1
|
Pastore AJ, Montoya A, Kamat M, Basso KB, Italia JS, Chatterjee A, Drosou M, Pantazis DA, Angerhofer A. Selective incorporation of 5-hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase. Protein Sci 2023; 32:e4537. [PMID: 36482787 PMCID: PMC9801070 DOI: 10.1002/pro.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.
Collapse
Affiliation(s)
| | - Alvaro Montoya
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Manasi Kamat
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Kari B. Basso
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - James S. Italia
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | | | - Maria Drosou
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | | |
Collapse
|
2
|
Mukai T, Reynolds NM, Crnković A, Söll D. Bioinformatic Analysis Reveals Archaeal tRNA Tyr and tRNA Trp Identities in Bacteria. Life (Basel) 2017; 7:life7010008. [PMID: 28230768 PMCID: PMC5370408 DOI: 10.3390/life7010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/01/2022] Open
Abstract
The tRNA identity elements for some amino acids are distinct between the bacterial and archaeal domains. Searching in recent genomic and metagenomic sequence data, we found some candidate phyla radiation (CPR) bacteria with archaeal tRNA identity for Tyr-tRNA and Trp-tRNA synthesis. These bacteria possess genes for tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS) predicted to be derived from DPANN superphylum archaea, while the cognate tRNATyr and tRNATrp genes reveal bacterial or archaeal origins. We identified a trace of domain fusion and swapping in the archaeal-type TyrRS gene of a bacterial lineage, suggesting that CPR bacteria may have used this mechanism to create diverse proteins. Archaeal-type TrpRS of bacteria and a few TrpRS species of DPANN archaea represent a new phylogenetic clade (named TrpRS-A). The TrpRS-A open reading frames (ORFs) are always associated with another ORF (named ORF1) encoding an unknown protein without global sequence identity to any known protein. However, our protein structure prediction identified a putative HIGH-motif and KMSKS-motif as well as many α-helices that are characteristic of class I aminoacyl-tRNA synthetase (aaRS) homologs. These results provide another example of the diversity of molecular components that implement the genetic code and provide a clue to the early evolution of life and the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
4
|
Simonson T, Ye-Lehmann S, Palmai Z, Amara N, Wydau-Dematteis S, Bigan E, Druart K, Moch C, Plateau P. Redesigning the stereospecificity of tyrosyl-tRNA synthetase. Proteins 2016; 84:240-53. [PMID: 26676967 DOI: 10.1002/prot.24972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | | - Zoltan Palmai
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Najette Amara
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Sandra Wydau-Dematteis
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Erwan Bigan
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Karen Druart
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Clara Moch
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Pierre Plateau
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
5
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter.
Collapse
|
6
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
7
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
8
|
Takimoto JK, Dellas N, Noel JP, Wang L. Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol 2011; 6:733-43. [PMID: 21545173 PMCID: PMC3137230 DOI: 10.1021/cb200057a] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unnatural amino acids (Uaas) can be translationally incorporated into proteins in vivo using evolved tRNA/aminoacyl-tRNA synthetase (RS) pairs, affording chemistries inaccessible when restricted to the 20 natural amino acids. To date, most evolved RSs aminoacylate Uaas chemically similar to the native substrate of the wild-type RS; these conservative changes limit the scope of Uaa applications. Here, we adapt Methanosarcina mazei PylRS to charge a noticeably disparate Uaa, O-methyl-l-tyrosine (Ome). In addition, the 1.75 Å X-ray crystal structure of the evolved PylRS complexed with Ome and a non-hydrolyzable ATP analogue reveals the stereochemical determinants for substrate selection. Catalytically synergistic active site mutations remodel the substrate-binding cavity, providing a shortened but wider active site. In particular, mutation of Asn346, a residue critical for specific selection and turnover of the Pyl chemical core, accommodates different side chains while the central role of Asn346 in aminoacylation is rescued through compensatory hydrogen bonding provided by A302T. This multifaceted analysis provides a new starting point for engineering PylRS to aminoacylate a significantly more diverse selection of Uaas than previously anticipated.
