1
|
Yu S, Gu X, Zheng Q, Liu Y, Suhas T, Du W, Xie L, Fang Z, Zhao Y, Yang M, Xu J, Wang Y, Lin MH, Pan X, Miner JH, Jin Y, Xie J. Tauroursodeoxycholic acid ameliorates renal injury induced by COL4A3 mutation. Kidney Int 2024; 106:433-449. [PMID: 38782199 PMCID: PMC11343663 DOI: 10.1016/j.kint.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
COL4A3/A4/A5 mutations have been identified as critical causes of Alport syndrome and other genetic chronic kidney diseases. However, the underlying pathogenesis remains unclear, and specific treatments are lacking. Here, we constructed a transgenic Alport syndrome mouse model by generating a mutation (Col4a3 p.G799R) identified previously from one large Alport syndrome family into mice. We observed that the mutation caused a pathological decrease in intracellular and secreted collagen IV α3α4α5 heterotrimers. The mutant collagen IV α3 chains abnormally accumulated in the endoplasmic reticulum and exhibited defective secretion, leading to persistent endoplasmic reticulum stress in vivo and in vitro. RNA-seq analysis revealed that the MyD88/p38 MAPK pathway plays key roles in mediating subsequent inflammation and apoptosis signaling activation. Treatment with tauroursodeoxycholic acid, a chemical chaperone drug that functions as an endoplasmic reticulum stress inhibitor, effectively suppressed endoplasmic reticulum stress, promoted secretion of the α3 chains, and inhibited the activation of the MyD88/p38 MAPK pathway. Tauroursodeoxycholic acid treatment significantly improved kidney function in vivo. These results partly clarified the pathogenesis of kidney injuries associated with Alport syndrome, especially in glomeruli, and suggested that tauroursodeoxycholic acid might be useful for the early clinical treatment of Alport syndrome.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzi Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teija Suhas
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wen Du
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Fang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxin Yang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaoxia Pan
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yuanmeng Jin
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Ratko M, Crljen V, Tkalčić M, Mažuranić A, Bubalo P, Škavić P, Banovac I, Dugandžić A. Expression of guanylate cyclase C in human prefrontal cortex depends on sex and feeding status. Front Mol Neurosci 2024; 17:1361089. [PMID: 38840774 PMCID: PMC11150535 DOI: 10.3389/fnmol.2024.1361089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Guanylate cyclase C (GC-C) has been detected in the rodent brain in neurons of the cerebral cortex, amygdala, midbrain, hypothalamus, and cerebellum. Methods In this study we determined GC-C protein expression in Brodmann areas (BA) 9, BA10, BA11, and BA32 of the human prefrontal cortex involved in regulation of feeding behavior, as well as in the cerebellar cortex, arcuate nucleus of hypothalamus and substantia nigra in brain samples of human 21 male and 13 female brains by ELISA with postmortem delay < 24 h. Results GC-C was found in all tested brain areas and it was expressed in neurons of the third cortical layer of BA9. The regulation of GC-C expression by feeding was found in male BA11 and BA10-M, where GC-C expression was in negative correlation to the volume of stomach content during autopsy. In female BA11 there was no correlation detected, while in BA10-M there was even positive correlation. This suggests sex differences in GC-C expression regulation in BA11 and BA10-M. The amount of GC-C was higher in female BA9 only when the death occurred shortly after a meal, while expression of GC-C was higher in BA10-O only when the stomach was empty. The expression of GC-C in female hypothalamus was lower when compared to male hypothalamus only when the stomach was full, suggesting possibly lower satiety effects of GC-C agonists in women. Discussion These results point toward the possible role of GC-C in regulation of feeding behavior. Since, this is first study of GC-C regulation and its possible function in prefrontal cortex, to determine exact role of GC-C in different region of prefrontal cortex, especially in humans, need further studies.
Collapse
Affiliation(s)
- Martina Ratko
- Laboratory for Cellular Neurophysiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladiana Crljen
- Laboratory for Cellular Neurophysiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Martina Tkalčić
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anton Mažuranić
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Pero Bubalo
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Petar Škavić
- Institute for Forensic Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandra Dugandžić
- Laboratory for Cellular Neurophysiology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. NPJ Parkinsons Dis 2024; 10:83. [PMID: 38615030 PMCID: PMC11016112 DOI: 10.1038/s41531-024-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases and their second messenger cyclic (c)GMP support mitochondrial function, protecting against ROS and promoting cell survival in several tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) mouse model. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in SNpc DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Mohammed FA, Baban RS, Jasim MA. Association of Uroguanylin, Body Mass Index, and Waist Circumference: Sex Differences and Obesity Implications among a Sample of Iraqi Adults in Baghdad City. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S406-S408. [PMID: 38595491 PMCID: PMC11000992 DOI: 10.4103/jpbs.jpbs_632_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 04/11/2024] Open
Abstract
This research investigates the gender-specific associations of uroguanylin levels with various health-related parameters in Iraqi adults. The results revealed significant differences between genders in food style preferences and waist circumference (WC) risk. Notably, uroguanylin exhibited distinct correlations with low density lipoprotein (LDL) cholesterol, glycated hemoglobin (HbA1c), body mass index (BMI), and WC in females and males, indicating potential gender-specific effects on lipid metabolism, glucose regulation, and adiposity. A total of 140 Iraqi adults (73 females and 67 males) were recruited into the study. Physical activity levels, food style preferences, WC risk, and BMI subgroups, were compared between genders. Additionally, participants' characteristics, including age, height, weight, BMI, blood pressure, cholesterol levels, and uroguanylin concentrations, were analyzed. Significant gender differences were observed in food style preferences, with a higher proportion of males preferring fast food, with a greater percentage of females classified as having a high risk, females exhibited lower height and weight compared to males. HbA1c levels were significantly lower in females, whereas high density lipoprotein (HDL) cholesterol levels were significantly higher in females than in males. Uroguanylin concentrations were also significantly lower in females compared to males. Uroguanylin shows a moderately negative correlation with LDL cholesterol in females but not in males. Furthermore, a strong negative association between uroguanylin and HbA1c in females indicated improved glycemic control with higher uroguanylin levels, whereas an opposite trend was observed in males. No significant association was observed between uroguanylin and BMI in females, a significant positive correlation was found in males. For WC, a weak negative correlation was noted in females, whereas a moderately negative correlation was observed in males. These contrasting correlations imply potential gender-specific effects of uroguanylin on adiposity and body fat distribution.
