1
|
Wang X, Feng L, Lu Y, Zhang H. miR-122/PPARβ axis is involved in hypoxic exercise and modulates fatty acid metabolism in skeletal muscle of obese rats. Heliyon 2024; 10:e26572. [PMID: 38434053 PMCID: PMC10906430 DOI: 10.1016/j.heliyon.2024.e26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor β (PPARβ) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARβ, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARβ, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARβ, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARβ by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.
Collapse
Affiliation(s)
- Xuebing Wang
- College of Physical Education, Guangxi University, Nanning, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
3
|
Ning Z, Tan X, Yuan Y, Huang K, Pan Y, Tian L, Lu Y, Wang X, Qi R, Lu D, Yang Y, Guan Y, Mamatyusupu D, Xu S. Expression profiles of east-west highly differentiated genes in Uyghur genomes. Natl Sci Rev 2023; 10:nwad077. [PMID: 37138773 PMCID: PMC10150800 DOI: 10.1093/nsr/nwad077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
It remains unknown and debatable how European-Asian-differentiated alleles affect individual phenotypes. Here, we made the first effort to analyze the expression profiles of highly differentiated genes with eastern and western origins in 90 Uyghurs using whole-genome (30× to 60×) and transcriptome data. We screened 921 872 east-west highly differentiated genetic variants, of which ∼4.32% were expression quantitative trait loci (eQTLs), ∼0.12% were alternative splicing quantitative trait loci (sQTLs), and ∼0.12% showed allele-specific expression (ASE). The 8305 highly differentiated eQTLs of strong effects appear to have undergone natural selection, associated with immunity and metabolism. European-origin alleles tend to be more biasedly expressed; highly differentiated ASEs were enriched in diabetes-associated genes, likely affecting the diabetes susceptibility in the Uyghurs. We proposed an admixture-induced expression model to dissect the highly differentiated expression profiles. We provide new insights into the genetic basis of phenotypic differentiation between Western and Eastern populations, advancing our understanding of the impact of genetic admixture.
Collapse
Affiliation(s)
| | | | | | - Ke Huang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Tian
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruicheng Qi
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | | |
Collapse
|
4
|
Ricci C, Marzocchi C, Riolo G, Ciuoli C, Benenati N, Bufano A, Tirone A, Voglino C, Vuolo G, Castagna MG, Cantara S. The impact of CPT1B rs470117, LEPR rs1137101 and BDNF rs6265 polymorphisms on the risk of developing obesity in an Italian population. Obes Res Clin Pract 2021; 15:327-333. [PMID: 34176754 DOI: 10.1016/j.orcp.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE This study aimed to analyze 11 single nucleotide polymorphisms (SNPs) belonging to 9 genes involved in metabolic pathways (BDNF rs6265; PNPLA3 rs2294918 and rs2076212; CIDEA rs11545881; NTRK2 rs2289658; ALOX12 rs1126667; ALOX12B rs2304908; LEPR rs1137101; CPT1B rs470117 and rs8142477; rs2305507 CPT1A) in obese patients and controls. METHODS Polymorphisms were analyzed in 300 severe obese patients undergoing bariatric surgery (body mass index >30 kg/m2) and 404 control subjects in order to evaluate their association with obesity and clinical variables. RESULTS Our findings showed significant differences for the allelic distributions of CPT1B rs470117 and LEPR rs11371010 in obese subjects compared to controls. The BDNF rs6265 correlates with obesity only when associated with the other two SNPs. In particular, for CPT1B rs470117 and LEPR rs1137101, the rare allele was associated with a reduced risk of developing the obese phenotype, whereas the simultaneous presence of the common C allele for rs470117 and A allele for rs1137101 was more frequent in obese patients (p = 0.002, OR = 1.417). A significant association between CPT1B rs470117 and steatosis was found. Moreover, we observed that by associating the rare allele T of the BDNF rs6265 with the most common alleles of the SNPs CPT1B rs470117 and LEPR rs1137101, the combination of T-C-A alleles was associated with a higher risk of developing an obese phenotype (p = 0.001, OR = 1.6679). CONCLUSIONS Our results suggest that SNPs CPT1B rs470117 and LEPR rs1137101 taken individually and in association with BDNF rs6265 may be involved in an increased risk of developing obese phenotype in an Italian cohort.
