1
|
Yu Y, Wang J, Guo Q, Luo H. LINC01134: a pivotal oncogene with promising predictive maker and therapeutic target in hepatocellular carcinoma. Front Oncol 2024; 14:1265762. [PMID: 38450182 PMCID: PMC10915649 DOI: 10.3389/fonc.2024.1265762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading and fatal malignancy within the gastrointestinal tract. Recent advancements highlight the pivotal role of long non-coding RNAs (lncRNAs) in diverse biological pathways and pathologies, particularly in tumorigenesis. LINC01134, a particular lncRNA, has attracted considerable attention due to its oncogenic potential in hepatoma. Current research underscores LINC01134's potential in augmenting the onset and progression of HCC, with notable implications in drug resistance. This review comprehensively explores the molecular functions and regulatory mechanisms of LINC01134 in HCC, offering a fresh perspective for therapeutic interventions. By delving into LINC01134's multifaceted roles, we aim to foster novel strategies in HCC management.
Collapse
Affiliation(s)
- Yutian Yu
- Department of Spleen and Stomach Diseases, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingfa Guo
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. Int J Mol Sci 2019; 20:ijms20153643. [PMID: 31349654 PMCID: PMC6696000 DOI: 10.3390/ijms20153643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Early embryonic development in mammals, from fertilization to implantation, can be viewed as a process in which stem cells alternate between self-renewal and differentiation. During this process, the fates of stem cells in embryos are gradually specified, from the totipotent state, through the segregation of embryonic and extraembryonic lineages, to the molecular and cellular defined progenitors. Most of those stem cells with different potencies in vivo can be propagated in vitro and recapitulate their differentiation abilities. Complex and coordinated regulations, such as epigenetic reprogramming, maternal RNA clearance, transcriptional and translational landscape changes, as well as the signal transduction, are required for the proper development of early embryos. Accumulated studies suggest that Dicer-dependent noncoding RNAs, including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are involved in those regulations and therefore modulate biological properties of stem cells in vitro and in vivo. Elucidating roles of these noncoding RNAs will give us a more comprehensive picture of mammalian embryonic development and enable us to modulate stem cell potencies. In this review, we will discuss roles of miRNAs in regulating the maintenance and cell fate potential of stem cells in/from mouse and human early embryos.
Collapse
|
3
|
Savva YA, Rezaei A, St Laurent G, Reenan RA. Reprogramming, Circular Reasoning and Self versus Non-self: One-Stop Shopping with RNA Editing. Front Genet 2016; 7:100. [PMID: 27458478 PMCID: PMC4937755 DOI: 10.3389/fgene.2016.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023] Open
Abstract
Transcription of genetic information from archival DNA into RNA molecule working copies is vital for proper cellular function and is highly accurate. In turn, RNAs serve structural, enzymatic, and regulatory roles, as well as being informational templates for the ribosomal translation of proteins. Following RNA synthesis, maturing of RNA molecules occurs through various RNA processing events. One component of the collection of processes involving RNA species, broadly defined as RNA metabolism, is the RNA-editing pathway and is found in all animals. Acting specifically on RNA substrates with double-stranded character, RNA editing has been shown to regulate a plethora of genomic outputs, including gene recoding, RNA splicing, biogenesis and targeting actions of microRNAs and small interfering RNAs, and global gene expression. Recent evidence suggests that RNA modifications mediated via RNA editing influence the biogenesis of circular RNAs and safeguard against aberrant innate immune responses generated to endogenous RNA sources. These novel roles have the potential to contribute new insights into molecular mechanisms underlying pathogenesis mediated by mishandling of double-stranded RNA. Here, we discuss recent advances in the field, which highlight novel roles associated with the RNA-editing process and emphasize their importance during cellular RNA metabolism. In addition, we highlight the relevance of these newly discovered roles in the context of neurological disorders and the more general concept of innate recognition of self versus non-self.