Collapse
Affiliation(s)
| | - Nikki Dellas
- The Jack H. Skirball Center for Chemical Biology & Proteomics
| | - Joseph P. Noel
- The Jack H. Skirball Center for Chemical Biology & Proteomics
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics
| |
Collapse
|
9
|
Protein nitrotryptophan: formation, significance and identification. J Proteomics 2011; 74:2300-12. [PMID: 21679780 DOI: 10.1016/j.jprot.2011.05.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 12/31/2022]
Abstract
Reactive nitrogen species are formed during a variety of disease states and have been shown to modify several amino acids on proteins. To date, the majority of research in this area has focused on the nitration of tyrosine residues to form 3-nitrotyrosine. However, emerging evidence suggests that another modification, nitration of tryptophan residues, to form nitrotryptophan (NO(2)-Trp), may also play a significant role in the biology of nitrosative stress. This review takes an in-depth look at NO(2)-Trp, presenting the current research about its formation, prevalence and biological significance, as well as the methods used to identify NO(2)-Trp-modified proteins. Although more research is needed to understand the full biological role of NO(2)-Trp, the data presented herein suggest a contribution to nitrosative stress-induced cell dysregulation and perhaps even in physiological cell processes.
Collapse
|
10
|
Importance of single molecular determinants in the fidelity of expanded genetic codes. Proc Natl Acad Sci U S A 2011; 108:1320-5. [PMID: 21224416 DOI: 10.1073/pnas.1012276108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.
Collapse
|
11
|
Santolini J. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons. J Inorg Biochem 2010; 105:127-41. [PMID: 21194610 DOI: 10.1016/j.jinorgbio.2010.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 02/01/2023]
Abstract
Since its discovery, nitric oxide synthase (NOS), the enzyme responsible for NO biosynthesis in mammals, has been the subject of extensive investigations regarding its catalytic and molecular mechanisms. These studies reveal the high degree of sophistication of NOS functioning and regulation. However, the precise description of the NOS molecular mechanism and in particular of the oxygen activation chemistry is still lacking. The reaction intermediates implicated in NOS catalysis continue to elude identification and the current working paradigm is increasingly contested. Consequently, the last three years has seen the emergence of several competing models. All these models propose the same global reaction scheme consisting of two successive oxidation reactions but they diverge in the details of their reaction sequence. The major discrepancies concern the number, source and characteristics of proton and electron transfer processes. As a result each model proposes distinct reaction pathways with different implied oxidative species. This review aims to examine the different experimental evidence concerning NOS proton and electron transfer events and the role played by the substrates and cofactors in these processes. The resulting discussion should provide a comparative picture of all potential models for the NOS molecular mechanism.
Collapse
Affiliation(s)
- Jérôme Santolini
- iBiTec-S; LSOD, C. E. A. Saclay; 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
12
|
Han GW, Yang XL, McMullan D, Chong YE, Krishna SS, Rife CL, Weekes D, Brittain SM, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Carlton D, Caruthers J, Chiu HJ, Clayton T, Duan L, Feuerhelm J, Grant JC, Grzechnik SK, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, van den Bedem H, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Elsliger MA, Schimmel P, Wilson IA. Structure of a tryptophanyl-tRNA synthetase containing an iron-sulfur cluster. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1326-34. [PMID: 20944229 PMCID: PMC2954223 DOI: 10.1107/s1744309110037619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/20/2010] [Indexed: 11/10/2022]
Abstract
A novel aminoacyl-tRNA synthetase that contains an iron-sulfur cluster in the tRNA anticodon-binding region and efficiently charges tRNA with tryptophan has been found in Thermotoga maritima. The crystal structure of TmTrpRS (tryptophanyl-tRNA synthetase; TrpRS; EC 6.1.1.2) reveals an iron-sulfur [4Fe-4S] cluster bound to the tRNA anticodon-binding (TAB) domain and an L-tryptophan ligand in the active site. None of the other T. maritima aminoacyl-tRNA synthetases (AARSs) contain this [4Fe-4S] cluster-binding motif (C-x₂₂-C-x₆-C-x₂-C). It is speculated that the iron-sulfur cluster contributes to the stability of TmTrpRS and could play a role in the recognition of the anticodon.