Collapse
Affiliation(s)
- Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Carlotta Marzocchi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Giulia Riolo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Cristina Ciuoli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Nicoletta Benenati
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Annalisa Bufano
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Andrea Tirone
- Department of Surgical Sciences, Bariatric Surgery Unit, University of Siena, Siena, Italy
| | - Costantino Voglino
- Department of Surgical Sciences, Bariatric Surgery Unit, University of Siena, Siena, Italy
| | - Giuseppe Vuolo
- Department of Surgical Sciences, Bariatric Surgery Unit, University of Siena, Siena, Italy
| | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
5
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. The role and therapeutic implication of CPTs in fatty acid oxidation and cancers progression. Am J Cancer Res 2021; 11:2477-2494. [PMID: 34249411 PMCID: PMC8263643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023] Open
Abstract
Cancer cells must maintain metabolic homeostasis under a wide range of conditions and meet their own energy needs in order to survive and reproduce. In addition to glycolysis, cancer cells can also perform various metabolic strategies, such as fatty acid oxidation (FAO). It has been found that the proliferation, survival, drug resistance and metastasis of cancer cells depend on FAO. The carnitine palmitoyltransferase (CPT), including CPT1 and CPT2, located on the mitochondrial membrane, are important mediators of FAO. In recent years, many researchers have found that CPT has a close relationship with the metabolic development of tumor cells, not only provides energy for cancer cells development and metastasis by promoting FAO but also affects the occurrence and invasion through other signal pathways or cytokines or microRNA. This review summarized the role of CPTs in several kinds of tumors and the developed targeted inhibitors of CPTs, as well as the potential gene therapy and immunotherapy of CPTs, hoping to better explore the mechanism and role of CPTs in the future and providing useful ideas for clinical treatment.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
6
|
Hunter GR, Moellering DR, Windham ST, Mathis SL, Bamman MM, Fisher G. Relationship between V̇o 2peak, cycle economy, and mitochondrial respiration in untrained/trained. J Appl Physiol (1985) 2019; 127:1562-1568. [PMID: 31556836 DOI: 10.1152/japplphysiol.00223.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aerobic capacity is negatively related to locomotion economy. The purpose of this paper is to determine what effect aerobic exercise training has on the relationship between net cycling oxygen uptake (inverse of economy) and aerobic capacity [peak oxygen uptake (V̇o2peak)], as well as what role mitochondrial coupled and uncoupled respiration may play in whole body aerobic capacity and cycling economy. Cycling net oxygen uptake and V̇o2peak were evaluated on 31 premenopausal women before exercise training (baseline) and after 8-16 wk of aerobic training. Muscle tissue was collected from 15 subjects at baseline and post-training. Mitochondrial respiration assays were performed using high-resolution respirometry. Pre- (r = 0.46, P < 0.01) and postexercise training (r = 0.62, P < 0.01) V̇o2peak and cycling net oxygen uptake were related. In addition, uncoupled and coupled fat respiration were related both at baseline (r = 0.62, P < 0.01) and post-training (r = 0.89, P < 01). Post-training coupled (r = 0.74, P < 0.01) and uncoupled carbohydrate respiration (r = 0.52, P < 05) were related to cycle net oxygen uptake. In addition, correlations between V̇o2peak and cycle net oxygen uptake persist both at baseline and after training, even after adjusting for submaximal cycle respiratory quotient (an index of fat oxidation). These results suggest that the negative relationship between locomotion economy and aerobic capacity is increased following exercise training. In addition, it is proposed that at least one of the primary factors influencing this relationship has its foundation within the mitochondria. Strong relationships between coupled and uncoupled respiration appear to be contributing factors for this relationship.NEW & NOTEWORTHY The negative relationship between cycle economy and aerobic capacity is increased following exercise training. The strong relationship between coupled and uncoupled respiration, especially after training, appears to be contributing to this negative relationship between aerobic capacity and cycling economy, suggesting that mitochondrial economy is not increased following aerobic exercise training. These results are suggestive that training programs designed to improve locomotion economy should focus on changing biomechanics.