Collapse
Affiliation(s)
- Yiannis A Savva
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, USA
| | - Ali Rezaei
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, USA
| | - Georges St Laurent
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, USA
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, USA
| |
Collapse
|
4
|
Fu Y, Lee I, Lee YS, Bao X. Small Non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their Biogenesis, Function and Implication in Human Diseases. Genomics Inform 2015; 13:94-101. [PMID: 26865839 PMCID: PMC4742329 DOI: 10.5808/gi.2015.13.4.94] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
tRNA-derived RNA fragments (tRFs) are an emerging class of non-coding RNAs (ncRNAs). A growing number of reports have shown that tRFs are not random degradation products but are functional ncRNAs made of specific tRNA cleavage. They play regulatory roles in several biological contexts such as cancer, innate immunity, stress responses, and neurological disorders. In this review, we summarize the biogenesis and functions of tRFs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Yong Sun Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.; The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA.; The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
5
|
Ye X, Song T, Liu C, Feng H, Liu Z. Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology. Hereditas 2015; 151:220-8. [PMID: 25588308 DOI: 10.1111/hrd2.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 21 nt noncoding RNAs that influence the phenotypes of different species through the post-transcriptional regulation of gene expression. Although many miRNAs have been identified in a few model plants, less is known about miRNAs specific to cucumber (Cucumis sativus L.). In this study, two libraries of cucumber RNA, one based on fruit samples and another based on mixed samples from leaves, stems, and roots, were prepared for deep-sequencing. A total of 110 sequences were matched to known miRNAs in 47 families, while 56 sequences in 46 families are newly identified in cucumber. Of these, 77 known and 44 new miRNAs were differentially expressed, with a fold-change of at least 2 and p-value < 0.05. In addition, we predicted the potential targets of known and new miRNAs. The identification and characterization of known and new miRNAs will enable us to better understand the role of these miRNAs in the formation of cucumber fruit.
Collapse
Affiliation(s)
- Xueling Ye
- College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | | | | | | | | |
Collapse
|
6
|
Schuster A, Hennig GW, Ortogero N, Luong D, Yan W. In silico identification of novel endo-siRNAs. Methods Mol Biol 2015; 1218:341-51. [PMID: 25319662 DOI: 10.1007/978-1-4939-1538-5_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many classes of small noncoding RNAs (sncRNAs), such as microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), have been identified as important regulators of gene expression. Endo-siRNAs represent an integral part of the endogenous RNAi pathway and have been identified in multiple organisms and cell types. Wide adoption of the next-generation deep sequencing (NGS)-based sncRNA profiling has made the identification of novel sncRNA species more accessible. However, it remains a challenge to identify novel endo-siRNAs that are not collected in the current endo-siRNA databases. We have developed an in silico method for identification of novel endo-siRNAs using small RNA NGS data. Here, we describe our protocol in detail.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, MS575, 1664 North Virginia Street, Reno, NV, 89557, USA
| | | | | | | | | |
Collapse
|
7
|
Chen L, Dahlstrom JE, Lee SH, Rangasamy D. Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics 2014; 7:758-71. [DOI: 10.4161/epi.20706] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
8
|
Characterization of export receptor exportins (XPOs) in the parasite Schistosoma mansoni. Parasitol Res 2013; 112:4151-9. [PMID: 24013345 DOI: 10.1007/s00436-013-3606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Several proteins and different species of RNA that are produced in the nucleus are exported through the nuclear pore complexes, which require a family of conserved nuclear export receptors called exportins (XPOs). It has been reported that the XPOs (XPO1, XPO5, and XPOT) are directly involved in the transport processes of noncoding RNAs from the nucleus to the cytoplasm and/or from cytoplasm to the nucleus. All three genes are present in fungi, plants, and deuterostome metazoans. However, protostome metazoan species lack one of the three genes across evolution. In this report, we have demonstrated that all three XPO proteins are present in the parasite protostome Schistosoma mansoni. As this parasite has a complex life cycle presenting several stages in different hosts and environments, implying a differential gene regulation, we proposed a genomic analysis of XPOs to validate their annotation. The results showed the conservation of exportin family members and gene duplication events in S. mansoni. We performed quantitative RT-PCR, which revealed an upregulation of SmXPO1 in 24 h schistosomula (sixfold when compared with cercariae), and similar transcription levels were observed for SmXPO5 and SmXPOT in all the analyzed stages. These three XPO proteins have been identified for the first time in the protostome clade, which suggests a higher complexity in RNA transport in the parasite S. mansoni. Taken together, these results suggest that RNA transport by exportins might control cellular processes during cercariae, schistosomula, and adult worm development.