Collapse
Affiliation(s)
- Gye Won Han
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Xiang-Lei Yang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel McMullan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Yeeting E. Chong
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - S. Sri Krishna
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Christopher L. Rife
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dana Weekes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott M. Brittain
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Polat Abdubek
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Eileen Ambing
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tamara Astakhova
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Herbert L. Axelrod
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dennis Carlton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan Caruthers
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Thomas Clayton
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lian Duan
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Julie Feuerhelm
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Joanna C. Grant
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Slawomir K. Grzechnik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kevin K. Jin
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Heath E. Klock
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mark W. Knuth
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Abhinav Kumar
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - David Marciano
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mitchell D. Miller
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Andrew T. Morse
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Edward Nigoghossian
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Linda Okach
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Jessica Paulsen
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ron Reyes
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Henry van den Bedem
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Aprilfawn White
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Guenter Wolf
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Qingping Xu
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Keith O. Hodgson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - John Wooley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Adam Godzik
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA, USA
- Program on Bioinformatics and Systems Biology, Sanford–Burnham Medical Research Institute, La Jolla, CA, USA
| | - Scott A. Lesley
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul Schimmel
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A. Wilson
- Joint Center for Structural Genomics, http://www.jcsg.org, USA
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
13
|
Affiliation(s)
| | | | - Bhumit A. Patel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
14
|
Patel BA, Moreau M, Widom J, Chen H, Yin L, Hua Y, Crane BR. Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light. Proc Natl Acad Sci U S A 2009; 106:18183-8. [PMID: 19841256 PMCID: PMC2775278 DOI: 10.1073/pnas.0907262106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Indexed: 11/18/2022] Open
Abstract
Deinococcus radiodurans (Dr) withstands desiccation, reactive oxygen species, and doses of radiation that would be lethal to most organisms. Deletion of a gene encoding a homolog of mammalian nitric oxide synthase (NOS) severely compromises the recovery of Dr from ultraviolet (UV) radiation damage. The Deltanos defect can be complemented with recombinant NOS, rescued by exogenous nitric oxide (NO) and mimicked in the wild-type strain with an NO scavenging compound. UV radiation induces both upregulation of the nos gene and cellular NO production on similar time scales. Growth recovery does not depend on NO being present during UV irradiation, but rather can be manifested by NO addition hours after exposure. Surprisingly, nos deletion does not increase sensitivity to oxidative damage, and hydrogen peroxide does not induce nos expression. However, NOS-derived NO upregulates transcription of obgE, a gene involved in bacterial growth proliferation and stress response. Overexpression of the ObgE GTPase in the Deltanos background substantially alleviates the growth defect after radiation damage. Thus, NO acts as a signal for the transcriptional regulation of growth in D. radiodurans.