Collapse
Affiliation(s)
| | - Rayah S. Baban
- Department of Chemistry and Biochemistry, College of Medicine, AL-Nahrain University, Baghdad, Iraq
| | - Mohsin A. Jasim
- MBChB, FIBMS /CM; FABHS / SCN, Nutrition Research Institute / Ministry Of Health, Baghdad, Iraq
| |
Collapse
|
5
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. RESEARCH SQUARE 2023:rs.3.rs-3416338. [PMID: 37886524 PMCID: PMC10602097 DOI: 10.21203/rs.3.rs-3416338/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases, and their second messengers cyclic (c)GMP, support mitochondrial function, protecting against ROS and promoting cell survival in a number of tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of neurodegeneration. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in nigral DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S. Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J. Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Otero A, Becerril S, Martín M, Cienfuegos JA, Valentí V, Moncada R, Catalán V, Gómez-Ambrosi J, Burrell MA, Frühbeck G, Rodríguez A. Effect of guanylin peptides on pancreas steatosis and function in experimental diet-induced obesity and after bariatric surgery. Front Endocrinol (Lausanne) 2023; 14:1185456. [PMID: 37274331 PMCID: PMC10233012 DOI: 10.3389/fendo.2023.1185456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Obesity contributes to ectopic fat deposition in non-adipose organs, including the pancreas. Pancreas steatosis associates with inflammation and β-cell dysfunction, contributing to the onset of insulin resistance and type 2 diabetes. An improvement of pancreatic steatosis and indices of insulin resistance is observed following bariatric surgery, but the underlying mechanisms remain unknown. We sought to analyze whether guanylin (GUCA2A) and uroguanylin (GUCA2B), two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of pancreas fat accumulation after bariatric surgery. Methods Pancreas steatosis, inflammation, islet number and area were measured in male Wistar rats with diet-induced obesity (n=125) subjected to surgical (sham operation and sleeve gastrectomy) or dietary (pair-fed to the amount of food eaten by gastrectomized animals) interventions. The tissue distribution of guanylate cyclase C (GUCY2C) and the expression of the guanylin system were evaluated in rat pancreata by real-time PCR, Western-blot and immunohistochemistry. The effect of guanylin and uroguanylin on factors involved in insulin secretion and lipogenesis was determined in vitro in RIN-m5F β-cells exposed to lipotoxic conditions. Results Sleeve gastrectomy reduced pancreas steatosis and inflammation and improved insulin sensitivity and synthesis. An upregulation of GUCA2A and GUCY2C, but not GUCA2B, was observed in pancreata from rats with diet-induced obesity one month after sleeve gastrectomy. Interestingly, both guanylin and uroguanylin diminished the lipotoxicity in palmitate-treated RIN-m5F β-cells, evidenced by lower steatosis and downregulated lipogenic factors Srebf1, Mogat2 and Dgat1. Both guanylin peptides reduced insulin synthesis (Ins1 and Ins2) and release from RIN-m5F β-cells, but only guanylin upregulated Wnt4, a factor that controls β-cell proliferation and function. Discussion Together, sleeve gastrectomy reduced pancreatic steatosis and improved β-cell function. Several mechanisms, including the modulation of inflammation and lipogenesis as well as the upregulation of GUCA2A in the pancreas, might explain this beneficial effect of bariatric surgery.
Collapse
Affiliation(s)
- Aarón Otero
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Javier A. Cienfuegos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María A. Burrell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
8
|
Li Z, Zhang B, Wang N, Zuo Z, Wei H, Zhao F. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut 2023; 72:686-698. [PMID: 35803703 PMCID: PMC10086289 DOI: 10.1136/gutjnl-2022-328035] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE The obesity epidemic and its metabolic complications continue to be a major global public health threat with limited effective treatments, especially drugs that can be taken orally. Peptides are a promising class of molecules that have gained increased interest for their applications in medicine and biotechnology. In this study, we focused on looking for peptides that can be administrated orally to treat obesity and exploring its mechanisms. DESIGN Here, a 9-amino-acid peptide named D3 was designed and administered orally to germ-free (GF) mice and wild-type (WT) mice, rats and macaques. The effects of D3 on body weight and other basal metabolic parameters were evaluated. The effects of D3 on gut microbiota were evaluated using 16S rRNA amplicon sequencing. To identify and confirm the mechanisms of D3, transcriptome analysis of ileum and molecular approaches on three animal models were performed. RESULTS A significant body weight reduction was observed both in WT (12%) and GF (9%) mice treated with D3. D3 ameliorated leptin resistance and upregulated the expression of uroguanylin (UGN), which suppresses appetite via the UGN-GUCY2C endocrine axis. Similar effects were also found in diet-induced obese rat and macaque models. Furthermore, the abundance of intestinal Akkermansia muciniphila increased about 100 times through the IFNγ-Irgm1 axis after D3 treatment, which may further inhibit fat absorption by downregulating Cd36. CONCLUSION Our results indicated that D3 is a novel drug candidate for counteracting diet-induced obesity as a non-toxic and bioactive peptide. Targeting the UGN-GUCY2C endocrine axis may represent a therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Zhanzhan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hong Wei
- Laboratory Animal Department, College of Basic Medicine Army Medical University, Chongqing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
9
|
Carlos dos Reis D, Dastoor P, Santos AK, Sumigray K, Ameen NA. CFTR high expresser cells in cystic fibrosis and intestinal diseases. Heliyon 2023; 9:e14568. [PMID: 36967909 PMCID: PMC10031467 DOI: 10.1016/j.heliyon.2023.e14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the Cl-/HCO3 - channel implicated in Cystic Fibrosis, is critical to the pathophysiology of many gastrointestinal diseases. Defects in CFTR lead to intestinal dysfunction, malabsorption, obstruction, infection, inflammation, and cancer that increases morbidity and reduces quality of life. This review will focus on CFTR in the intestine and the implications of the subpopulation of CFTR High Expresser Cells (CHEs) in Cystic Fibrosis (CF), intestinal physiology and pathophysiology of intestinal diseases.
Collapse
Affiliation(s)
- Diego Carlos dos Reis
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Parinaz Dastoor
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
| | - Anderson Kenedy Santos
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Nadia A. Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06510, USA
- Corresponding author. Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, CT, 06510, USA.
| |
Collapse
|
10
|
Di Guglielmo MD, Holbrook J, Stabley D, Robbins KM, Boyce B, Hardy H, Adeyemi A. The Intestinal Tract Brush Border in Young Children Uniformly Expresses Guanylate Cyclase C. Appl Immunohistochem Mol Morphol 2023; 31:154-162. [PMID: 36735491 DOI: 10.1097/pai.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
The present study examined staining of guanylate cyclase C (GCC/GUCY2C) in the small and large intestines of children younger than age 7 years. Normal intestinal tissue from children aged 0 to 7 years was stained using GCC, uroguanylin, and villin antibodies and scored for staining intensity. A subset underwent quantitative real-time polymerase chain reaction. Data were analyzed using t test of independent means, descriptive statistics, and logistic regression. Four hundred sixty-four specimens underwent immunohistochemistry; 291 specimens underwent real-time polymerase chain reaction. GCC, villin, and uroguanylin were detected across age groups and anatomic sites. No significant differences were identifiable across age groups. GUCY2C and uroguanylin mRNA was detected in all samples, with no variability of statistical significance of either target-to-villin normalization between any age cohorts. A gradient of expression of GCC across age groups does not seem to exist.