Collapse
|
9
|
Zheng LL, Wen YZ, Yang JH, Liao JY, Shao P, Xu H, Zhou H, Wen JZ, Lun ZR, Ayala FJ, Qu LH. Comparative transcriptome analysis of small noncoding RNAs in different stages of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2013; 19:863-875. [PMID: 23704326 PMCID: PMC3683921 DOI: 10.1261/rna.035683.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Trypanosoma brucei, a pathogen of human and domestic animals, is an early evolved parasitic protozoan with a complex life cycle. Most genes of this parasite are post-transcriptionally regulated. However, the mechanisms and the molecules involved remain largely unknown. We have deep-sequenced the small RNAs of two life stages of this parasite--the bloodstream form and the procyclic form. Our results show that the small RNAs of T. brucei could derive from multiple sources, including NATs (natural antisense transcripts), tRNAs, and rRNAs. Most of these small RNAs in the two stages were found to share uniform characteristics. However, our results demonstrate that their variety and expression show significant differences between different stages, indicating possible functional differentiation. Dicer-knockdown evidence further proved that some of the small interfering RNAs (siRNAs) could regulate the expression of genes. Based on the genome-wide analysis of the small RNAs in the two stages of T. brucei, our results not only provide evidence to study their differentiation but also shed light on questions regarding the origins and evolution of small RNA-based mechanisms in early eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- Evolution, Molecular
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Genes, Protozoan
- High-Throughput Nucleotide Sequencing
- Molecular Sequence Data
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Ling-Ling Zheng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan-Zi Wen
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian-Hua Yang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-You Liao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Shao
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Xu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hui Zhou
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun-Zhi Wen
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Tropical Disease and Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Centre for Parasitology and Disease, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, United Kingdom
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Liang-Hu Qu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering, Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Dhanasekaran K, Kumari S, Kanduri C. Noncoding RNAs in chromatin organization and transcription regulation: an epigenetic view. Subcell Biochem 2013; 61:343-72. [PMID: 23150258 DOI: 10.1007/978-94-007-4525-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Genome of a eukaryotic cell harbors genetic material in the form of DNA which carries the hereditary information encoded in their bases. Nucleotide bases of DNA are transcribed into complimentary RNA bases which are further translated into protein, performing defined set of functions. The central dogma of life ensures sequential flow of genetic information among these biopolymers. Noncoding RNAs (ncRNAs) serve as exceptions for this principle as they do not code for any protein. Nevertheless, a major portion of the human transcriptome comprises noncoding RNAs. These RNAs vary in size, as well as they vary in the spatio-temporal distribution. These ncRnAs are functional and are shown to be involved in diverse cellular activities. Precise location and expression of ncRNA is essential for the cellular homeostasis. Failures of these events ultimately results in numerous disease conditions including cancer. The present review lists out the various classes of ncRNAs with a special emphasis on their role in chromatin organization and transcription regulation.
Collapse
Affiliation(s)
- Karthigeyan Dhanasekaran
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | | | | |
Collapse
|
11
|
Host defense against DNA virus infection in shrimp is mediated by the siRNA pathway. Eur J Immunol 2012; 43:137-46. [DOI: 10.1002/eji.201242806] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/06/2012] [Accepted: 10/08/2012] [Indexed: 12/14/2022]
|
12
|
NISHIKAWA SHIMPEI, ISHII HIDESHI, HARAGUCHI NAOTSUGU, KANO YOSHIHIRO, FUKUSUMI TAKAHITO, OHTA KATSUYA, OZAKI MIYUKI, DEWI DYAHLAKSMI, SAKAI DAISUKE, SATOH TAROH, NAGANO HIROAKI, DOKI YUICHIRO, MORI MASAKI. microRNA-based cancer cell reprogramming technology. Exp Ther Med 2012; 4:8-14. [PMID: 23060915 PMCID: PMC3460250 DOI: 10.3892/etm.2012.558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/05/2012] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications play crucial roles in cancer initiation and development. Complete reprogramming can be achieved through the introduction of defined biological factors such as Oct4, Sox2, Klf4, and cMyc into mouse and human fibroblasts. Introduction of these transcription factors resulted in the modification of malignant phenotype behavior. Recent studies have shown that human and mouse somatic cells can be reprogrammed to become induced pluripotent stem cells using forced expression of microRNAs, which completely eliminates the need for ectopic protein expression. Considering the usefulness of RNA molecules, microRNA-based reprogramming technology may have future applications in regenerative and cancer medicine.
Collapse
Affiliation(s)
- SHIMPEI NISHIKAWA
- Departments of Frontier Science for Cancer and Chemotherapy and
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - HIDESHI ISHII
- Departments of Frontier Science for Cancer and Chemotherapy and
| | | | - YOSHIHIRO KANO
- Departments of Frontier Science for Cancer and Chemotherapy and
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - TAKAHITO FUKUSUMI
- Departments of Frontier Science for Cancer and Chemotherapy and
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - KATSUYA OHTA
- Departments of Frontier Science for Cancer and Chemotherapy and
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - MIYUKI OZAKI
- Departments of Frontier Science for Cancer and Chemotherapy and
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - DYAH LAKSMI DEWI
- Departments of Frontier Science for Cancer and Chemotherapy and
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - DAISUKE SAKAI
- Departments of Frontier Science for Cancer and Chemotherapy and
| | - TAROH SATOH
- Departments of Frontier Science for Cancer and Chemotherapy and
| | - HIROAKI NAGANO
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - YUICHIRO DOKI
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| | - MASAKI MORI
- Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871,
Japan
| |
Collapse
|
13
|
Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation. J Nucleic Acids 2012; 2012:360358. [PMID: 22778911 PMCID: PMC3388297 DOI: 10.1155/2012/360358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.