Collapse
Affiliation(s)
- Bhumit A. Patel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Magali Moreau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Huan Chen
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310008, China
| | - Longfei Yin
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310008, China
| | - Yuejin Hua
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310008, China
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
15
|
Ataide SF, Rogers TE, Ibba M. The CCA anticodon specifies separate functions inside and outside translation in Bacillus cereus. RNA Biol 2009; 6:479-87. [PMID: 19667754 DOI: 10.4161/rna.6.4.9332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus 14579 encodes two tRNAs with the CCA anticodon, tRNA(Trp) and tRNA(Other). tRNA(Trp) was separately aminoacylated by two enzymes, TrpRS1 and TrpRS2, which share only 34% similarity and display different catalytic capacities and specificities. TrpRS1 was 18-fold more proficient at aminoacylating tRNA(Trp) with Trp, while TrpRS2 more efficiently utilizes the Trp analog 5-hydroxy Trp. tRNA(Other) was not aminoacylated by either TrpRS but instead by the combined activity of LysRS1 and LysRS2, which recognized sequence elements absent from tRNA(Trp). Polysomes were found to contain tRNA(Trp), consistent with its role in translation, but not tRNA(Other) suggesting a function outside protein synthesis. Regulation of the genes encoding TrpRS1 and TrpRS2 (trpS1 and trpS2) is dependent on riboswitch-mediated recognition of the CCA anticodon, and the role of tRNA(Other) in this process was investigated. Deletion of tRNA(Other) led to up to a 50 fold drop in trpS1 expression, which resulted in the loss of differential regulation of the trpS1 and trpS2 genes in stationary phase. These findings reveal that sequence-specific interactions with a tRNA anticodon can be confined to processes outside translation, suggesting a means by which such RNAs may evolve non-coding functions.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
16
|
Sudhamsu J, Crane BR. Bacterial nitric oxide synthases: what are they good for? Trends Microbiol 2009; 17:212-8. [DOI: 10.1016/j.tim.2009.02.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
|
17
|
King RR, Calhoun LA. Synthesis and NMR characteristics of N-acetyl-4-nitro, N-acetyl-5-nitro, N-acetyl-6-nitro and N-acetyl-7-nitrotryptophan methyl esters. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:273-276. [PMID: 19040195 DOI: 10.1002/mrc.2377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
N-acetyl-4-nitrotryptophan methyl ester (2), N-acetyl-5-nitrotryptophan methyl ester (3), N-acetyl-6-nitrotryptophan methyl ester (4) and N-acetyl-7-nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF(3)-methanol. Assignments of the (1)H and (13)C NMR chemical shifts were made using a combination of (1)H-(1)H COSY, (1)H-(13)C HETCOR and (1)H-(13)C selective INEPT experiments.
Collapse
Affiliation(s)
- Russell R King
- Potato Research Centre, Agriculture and Agric-Food Canada, PO Box 20280, Fredericton, NB, Canada, E3B 4Z7.
| | | |
Collapse
|
18
|
Abstract
Mammalian NOSs (nitric oxide synthases) are haem-based monoxygenases that oxidize the amino acid arginine to the intracellular signal and protective cytotoxin nitric oxide (NO). Certain strains of mostly Gram-positive bacteria contain homologues of the mammalian NOS catalytic domain that can act as NOSs when suitable reductants are supplied. Crystallographic analyses of bacterial NOSs, with substrates and haem-ligands, have disclosed important features of assembly and active-centre chemistry, both general to the NOS family and specific to the bacterial proteins. The slow reaction profiles and especially stable haem-oxygen species of NOSs derived from bacterial thermophiles have facilitated the study of NOS reaction intermediates. Functionally, bacterial NOSs are distinct from their mammalian counterparts. In certain strains of Streptomyces, they participate in the biosynthetic nitration of plant toxins. In the radiation-resistant bacterium Deinococcus radiodurans, NOSs are also likely to be involved in biosynthetic nitration reactions, but, furthermore, appear to play an important role in the recovery from damage induced by UV radiation.
Collapse
|
19
|
Azim MK, Budisa N. Docking of tryptophan analogs to trytophanyl-tRNA synthetase: implications for non-canonical amino acid incorporations. Biol Chem 2008; 389:1173-82. [DOI: 10.1515/bc.2008.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Non-canonical amino acids (NAA), as building blocks for peptides and proteins during ribosomal translation, represent a nearly infinite supply of novel functions. The specific selection, activation and tRNA-charging of amino acids by aminoacyl-tRNA synthetases (AARS) in the aminoacylation reaction are essential steps. In most cases, aminoacylation of NAA is a good indication that the related amino acid will participate in ribosomal translation as well. However, testing the translational capacity of amino acid analogs has technical limitations. Therefore, a rapid and reliable in silico test for NAA recognition by AARS would be advantageous in experimental design. We chose tryptophanyl-tRNA synthetase from Escherichia coli as a model system for docking studies with various tryptophan analogs using the FlexX-Pharm strategy. We were able to calculate relative binding energies for Trp analogs in TrpRS that correlate well with their translational activities in E. coli. In particular, FlexX-Pharm predicted the binding sites of fluoro-, amino-, hydroxyl- and aza-containing Trp analogs within 1.5 Å of Trp in the homology model of E. coli TrpRS. Therefore, the use of ligand docking prior to NAA incorporation experiments might provide a straightforward means for determining NAA that can be efficiently incorporated into a protein.
