterial glycerolipids wherein unsaturated substituents principally esterify position sn-1 and palmitoyl principally occupies position sn-2. While PlsM selectively transfers a palmitoyl chain to the sn-2 position of G3P and sn-1-lysophosphatidic acid (LPA), PlsB2 preferentially transfers a stearoyl or oleoyl chain to the sn-1 position of G3P and an oleyl chain to sn-2-LPA. PlsM is the first example of an sn-2 G3P acyltransferase outside the plant kingdom and PlsB2 the first example of a 2-acyl-G3P acyltransferase. Both enzymes are unique in their ability to catalyze acyl transfer to both G3P and LPA.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Ana Carreras-Gonzalez
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
- Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Emilie Huc-Claustre
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Itxaso Anso
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, 48903, Spain
| | - Devinder Kaur
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
- New England Newborn Screening Program, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Célia de Sousa-d'Auria
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Libin Shi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Nawel Slama
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Christine Houssin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michael McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Marcelo E Guerin
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
- Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, 48903, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028, Barcelona, Catalonia, Spain
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
9
|
Dong H, Cronan JE. Suppressor mutants demonstrate the metabolic plasticity of unsaturated fatty acid synthesis in Pseudomonas aeruginosa PAO1. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001400. [PMID: 37818937 PMCID: PMC10634369 DOI: 10.1099/mic.0.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa PAO1 has two aerobic pathways for synthesis of unsaturated fatty acids (UFAs), DesA and DesB plus the oxygen independent FabAB pathway. The DesA desaturase acts on saturated acyl chains of membrane phospholipid bilayers whereas the substrates of the DesB desaturase are thought to be long chain saturated acyl-CoA thioesters derived from exogeneous saturated fatty acids that are required to support DesB-dependent growth. Under suitable aerobic conditions either of these membrane-bound desaturates can support growth of P. aeruginosa ∆fabA strains lacking the oxygen independent FabAB pathway. We previously studied function of the desA desaturase of P. putida in a P. aeruginosa ∆fabA ∆desA strain that required supplementation with a UFA for growth and noted bypass suppression of the P. aeruginosa ∆fabA ∆desA strain that restored UFA synthesis. We report three genes encoding lipid metabolism proteins that give rise to suppressor strains that bypass loss of the DesA and oxygen independent FabAB pathways.
Collapse
Affiliation(s)
- Huijuan Dong
- Departments of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E. Cronan
- Departments of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departments of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
McLelland GL, Lopez-Osias M, Verzijl CRC, Ellenbroek BD, Oliveira RA, Boon NJ, Dekker M, van den Hengel LG, Ali R, Janssen H, Song JY, Krimpenfort P, van Zutphen T, Jonker JW, Brummelkamp TR. Identification of an alternative triglyceride biosynthesis pathway. Nature 2023; 621:171-178. [PMID: 37648867 PMCID: PMC10482677 DOI: 10.1038/s41586-023-06497-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.
Collapse
Affiliation(s)
- Gian-Luca McLelland
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Marta Lopez-Osias
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cristy R C Verzijl
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brecht D Ellenbroek
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafaela A Oliveira
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nicolaas J Boon
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa G van den Hengel
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rahmen Ali
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Janssen
- Electron Microscope Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Krimpenfort
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tim van Zutphen
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Wang L, Zhou M. Structure of a eukaryotic cholinephosphotransferase-1 reveals mechanisms of substrate recognition and catalysis. Nat Commun 2023; 14:2753. [PMID: 37179328 PMCID: PMC10182977 DOI: 10.1038/s41467-023-38003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic cell membranes. In eukaryotes, two highly homologous enzymes, cholinephosphotransferase-1 (CHPT1) and choline/ethanolamine phosphotransferase-1 (CEPT1) catalyze the final step of de novo PC synthesis. CHPT1/CEPT1 joins two substrates, cytidine diphosphate-choline (CDP-choline) and diacylglycerol (DAG), to produce PC, and Mg2+ is required for the reaction. However, mechanisms of substrate recognition and catalysis remain unresolved. Here we report structures of a CHPT1 from Xenopus laevis (xlCHPT1) determined by cryo-electron microscopy to an overall resolution of ~3.2 Å. xlCHPT1 forms a homodimer, and each protomer has 10 transmembrane helices (TMs). The first 6 TMs carve out a cone-shaped enclosure in the membrane in which the catalysis occurs. The enclosure opens to the cytosolic side, where a CDP-choline and two Mg2+ are coordinated. The structures identify a catalytic site unique to eukaryotic CHPT1/CEPT1 and suggest an entryway for DAG. The structures also reveal an internal pseudo two-fold symmetry between TM3-6 and TM7-10, and suggest that CHPT1/CEPT1 may have evolved from their distant prokaryotic ancestors through gene duplication.