Collapse
|
14
|
Cai Y, Zhou Q, Yu C, Wang X, Hu S, Yu J, Yu X. Transposable-element associated small RNAs in Bombyx mori genome. PLoS One 2012; 7:e36599. [PMID: 22662121 PMCID: PMC3359762 DOI: 10.1371/journal.pone.0036599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/06/2012] [Indexed: 11/18/2022] Open
Abstract
Small RNAs are a group of regulatory RNA molecules that control gene expression at transcriptional or post-transcriptional levels among eukaryotes. The silkworm, Bombyx mori L., genome harbors abundant repetitive sequences derived from families of retrotransposons and transposons, which together constitute almost half of the genome space and provide ample resource for biogenesis of the three major small RNA families. We systematically discovered transposable-element (TE)-associated small RNAs in B. mori genome based on a deep RNA-sequencing strategy and the effort yielded 182, 788 and 4,990 TE-associated small RNAs in the miRNA, siRNA and piRNA species, respectively. Our analysis suggested that the three small RNA species preferentially associate with different TEs to create sequence and functional diversity, and we also show evidence that a Bombyx non-LTR retrotransposon, bm1645, alone contributes to the generation of TE-associated small RNAs in a very significant way. The fact that bm1645-associated small RNAs partially overlap with each other implies a possibility that this element may be modulated by different mechanisms to generate different products with diverse functions. Taken together, these discoveries expand the small RNA pool in B. mori genome and lead to new knowledge on the diversity and functional significance of TE-associated small RNAs.
Collapse
Affiliation(s)
- Yimei Cai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qing Zhou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JY); (XY)
| | - Xiaomin Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JY); (XY)
| |
Collapse
|
15
|
Abstract
In mammals, endogenous siRNAs (endo-siRNAs) have only been reported in murine oocytes and embryonic stem cells. Here, we show that murine spermatogenic cells express numerous endo-siRNAs, which are likely to be derived from naturally occurring double-stranded RNA (dsRNA) precursors. The biogenesis of these testicular endo-siRNAs is DROSHA independent, but DICER dependent. These male germ cell endo-siRNAs can potentially target hundreds of transcripts or thousands of DNA regions in the genome. Overall, our work has unveiled another hidden layer of regulation imposed by small noncoding RNAs during male germ cell development.
Collapse
|
16
|
|
17
|
Rigoutsos I, Furnari F. Gene-expression forum: Decoy for microRNAs. Nature 2010; 465:1016-7. [PMID: 20577197 DOI: 10.1038/4651016a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Hendrix D, Levine M, Shi W. miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 2010; 11:R39. [PMID: 20370911 PMCID: PMC2884542 DOI: 10.1186/gb-2010-11-4-r39] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/19/2010] [Accepted: 04/06/2010] [Indexed: 12/14/2022] Open
Abstract
A novel method for prediction of miRs from deep sequencing data. Its utility is demonstrated when applied to Ciona data. MicroRNAs (miRs) have been broadly implicated in animal development and disease. We developed a novel computational strategy for the systematic, whole-genome identification of miRs from high throughput sequencing information. This method, miRTRAP, incorporates the mechanisms of miR biogenesis and includes additional criteria regarding the prevalence and quality of small RNAs arising from the antisense strand and neighboring loci. This program was applied to the simple chordate Ciona intestinalis and identified nearly 400 putative miR loci.
Collapse
Affiliation(s)
- David Hendrix
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, 142 LSA#3200, Berkeley, CA 94720-3200, USA.