Collapse
Affiliation(s)
| | - Jennifer Holbrook
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Deborah Stabley
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Katherine M Robbins
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Bobbie Boyce
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | - Heather Hardy
- Nemours Biomedical Research, Nemours Children's Health, Nemours Children's Hospital, Delaware Valley, DE
| | | |
Collapse
|
11
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Bar-Ad S, Cheng L, Lepore AC, Snook AE, Covarrubias M, Waldman SA. Intestinal neuropod cell GUCY2C regulates visceral pain. J Clin Invest 2023; 133:e165578. [PMID: 36548082 PMCID: PMC9927949 DOI: 10.1172/jci165578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.
Collapse
Affiliation(s)
| | | | | | | | - Shely Bar-Ad
- Department of Pharmacology, Physiology, & Cancer Biology
| | | | | | - Adam E. Snook
- Department of Pharmacology, Physiology, & Cancer Biology
- Department of Microbiology & Immunology, and
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Scott A. Waldman
- Department of Pharmacology, Physiology, & Cancer Biology
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Chen X, Chen S, Ren Q, Niu S, Pan X, Yue L, Li Z, Zhu R, Jia Z, Chen X, Zhen R, Ban J. Metabolomics Provides Insights into Renoprotective Effects of Semaglutide in Obese Mice. Drug Des Devel Ther 2022; 16:3893-3913. [PMID: 36388084 PMCID: PMC9656502 DOI: 10.2147/dddt.s383537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/29/2022] [Indexed: 08/09/2024] Open
Abstract
PURPOSE Semaglutide, a new long-acting glucagon-like peptide-1 analogue, has shown benefits for renal diseases, but its direct role on kidney metabolism under obesity remains unclear. The study aims to elucidate the protective effect and metabolic modulation mechanism of semaglutide on obesity-related kidney injury. METHODS Male C57BL/6J mice were divided into control and obesity groups. Mice in the obesity group had a high-fat diet and were treated with or without semaglutide (30nmol/kg/day). The study assayed blood biochemistry and then evaluated renal pathological injury through Periodic Acid-Schiff staining and electron microscopy. Metabolomics was utilized to analyze obesity-related metabolites in kidney samples. RESULTS Semaglutide significantly improved glucose homeostasis, insulin resistance, and kidney injury in obese mice. We successfully identified 377 altered metabolites (P<0.05). It was suggested that semaglutide directly improved oxidative stress and inflammation-related metabolites such as nicotinamide adenine dinucleotide (NAD+) and adenosine in the kidney of obese mice, which have not been documented in obesity-related kidney injury. Relevant enriched pathways were included phospholipids and lysophospholipids metabolism, purine metabolism, NAD+ metabolism, and insulin resistance-related metabolism. They could serve as potential targets for intervention of obesity-related kidney injury. CONCLUSION Our study revealed the metabolomics-based renoprotective mechanism of semaglutide in obese mice for the first time. The innovation lied in the identified metabolites such as NAD+ and adenosine targeted by semaglutide, which have not been documented in obesity-related kidney injury. Semaglutide may be a promising therapy for obesity-related kidney diseases.
Collapse
Affiliation(s)
- Xing Chen
- Department of Nephrology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Qingjuan Ren
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Shu Niu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Lin Yue
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Zelin Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Ruiyi Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Zhuoya Jia
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Xiaoyi Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Ruoxi Zhen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Jiangli Ban
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| |
Collapse
|
13
|
Caspi A, Entezari AA, Crutcher M, Snook AE, Waldman SA. Guanylyl cyclase C as a diagnostic and therapeutic target in colorectal cancer. Per Med 2022; 19:457-472. [PMID: 35920071 DOI: 10.2217/pme-2022-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.
Collapse
Affiliation(s)
- Adi Caspi
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ariana A Entezari
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Madison Crutcher
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Ratko M, Habek N, Radmilović MD, Škokić S, Justić H, Barić A, Dugandžić A. Role of uroguanylin's signaling pathway in the development of ischemic stroke. Eur J Neurosci 2022; 56:3720-3737. [PMID: 35445449 PMCID: PMC9542124 DOI: 10.1111/ejn.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. By affecting bradykinin function, activation of guanylate cyclase (GC)‐A has been shown to have a neuroprotective effect after ischaemic stroke, whereas the same has not been confirmed for GC‐B; therefore, we aimed to determine the possible role of GC‐C and its agonist, uroguanylin (UGN), in the development of stroke. In this study, middle cerebral artery occlusion (MCAO) was performed on wild‐type (WT), GC‐C KO and UGN KO mice. MR images were acquired before and 24 h after MCAO. On brain slices 48 h after MCAO, the Ca2+ response to UGN stimulation was recorded. Our results showed that the absence of GC‐C in GC‐C KO mice resulted in the development of smaller ischaemic lesions compared with WT littermates, which is an opposite effect compared with the effects of GC‐A agonists on brain lesions. WT and UGN KO animals showed a stronger Ca2+ response upon UGN stimulation in astrocytes of the peri‐ischaemic cerebral cortex compared with the same cortical region of the unaffected contralateral hemisphere. This stronger activation was not observed in GC‐C KO animals, which may be the reason for smaller lesion development in GC‐C KO mice. The reason why GC‐C might affect Ca2+ signalling in peri‐ischaemic astrocytes is that GC‐C is expressed in these cells after MCAO, whereas under normoxic conditions, it is expressed mainly in cortical neurons. Stronger activation of the Ca2+‐dependent signalling pathway could lead to the stronger activation of the Na+/H+ exchanger, tissue acidification and neuronal death.