Collapse
Affiliation(s)
- Lie Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Subramanian C, Frank MW, Yun MK, Rock CO. The Phospholipase A1 Activity of Glycerol Ester Hydrolase (Geh) Is Responsible for Extracellular 2-12( S)-Methyltetradecanoyl-Lysophosphatidylglycerol Production in Staphylococcus aureus. mSphere 2023; 8:e0003123. [PMID: 36976028 PMCID: PMC10117073 DOI: 10.1128/msphere.00031-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Phosphatidylglycerol (PG) is the major membrane phospholipid of Staphylococcus aureus and predominately consists of molecular species with ≥16-carbon acyl chains in the 1-position and anteiso 12(S)-methyltetradecaonate (a15) esterified at the 2-position. The analysis of the growth media for PG-derived products shows S. aureus releases essentially pure 2-12(S)-methyltetradecanoyl-sn-glycero-3-phospho-1'-sn-glycerol (a15:0-LPG) derived from the hydrolysis of the 1-position of PG into the environment. The cellular lysophosphatidylglycerol (LPG) pool is dominated by a15-LPG but also consists of ≥16-LPG species arising from the removal of the 2-position. Mass tracing experiments confirmed a15-LPG was derived from isoleucine metabolism. A screen of candidate secreted lipase knockout strains pinpointed glycerol ester hydrolase (geh) as the gene required for generating extracellular a15-LPG, and complementation of a Δgeh strain with a Geh expression plasmid restored extracellular a15-LPG formation. Orlistat, a covalent inhibitor of Geh, also attenuated extracellular a15-LPG accumulation. Purified Geh hydrolyzed the 1-position acyl chain of PG and generated only a15-LPG from a S. aureus lipid mixture. The Geh product was 2-a15-LPG, which spontaneously isomerizes with time to a mixture of 1- and 2-a15-LPG. Docking PG in the Geh active site provides a structural rationale for the positional specificity of Geh. These data demonstrate a physiological role for Geh phospholipase A1 activity in S. aureus membrane phospholipid turnover. IMPORTANCE Glycerol ester hydrolase, Geh, is an abundant secreted lipase whose expression is controlled by the accessory gene regulator (Agr) quorum-sensing signal transduction pathway. Geh is thought to have a role in virulence based on its ability to hydrolyze host lipids at the infection site to provide fatty acids for membrane biogenesis and substrates for oleate hydratase, and Geh inhibits immune cell activation by hydrolyzing lipoprotein glycerol esters. The discovery that Geh is the major contributor to the formation and release of a15-LPG reveals an unappreciated physiological role for Geh acting as a phospholipase A1 in the degradation of S. aureus membrane phosphatidylglycerol. The role(s) for extracellular a15-LPG in S. aureus biology remain to be elucidated.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew W. Frank
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - My-Kyung Yun
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Charles O. Rock
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Radka CD. Interfacial Enzymes Enable Gram-Positive Microbes to Eat Fatty Acids. MEMBRANES 2023; 13:423. [PMID: 37103850 PMCID: PMC10146087 DOI: 10.3390/membranes13040423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Exogenous fatty acid (eFA) activation and utilization play key roles in bacterial physiology and confer growth advantages by bypassing the need to make fatty acids for lipid synthesis. In Gram-positive bacteria, eFA activation and utilization is generally carried out by the fatty acid kinase (FakAB) two-component system that converts eFA to acyl phosphate, and the acyl-ACP:phosphate transacylase (PlsX) that catalyzes the reversible conversion of acyl phosphate to acyl-acyl carrier protein. Acyl-acyl carrier protein is a soluble format of the fatty acid that is compatible with cellular metabolic enzymes and can feed multiple processes including the fatty acid biosynthesis pathway. The combination of FakAB and PlsX enables the bacteria to channel eFA nutrients. These key enzymes are peripheral membrane interfacial proteins that associate with the membrane through amphipathic helices and hydrophobic loops. In this review, we discuss the biochemical and biophysical advances that have established the structural features that drive FakB or PlsX association with the membrane, and how these protein-lipid interactions contribute to enzyme catalysis.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Behera J, Rahman MM, Shockey J, Kilaru A. Acyl-CoA-dependent and acyl-CoA-independent avocado acyltransferases positively influence oleic acid content in nonseed triacylglycerols. FRONTIERS IN PLANT SCIENCE 2023; 13:1056582. [PMID: 36714784 PMCID: PMC9874167 DOI: 10.3389/fpls.2022.1056582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
In higher plants, acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) catalyze the terminal step of triacylglycerol (TAG) synthesis in acyl-CoA-dependent and -independent pathways, respectively. Avocado (Persea americana) mesocarp, a nonseed tissue, accumulates significant amounts of TAG (~70% by dry weight) that is rich in heart-healthy oleic acid (18:1). The oil accumulation stages of avocado mesocarp development coincide with high expression levels for type-1 DGAT (DGAT1) and PDAT1, although type-2 DGAT (DGAT2) expression remains low. The strong preference for oleic acid demonstrated by the avocado mesocarp TAG biosynthetic machinery represents lucrative biotechnological opportunities, yet functional characterization of these three acyltransferases has not been explored to date. We expressed avocado PaDGAT1, PaDGAT2, and PaPDAT1 in bakers' yeast and leaves of Nicotiana benthamiana. PaDGAT1 complemented the TAG biosynthesis deficiency in the quadruple mutant yeast strain H1246, and substantially elevated total cellular lipid content. In vitro enzyme assays showed that PaDGAT1 prefers oleic acid compared to palmitic acid (16:0). Both PaDGAT1 and PaPDAT1 increased the lipid content and elevated oleic acid levels when expressed independently or together, transiently in N. benthamiana leaves. These results indicate that PaDGAT1 and PaPDAT1 prefer oleate-containing substrates, and their coordinated expression likely contributes to sustained TAG synthesis that is enriched in oleic acid. This study establishes a knowledge base for future metabolic engineering studies focused on exploitation of the biochemical properties of PaDGAT1 and PaPDAT1.
Collapse
Affiliation(s)
- Jyoti Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
- dNTP Laboratory, Teaneck, NJ, United States
| | - Jay Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
15
|
Structural basis of the acyl-transfer mechanism of human GPAT1. Nat Struct Mol Biol 2023; 30:22-30. [PMID: 36522428 DOI: 10.1038/s41594-022-00884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.
Collapse
|
16
|
Schiller J, Laube E, Wittig I, Kühlbrandt W, Vonck J, Zickermann V. Insights into complex I assembly: Function of NDUFAF1 and a link with cardiolipin remodeling. SCIENCE ADVANCES 2022; 8:eadd3855. [PMID: 36383672 PMCID: PMC9668296 DOI: 10.1126/sciadv.add3855] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 06/02/2023]
Abstract
Respiratory complex I is a ~1-MDa proton pump in mitochondria. Its structure has been revealed in great detail, but the structural basis of its assembly, in humans involving at least 15 assembly factors, is essentially unknown. We determined cryo-electron microscopy structures of assembly intermediates associated with assembly factor NDUFAF1 in a yeast model system. Subunits ND2 and NDUFC2 together with assembly factors NDUFAF1 and CIA84 form the nucleation point of the NDUFAF1-dependent assembly pathway. Unexpectedly, the cardiolipin remodeling enzyme tafazzin is an integral component of this core complex. In a later intermediate, all 12 subunits of the proximal proton pump module have assembled. NDUFAF1 locks the central ND3 subunit in an assembly-competent conformation, and major rearrangements of central subunits are required for complex I maturation.