| | | | | |
Collapse
|
19
|
Laloo B, Simon D, Veillat V, Lauzel D, Guyonnet-Duperat V, Moreau-Gaudry F, Sagliocco F, Grosset C. Analysis of post-transcriptional regulations by a functional, integrated, and quantitative method. Mol Cell Proteomics 2010; 8:1777-88. [PMID: 19411282 DOI: 10.1074/mcp.m800503-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the past 10 years, transcriptome and proteome analyses have provided valuable data on global gene expression and cell functional networks. However, when integrated,these analyses revealed partial correlations between mRNA expression levels and protein abundance thus suggesting that post-transcriptional regulations may be in part responsible for this discrepancy. In the present work, we report the development of a functional, integrated, and quantitative method to measure post-transcriptional regulations that we named FunREG. This method enables (i) quantitative measure of post-transcriptional regulations mediated by selected 3-untranslated regions and exogenous small interfering-RNA or micro-RNAs and (ii) comparison of these regulatory processes in physiologically relevant systems (e.g. cancer versus primary untransformed cells). We applied FunREG to the study of liver cancer, and we demonstrate for the first time the differential regulatory mechanisms controlling gene expression at a post-transcriptional level in normal and tumoral hepatic cells. As an example, translation efficiency mediated by heparin-binding epidermal growth factor 3-untranslated region was increased 3-fold in liver cancer cells compared with normal hepatocytes, whereas stability of an mRNA containing a portion of Cyclin D1 3-untranslated region was increased more than 2-fold in HepG2 cells compared with normal hepatocytes. Consequently we believe that the method presented herein may become an important tool in fundamental and medical research. This approach is convenient and easy to perform, accessible to any investigator, and should be adaptable to a large number of cell type, functional and chemical screens, as well as genome scale analyses. Finally FunREG may represent a helpful tool to reconcile transcriptome and proteome data.
Collapse
Affiliation(s)
- Benoît Laloo
- INSERM, U889, Groupe de Recherche pour l'Etude du Foie (GREF), Bordeaux, F-33076 France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23:2639-49. [PMID: 19933153 DOI: 10.1101/gad.1837609] [Citation(s) in RCA: 815] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New types of small RNAs distinct from microRNAs (miRNAs) are progressively being discovered in various organisms. In order to discover such novel small RNAs, a library of 17- to 26-base-long RNAs was created from prostate cancer cell lines and sequenced by ultra-high-throughput sequencing. A significant number of the sequences are derived from precise processing at the 5' or 3' end of mature or precursor tRNAs to form three series of tRFs (tRNA-derived RNA fragments): the tRF-5, tRF-3, and tRF-1 series. These sequences constitute a class of short RNAs that are second most abundant to miRNAs. Northern hybridization, quantitative RT-PCR, and splinted ligation assays independently measured the levels of at least 17 tRFs. To demonstrate the biological importance of tRFs, we further investigated tRF-1001, derived from the 3' end of a Ser-TGA tRNA precursor transcript that is not retained in the mature tRNA. tRF-1001 is expressed highly in a wide range of cancer cell lines but much less in tissues, and its expression in cell lines was tightly correlated with cell proliferation. siRNA-mediated knockdown of tRF-1001 impaired cell proliferation with the specific accumulation of cells in G2, phenotypes that were reversed specifically by cointroducing a synthetic 2'-O-methyl tRF-1001 oligoribonucleotide resistant to the siRNA. tRF-1001 is generated in the cytoplasm by tRNA 3'-endonuclease ELAC2, a prostate cancer susceptibility gene. Our data suggest that tRFs are not random by-products of tRNA degradation or biogenesis, but an abundant and novel class of short RNAs with precise sequence structure that have specific expression patterns and specific biological roles.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
21
|
Couvillion MT, Lee SR, Hogstad B, Malone CD, Tonkin LA, Sachidanandam R, Hannon GJ, Collins K. Sequence, biogenesis, and function of diverse small RNA classes bound to the Piwi family proteins of Tetrahymena thermophila. Genes Dev 2009; 23:2016-32. [PMID: 19656801 DOI: 10.1101/gad.1821209] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PAZ/PIWI domain (PPD) proteins carrying small RNAs (sRNAs) function in gene and genome regulation. The ciliate Tetrahymena thermophila encodes numerous PPD proteins exclusively of the Piwi clade. We show that the three Tetrahymena Piwi family proteins (Twis) preferentially expressed in growing cells differ in their genetic essentiality and subcellular localization. Affinity purification of all eight distinct Twi proteins revealed unique properties of their bound sRNAs. Deep sequencing of Twi-bound and total sRNAs in strains disrupted for various silencing machinery uncovered an unanticipated diversity of 23- to 24-nt sRNA classes in growing cells, each with distinct genetic requirements for accumulation. Altogether, Twis distinguish sRNAs derived from loci of pseudogene families, three types of DNA repeats, structured RNAs, and EST-supported loci with convergent or paralogous transcripts. Most surprisingly, Twi7 binds complementary strands of unequal length, while Twi10 binds a specific permutation of the guanosine-rich telomeric repeat. These studies greatly expand the structural and functional repertoire of endogenous sRNAs and RNPs.
Collapse
Affiliation(s)
- Mary T Couvillion
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Kurt G Barringhaus
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, LRB 821, 364 Plantation St, Worcester, MA 01605, USA.
| | | |
Collapse
|