Collapse
|
20
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
21
|
Abstract
Recently, a general method was developed that makes it possible to genetically encode unnatural amino acids with diverse physical, chemical, or biological properties in Escherichia coli, yeast, and mammalian cells. More than 30 unnatural amino acids have been incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding tRNA/aminoacyl-tRNA synthetase pair. These include fluorescent, glycosylated, metal-ion-binding, and redox-active amino acids, as well as amino acids with unique chemical and photochemical reactivity. This methodology provides a powerful tool both for exploring protein structure and function in vitro and in vivo and for generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
22
|
Barker JJ. Antibacterial drug discovery and structure-based design. Drug Discov Today 2006; 11:391-404. [PMID: 16635801 DOI: 10.1016/j.drudis.2006.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/06/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Bacterial resistance continues to develop and pose a significant threat, both in hospitals and, more recently, in the community. A focus on other therapeutic areas by the larger pharmaceutical companies has left a shortfall in the pipeline of novel antibacterials. Recently, many new structures have been studied by structure-genomics initiatives, delivering a wealth of targets to consider. Using the tools of structure-based design, antibacterial discovery must exploit these targets to accelerate the process of drug discovery.
Collapse
Affiliation(s)
- John J Barker
- Evotec UK, 111 Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK.
| |
Collapse
|
23
|
Turner JM, Graziano J, Spraggon G, Schultz PG. Structural plasticity of an aminoacyl-tRNA synthetase active site. Proc Natl Acad Sci U S A 2006; 103:6483-8. [PMID: 16618920 PMCID: PMC1458910 DOI: 10.1073/pnas.0601756103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, tRNA aminoacyl-tRNA synthetase pairs have been evolved that allow one to genetically encode a large array of unnatural amino acids in both prokaryotic and eukaryotic organisms. We have determined the crystal structures of two substrate-bound Methanococcus jannaschii tyrosyl aminoacyl-tRNA synthetases that charge the unnatural amino acids p-bromophenylalanine and 3-(2-naphthyl)alanine (NpAla). A comparison of these structures with the substrate-bound WT synthetase, as well as a mutant synthetase that charges p-acetylphenylalanine, shows that altered specificity is due to both side-chain and backbone rearrangements within the active site that modify hydrogen bonds and packing interactions with substrate, as well as disrupt the alpha8-helix, which spans the WT active site. The high degree of structural plasticity that is observed in these aminoacyl-tRNA synthetases is rarely found in other mutant enzymes with altered specificities and provides an explanation for the surprising adaptability of the genetic code to novel amino acids.
