1
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Martínez-Sánchez N. There and Back Again: Leptin Actions in White Adipose Tissue. Int J Mol Sci 2020; 21:ijms21176039. [PMID: 32839413 PMCID: PMC7503240 DOI: 10.3390/ijms21176039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone discovered almost 30 years ago with important implications in metabolism. It is primarily produced by white adipose tissue (WAT) in proportion to the amount of fat. The discovery of leptin was a turning point for two principle reasons: on one hand, it generated promising expectations for the treatment of the obesity, and on the other, it changed the classical concept that white adipose tissue was simply an inert storage organ. Thus, adipocytes in WAT produce the majority of leptin and, although its primary role is the regulation of fat stores by controlling lipolysis and lipogenesis, this hormone also has implications in other physiological processes within WAT, such as apoptosis, browning and inflammation. Although a massive number of questions related to leptin actions have been answered, the necessity for further clarification facilitates constantly renewing interest in this hormone and its pathways. In this review, leptin actions in white adipose tissue will be summarized in the context of obesity.
Collapse
|
4
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
5
|
Mongan AM, Lynam-Lennon N, Doyle SL, Casey R, Carr E, Cannon A, Conroy MJ, Pidgeon GP, Brennan L, Lysaght J, Reynolds JV, O'Sullivan J. Visceral Adipose Tissue Modulates Radiosensitivity in Oesophageal Adenocarcinoma. Int J Med Sci 2019; 16:519-528. [PMID: 31171903 PMCID: PMC6535661 DOI: 10.7150/ijms.29296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/13/2018] [Indexed: 12/21/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Response to neoadjuvant chemoradiotherapy (NA CRT) is a clinical challenge. We examined if visceral adipose tissue and obesity status alter radiosensitivity in OAC. The radioresistant (OE33R) and radioresponsive (OE33P) OAC isogenic model was cultured with adipose tissue conditioned media from three patient cohorts: non-cancer patients, surgery only OAC patients and NA CRT OAC patients. Cell survival was characterised by clonogenic assay, metabolomic profiling by nuclear magnetic resonance spectroscopy and adipokine receptor gene expression by qPCR. A retrospective in vivo study compared tumour response to NA CRT in normal weight (n=53) versus overweight/obese patients (n=148). Adipose conditioned media (ACM) from all patient cohorts significantly increased radiosensitivity in radioresistant OE33R cells. ACM from the NA CRT OAC cohort increased radiosensitivity in OE33P cells. Metabolomic profiling demonstrated separation of the non-cancer and surgery only OAC cohorts and between the non-cancer and NA CRT OAC cohorts. Gene expression profiling of OE33P versus OE33R cells demonstrated differential expression of the adiponectin receptor-1 (AR1), adiponectin receptor-2 (AR2), leptin receptor (LepR) and neuropilin receptor-1 (NRP1) genes. In vivo overweight/obese OAC patients achieved an enhanced tumour response following NA CRT compared to normal weight patients. This study demonstrates that visceral adipose tissue modulates the cellular response to radiation in OAC.
Collapse
Affiliation(s)
- Ann Marie Mongan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Suzanne L Doyle
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - Rory Casey
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Eibhlin Carr
- School of Agriculture & Food Science, Science Centre-South, Belfield, Dublin 4, Ireland
| | - Aoife Cannon
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Melissa J Conroy
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Graham P Pidgeon
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Lorraine Brennan
- School of Agriculture & Food Science, Science Centre-South, Belfield, Dublin 4, Ireland
| | - Joanne Lysaght
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - John V Reynolds
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
6
|
Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism. Eur J Immunol 2017; 47:225-235. [PMID: 28054344 DOI: 10.1002/eji.201646423] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/23/2016] [Accepted: 01/02/2017] [Indexed: 12/14/2022]
Abstract
T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Keiko Danzaki
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
7
|
Abstract
Obesity is characterized as a chronic state of low-grade inflammation with progressive immune cell infiltration into adipose tissues. Adipose tissue macrophages play critical roles in the establishment of the chronic inflammatory state and metabolic dysfunctions. The novel discovery that pro-inflammatory macrophages are recruited to obese adipose tissue prompted an increased interest in the interplay between immune cells and metabolism. Since this discovery, many works have been published investigating the factors that lead to macrophage recruitment, the phenotypic change of adipose tissue macrophages, and metabolic dysfunctions. Adipokines and chemokines are key mediators that play crucial roles in crosstalk between adipocytes and macrophages and in regulating the adipose tissue inflammation. In the present review, we discuss the obesity-mediated adipose tissue remodelling, and particularly, the role of adipokines/chemokines in macrophage recruitment to obese adipose tissue. This review provides new insights into the physiological role of these factors and identifies a potential therapeutic target for obesity and associated disorders.