Collapse
Affiliation(s)
- Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Ogawa T, Kuboshima M, Suwanawat N, Kawamoto J, Kurihara T. Division of the role and physiological impact of multiple lysophosphatidic acid acyltransferase paralogs. BMC Microbiol 2022; 22:241. [PMID: 36203164 PMCID: PMC9541089 DOI: 10.1186/s12866-022-02641-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lysophosphatidic acid acyltransferase (LPAAT) is a phospholipid biosynthesis enzyme that introduces a particular set of fatty acids at the sn-2 position of phospholipids. Many bacteria have multiple LPAAT paralogs, and these enzymes are considered to have different fatty acid selectivities and to produce diverse phospholipids with distinct fatty acid compositions. This feature is advantageous for controlling the physicochemical properties of lipid membranes to maintain membrane integrity in response to the environment. However, it remains unclear how LPAAT paralogs are functionally differentiated and biologically significant. Results To better understand the division of roles of the LPAAT paralogs, we analyzed the functions of two LPAAT paralogs, PlsC4 and PlsC5, from the psychrotrophic bacterium Shewanella livingstonensis Ac10. As for their enzymatic function, lipid analysis of plsC4- and plsC5-inactivated mutants revealed that PlsC4 prefers iso-tridecanoic acid (C12-chain length, methyl-branched), whereas PlsC5 prefers palmitoleic acid (C16-chain length, monounsaturated). Regarding the physiological role, we found that plsC4, not plsC5, contributes to tolerance to cold stress. Using bioinformatics analysis, we demonstrated that orthologs of PlsC4/PlsC5 and their close relatives, constituting a new clade of LPAATs, are present in many γ-proteobacteria. We also found that LPAATs of this clade are phylogenetically distant from principal LPAATs, such as PlsC1 of S. livingstonensis Ac10, which are universally conserved among bacteria, suggesting the presence of functionally differentiated LPAATs in these bacteria. Conclusions PlsC4 and PlsC5, which are LPAAT paralogs of S. livingstonensis Ac10, play different roles in phospholipid production and bacterial physiology. An enzyme belonging to PlsC4/PlsC5 subfamilies and their close relatives are present, in addition to principal LPAATs, in many γ-proteobacteria, suggesting that the division of roles is more common than previously thought. Thus, both principal LPAATs and PlsC4/PlsC5-related enzymes should be considered to decipher the metabolism and physiology of bacterial cell membranes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02641-8.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Misaki Kuboshima
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Nittikarn Suwanawat
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
18
|
Liston SD, Ovchinnikova OG, Kimber MS, Whitfield C. A dedicated C-6 β-hydroxyacyltransferase required for biosynthesis of the glycolipid anchor for Vi antigen capsule in typhoidal Salmonella. J Biol Chem 2022; 298:102520. [PMID: 36152747 DOI: 10.1016/j.jbc.2022.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vi antigen is an extracellular polysaccharide produced by Salmonella enterica Typhi, Citrobacter freundii, and some soil bacteria belonging to the Burkholderiales. In Salmonella Typhi, Vi-antigen capsule protects the bacterium against host defenses, and the glycan is used in a current glycoconjugate vaccine to protect against typhoid. Vi antigen is a glycolipid assembled in the cytoplasm and translocated to the cell surface by an export complex driven by an ABC transporter. In Salmonella Typhi, efficient export and cell-surface retention of the capsule layer depend on a reducing terminal acylated-HexNAc moiety. Although the precise structure and biosynthesis of the acylated terminus has not been resolved, it distinguishes Vi antigen from other known glycolipid substrates for bacterial ABC transporters. The genetic locus for Vi antigen-biosynthesis encodes a single acyltransferase candidate (VexE), which is implicated in the acylation process. Here, we determined the structure of the VexE in vitro reaction product by mass spectrometry and nuclear magnetic resonance spectroscopy, to reveal that VexE catalyzes β-hydroxyacyl-ACP dependent acylation of the activated sugar precursor, uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), at C-6 to form UDP-6-O-[β-hydroxymyristoyl]-α-d-GlcNAc. VexE belongs to the lysophosphatidyl acyltransferase (LPLAT) family, and comparison of an Alphafold VexE model to solved LPLAT structures, together with modeling enzyme:substrate complexes, led us to predict an enzyme mechanism. This study provides new insight into Vi terminal structure, offers a new model substrate to investigate the mechanism of glycolipid ABC transporters, and adds biochemical understanding for a novel reaction used in synthesis of an important bacterial virulence factor.
Collapse
Affiliation(s)
- S D Liston
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - O G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - M S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - C Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
19
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
20
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
21
|
Rau EM, Bartosova Z, Kristiansen KA, Aasen IM, Bruheim P, Ertesvåg H. Overexpression of Two New Acyl-CoA:Diacylglycerol Acyltransferase 2-Like Acyl-CoA:Sterol Acyltransferases Enhanced Squalene Accumulation in Aurantiochytrium limacinum. Front Microbiol 2022; 13:822254. [PMID: 35145505 PMCID: PMC8821962 DOI: 10.3389/fmicb.2022.822254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrids are heterotrophic marine eukaryotes known to accumulate large amounts of triacylglycerols, and they also synthesize terpenoids like carotenoids and squalene, which all have an increasing market demand. However, a more extensive knowledge of the lipid metabolism is needed to develop thraustochytrids for profitable biomanufacturing. In this study, two putative type-2 Acyl-CoA:diacylglycerol acyltransferases (DGAT2) genes of Aurantiochytrium sp. T66, T66ASATa, and T66ASATb, and their homologs in Aurantiochytrium limacinum SR21, AlASATa and AlASATb, were characterized. In A. limacinum SR21, genomic knockout of AlASATb reduced the amount of the steryl esters of palmitic acid, SE (16:0), and docosahexaenoic acid, SE (22:6). The double mutant of AlASATa and AlASATb produced even less of these steryl esters. The expression and overexpression of T66ASATb and AlASATb, respectively, enhanced SE (16:0) and SE (22:6) production more significantly than those of T66ASATa and AlASATa. In contrast, these mutations did not significantly change the level of triacylglycerols or other lipid classes. The results suggest that the four genes encoded proteins possessing acyl-CoA:sterol acyltransferase (ASAT) activity synthesizing both SE (16:0) and SE (22:6), but with the contribution from AlASATb and T66ASATb being more important than that of AlASATa and T66ASATa. Furthermore, the expression and overexpression of T66ASATb and AlASATb enhanced squalene accumulation in SR21 by up to 88%. The discovery highlights the functional diversity of DGAT2-like proteins and provides valuable information on steryl ester and squalene synthesis in thraustochytrids, paving the way to enhance squalene production through metabolic engineering.