Collapse
Affiliation(s)
- James M. Turner
- *Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - James Graziano
- *Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121
| | - Peter G. Schultz
- *Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| |
Collapse
|
24
|
Gautier C, Mikula I, Nioche P, Martasek P, Raman CS, Slama-Schwok A. Dynamics of NO rebinding to the heme domain of NO synthase-like proteins from bacterial pathogens. Nitric Oxide 2006; 15:312-27. [PMID: 16690332 DOI: 10.1016/j.niox.2006.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/24/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
Some Gram-positive bacterial pathogens harbor a gene that encodes a protein (HNS, Heme domain of NO Synthase-like proteins) with striking sequence identity to the oxygenase domain of mammalian NO synthases (NOS). However, they lack the N-terminal and the Zn-cysteine motif participating to the stability of an active dimer in the mammalian isoforms. The unique properties of HNS make it an excellent model system for probing how the heme environment tunes NO dynamics and for comparing it to the endothelial NO synthase heme domain (eNOS(HD)) using ultrafast transient spectroscopy. NO rebinding in HNS from Staphylococcus aureus (SA-HNS) is faster than that measured for either Bacillus anthracis (BA-HNS) or for eNOS(HD) in both oxidized and reduced forms in the presence of arginine. To test whether these distinct rates arise from different energy barriers for NO recombination, we measured rebinding kinetics at several temperatures. Our data are consistent with different barriers for NO recombination in SA-HNS and BA-HNS and the presence of a second NO-binding site. The hypothesis that an additional NO-binding cavity is present in BA-HNS is also consistent with the effect of the NO concentration on its rebinding. The lack of the effect of NO concentration on the geminate rebinding in SA-HNS could be due to an isolated second site. We confirm the existence of a second NO site in the oxygenase domain of the reduced eNOS as previously hypothesized [A. Slama-Schwok, M. Négrerie, V. Berka, J.C. Lambry, A.L. Tsai, M.H. Vos, J.L. Martin, Nitric oxide (NO) traffic in endothelial NO synthase. Evidence for a new NO binding site dependent on tetrahydrobiopterin? J. Biol. Chem. 277 (2002) 7581-7586]. This site requires the presence of arginine and BH(4); and we propose that NO dynamic and escape from eNOS is regulated by the active site H-bonding network connecting between the heme, the substrate, and cofactor.
Collapse
Affiliation(s)
- Clément Gautier
- CNRS, UMR 7645, Laboratory of Optics and Biosciences, Ecole Polytechnique, 91128 Palaiseau, France
| | | | | | | | | | | |
Collapse
|
25
|
Yamakura F, Ikeda K. Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 2006; 14:152-61. [PMID: 16140551 DOI: 10.1016/j.niox.2005.07.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 07/21/2005] [Accepted: 07/24/2005] [Indexed: 11/16/2022]
Abstract
Formation of 3-nitrotyrosine by the reaction between reactive nitrogen species (RNS) and tyrosine residues in proteins has been analyzed extensively and it is used widely as a biomarker of pathophysiological and physiological conditions mediated by RNS. In contrast, few studies on the nitration of tryptophan have been reported. This review provides an overview of the studies on tryptophan modifications by RNS and points out the possible importance of its modification in pathophysiological and physiological conditions. Free tryptophan can be modified to several nitrated products (1-, 4-, 5-, 6-, and 7-), 1-N-nitroso product, and several oxidized products by reaction with various RNS, depending on the conditions used. Among them, 1-N-nitrosotryptophan and 6-nitrotryptophan (6-NO(2)Trp) have been found as the abundant products in the reaction with peroxynitrite, and 6-NO(2)Trp has been the most abundant product in the reaction with the peroxidase/hydrogen peroxide/nitrite systems. 6-NO(2)Trp has also been observed as the most abundant nitrated product of the reactions between peroxynitrite or myeloperoxidase/hydrogen peroxide/nitrite and tryptophan residues both in human Cu,Zn-superoxide dismutase and in bovine serum albumin, as well as the reaction of peroxynitrite with myoglobin and hemoglobin. Several oxidized products have also been identified in the modified Cu,Zn-SOD. However, no 1-N-nitrosotryptophan and 1-N-nitrotryptophan has been observed in the proteins reacted with peroxynitrite or the myeloperoxidase/H(2)O(2)/nitrite system. The modification of tryptophan residues in proteins may occur at a more limited number of sites in vivo than that of tyrosine residues, since tryptophan residues are more buried inside proteins and exist less frequently in proteins, generally. However, surface-exposed tryptophan residues tend to participate in the interaction with the other molecules, therefore the modification of those tryptophans may result in modulation of the specific interaction of proteins and enzymes with other molecules.