Collapse
Affiliation(s)
- Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas R Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon L Mathis
- Department of Kinesiology, University of Alabama in Huntsville, Huntsville, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Waters DL. Intermuscular Adipose Tissue: A Brief Review of Etiology, Association With Physical Function and Weight Loss in Older Adults. Ann Geriatr Med Res 2019; 23:3-8. [PMID: 32743278 PMCID: PMC7387605 DOI: 10.4235/agmr.19.0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue redistributes during aging resulting in increased intermuscular adipose tissue (IMAT), intramuscular, and intramyocellular lipid while subcutaneous fat decreases. IMAT has been associated with lower muscle strength, power, and quality, chronic inflammation, impaired glucose tolerance, and elevated total cholesterol in older adults. This review focused on trials investigating the role of age, physical activity and diet on IMAT. The studies agreed that IMAT increases with age and seems to be responsive to physical activity, particularly the combination of aerobic and resistance exercise. However, some reported this could occur with or without weight loss, and some reported that high IMAT at baseline may blunt the muscle quality adaptive response to physical training. Larger and longer trials are needed to differentiate the independent or synergistic effects of resistance and/or aerobic training, and obesity and weight loss combined with resistance, aerobic or combination of aerobic and resistance training on IMAT.
Collapse
Affiliation(s)
- Debra Lynn Waters
- Department of Medicine and School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Hunter GR, Moellering DR, Carter SJ, Gower BA, Bamman MM, Hornbuckle LM, Plaisance EP, Fisher G. Potential Causes of Elevated REE after High-Intensity Exercise. Med Sci Sports Exerc 2017; 49:2414-2421. [PMID: 28737531 PMCID: PMC5688014 DOI: 10.1249/mss.0000000000001386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Resting energy expenditure (REE) increases after an intense exercise; however, little is known concerning mechanisms. PURPOSE The purpose of this study was to determine effects of a single bout of moderate-intensity continuous (MIC) aerobic exercise, or high-intensity interval (HII) exercise on REE under energy balance conditions. METHODS Thirty-three untrained premenopausal women were evaluated at baseline, after 8-16 wk of training, 22 h after either MIC (50% peak V˙O2) or HII (84% peak V˙O2). Participants were in a room calorimeter during and after the exercise challenge. Food intake was adjusted to obtain energy balance across 23 h. REE was measured after 22 h after all conditions. Twenty-three-hour urine norepinephrine concentration and serum creatine kinase activity (CrKact) were obtained. Muscle biopsies were obtained in a subset of 15 participants to examine muscle mitochondrial state 2, 3, and 4 fat oxidation. RESULTS REE was increased 22 h after MIC (64 ± 119 kcal) and HII (103 ± 137 kcal). Markers of muscle damage (CrKact) increased after HII (9.6 ± 25.5 U·L) and MIC (22.2 ± 22.8 U·L), whereas sympathetic tone (urine norepinephrine) increased after HII (1.1 ± 10.6 ng·mg). Uncoupled phosphorylation (states 2 and 4) fat oxidation were related to REE (r = 0.65 and r = 0.55, respectively); however, neither state 2 nor state 4 fat oxidation increased after MIC or HII. REE was not increased after 8 wk of aerobic training when exercise was restrained for 60 h. CONCLUSIONS Under energy balance conditions, REE increased 22 h after both moderate-intensity and high-intensity exercise. Exercise-induced muscle damage/repair and increased sympathetic tone may contribute to increased REE, whereas uncoupled phosphorylation does not. These results suggest that moderate- to high-intensity exercise may be valuable for increasing energy expenditure for at least 22 h after the exercise.