Collapse
Affiliation(s)
- E-Ming Rau
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kåre Andre Kristiansen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Helga Ertesvåg,
| |
Collapse
|
22
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
23
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
24
|
Anso I, Basso LGM, Wang L, Marina A, Páez-Pérez ED, Jäger C, Gavotto F, Tersa M, Perrone S, Contreras FX, Prandi J, Gilleron M, Linster CL, Corzana F, Lowary TL, Trastoy B, Guerin ME. Molecular ruler mechanism and interfacial catalysis of the integral membrane acyltransferase PatA. SCIENCE ADVANCES 2021; 7:eabj4565. [PMID: 34652941 PMCID: PMC8519569 DOI: 10.1126/sciadv.abj4565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 05/28/2023]
Abstract
Glycolipids are prominent components of bacterial membranes that play critical roles not only in maintaining the structural integrity of the cell but also in modulating host-pathogen interactions. PatA is an essential acyltransferase involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. We demonstrate by electron spin resonance spectroscopy and surface plasmon resonance that PatA is an integral membrane acyltransferase tightly anchored to anionic lipid bilayers, using a two-helix structural motif and electrostatic interactions. PatA dictates the acyl chain composition of the glycolipid by using an acyl chain selectivity “ruler.” We established this by a combination of structural biology, enzymatic activity, and binding measurements on chemically synthesized nonhydrolyzable acyl–coenzyme A (CoA) derivatives. We propose an interfacial catalytic mechanism that allows PatA to acylate hydrophobic PIMs anchored in the inner membrane of mycobacteria, through the use of water-soluble acyl-CoA donors.
Collapse
Affiliation(s)
- Itxaso Anso
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Bizkaia, Spain
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Lei Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Alberto Marina
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Edgar D. Páez-Pérez
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí, México
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Floriane Gavotto
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Montse Tersa
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sebastián Perrone
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Bizkaia, Spain
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - F.-Xabier Contreras
- Instituto Biofisika, Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, 48940 Bizkaia, Spain
- Departamento de Bioquímica, Universidad del País Vasco, Leioa, 48940 Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jacques Prandi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Francisco Corzana
- Departamento Química and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Rioja, Spain
| | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Section 4, #1, Roosevelt Road, Taipei 10617, Taiwan
| | - Beatriz Trastoy
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Bizkaia, Spain
| | - Marcelo E. Guerin
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
25
|
Frank MW, Whaley SG, Rock CO. Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus. J Biol Chem 2021; 297:101255. [PMID: 34592315 PMCID: PMC8524195 DOI: 10.1016/j.jbc.2021.101255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acids (primarily isoleucine) are important regulators of virulence and are converted to precursor molecules used to initiate fatty acid synthesis in Staphylococcus aureus. Defining how bacteria control their membrane phospholipid composition is key to understanding their adaptation to different environments. Here, we used mass tracing experiments to show that extracellular isoleucine is preferentially metabolized by the branched-chain ketoacid dehydrogenase complex, in contrast to valine, which is not efficiently converted to isobutyryl-CoA. This selectivity creates a ratio of anteiso:iso C5-CoAs that matches the anteiso:iso ratio in membrane phospholipids, indicating indiscriminate utilization of these precursors by the initiation condensing enzyme FabH. Lipidomics analysis showed that removal of isoleucine and leucine from the medium led to the replacement of phospholipid molecular species containing anteiso/iso 17- and 19-carbon fatty acids with 18- and 20-carbon straight-chain fatty acids. This compositional change is driven by an increase in the acetyl-CoA:C5-CoA ratio, enhancing the utilization of acetyl-CoA by FabH. The acyl carrier protein (ACP) pool normally consists of odd carbon acyl-ACP intermediates, but when branched-chain amino acids are absent from the environment, there was a large increase in even carbon acyl-ACP pathway intermediates. The high substrate selectivity of PlsC ensures that, in the presence or the absence of extracellular Ile/Leu, the 2-position is occupied by a branched-chain 15-carbon fatty acid. These metabolomic measurements show how the metabolism of isoleucine and leucine, rather than the selectivity of FabH, control the structure of membrane phospholipids.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
26
|
Hamano F, Matoba K, Hashidate-Yoshida T, Suzuki T, Miura K, Hishikawa D, Harayama T, Yuki K, Kita Y, Noda NN, Shimizu T, Shindou H. Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA. FASEB J 2021; 35:e21501. [PMID: 33956375 DOI: 10.1096/fj.202002591r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/11/2022]
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that elicits various cellular functions and promotes several pathological events, including anaphylaxis and neuropathic pain. PAF is biosynthesized by two types of lyso-PAF acetyltransferases: lysophosphatidylcholine acyltransferase 1 (LPCAT1) and LPCAT2, which are constitutive and inducible forms of lyso-PAF acetyltransferase, respectively. Because LPCAT2 mainly produces PAF under inflammatory stimuli, understanding the structure of LPCAT2 is important for developing specific drugs against PAF-related inflammatory diseases. Although the structure of LPCAT2 has not been determined, the crystal structure was reported for Thermotoga maritima PlsC, an enzyme in the same gene family as LPCAT2. Here, we identified residues in mouse LPCAT2 essential for its enzymatic activity and a potential acyl-coenzyme A (CoA)-binding pocket, based on homology modeling of mouse LPCAT2 with PlsC. We also found that Ala115 of mouse LPCAT2 was important for acyl-CoA selectivity. In conclusion, these results predict the three-dimensional (3D) structure of mouse LPCAT2. Our findings have implications for the future development of new drugs against PAF-related diseases.