Collapse
Affiliation(s)
- Martina Ratko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nikola Habek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Siniša Škokić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Justić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Aleksandra Dugandžić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Physiology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Frühbeck G, Becerril S, Martín M, Ramírez B, Valentí V, Moncada R, Catalán V, Gómez-Ambrosi J, Silva C, Burrell MA, Escalada J, Rodríguez A. High plasma and lingual uroguanylin as potential contributors to changes in food preference after sleeve gastrectomy. Metabolism 2022; 128:155119. [PMID: 34990711 DOI: 10.1016/j.metabol.2021.155119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND The biological mediators supporting long-term weight loss and changes in dietary choice behaviour after sleeve gastrectomy remain unclear. Guanylin and uroguanylin are gut hormones involved in the regulation of satiety, food preference and adiposity. Thus, we sought to analyze whether the guanylin system is involved in changes in food preference after sleeve gastrectomy in obesity. METHODS Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were determined in patients with severe obesity (n = 41) as well as in rats with diet-induced obesity (n = 48), monogenic obesity (Zucker fa/fa) (n = 18) or in a food choice paradigm (normal diet vs high-fat diet) (n = 16) submitted to sleeve gastrectomy. Lingual distribution and expression of guanylins (GUCA2A and GUCA2B) and their receptor GUCY2C as well as the fatty acid receptor CD36 were evaluated in the preclinical models. RESULTS Circulating concentrations of GUCA2A and GUCA2B were increased after sleeve gastrectomy in patients with severe obesity as well as in rats with diet-induced and monogenic (fa/fa) obesity. Interestingly, the lower dietary fat preference observed in obese rats under the food choice paradigm as well as in patients with obesity after sleeve gastrectomy were negatively associated with post-surgical GUCA2B levels. Moreover, sleeve gastrectomy upregulated the low expression of GUCA2A and GUCA2B in taste bud cells of tongues from rats with diet-induced and monogenic (fa/fa) obesity in parallel to a downregulation of the lingual lipid sensor CD36. CONCLUSIONS The increased circulating and lingual GUCA2B after sleeve gastrectomy suggest an association between the uroguanylin-GUCY2C endocrine axis and food preference through the regulation of gustatory responses.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - María A Burrell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
16
|
Ajoolabady A, Liu S, Klionsky DJ, Lip GYH, Tuomilehto J, Kavalakatt S, Pereira DM, Samali A, Ren J. ER stress in obesity pathogenesis and management. Trends Pharmacol Sci 2022; 43:97-109. [PMID: 34893351 PMCID: PMC8796296 DOI: 10.1016/j.tips.2021.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Given the unprecedented global pandemic of obesity, a better understanding of the etiology of adiposity will be necessary to ensure effective management of obesity and related complications. Among the various potential factors contributing to obesity, endoplasmic reticulum (ER) stress refers to a state of excessive protein unfolding or misfolding that is commonly found in metabolic diseases including diabetes mellitus, insulin resistance (IR), and non-alcoholic fatty liver disease, although its role in obesogenesis remains controversial. ER stress is thought to drive adiposity by dampening energy expenditure, making ER stress a likely therapeutic target for the management of obesity. We summarize the role of ER stress and the ER stress response in the onset and development of obesity, and discuss the underlying mechanisms involved with a view to identifying novel therapeutic strategies for obesity prevention and management.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Simin Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Departments of Epidemiology, Medicine, and Surgery and Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory Y H Lip
- University of Liverpool Institute of Ageing and Chronic Disease, Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Prasad H, Mathew JKK, Visweswariah SS. Receptor Guanylyl Cyclase C and Cyclic GMP in Health and Disease: Perspectives and Therapeutic Opportunities. Front Endocrinol (Lausanne) 2022; 13:911459. [PMID: 35846281 PMCID: PMC9276936 DOI: 10.3389/fendo.2022.911459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | - Sandhya S. Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- *Correspondence: Sandhya S. Visweswariah,
| |
Collapse
|
18
|
Entezari AA, Snook AE, Waldman SA. Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: recent innovations and therapeutic potential. Expert Opin Ther Targets 2021; 25:335-346. [PMID: 34056991 DOI: 10.1080/14728222.2021.1937124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Gastrointestinal (GI) cancers account for the second leading cause of cancer-related deaths in the United States. Guanylyl cyclase C (GUCY2C) is an intestinal signaling system that regulates intestinal fluid and electrolyte secretion as well as intestinal homeostasis. In recent years, it has emerged as a promising target for chemoprevention and therapy for GI malignancies. AREAS COVERED The loss of GUCY2C signaling early in colorectal tumorigenesis suggests it could have a significant impact on tumor initiation. Recent studies highlight the importance of GUCY2C signaling in preventing colorectal tumorigenesis using agents such as linaclotide, plecanatide, and sildenafil. Furthermore, GUCY2C is a novel target for immunotherapy and a diagnostic marker for primary and metastatic diseases. EXPERT OPINION There is an unmet need for prevention and therapy in GI cancers. In that context, GUCY2C is a promising target for prevention, although the precise mechanisms by which GUCY2C signaling affects tumorigenesis remain to be defined. Furthermore, clinical trials are exploring its role as an immunotherapeutic target for vaccines to prevent metastatic disease. Indeed, GUCY2C is an emerging target across the disease continuum from chemoprevention, to diagnostic management, through the treatment and prevention of metastatic diseases.
Collapse
Affiliation(s)
- Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
21
|
Rappaport JA, Waldman SA. An update on guanylyl cyclase C in the diagnosis, chemoprevention, and treatment of colorectal cancer. Expert Rev Clin Pharmacol 2020; 13:1125-1137. [PMID: 32945718 DOI: 10.1080/17512433.2020.1826304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Colorectal cancer remains the second leading cause of cancer death in the United States, underscoring the need for novel therapies. Despite the successes of new targeted agents for other cancers, colorectal cancer suffers from a relative scarcity of actionable biomarkers. In this context, the intestinal receptor, guanylyl cyclase C (GUCY2C), has emerged as a promising target.Areas covered: GUCY2C regulates a tumor-suppressive signaling axis that is silenced through loss of its endogenous ligands at the earliest stages of tumorigenesis. A body of literature supports a cancer chemoprevention strategy involving reactivation of GUCY2C through FDA-approved cGMP-elevating agents such as linaclotide, plecanatide, and sildenafil. Its limited expression in extra-intestinal tissues, and retention on the surface of cancer cells, also positions GUCY2C as a target for immunotherapies to treat metastatic disease, including vaccines, chimeric antigen receptor T-cells, and antibody-drug conjugates. Likewise, GUCY2C mRNA identifies metastatic cells, enhancing colorectal cancer detection, and staging. Pre-clinical and clinical programs exploring these GUCY2C-targeting strategies will be reviewed.Expert opinion: Recent mechanistic insights characterizing GUCY2C ligand loss early in tumorigenesis, coupled with results from the first clinical trials testing GUCY2C-targeting strategies, continue to elevate GUCY2C as an ideal target for prevention, detection, and therapy.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
22
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|
23
|
Activation of brown adipose tissue in diet-induced thermogenesis is GC-C dependent. Pflugers Arch 2020; 472:405-417. [PMID: 31940065 DOI: 10.1007/s00424-020-02347-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Uroguanylin (UGN) is released from the intestine after a meal. When applied in brain ventricles, UGN increases expression of markers of thermogenesis in brown adipose tissue (BAT). Therefore, we determine the effects of its receptor, guanylate cyclase C (GC-C), on mouse interscapular BAT (iBAT) activity during diet-induced thermogenesis (DIT). The activation of iBAT after a meal is diminished in GC-C KO mice, decreased in female wild type (WT) mice, and abolished in old WT animals. The activation of iBAT after a meal is the highest in male WT animals which leads to an increase in GC-C expression in the hypothalamus, an increase in iBAT volume by aging, and induction of iBAT markers of thermogenesis. In contrast to iBAT activation after a meal, iBAT activation after a cold exposure could still exist in GC-C KO mice and it is significantly higher in female WT mice. The expression of GC-C in the proopiomelanocortin neurons of the arcuate nucleus of the hypothalamus but not in iBAT suggests central regulation of iBAT function. The iBAT activity during DIT has significantly reduced in old mice but an intranasal application of UGN leads to an increase in iBAT activity in a dose-dependent manner which is in strong negative correlation to glucose concentration in blood. This activation was not present in GC-C KO mice. Our results suggest the physiological role of GC-C on the BAT regulation and its importance in the regulation of glucose homeostasis and the development of new therapy for obesity and insulin resistance.