Collapse
Affiliation(s)
- Gary R. Hunter
- Department of Human Studies, University of Alabama at Birmingham,
Birmingham, AL
- Department of Nutrition Sciences, University of Alabama at
Birmingham, Birmingham, AL
| | - Douglas R. Moellering
- Department of Nutrition Sciences, University of Alabama at
Birmingham, Birmingham, AL
- Diabetes Research Center Bioanalytical Redox Biology (BARB) Core,
University of Alabama at Birmingham, Birmingham, AL
| | - Stephen J. Carter
- Department of Nutrition Sciences, University of Alabama at
Birmingham, Birmingham, AL
| | - Barbara A. Gower
- Department of Nutrition Sciences, University of Alabama at
Birmingham, Birmingham, AL
| | - Marcas M. Bamman
- Department of Cell, Developmental, & Integrative Biology,
University of Alabama at Birmingham, Birmingham, AL
| | - Lyndsey M. Hornbuckle
- Department of Kinesiology, Recreation, & Sport Studies,
University of Tennessee, Knoxville, TN
| | - Eric P. Plaisance
- Department of Human Studies, University of Alabama at Birmingham,
Birmingham, AL
- Department of Nutrition Sciences, University of Alabama at
Birmingham, Birmingham, AL
| | - Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham,
Birmingham, AL
- Department of Nutrition Sciences, University of Alabama at
Birmingham, Birmingham, AL
| |
Collapse
|
9
|
Giannakopoulos A, Fryssira H, Tzetis M, Xaidara A, Kanaka-Gantenbein C. Central precocious puberty in a boy with 22q13 deletion syndrome and NOTCH-1 gene duplication. J Pediatr Endocrinol Metab 2016; 29:1307-1311. [PMID: 27235670 DOI: 10.1515/jpem-2015-0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
The 22q13 deletion syndrome or Phelan-McDermid syndrome is a neurodevelopmental disorder associated with developmental delay, hypotonia, delayed or absent speech, autistic-like behavior, normal to accelerated growth and dysmorphic faces. We report the occurrence of central precocious puberty in a boy diagnosed with Phelan-McDermid syndrome. At the age of 1 year, our patient presented with increased testicular volume for his age, bone age advancement and growth acceleration. Stimulated gonadotropin levels demonstrated a premature activation of the hypothalamic-pituitary-gonadal (HPG) axis. Central precocious puberty was treated with gonadotropin-releasing hormone (GnRH) analog. Molecular diagnosis with array-comparative genomic hybridization (CGH) revealed a major deletion of 5.8 Mb at the 22q13 chromosomal region and a 25 kb duplication at the 9q34.3 region that included the NOTCH-1 gene. On the background of 22q13 deletion syndrome and data from animals on the effect of abnormal NOTCH-1 gene expression on kisspeptin neuron formation, we discuss the probable role of Notch signaling in the premature activation of the HPG axis.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/drug therapy
- Abnormalities, Multiple/genetics
- Chromosome Deletion
- Chromosome Disorders/diagnosis
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- Cytogenetic Analysis
- Delayed Diagnosis
- Drug Monitoring
- Gene Duplication
- Gonadotropin-Releasing Hormone/adverse effects
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/therapeutic use
- Greece
- Humans
- Infant, Newborn
- Male
- Puberty, Precocious/diagnosis
- Puberty, Precocious/drug therapy
- Puberty, Precocious/genetics
- Receptor, Notch1/genetics
- Reproductive Control Agents/adverse effects
- Reproductive Control Agents/therapeutic use
- Treatment Outcome
Collapse
|
10
|
Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, Shao X, Han J, Wan D, Qiu Q. Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genomics 2016; 17:379. [PMID: 27206476 PMCID: PMC4875690 DOI: 10.1186/s12864-016-2702-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/02/2022] Open
Abstract
Background Copy number variation (CNV) represents an important source of genetic divergence that can produce drastic phenotypic differences and may therefore be subject to selection during domestication and environmental adaptation. To investigate the evolutionary dynamics of CNV in the yak genome, we used a read depth approach to detect CNV based on genome resequencing data from 14 wild and 65 domestic yaks and determined CNV regions related to domestication and adaptations to high-altitude. Results We identified 2,634 CNV regions (CNVRs) comprising a total of 153 megabases (5.7 % of the yak genome) and 3,879 overlapping annotated genes. Comparison between domestic and wild yak populations identified 121 potentially selected CNVRs, harboring genes related to neuronal development, reproduction, nutrition and energy metabolism. In addition, we found 85 CNVRs that are significantly different between domestic yak living in high- and low-altitude areas, including three genes related to hypoxia response and six related to immune defense. This analysis shows that genic CNVs may play an important role in phenotypic changes during yak domestication and adaptation to life at high-altitude. Conclusions We present the first refined CNV map for yak along with comprehensive genomic analysis of yak CNV. Our results provide new insights into the genetic basis of yak domestication and adaptation to living in a high-altitude environment, as well as a valuable genetic resource that will facilitate future CNV association studies of important traits in yak and other bovid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2702-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Kun Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Lizhong Wang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Zhengqiang Ni
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xiuyue Xie
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Xuemin Shao
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Jin Han
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| | - Qiang Qiu
- State Key Laboratory of Grassland Agroecosystem, College of Life Science, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Acylcarnitines are anticoagulants that inhibit factor Xa and are reduced in venous thrombosis, based on metabolomics data. Blood 2015; 126:1595-600. [PMID: 26175037 DOI: 10.1182/blood-2015-03-636761] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
In many patients with deep vein thrombosis and pulmonary embolism (venous thromboembolism, VTE), biomarkers or genetic risk factors have not been identified. To discover novel plasma metabolites associated with VTE risk, we employed liquid chromatography-mass spectrometry-based untargeted metabolomics, which do not target any specific metabolites. Using the Scripps Venous Thrombosis Registry population for a case-control study, we discovered that 10:1 and 16:1 acylcarnitines were low in plasmas of the VTE patient group compared with matched controls, respectively. Data from targeted metabolomics studies showed that several long-chain acylcarnitines (10:1, 12:0, 12:2, 18:1, and 18:2) were lower in the VTE group. Clotting assays were used to evaluate a causal relationship for low acylcarnitines in patients with VTE. Various acylcarnitines inhibited factor Xa-initiated clotting. Inhibition of factor Xa by acylcarnitines was greater for longer acyl chains. Mechanistic studies showed that 16:0 acylcarnitine had anticoagulant activity in the absence of factor Va or phospholipids. Surface plasmon resonance investigations revealed that 16:0 acylcarnitine was bound to factor Xa and that binding did not require the γ-carboxy glutamic acid domain. In summary, our study identified low plasma levels of acylcarnitines in patients with VTE and showed that acylcarnitines have anticoagulant activity related to an ability to bind and inhibit factor Xa.