Collapse
Affiliation(s)
- Fumie Hamano
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | | - Tomoyuki Suzuki
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyotake Miura
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Harayama
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Koichi Yuki
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo, Japan.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME JOURNAL 2021; 15:2440-2453. [PMID: 33750904 PMCID: PMC8319176 DOI: 10.1038/s41396-021-00933-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids. Here, we present the identification and characterization of a novel sulfur-containing aminolipid (SAL) in roseobacters. Using high resolution accurate mass spectrometry, a SAL was found in the lipid extract of Ruegeria pomeroyi DSS-3 and Phaeobacter inhibens DSM 17395. Using comparative genomics, transposon mutagenesis and targeted gene knockout, we identified a gene encoding a putative lyso-lipid acyltransferase, designated salA, which is essential for the biosynthesis of this SAL. Multiple sequence analysis and structural modeling suggest that SalA is a novel member of the lysophosphatidic acid acyltransferase (LPAAT) family, the prototype of which is the PlsC acyltransferase responsible for the biosynthesis of the phospholipid phosphatidic acid. SAL appears to play a key role in biofilm formation in roseobacters. salA is widely distributed in Tara Oceans metagenomes and actively expressed in Tara Oceans metatranscriptomes. Our results raise the importance of sulfur-containing membrane aminolipids in marine bacteria.
Collapse
|
28
|
Krüger L, Herzberg C, Rath H, Pedreira T, Ischebeck T, Poehlein A, Gundlach J, Daniel R, Völker U, Mäder U, Stülke J. Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLoS Genet 2021; 17:e1009092. [PMID: 33481774 PMCID: PMC7857571 DOI: 10.1371/journal.pgen.1009092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.
Collapse
Affiliation(s)
- Larissa Krüger
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tiago Pedreira
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Molecular architecture of the acetohydroxyacid synthase holoenzyme. Biochem J 2020; 477:2439-2449. [DOI: 10.1042/bcj20200292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The acetohydroxyacid synthase (AHAS) holoenzyme catalyzes the first step of branch-chain amino acid biosynthesis and is essential for plants and bacteria. It consists of a regulatory subunit (RSU) and a catalytic subunit (CSU). The allosteric mechanism of the AHAS holoenzyme has remained elusive for decades. Here, we determined the crystal structure of the AHAS holoenzyme, revealing the association between the RSU and CSU in an A2B2 mode. Structural analysis in combination with mutational studies demonstrated that the RSU dimer forms extensive interactions with the CSU dimer, in which a conserved salt bridge between R32 and D120 may act as a trigger to open the activation loop of the CSU, resulting in the activation of the CSU by the RSU. Our study reveals the activation mechanism of the AHAS holoenzyme.
Collapse
|
30
|
Ogawa T, Suwanawat N, Toyotake Y, Watanabe B, Kawamoto J, Kurihara T. Lysophosphatidic acid acyltransferase from the thermophilic bacterium Thermus thermophilus HB8 displays substrate promiscuity. Biosci Biotechnol Biochem 2020; 84:1831-1838. [PMID: 32456605 DOI: 10.1080/09168451.2020.1771169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lysophosphatidic acid acyltransferase is a phospholipid biosynthetic enzyme that introduces a fatty acyl group into the sn-2 position of phospholipids. Its substrate selectivity is physiologically important in defining the physicochemical properties of lipid membranes and modulating membrane protein function. However, it remains unclear how these enzymes recognize various fatty acids. Successful purification of bacterial lysophosphatidic acid acyltransferases (PlsCs) was recently reported and has paved a path for the detailed analysis of their reaction mechanisms. Here, we purified and characterized PlsC from the thermophilic bacterium Thermus thermophilus HB8. This integral membrane protein remained active even after solubilization and purification and showed reactivity toward saturated, unsaturated, and methyl-branched fatty acids, although branched-chain acyl groups are the major constituent of phospholipids of this bacterium. Multiple sequence alignment revealed the N-terminal end of the enzyme to be shorter than that of PlsCs with defined substrate selectivity, suggesting that the shortened N-terminus confers substrate promiscuity. ABBREVIATIONS ACP: acyl carrier protein; CAPS: N-cyclohexyl-3-aminopropanesulfonic acid; CoA: coenzyme A; CYMAL-6: 6-cyclohexyl-1-hexyl-β-D-maltoside; DDM: n-dodecyl-β-D-maltoside; DTNB: 5,5´-dithiobis(2-nitrobenzoic acid); EPA: eicosapentaenoic acid; G3P: glycerol 3-phosphate; HEPES: N-2-hydroxyethylpiperazine-N´-2-ethanesulfonic acid; LPA: lysophosphatidic acid; MS: mass spectrometry; PA: phosphatidic acid.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | | | - Yosuke Toyotake
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University , Kyoto, Japan
| |
Collapse
|
31
|
Frank MW, Yao J, Batte JL, Gullett JM, Subramanian C, Rosch JW, Rock CO. Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. mBio 2020; 11:e00920-20. [PMID: 32430471 PMCID: PMC7240157 DOI: 10.1128/mbio.00920-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either ΔfakA or ΔfakB1 ΔfakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid.IMPORTANCE The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Justin L Batte
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica M Gullett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Toyotake Y, Nishiyama M, Yokoyama F, Ogawa T, Kawamoto J, Kurihara T. A Novel Lysophosphatidic Acid Acyltransferase of Escherichia coli Produces Membrane Phospholipids with a cis-vaccenoyl Group and Is Related to Flagellar Formation. Biomolecules 2020; 10:E745. [PMID: 32403425 PMCID: PMC7277886 DOI: 10.3390/biom10050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidic acid acyltransferase (LPAAT) introduces fatty acyl groups into the sn-2 position of membrane phospholipids (PLs). Various bacteria produce multiple LPAATs, whereas it is believed that Escherichia coli produces only one essential LPAAT homolog, PlsC-the deletion of which is lethal. However, we found that E. coli possesses another LPAAT homolog named YihG. Here, we show that overexpression of YihG in E. coli carrying a temperature-sensitive mutation in plsC allowed its growth at non-permissive temperatures. Analysis of the fatty acyl composition of PLs from the yihG-deletion mutant (∆yihG) revealed that endogenous YihG introduces the cis-vaccenoyl group into the sn-2 position of PLs. Loss of YihG did not affect cell growth or morphology, but ∆yihG cells swam well in liquid medium in contrast to wild-type cells. Immunoblot analysis showed that FliC was highly expressed in ∆yihG cells, and this phenotype was suppressed by expression of recombinant YihG in ∆yihG cells. Transmission electron microscopy confirmed that the flagellar structure was observed only in ∆yihG cells. These results suggest that YihG has specific functions related to flagellar formation through modulation of the fatty acyl composition of membrane PLs.