Collapse
|
24
|
Patterson M, Ward H, Halvai D, Holm Nilsen HA, Reeves S. Postprandial regulation of prouroguanylin in humans of a healthy weight and those who are overweight or with obesity. Peptides 2020; 123:170179. [PMID: 31697966 DOI: 10.1016/j.peptides.2019.170179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
Uroguanylin is a peptide gut hormone proposed to have a role in signalling post meal satiety. Uroguanylin circulates as its pro-hormone, prouroguanylin. There has been limited investigation of the regulation of prouroguanylin by food; therefore we investigated prouroguanylin regulation following meals. In separate experiments we investigated the effects of high calorie (1451 kcal) and medium calorie (725 kcal), high fat meals, on plasma prouroguanylin concentrations. We then examined the effect of a 722.5 kcal high carbohydrate breakfast on prouroguanylin concentrations, comparing the response in healthy weight adults versus those who are overweight/ with obesity. The 1451 kcal meal increased prouroguanylin concentrations, versus fasting at 60 (P < 0.05), 90 (P < 0.01) and 120 (P < 0.001) minutes. After the 725 kcal meal hormone concentrations rose more slowly and were significant versus fasting concentrations at 120 min (P < 0.01). The high carbohydrate breakfast 722.5 kcal, led to an initial suppression of hormone concentrations at 30 min. post meal (P < 0.05) followed by an increase in concentrations until they were significant versus fasting at 120 min. (P < 0.01). Participants overweight/ with obesity had lower fasting prouroguanylin concentrations (P < 0.05), but post meal concentrations did not differ between the groups. Our results suggest there is a delayed increase in prouroguanylin concentrations following, large and regular sized mixed macronutrient meals rich in fat or carbohydrate. Fasting levels are suppressed in people who are overweight/ with obesity, but the post meal response remains intact. There may be potential to target post meal release of prouroguanylin in obesity.
Collapse
Affiliation(s)
| | - Hannah Ward
- Department of Life Sciences, University of Roehampton, London, UK
| | - Delaram Halvai
- Department of Life Sciences, University of Roehampton, London, UK
| | | | - Sue Reeves
- Department of Life Sciences, University of Roehampton, London, UK
| |
Collapse
|
25
|
Merlino DJ, Barton JR, Charsar BA, Byrne MD, Rappaport JA, Smeyne RJ, Lepore AC, Snook AE, Waldman SA. Two distinct GUCY2C circuits with PMV (hypothalamic) and SN/VTA (midbrain) origin. Brain Struct Funct 2019; 224:2983-2999. [PMID: 31485718 DOI: 10.1007/s00429-019-01949-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Guanylyl cyclase C (GUCY2C) is the afferent central receptor in the gut-brain endocrine axis regulated by the anorexigenic intestinal hormone uroguanylin. GUCY2C mRNA and protein are produced in the hypothalamus, a major center regulating appetite and metabolic homeostasis. Further, GUCY2C mRNA and protein are expressed in the ventral midbrain, a principal structure regulating hedonic reward from behaviors including eating. While GUCY2C is expressed in hypothalamus and midbrain, its precise neuroanatomical organization and relationship with circuits regulating satiety remain unknown. Here, we reveal that hypothalamic GUCY2C mRNA is confined to the ventral premammillary nucleus (PMV), while in midbrain it is produced by neurons in the ventral tegmental area (VTA) and substantia nigra (SN). GUCY2C in the PMV is produced by 46% of neurons expressing anorexigenic leptin receptors, while in the VTA/SN it is produced in most tyrosine hydroxylase-immunoreactive neurons. In contrast to mRNA, GUCY2C protein is widely distributed throughout the brain in canonical sites of PMV and VTA/SN axonal projections. Selective stereotaxic ablation of PMV or VTA/SN neurons eliminated GUCY2C only in their respective canonical projection sites. Conversely, specific anterograde tracer analyses of PMV or VTA/SN neurons confirmed distinct GUCY2C-immunoreactive axons projecting to those canonical locations. Together, these findings reveal two discrete neuronal circuits expressing GUCY2C originating in the PMV in the hypothalamus and in the VTA/SN in midbrain, which separately project to other sites throughout the brain. They suggest a structural basis for a role for the GUCY2C-uroguanylin gut-brain endocrine axis in regulating homeostatic and behavioral components contributing to satiety.
Collapse
Affiliation(s)
- D J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - J R Barton
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - B A Charsar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - M D Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - J A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - R J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - A C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - A E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA
| | - S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, 368 JAH, Philadelphia, PA, 19107, USA.
| |
Collapse
|
26
|
Waldman SA, Tenenbaum R, Foehl HC, Winkle P, Griffin P. Blunted Evoked Prouroguanylin Endocrine Secretion in Chronic Constipation. Clin Transl Gastroenterol 2019; 10:e00016. [PMID: 31318728 PMCID: PMC6708669 DOI: 10.14309/ctg.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Prouroguanylin (ProUGN) in the intestine is cleaved to form uroguanylin (UGN), which stimulates guanylate cyclase C (GUCY2C), inducing cyclic guanosine monophosphate signaling. Paracrine release regulates fluid secretion, contributing to bowel function, whereas endocrine secretion evoked by eating forms a gut-brain axis, controlling appetite. Whereas hormone insufficiency contributes to hyperphagia in obesity, its contribution to the pathophysiology of constipation syndromes remains unexplored. Here, we compared circulating ProUGN and UGN in healthy subjects and in patients with chronic idiopathic constipation (CIC) and patients with irritable bowel syndrome with constipation (IBS-C). METHODS Circulating ProUGN and UGN levels were measured in 60 healthy subjects, 53 patients with CIC, and 54 patients with IBS-C. After an overnight fast, the participants ingested a standardized meal; blood samples were drawn at fasting and at 30, 60, and 90 minutes thereafter, and hormone levels were quantified by enzyme-linked immunosorbent assay. RESULTS Fasting ProUGN levels were >30% lower in patients with CIC and those with IBS-C compared with healthy subjects regardless of age, sex, or disease state. After eating, ProUGN levels increased compared with fasting levels, although the rate of change was slower and maximum levels were lower in patients with CIC and those with IBS-C. Similarly, fasting UGN levels were lower in patients with CIC and those with IBS-C compared with healthy subjects. However, unlike ProUGN levels, UGN levels did not increase after eating. DISCUSSION These observations support a novel pathophysiologic model in which CIC and IBS-C reflect a contribution of ProUGN insufficiency dysregulating intestinal fluid and electrolyte secretion. TRANSLATIONAL IMPACT This study suggests that CIC and IBS-C can be treated by oral GUCY2C hormone replacement. Indeed, these observations provide a mechanistic framework for the clinical utility of oral GUCY2C ligands like plecanatide (Trulance) and linaclotide (Linzess) to treat CIC and IBS-C.