Collapse
|
12
|
Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 2014; 3:242-55. [PMID: 26317048 DOI: 10.4161/adip.28546] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 12/23/2022] Open
Abstract
Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.
Collapse
|
13
|
Gómez-Gómez E, Ríos-Martínez ME, Castro-Rodríguez EM, Del-Toro-Equíhua M, Ramírez-Flores M, Delgado-Enciso I, Pérez-Huitimea AL, Baltazar-Rodríguez LM, Velasco-Pineda G, Muñiz-Murguía J. Carnitine palmitoyltransferase 1B 531K allele carriers sustain a higher respiratory quotient after aerobic exercise, but β3-adrenoceptor 64R allele does not affect lipolysis: a human model. PLoS One 2014; 9:e96791. [PMID: 24905907 PMCID: PMC4048163 DOI: 10.1371/journal.pone.0096791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/11/2014] [Indexed: 11/28/2022] Open
Abstract
Carnitine palmitoyltransferase IB (CPT1B) and adrenoceptor beta-3 (ADRB3) are critical regulators of fat metabolism. CPT1B transports free acyl groups into mitochondria for oxidation, and ADRB3 triggers lipolysis in adipocytes, and their respective polymorphisms E531K and W64R have been identified as indicators of obesity in population studies. It is therefore important to understand the effects of these mutations on ADRB3 and CPT1B function in adipose and skeletal muscle tissue, respectively. This study aimed to analyze the rate of lipolysis of plasma indicators (glycerol, free fatty acids, and beta hydroxybutyrate) and fat oxidation (through the non-protein respiratory quotient). These parameters were measured in 37 participants during 30 min of aerobic exercise at approximately 62% of maximal oxygen uptake, followed by 30 min of recovery. During recovery, mean respiratory quotient values were higher in K allele carriers than in non-carriers, indicating low post-exercise fatty acid oxidation rates. No significant differences in lipolysis or lipid oxidation were observed between R and W allele carriers of ADRB3 at any time during the aerobic load. The substitution of glutamic acid at position 531 by lysine in the CPT1B protein decreases the mitochondrial beta-oxidation pathway, which increases the non-protein respiratory quotient value during recovery from exercise. This may contribute to weight gain or reduced weight-loss following exercise.