Collapse
Affiliation(s)
- Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masayoshi Nishiyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Fumiaki Yokoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; (Y.T.); (M.N.); (F.Y.); (T.O.); (J.K.)
| |
Collapse
|
33
|
Sastre DE, Pulschen AA, Basso LGM, Benites Pariente JS, Marques Netto CGC, Machinandiarena F, Albanesi D, Navarro MVAS, de Mendoza D, Gueiros-Filho FJ. The phosphatidic acid pathway enzyme PlsX plays both catalytic and channeling roles in bacterial phospholipid synthesis. J Biol Chem 2020; 295:2148-2159. [PMID: 31919098 DOI: 10.1074/jbc.ra119.011147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Indexed: 12/29/2022] Open
Abstract
PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Departamento de Biofísica Molecular, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - André A Pulschen
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luis G M Basso
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | - Federico Machinandiarena
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Marcos V A S Navarro
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Departamento de Biofísica Molecular, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina.
| | - Frederico J Gueiros-Filho
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
34
|
Radka CD, Frank MW, Rock CO, Yao J. Fatty acid activation and utilization by Alistipes finegoldii, a representative Bacteroidetes resident of the human gut microbiome. Mol Microbiol 2020; 113:807-825. [PMID: 31876062 DOI: 10.1111/mmi.14445] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
35
|
Huang L, Yu L, Li Z, Li Y, Yoon KS, Hu Q, Yuan L, Han D. Microalgal plastidial lysophosphatidic acid acyltransferase interacts with upstream glycerol-3-phosphate acyltransferase and defines its substrate selectivity via the two transmembrane domains. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Chu M, Zhang L, Lou W, Zong M, Tang Y, Yang J. Preparation and Characterization of Oil Rich in Odd Chain Fatty Acids from Rhodococcus opacusPD630. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mei‐Yun Chu
- School of Food Science and EngineeringSouth China University of Technology, Wushan Road Guangzhou 510641 China
| | - Lin‐Shang Zhang
- School of Food Science and EngineeringSouth China University of Technology, Wushan Road Guangzhou 510641 China
| | - Wen‐Yong Lou
- School of Food Science and EngineeringSouth China University of Technology, Wushan Road Guangzhou 510641 China
| | - Min‐Hua Zong
- School of Food Science and EngineeringSouth China University of Technology, Wushan Road Guangzhou 510641 China
| | - Yu‐Qian Tang
- School of Food Science and EngineeringSouth China University of Technology, Wushan Road Guangzhou 510641 China
- South China Institute of Collaborative Innovation, Xincheng Road Dongguan 523808 China
| | - Ji‐Guo Yang
- School of Food Science and EngineeringSouth China University of Technology, Wushan Road Guangzhou 510641 China
- South China Institute of Collaborative Innovation, Xincheng Road Dongguan 523808 China
| |
Collapse
|
37
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ). Front Cell Dev Biol 2019; 7:147. [PMID: 31428612 PMCID: PMC6688108 DOI: 10.3389/fcell.2019.00147] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the trans-Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for Lpaatδ show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the trans-Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
38
|
Evidence to Suggest Bacterial Lipoprotein Diacylglyceryl Transferase (Lgt) is a Weakly Associated Inner Membrane Protein. J Membr Biol 2019; 252:563-575. [DOI: 10.1007/s00232-019-00076-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
39
|
El Arnaout T, Soulimane T. Targeting Lipoprotein Biogenesis: Considerations towards Antimicrobials. Trends Biochem Sci 2019; 44:701-715. [PMID: 31036406 DOI: 10.1016/j.tibs.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Decades have passed without approval of a new antibiotic class. Several companies have recently halted related discovery efforts because of multiple obstacles. One promising route under research is to target the lipoprotein maturation pathway in light of major recent findings and the virulence roles of lipoproteins. To support the future design of selective drugs, considerations and priority-setting are established for the main lipoprotein processing enzymes (Lgt, LspA, and Lnt) based on microbiology, biochemistry, structural biology, chemical design, and pharmacology. Although not all bacterial species will be similarly impacted by drug candidates, several advantages make LspA a top target to pursue in the development of novel antibiotics effective against bacteria that are resistant to existing drugs.
Collapse
Affiliation(s)
- Toufic El Arnaout
- Kappa Crystals Ltd, Dublin, Ireland; School of Food Science and Environmental Health, Technological University (TU) Dublin City Campus, TU, Dublin, Dublin, Ireland.
| | - Tewfik Soulimane
- Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
40
|
An Isoprene Lipid-Binding Protein Promotes Eukaryotic Coenzyme Q Biosynthesis. Mol Cell 2019; 73:763-774.e10. [PMID: 30661980 DOI: 10.1016/j.molcel.2018.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
The biosynthesis of coenzyme Q presents a paradigm for how cells surmount hydrophobic barriers in lipid biology. In eukaryotes, CoQ precursors-among nature's most hydrophobic molecules-must somehow be presented to a series of enzymes peripherally associated with the mitochondrial inner membrane. Here, we reveal that this process relies on custom lipid-binding properties of COQ9. We show that COQ9 repurposes the bacterial TetR fold to bind aromatic isoprenes with high specificity, including CoQ intermediates that likely reside entirely within the bilayer. We reveal a process by which COQ9 associates with cardiolipin-rich membranes and warps the membrane surface to access this cargo. Finally, we identify a molecular interface between COQ9 and the hydroxylase COQ7, motivating a model whereby COQ9 presents intermediates directly to CoQ enzymes. Overall, our results provide a mechanism for how a lipid-binding protein might access, select, and deliver specific cargo from a membrane to promote biosynthesis.