Collapse
Affiliation(s)
- Scott A. Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Henry C. Foehl
- Foehl Statistics & Analysis LLC, Philadelphia, Pennsylvania, USA
| | - Peter Winkle
- Anaheim Clinical Trials, Anaheim, California, USA
| | | |
Collapse
|
27
|
Yarla NS, Gali H, Pathuri G, Smriti S, Farooqui M, Panneerselvam J, Kumar G, Madka V, Rao CV. Targeting the paracrine hormone-dependent guanylate cyclase/cGMP/phosphodiesterases signaling pathway for colorectal cancer prevention. Semin Cancer Biol 2018; 56:168-174. [PMID: 30189250 DOI: 10.1016/j.semcancer.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.
Collapse
Affiliation(s)
- N S Yarla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - H Gali
- Department of Pharmaceutical Sciences, College of Pharmacy, and Stephenson Oklahoma Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - S Smriti
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - M Farooqui
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Panneerselvam
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA
| | - V Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
28
|
Lu X, Yang RR, Zhang JL, Wang P, Gong Y, Hu WF, Wu Y, Gao MH, Huang C. Tauroursodeoxycholic acid produces antidepressant-like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido-nitrosative stress, and endoplasmic reticulum stress. Fundam Clin Pharmacol 2018; 32:363-377. [PMID: 29578616 DOI: 10.1111/fcp.12367] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 02/09/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Abstract
Depression is a common psychiatric disorder with heavy economic and social burdens. Searching new agents with better antidepressant-like activities is of great significance for depression therapy. Tauroursodeoxycholic acid (TUDCA), a clinical drug for gallstone treatment, possesses neuroprotective effects in different brain disorders. However, whether it affects depression remains unclear. We addressed this issue by evaluating the effect of TUDCA on depression induced by chronic unpredictable stress (CUS). Results showed that TUDCA treatment at 200 but not 100 mg/kg prevented the 5 weeks of CUS-induced increases in the immobile time of C57BL6/J mice in the experiments of forced swimming test and tail suspension test as well as the CUS-induced decrease in sucrose intake and crossing numbers in the open-field test, and did not enhance the antidepressant-like effect of fluoxetine. Attenuation of neuroinflammation may be involved in the antidepressant-like effect of TUDCA, as TUDCA treatment (200 mg/kg) normalized the levels of tumor necrosis factor-α and interleukin-6 in both hippocampus and prefrontal cortex. The increases in inflammasome and microglial activation markers, including interleukin-β, nod-like receptor protein 3, and Iba-1, in CUS-treated mice were reduced by TUDCA treatment (200 mg/kg). TUDCA treatment (200 mg/kg) also normalized the changes in markers reflecting the oxidative-nitrosative and endoplasmic reticulum (ER) stress induced by CUS, such as nitric oxide, reduced glutathione, malondialdehyde, glucose-regulated protein 78, and C/EBP homologous protein. These results revealed that TUDCA improved the CUS-induced depression-like behaviors likely through attenuation of neuroinflammation, oxido-nitrosative, and ER stress.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rong-Rong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jin-Lin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, #30 Tongyang North Road, Nantong, 226001, Jiangsu, China
| | - Peng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yu Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Wen-Feng Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Min-Hui Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| |
Collapse
|
29
|
Fernandez-Cachon ML, Pedersen SL, Rigbolt KT, Zhang C, Fabricius K, Hansen HH, Elster L, Fink LN, Schäfer M, Rhee NA, Langholz E, Wandall E, Friis SU, Vilmann P, Kristiansen VB, Schmidt C, Schreiter K, Breitschopf K, Hübschle T, Jorsal T, Vilsbøll T, Schmidt T, Theis S, Knop FK, Larsen PJ, Jelsing J. Guanylin and uroguanylin mRNA expression is increased following Roux-en-Y gastric bypass, but guanylins do not play a significant role in body weight regulation and glycemic control. Peptides 2018; 101:32-43. [PMID: 29289697 DOI: 10.1016/j.peptides.2017.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023]
Abstract
AIM To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides for potentially contributing to the beneficial metabolic effects of RYGB. METHODS Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects on food intake and glucose regulation. The effect of pro-UGN or UGN overexpression, using adeno-associated virus (AAV) vectors, was assessed in diet-induced obese (DIO) mice. Intracerebroventricular administration of GN and UGN was performed in rats for assessment of putative centrally mediated effects on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral administration of guanylins or prohormones did not influence food intake, oral glucose tolerance, and GSIS. Central administration of GN and UGN did not affect food intake in rats. Chronic AVV-mediated overexpression of UGN and proUGN had no effect on body weight or glucose homeostasis in DIO mice. CONCLUSION GN and UGN, as well as their prohormones, do not seem to play a significant role in body weight regulation and glycemic control, suggesting that guanylin-family peptides do not show promise as targets for the treatment of obesity or diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nicolai A Rhee
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Ebbe Langholz
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Erik Wandall
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Steffen U Friis
- Department of Medicine, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Peter Vilmann
- Gastro Unit, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | | | | - Tina Jorsal
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | |
Collapse
|
30
|
Pilot Study Measuring the Novel Satiety Hormone, Pro-Uroguanylin, in Adolescents With and Without Obesity. J Pediatr Gastroenterol Nutr 2018; 66:489-495. [PMID: 29112082 PMCID: PMC5825243 DOI: 10.1097/mpg.0000000000001796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Disruption of satiety signaling may lead to increased caloric intake and obesity. Uroguanylin, the intestinal hormone, travels as a precursor to the central nervous system where it activates guanylyl cyclase C and stimulates pro-satiety neurons. Rodent studies have demonstrated that guanylyl cyclase C-knockout mice overeat and have increased weight gain versus wild-type mice and hyper-caloric obesity diminishes uroguanylin expression. We measured circulating plasma pro-uroguanylin, along with other gastrointestinal peptides and inflammatory markers, in human adolescents with and without obesity, as a pilot study. We hypothesized that adolescents with obesity would have less circulating pro-uroguanylin than adolescents without obesity have. METHODS We recruited 24 adolescents (age 14-17 years) with and without obesity (body mass index >95% or body mass index <95%) and measured plasma pro-uroguanylin at fasting and successive time points after a meal. We measured 3 other satiety hormones and 2 inflammatory markers to characterize overall satiety signaling and highlight any link between uroguanylin and inflammation. RESULTS Female adolescents with obesity had lower circulating pro-uroguanylin levels than female adolescents without obesity; we observed no difference in males. Other measured gastrointestinal peptides varied in their differences between cohorts. Inflammatory markers were higher in female participants with obesity. CONCLUSIONS In adolescents with and without obesity, we can measure circulating pro-uroguanylin levels. In female adolescents without obesity, levels are particularly higher. Pro-uroguanylin secretion patterns differ from other circulating gastrointestinal peptides. In female adolescents with obesity, inflammation correlates with decreased pro-uroguanylin levels.