Collapse
Affiliation(s)
- Y Bai
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, Ohio, USA; Molecular, Cellular, and Developmental Biology Program, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
8
|
Dib LH, Ortega MT, Fleming SD, Chapes SK, Melgarejo T. Bone marrow leptin signaling mediates obesity-associated adipose tissue inflammation in male mice. Endocrinology 2014; 155:40-6. [PMID: 24169547 PMCID: PMC3868799 DOI: 10.1210/en.2013-1607] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity is characterized by an increased recruitment of proinflammatory macrophages to the adipose tissue (AT), leading to systemic inflammation and metabolic disease. The pathogenesis of this AT inflammation, however, remains to be elucidated. The circulating adipokine leptin is increased in obesity and is involved in immune cell function and activation. In the present study, we investigated the role of leptin in the induction of obesity-associated inflammation. We generated radiation chimeric C57BL/6J mice reconstituted with either leptin receptor-deficient (db/db) or wild-type (WT) bone marrow and challenged them with a high-fat diet (HFD) for 16 weeks. Mice reconstituted with db/db bone marrow (WT/db), had significantly lower body weight and adiposity compared with mice with WT bone marrow (WT/WT). Gonadal AT in WT/db mice displayed a 2-fold lower expression of the inflammatory genes Tnfa, Il6, and Ccl2. In addition, gonadal fat of WT/db mice contained significantly fewer crown-like structures compared with WT/WT mice, and most of their AT macrophages expressed macrophage galactose-type C type lectin 1 (MGL1) and were C-C chemokine receptor type 2 (CCR2)-negative, indicative of an anti-inflammatory phenotype. Moreover, WT/db mice exhibited greater insulin sensitivity compared with WT/WT mice. These data show that disrupted leptin signaling in bone marrow-derived cells attenuates the proinflammatory conditions that mediate many of the metabolic complications that characterize obesity. Our findings establish a novel mechanism involved in the regulation of obesity-associated systemic inflammation and support the hypothesis that leptin is a proinflammatory cytokine.
Collapse
|
9
|
Affiliation(s)
- Alyssa H Hasty
- Department of Molecular Physiology and Biophysics (A.H.H.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232; and Division of Cellular Immunology (D.A.G.), German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
10
|
Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. THE JOURNAL OF IMMUNOLOGY 2013; 192:136-44. [PMID: 24273001 DOI: 10.4049/jimmunol.1301158] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.
Collapse
Affiliation(s)
- Donte C Saucillo
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | |
Collapse
|
11
|
Leptin modulates lymphocytes' adherence to hepatic stellate cells is associated with oxidative status alterations. Mitochondrion 2013; 13:473-80. [DOI: 10.1016/j.mito.2012.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/15/2022]
|
12
|
Abstract
Obesity and related type 2 diabetes are increasing at epidemic proportions globally. It is now recognized that inflammatory responses mediated within the adipose tissue in obesity are central to the development of disease. Once initiated, chronic inflammation associated with obesity leads to the modulation of immune cell function. This review will focus specifically on the impact of obesity on γδ T cells, a T-cell subset that is found in high concentrations in epithelial tissues such as the skin, intestine, and lung. Epithelial γδ T cell function is of particular concern in obesity as they are the guardians of the epithelial barrier and mediate repair. A breakdown in their function, and subsequently the deterioration of the epithelium can result in dire consequences for the host. Obese patients are more prone to non-healing injuries, infection, and disease. The resulting inflammation from these pathologies further perpetuates the disease condition already present in obese hosts. Here we will provide insight into the immunomodulation of γδ T cells that occurs in the epithelial barrier during obesity and discuss current therapeutic options.