Collapse
|
41
|
Allen KN, Entova S, Ray LC, Imperiali B. Monotopic Membrane Proteins Join the Fold. Trends Biochem Sci 2019; 44:7-20. [PMID: 30337134 PMCID: PMC6309722 DOI: 10.1016/j.tibs.2018.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Sonya Entova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Guillotte ML, Gillespie JJ, Chandler CE, Rahman MS, Ernst RK, Azad AF. Rickettsia Lipid A Biosynthesis Utilizes the Late Acyltransferase LpxJ for Secondary Fatty Acid Addition. J Bacteriol 2018; 200:e00334-18. [PMID: 30012728 PMCID: PMC6148475 DOI: 10.1128/jb.00334-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Members of the Rickettsia genus are obligate intracellular, Gram-negative coccobacilli that infect mammalian and arthropod hosts. Several rickettsial species are human pathogens and are transmitted by blood-feeding arthropods. In Gram-negative parasites, the outer membrane (OM) sits at the nexus of the host-pathogen interaction and is rich in lipopolysaccharide (LPS). The lipid A component of LPS anchors the molecule to the bacterial surface and is an endotoxic agonist of Toll-like receptor 4 (TLR4). Despite the apparent importance of lipid A in maintaining OM integrity, as well as its inflammatory potential during infection, this molecule is poorly characterized in Rickettsia pathogens. In this work, we have identified and characterized new members of the recently discovered LpxJ family of lipid A acyltransferases in both Rickettsia typhi and Rickettsia rickettsii, the etiological agents of murine typhus and Rocky Mountain spotted fever, respectively. Our results demonstrate that these enzymes catalyze the addition of a secondary acyl chain (C14/C16) to the 3'-linked primary acyl chain of the lipid A moiety in the final steps of the Raetz pathway of lipid A biosynthesis. Since lipid A architecture is fundamental to bacterial OM integrity, we believe that rickettsial LpxJ may be important in maintaining membrane dynamics to facilitate molecular interactions at the host-pathogen interface that are required for adhesion and invasion of mammalian cells. This work contributes to our understanding of rickettsial outer membrane physiology and sets a foundation for further exploration of the envelope and its role in pathogenesis.IMPORTANCE Lipopolysaccharide (LPS) triggers an inflammatory response through the TLR4-MD2 receptor complex and inflammatory caspases, a process mediated by the lipid A moiety of LPS. Species of Rickettsia directly engage both extracellular and intracellular immunosurveillance, yet little is known about rickettsial lipid A. Here, we demonstrate that the alternative lipid A acyltransferase, LpxJ, from Rickettsia typhi and R. rickettsii catalyzes the addition of C16 fatty acid chains into the lipid A 3'-linked primary acyl chain, accounting for major structural differences relative to the highly inflammatory lipid A of Escherichia coli.
Collapse
Affiliation(s)
- Mark L Guillotte
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Yao J, Rock CO. Therapeutic Targets in Chlamydial Fatty Acid and Phospholipid Synthesis. Front Microbiol 2018; 9:2291. [PMID: 30319589 PMCID: PMC6167442 DOI: 10.3389/fmicb.2018.02291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen with a reduced genome reflecting its host cell dependent life style. However, C. trachomatis has retained all of the genes required for fatty acid and phospholipid synthesis that are present in free-living bacteria. C. trachomatis assembles its cellular membrane using its own biosynthetic machinery utilizing glucose, isoleucine, and serine. This pathway produces disaturated phospholipid molecular species containing a branched-chain 15-carbon fatty acid in the 2-position, which are distinct from the structures of host phospholipids. The enoyl reductase step (FabI) is a target for antimicrobial drug discovery, and the developmental candidate, AFN-1252, blocks the activity of CtFabI. The x-ray crystal structure of the CtFabI•NADH•AFN-1252 ternary complex reveals the interactions between the drug, protein, and cofactor. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infection cycle reduces infectious titers, and treatment at the time of infection prevents the first cell division. Fatty acid synthesis is essential for C. trachomatis proliferation within its eukaryotic host, and CtFabI is a validated therapeutic target against C. trachomatis.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
44
|
Ogawa T, Tanaka A, Kawamoto J, Kurihara T. Purification and characterization of 1-acyl-sn-glycerol-3-phosphate acyltransferase with a substrate preference for polyunsaturated fatty acyl donors from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10. J Biochem 2018; 164:33-39. [PMID: 29415144 DOI: 10.1093/jb/mvy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/21/2018] [Indexed: 11/12/2022] Open
Abstract
1-Acyl-sn-glycerol-3-phosphate acyltransferase (designated as PlsC in bacteria) catalyzes the acylation of lysophosphatidic acid and is responsible for the de novo production of phosphatidic acid, a precursor for the synthesis of various membrane glycerophospholipids. Because PlsC is an integral membrane protein, it is generally difficult to solubilize it without causing its inactivation, which has been hampering its biochemical characterization despite its ubiquitous presence and physiological importance. Most biochemical studies of PlsC have been carried out using crude membrane preparations or intact cells. In this study, we succeeded in solubilization and purification of a recombinant PlsC in its active form from the eicosapentaenoic acid-producing bacterium Shewanella livingstonensis Ac10 using 6-cyclohexyl-1-hexyl-β-d-maltoside as the detergent. We characterized the purified enzyme and found that it has a substrate preference for the acyl donors with a polyunsaturated fatty acyl group, such as eicosapentaenoyl group. These results provide a new method for purification of the PlsC family enzyme and demonstrate the occurrence of a new PlsC with unique substrate specificity.