Collapse
|
31
|
Folgueira C, Barja-Fernandez S, Gonzalez-Saenz P, Pena-Leon V, Castelao C, Ruiz-Piñon M, Casanueva FF, Nogueiras R, Seoane LM. Uroguanylin: a new actor in the energy balance movie. J Mol Endocrinol 2018; 60:R31-R38. [PMID: 29203517 DOI: 10.1530/jme-17-0263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Uroguanylin (UGN) is a potential target in the fight against obesity. The mature protein is released after enzymatic cleavage from its natural precursor, proUGN. UGN is mostly produced in the gut, and its production is regulated by nutritional status. However, UGN is also produced in other tissues such as the kidneys. In the past, UGN has been widely studied as a natriuretic peptide owing to its involvement in several different pathologies such as heart failure, cancer and gastrointestinal diseases. However, recent studies have suggested that UGN also acts as a regulator of body weight homeostasis because it modulates both food intake and energy expenditure. This ultimately results in a decrease in body weight. This action is mediated by the sympathetic nervous system. Future studies should be directed at the potential effects of UGN agonists in regulating body weight in human obesity.
Collapse
Affiliation(s)
- C Folgueira
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
- Department of PhysiologyCIMUS, USC, IDIS Santiago de Compostela, Santiago de Compostela, Spain
| | - S Barja-Fernandez
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
| | - P Gonzalez-Saenz
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
| | - V Pena-Leon
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
| | - C Castelao
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
| | - M Ruiz-Piñon
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- Operative Dentistry and EndodonticsUSC, Santiago de Compostela, Spain
| | - F F Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
- Laboratorio de Endocrinología Molecular y CelularUSC, Santiago de Compostela, Spain
| | - R Nogueiras
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
- Department of PhysiologyCIMUS, USC, IDIS Santiago de Compostela, Santiago de Compostela, Spain
| | - L M Seoane
- Fisiopatología EndocrinaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CiberOBN)Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Di Guglielmo MD, Perdue L, Adeyemi A, van Golen KL, Corao DU. Immunohistochemical Staining for Uroguanylin, a Satiety Hormone, is Decreased in Intestinal Tissue Specimens From Female Adolescents With Obesity. Pediatr Dev Pathol 2018; 21:285-295. [PMID: 28847213 PMCID: PMC5647253 DOI: 10.1177/1093526617722912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gastrointestinal tract-secreted satiety hormones play a significant role in one of the largest health-care challenges for children and adults, obesity. Recent studies in mice identified a novel role for uroguanylin, the endogenous intestinal hormone that binds guanylyl cyclase C (GUCY2C), in regulating satiety via a gut-brain signaling pathway. Mice bred without GUCY2C receptors over-ate and developed obesity. We hypothesized that intestinal uroguanylin expression in pediatric patients with obesity would be lower than patients without obesity, and we attempted to examine the difference with immunohistochemistry. Retrospective chart review of gastrointestinal endoscopic procedures at an academic children's hospital identified patients with normal pathology findings on biopsy. Children aged 8-17 were included in the review; we analyzed biopsy samples from 20 matched pairs that differed only by body mass index (BMI)-for-age (average: 25%-75% vs. high: >95%). Biopsies of the duodenum, terminal ileum, ascending colon, and descending colon were subjected to immunohistochemistry for GUCY2C, uroguanylin, and the endogenous colonic hormone, guanylin. Intensity staining of all specimens was scored by a blinded pathologist. The overall staining intensity for females with high BMI-for-age was less for uroguanylin and guanylin as compared to average BMI-for-age females while GUCY2C staining was equal. Males did not exhibit different staining intensities for uroguanylin or guanylin. More matched female pairs had greater uroguanylin and guanylin staining in the average BMI-for-age cohort. The intestinal expression of uroguanylin, a key satiety hormone, appears to be diminished in female pediatric patients in the setting of obesity.
Collapse
Affiliation(s)
- Matthew D Di Guglielmo
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Lacey Perdue
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Adebowale Adeyemi
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Kenneth L van Golen
- Department of Molecular Biosciences, University of Delaware, Newark, Delaware
| | - Diana U Corao
- Department of Pathology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
33
|
Differentially expressed genes in the caecal and colonic mucosa of Landrace finishing pigs with high and low food conversion ratios. Sci Rep 2017; 7:14886. [PMID: 29097775 PMCID: PMC5668291 DOI: 10.1038/s41598-017-14568-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023] Open
Abstract
The feed conversion ratio (FCR) is an essential economic trait for pig production, and is directly related to feed efficiency. Studies identifying the differential expression of functional genes involved in biological and molecular mechanisms in the intestine in relation to growth performance are rare. In this study, RNA-Seq was used to identify transcriptomes in caecal and colonic mucosal tissues in order to determine the differential expression of genes from two full-sibling pairs and two half-sibling pairs of Landrace finishing pigs with opposing FCR phenotypes. In total, 138 (comparison of high and low FCR in caecal mucosa), 64 (comparison of high and low FCR in colonic mucosa), and 165 (contrast between the caecal and colonic mucosa) differentially expressed genes were identified. Some of these genes were functionally related to energy and lipid metabolism, particularly short chain fatty acids metabolism, as well as gastrointestinal peristalsis and ion transport. Functional annotation were performed to identify differentially expressed genes, such as GUCA2A, GUCA2B, HSP70.2, NOS2, PCK1, SLCs, and CYPs, which may positively influence feed efficiency in Landrace pigs. These differentially expressed genes need to be further tested for candidate genes that are related to feed efficiency.