Collapse
Affiliation(s)
- Eduardo Gómez-Gómez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, México
| | | | | | | | - Mario Ramírez-Flores
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, México
| | | | - Ana Lilia Pérez-Huitimea
- Educación Física y Deporte. Facultad de Ciencias de la Educación, Universidad de Colima, Colima, Colima, México
| | | | | | - Jesús Muñiz-Murguía
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, México
| |
Collapse
|
14
|
Shi W, Hu S, Wang W, Zhou X, Qiu W. Skeletal muscle-specific CPT1 deficiency elevates lipotoxic intermediates but preserves insulin sensitivity. J Diabetes Res 2013; 2013:163062. [PMID: 24319696 PMCID: PMC3844227 DOI: 10.1155/2013/163062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE By specific knockout of carnitine palmitoyl transferase 1b (CPT1b) in skeletal muscles, we explored the effect of CPT1b deficiency on lipids and insulin sensitivity. METHODS Mice with specific knockout of CPT1b in skeletal muscles (CPT1b M-/-) were used for the experiment group, with littermate C57BL/6 as controls (CPT1b). General and metabolic profiles were measured and compared between groups. mRNA expression and CPT1 activity were measured in skeletal muscle tissues and compared between groups. Mitochondrial fatty acid oxidation (FAO), triglycerides (TAGs), diglycerides (DAGs), and ceramides were examined in skeletal muscles in two groups. Phosphorylated AKT (pAkt) and glucose transporter 4 (Glut4) were determined with real-time polymerase chain reaction (RT-PCR). Insulin tolerance test, glucose tolerance test, and pyruvate oxidation were performed in both groups. RESULTS CPT1b M-/- model was successfully established, with impaired muscle CPT1 activity. Compared with CPT1b mice, CPT1b M-/- mice had similar food intake but lower body weight or fat mass and higher lipids but similar glucose or insulin levels. Their mitochondrial FAO of skeletal muscles was impaired. There were lipids accumulations (TAGs, DAGs, and ceramides) in skeletal muscle. However, pAkt and Glut4, insulin sensitivity, glucose tolerance, and pyruvate oxidation were preserved. CONCLUSION Skeletal muscle-specific CPT1 deficiency elevates lipotoxic intermediates but preserves insulin sensitivity.
Collapse
Affiliation(s)
- Wanchun Shi
- Department of Endocrinology, Huzhou Central Hospital, Zhejiang 313000, China
| | - Siping Hu
- Department of Anesthesiology, Huzhou Central Hospital, Zhejiang 313000, China
| | - Wenhua Wang
- Department of Endocrinology, Huzhou Central Hospital, Zhejiang 313000, China
| | - Xiaohui Zhou
- Department of Endocrinology, Huzhou Central Hospital, Zhejiang 313000, China
| | - Wei Qiu
- Department of Endocrinology, Huzhou Central Hospital, Zhejiang 313000, China
- *Wei Qiu:
| |
Collapse
|
15
|
Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci U S A 2012; 109:E2382-90. [PMID: 22826254 DOI: 10.1073/pnas.1210506109] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.
Collapse
|
16
|
A common haplotype of carnitine palmitoyltransferase 1b is associated with the metabolic syndrome. Br J Nutr 2012; 109:810-5. [PMID: 22809552 DOI: 10.1017/s0007114512002656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The carnitine palmitoyltransferase (CPT) enzyme system facilitates the transport of long-chain fatty acids into mitochondria to provide substrates for β-oxidation. We performed an analysis including three coding SNP in the muscle isoform of the CPT1b gene (rs3213445, rs2269383 and rs470117) and one coding SNP in the CPT2 gene (rs1799821) to find associations with traits of the metabolic syndrome (MetS). Male participants (n 755) from the Metabolic Intervention Cohort Kiel were genotyped and phenotyped for features of the MetS. Participants underwent a glucose tolerance test and a postprandial assessment of metabolic variables after a standardised mixed meal. Carriers of the rare CPT1b 66V (rs3213445) allele had significantly higher γ-glutamyl transpeptidase (GGT), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvate transaminase (GPT) activities (P< 0·0001, P= 0·03 and P= 0·048, respectively) and a higher fatty liver index (FLI, P= 0·026). Fasting and postprandial TAG (P= 0·007 and P= 0·009, respectively) and fasting glucose (P= 0·012) were significantly higher in 66V-allele carriers. The insulin sensitivity index determined after a glucose load was lower in those subjects (P= 0·005). Total cholesterol (P= 0·051) and LDL-cholesterol (P= 0·062) tended to be higher in 66V-allele carriers when compared with I66I homozygotes. Homozygosity of the rare K531E allele presented with lower GGT and GOT activities (P= 0·011 and P= 0·027, respectively). E531E homozygotes tended to have lower GPT and FLI (P= 0·078 and P= 0·052, respectively). CPT2 V368I (rs1799821) genotypic groups did not differ in the investigated anthropometric and metabolic parameters. The present results confirm the association of CPT1b coding polymorphisms with the MetS, with a deleterious effect of the CPT1b I66V and a protective impact of the CPT1b K531E SNP, whereas haplotype analysis indicates a relevance of the E531K polymorphism only.
Collapse
|