Collapse
Affiliation(s)
- Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Asako Tanaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
45
|
Barriuso J, Martínez MJ. In Silico Analysis of the Quorum Sensing Metagenome in Environmental Biofilm Samples. Front Microbiol 2018; 9:1243. [PMID: 29930547 PMCID: PMC6000730 DOI: 10.3389/fmicb.2018.01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing (QS) is a sophisticated cell to cell signaling mechanism mediated by small diffusible molecules called “autoinducers.” This phenomenon is well studied in bacteria, where different QS systems are described that differ between Gram-negative and Gram-positive bacteria. However, a common system to these groups was discovered, the autoinducer 2. QS has implications in biofilm formation, where the application of metagenomic techniques to study these phenomena may be useful to understand the communication networks established by the different components of the community, and to discover new targets for microbial control. Here we present an in silico screening of QS proteins in all publicly available biofilm metagenomes from the JGI database. We performed sequence, conserved motifs, phylogenetic, and three-dimensional structure analyses of the candidates, resulting in an effective strategy to search QS proteins in metagenomes sequences. The number of QS proteins present in each sample, and its phylogenetic affiliation, was clearly related to the bacterial diversity and the origin of the biofilm. The samples isolated from natural habitats presented clear differences with those from artificial habitats. Interesting findings have been made in the abundance of LuxR-like proteins finding an unbalanced ratio between the synthases and the receptor proteins in Bacteroidetes bacteria, pointing out the existence of “cheaters” in this group. Moreover, we have shown the presence of the LuxI/R QS system in bacteria from the Nitrospira taxonomic group. Finally, some undescribed proteins from the HdtS family have been found in Gamma-proteobacteria.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María J Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
46
|
Cheng W, Doyle DA, El Arnaout T. The N-acyltransferase Lnt: Structure-function insights from recent simultaneous studies. Int J Biol Macromol 2018; 117:870-877. [PMID: 29859843 DOI: 10.1016/j.ijbiomac.2018.05.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023]
Abstract
Bacterial lipoproteins have been researched for decades due to their roles in a large number of biological functions. There were no structures of their main three membrane processing enzymes, until 2016 for Lgt and LspA, and then 2017 for Lnt with not one but three simultaneous, independent publications. We have analyzed the recent findings for this apolipoprotein N-acyltransferase Lnt, with comparisons between the novel structures, and with soluble nitrilases, to determine the significance of unique features in terms of substrate's recognition and binding mechanism influenced by exclusive residues, two transmembrane helices, and a flexible loop.
Collapse
Affiliation(s)
- Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Declan A Doyle
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Toufic El Arnaout
- School of Food Science and Environmental Health, Dublin Institute of Technology, Marlborough St, Dublin 1, Ireland.
| |
Collapse
|
47
|
Toyotake Y, Cho HN, Kawamoto J, Kurihara T. A novel 1-acyl-sn-glycerol-3-phosphate O-acyltransferase homolog for the synthesis of membrane phospholipids with a branched-chain fatty acyl group in Shewanella livingstonensis Ac10. Biochem Biophys Res Commun 2018; 500:704-709. [PMID: 29678574 DOI: 10.1016/j.bbrc.2018.04.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
1-Acyl-sn-glycerol-3-phosphate O-acyltransferase (PlsC) plays an essential role in the formation of phosphatidic acid, a precursor of various membrane phospholipids (PLs), in bacteria by catalyzing the introduction of an acyl group into the sn-2 position of lysophosphatidic acid. Various bacteria produce more than one PlsC. However, the physiological significance of the occurrence of multiple PlsCs is poorly understood. A psychrotrophic bacterium, Shewanella livingstonensis Ac10, which produces eicosapentaenoic acid at low temperatures, has five putative PlsCs (PlsC1-5). We previously showed that PlsC1 is responsible for the production of PLs containing an eicosapentaenoyl group. Here, we characterized another putative PlsC of this bacterium named PlsC4. We generated a plsC4-disrupted mutant and found that PLs containing 13:0 found in the parental strain were almost completely absent in the mutant. The loss of these PLs was suppressed by introduction of a plsC4-expression plasmid. PLs containing 15:0 were also drastically decreased by plsC4 disruption. Gas chromatography-mass spectrometry analysis of fatty acyl methyl esters derived from PLs of the parental strain showed that the 13:0 and 15:0 groups were an 11-methyllauroyl group and a 13-methylmyristoyl group, respectively. Phospholipase A2 treatment revealed that these fatty acyl groups were linked to the sn-2 position of PLs. Thus, PlsC4 is a new type of PlsC homolog that is responsible for the synthesis of PLs containing a branched-chain fatty acyl group at the sn-2 position and plays a clearly different role from that of PlsC1 in vivo.
Collapse
Affiliation(s)
- Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hyun-Nam Cho
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
48
|
Li Z, Tang Y, Wu Y, Zhao S, Bao J, Luo Y, Li D. Structural insights into the committed step of bacterial phospholipid biosynthesis. Nat Commun 2017; 8:1691. [PMID: 29167463 PMCID: PMC5700162 DOI: 10.1038/s41467-017-01821-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022] Open
Abstract
The membrane-integral glycerol 3-phosphate (G3P) acyltransferase PlsY catalyses the committed and essential step in bacterial phospholipid biosynthesis by acylation of G3P, forming lysophosphatidic acid. It contains no known acyltransferase motifs, lacks eukaryotic homologs, and uses the unusual acyl-phosphate as acyl donor, as opposed to acyl-CoA or acyl-carrier protein for other acyltransferases. Previous studies have identified several PlsY inhibitors as potential antimicrobials. Here we determine the crystal structure of PlsY at 1.48 Å resolution, revealing a seven-transmembrane helix fold. Four additional substrate- and product-bound structures uncover the atomic details of its relatively inflexible active site. Structure and mutagenesis suggest a different acylation mechanism of ‘substrate-assisted catalysis’ that, unlike other acyltransferases, does not require a proteinaceous catalytic base to complete. The structure data and a high-throughput enzymatic assay developed in this work should prove useful for virtual and experimental screening of inhibitors against this vital bacterial enzyme. The first step in bacterial phospholipid biosynthesis is the acylation of glycerol 3-phosphate to form lysophosphatidic acid. Here, the authors present the high resolution crystal structure of the glycerol 3-phosphate acyltransferase PlsY, a membrane protein and give insights into its catalytical mechanism.
Collapse
Affiliation(s)
- Zhenjian Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China
| | - Yannan Tang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China
| | - Juan Bao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China
| | - Yitian Luo
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, 333 Middle Huaxia Road, Shanghai, 201210, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai, 201210, China.
| |
Collapse
|
49
|
|