Collapse
|
34
|
Abstract
The FATZO/Pco mouse is the result of a cross of the C57BL/6J and AKR/J strains. The crossing of these two strains and the selective inbreeding for obesity, insulin resistance and hyperglycemia has resulted in an inbred strain exhibiting obesity in the presumed presence of an intact leptin pathway. Routinely used rodent models for obesity and diabetes research have a monogenic defect in leptin signaling that initiates obesity. Given that obesity and its sequelae in humans are polygenic in nature and not associated with leptin signaling defects, the FATZO mouse may represent a more translatable rodent model for study of obesity and its associated metabolic disturbances. The FATZO mouse develops obesity spontaneously when fed a normal chow diet. Glucose intolerance with increased insulin levels are apparent in FATZO mice as young as 6 weeks of age. These progress to hyperglycemia/pre-diabetes and frank diabetes with decreasing insulin levels as they age. The disease in these mice is multi-faceted, similar to the metabolic syndrome apparent in obese individuals, and thus provides a long pre-diabetic state for determining the preventive value of new interventions. We have assessed the utility of this new model for the pre-clinical screening of agents to stop or slow progression of the metabolic syndrome to severe diabetes. Our assessment included: 1) characterization of the spontaneous development of disease, 2) comparison of metabolic disturbances of FATZO mice to control mice and 3) validation of the model with regard to the effectiveness of current and emerging anti-diabetic agents; rosiglitazone, metformin and semaglutide. CONCLUSION Male FATZO mice spontaneously develop significant metabolic disease when compared to normal controls while maintaining hyperglycemia in the presence of high leptin levels and hyperinsulinemia. The disease condition responds to commonly used antidiabetic agents.
Collapse
|
35
|
Aka AA, Rappaport JA, Pattison AM, Sato T, Snook AE, Waldman SA. Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Rev Clin Pharmacol 2017; 10:549-557. [PMID: 28162021 DOI: 10.1080/17512433.2017.1292124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Colorectal cancer remains the second leading cause of cancer death in the United States, and new strategies to prevent, detect, and treat the disease are needed. The receptor, guanylate cyclase C (GUCY2C), a tumor suppressor expressed by the intestinal epithelium, has emerged as a promising target. Areas covered: This review outlines the role of GUCY2C in tumorigenesis, and steps to translate GUCY2C-targeting schemes to the clinic. Endogenous GUCY2C-activating ligands disappear early in tumorigenesis, silencing its signaling axis and enabling transformation. Pre-clinical models support GUCY2C ligand supplementation as a novel disease prevention paradigm. With the recent FDA approval of the GUCY2C ligand, linaclotide, and two more synthetic ligands in the pipeline, this strategy can be tested in human trials. In addition to primary tumor prevention, we also review immunotherapies targeting GUCY2C expressed by metastatic lesions, and platforms using GUCY2C as a biomarker for detection and patient staging. Expert commentary: Results of the first GUCY2C targeting schemes in patients will become available in the coming years. The identification of GUCY2C ligand loss as a requirement for colorectal tumorigenesis has the potential to change the treatment paradigm from an irreversible disease of genetic mutation, to a treatable disease of ligand insufficiency.
Collapse
Affiliation(s)
- Allison A Aka
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA.,b Department of Surgery , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Jeff A Rappaport
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Amanda M Pattison
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Takami Sato
- c Department of Medical Oncology , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Adam E Snook
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Scott A Waldman
- a Department of Pharmacology and Experimental Therapeutics , Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
36
|
Pattison AM, Merlino DJ, Blomain ES, Waldman SA. Guanylyl cyclase C signaling axis and colon cancer prevention. World J Gastroenterol 2016; 22:8070-8077. [PMID: 27688649 PMCID: PMC5037076 DOI: 10.3748/wjg.v22.i36.8070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality and morbidity worldwide. While improved treatments have enhanced overall patient outcome, disease burden encompassing quality of life, cost of care, and patient survival has seen little benefit. Consequently, additional advances in CRC treatments remain important, with an emphasis on preventative measures. Guanylyl cyclase C (GUCY2C), a transmembrane receptor expressed on intestinal epithelial cells, plays an important role in orchestrating intestinal homeostatic mechanisms. These effects are mediated by the endogenous hormones guanylin (GUCA2A) and uroguanylin (GUCA2B), which bind and activate GUCY2C to regulate proliferation, metabolism and barrier function in intestine. Recent studies have demonstrated a link between GUCY2C silencing and intestinal dysfunction, including tumorigenesis. Indeed, GUCY2C silencing by the near universal loss of its paracrine hormone ligands increases colon cancer susceptibility in animals and humans. GUCY2C’s role as a tumor suppressor has opened the door to a new paradigm for CRC prevention by hormone replacement therapy using synthetic hormone analogs, such as the FDA-approved oral GUCY2C ligand linaclotide (Linzess™). Here we review the known contributions of the GUCY2C signaling axis to CRC, and relate them to a novel clinical strategy targeting tumor chemoprevention.
Collapse
|
37
|
Blomain ES, Merlino DJ, Pattison AM, Snook AE, Waldman SA. Guanylyl Cyclase C Hormone Axis at the Intersection of Obesity and Colorectal Cancer. Mol Pharmacol 2016; 90:199-204. [PMID: 27251363 DOI: 10.1124/mol.115.103192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/25/2016] [Indexed: 12/12/2022] Open
Abstract
Obesity has emerged as a principal cause of mortality worldwide, reflecting comorbidities including cancer risk, particularly in colorectum. Although this relationship is established epidemiologically, molecular mechanisms linking colorectal cancer and obesity continue to be refined. Guanylyl cyclase C (GUCY2C), a membrane-bound guanylyl cyclase expressed in intestinal epithelial cells, binds the paracrine hormones guanylin and uroguanylin, inducing cGMP signaling in colorectum and small intestine, respectively. Guanylin is the most commonly lost gene product in sporadic colorectal cancer, and its universal loss early in transformation silences GUCY2C, a tumor suppressor, disrupting epithelial homeostasis underlying tumorigenesis. In small intestine, eating induces endocrine secretion of uroguanylin, the afferent limb of a novel gut-brain axis that activates hypothalamic GUCY2C-cGMP signaling mediating satiety opposing obesity. Recent studies revealed that diet-induced obesity suppressed guanylin and uroguanylin expression in mice and humans. Hormone loss reflects reversible calorie-induced endoplasmic reticulum stress and the associated unfolded protein response, rather than the endocrine, adipokine, or inflammatory milieu of obesity. Loss of intestinal uroguanylin secretion silences the hypothalamic GUCY2C endocrine axis, creating a feed-forward loop contributing to hyperphagia in obesity. Importantly, calorie-induced guanylin loss silences the GUCY2C-cGMP paracrine axis underlying obesity-induced epithelial dysfunction and colorectal tumorigenesis. Indeed, genetically enforced guanylin replacement eliminated diet-induced intestinal tumorigenesis in mice. Taken together, these observations suggest that GUCY2C hormone axes are at the intersection of obesity and colorectal cancer. Moreover, they suggest that hormone replacement that restores GUCY2C signaling may be a novel therapeutic paradigm to prevent both hyperphagia and intestinal tumorigenesis in obesity.
Collapse
Affiliation(s)
- Erik S Blomain
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dante J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|