Collapse
|
13
|
Features of cancer management in obese patients. Crit Rev Oncol Hematol 2012; 85:193-205. [PMID: 22776402 DOI: 10.1016/j.critrevonc.2012.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/29/2012] [Accepted: 06/13/2012] [Indexed: 01/07/2023] Open
Abstract
There is worldwide increased in obesity prevalence and statistical almost half of United-States, including children, could be obese by 2050. Obesity in cancer patients is a major issue in oncology because weight gain and obesity account for approximately 20% of all cancer cases. Indeed, increased obesity is linked with higher risk of various types of cancer and a poorer survival. Although biological mechanisms underlying how obesity causes an increased risk of cancer are suggested, overweight as a putative direct cause of death is still debated. Numerous confounding factors may impact on survival, including comorbidities and imaging limitations. Moreover, difficulties to achieve the standard oncologic care with surgery, chemotherapy and/or radiation may also be concerned. Herein, we examined the specific features and potential adaptation of the cancer management in overweighed patients. Then, we reviewed how implicated molecular pathways may provide new strategies to decrease cancer risk and predict toxicities in an increasingly obese population.
Collapse
|
14
|
Deficiency of ACE2 in Bone-Marrow-Derived Cells Increases Expression of TNF-α in Adipose Stromal Cells and Augments Glucose Intolerance in Obese C57BL/6 Mice. Int J Hypertens 2012; 2012:762094. [PMID: 22518292 PMCID: PMC3296206 DOI: 10.1155/2012/762094] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/17/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023] Open
Abstract
Deficiency of ACE2 in macrophages has been suggested to promote the development of an inflammatory M1 macrophage phenotype. We evaluated effects of ACE2 deficiency in bone-marrow-derived stem cells on adipose inflammation and glucose tolerance in C57BL/6 mice fed a high fat (HF) diet. ACE2 activity was increased in the stromal vascular fraction (SVF) isolated from visceral, but not subcutaneous adipose tissue of HF-fed mice. Deficiency of ACE2 in bone marrow cells significantly increased mRNA abundance of F4/80 and TNF-α in the SVF isolated from visceral adipose tissue of HF-fed chimeric mice, supporting increased presence of inflammatory macrophages in adipose tissue. Moreover, deficiency of ACE2 in bone marrow cells modestly augmented glucose intolerance in HF-fed chimeric mice and increased blood levels of glycosylated hemoglobin. In summary, ACE2 deficiency in bone marrow cells promotes inflammation in adipose tissue and augments obesity-induced glucose intolerance.
Collapse
|
15
|
Lemos MP, Rhee KY, McKinney JD. Expression of the leptin receptor outside of bone marrow-derived cells regulates tuberculosis control and lung macrophage MHC expression. THE JOURNAL OF IMMUNOLOGY 2011; 187:3776-84. [PMID: 21859958 DOI: 10.4049/jimmunol.1003226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leptin is a pleiotropic hormone proposed to link nutritional status to the development of strong Th1 immunity. Because Mycobacterium tuberculosis control is affected by starvation and diabetes, we studied the role of the leptin receptor in regulating distinct immune cells during chronic infection. Infected db/db mice, bearing a natural mutation in the leptin receptor, have a markedly increased bacterial load in their lungs when compared with that of their wild-type counterparts. In response to M. tuberculosis infection, db/db mice exhibited disorganized granulomas, neutrophilia, and reduced B cell migration to the lungs, correlating with dysfunctional lung chemokine responses that include XCL1, CCL2, CXCL1, CXCL2, and CXCL13. In a db/db lung, myeloid cells were delayed in their production of inducible NO synthase and had reduced expression of MHC I and II. Although the Th1 cell response developed normally in the absence of leptin signaling, production of pulmonary IFN-γ was delayed and ineffective. Surprisingly, a proper immune response took place in bone marrow (BM) chimeras lacking leptin receptor exclusively in BM-derived cells, indicating that leptin acts indirectly on immune cells to modulate the antituberculosis response and bacterial control. Together, these findings suggest that the pulmonary response to M. tuberculosis is affected by the host's nutritional status via the regulation of non-BM-derived cells, not through direct action of leptin on Th1 immunity.
Collapse
Affiliation(s)
- Maria P Lemos
- The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|