Collapse
Affiliation(s)
- Fumiyuki Yamakura
- Department of Chemistry, Juntendo University School of Medicine, 1-1 Hiragagakuendai, Inba, Chiba 270-1606, Japan.
| | | |
Collapse
|
26
|
Turner JM, Graziano J, Spraggon G, Schultz PG. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase. J Am Chem Soc 2006; 127:14976-7. [PMID: 16248607 DOI: 10.1021/ja0549042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been recently shown that orthogonal tRNA/aminoacyl-tRNA synthetase pairs can be evolved to allow genetic incorporation of unnatural amino acids into proteins in both prokaryotes and eukaryotes. Here we describe the crystal structure of an evolved aminoacyl-tRNA synthetase that charges the unnatural amino acid p-acetylphenylalanine. Molecular recognition is due to altered hydrogen bonding and packing interactions with bound substrate that result from changes in both side-chain and backbone conformation.
Collapse
Affiliation(s)
- James M Turner
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
27
|
Ataide SF, Jester BC, Devine KM, Ibba M. Stationary-phase expression and aminoacylation of a transfer-RNA-like small RNA. EMBO Rep 2006; 6:742-7. [PMID: 16065067 PMCID: PMC1369145 DOI: 10.1038/sj.embor.7400474] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/09/2022] Open
Abstract
Genome-scale analyses have shown numerous functional duplications in the canonical translational machinery. One of the most striking examples is the occurrence of unrelated class I and class II lysyl-transfer RNA synthetases (LysRS), which together may aminoacylate non-canonical tRNAs. We show that, in Bacillus cereus, the two LysRSs together aminoacylate a small RNA of unknown function named tRNA(Other), and that the aminoacylated product stably binds translation elongation factor Tu. In vitro reconstitution of a defined lysylation system showed that Lys-tRNA(Other) is synthesized in the presence of both LysRSs, but not by either alone. In vivo analyses showed that the class 2 LysRS was present both during and after exponential growth, whereas the class I enzyme and tRNA(Other) were predominantly produced during the stationary phase. Aminoacylation of tRNA(Other) was also found to be confined to the stationary phase, which suggests a role for this non-canonical tRNA in growth-phase-specific protein synthesis.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | - Brian C Jester
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Kevin M Devine
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
- Tel: +1 614 292 2120; Fax: +1 614 292 8120; E-mail:
| |
Collapse
|
28
|
Buddha MR, Crane BR. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. J Biol Chem 2005; 280:31965-73. [PMID: 15998643 DOI: 10.1074/jbc.m501568200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An auxiliary tryptophanyl tRNA synthetase (drTrpRS II) that interacts with nitric-oxide synthase in the radiation-resistant bacterium Deinococcus radiodurans charges tRNA with tryptophan and 4-nitrotryptophan, a specific nitration product of nitric-oxide synthase. Crystal structures of drTrpRS II, empty of ligands or bound to either Trp or ATP, reveal that drTrpRS II has an overall structure similar to standard bacterial TrpRSs but undergoes smaller amplitude motions of the helical tRNA anti-codon binding (TAB) domain on binding substrates. TAB domain loop conformations that more closely resemble those of human TrpRS than those of Bacillus stearothermophilus TrpRS (bsTrpRS) indicate different modes of tRNA recognition by subclasses of bacterial TrpRSs. A compact state of drTrpRS II binds ATP, from which only minimal TAB domain movement is necessary to bring nucleotide in contact with Trp. However, the signature KMSKS loop of class I synthetases does not completely engage the ATP phosphates, and the adenine ring is not well ordered in the absence of Trp. Thus, progression of the KMSKS loop to a high energy conformation that stages acyl-adenylation requires binding of both substrates. In an asymmetric drTrpRS II dimer, the closed subunit binds ATP, whereas the open subunit binds Trp. A crystallographically symmetric dimer binds no ligands. Half-site reactivity for Trp binding is confirmed by thermodynamic measurements and explained by an asymmetric shift of the dimer interface toward the occupied active site. Upon Trp binding, Asp68 propagates structural changes between subunits by switching its hydrogen bonding partner from dimer interface residue Tyr139 to active site residue Arg30. Since TrpRS IIs are resistant to inhibitors of standard TrpRSs, and pathogens contain drTrpRS II homologs, the structure of drTrpRS II provides a framework for the design of potentially useful antibiotics.
Collapse
Affiliation(s)
- Madhavan R Buddha
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|