1
|
Ghosh S, Hom Choudhury S, Mukherjee K, Bhattacharyya SN. HuR-miRNA complex activates RAS GTPase RalA to facilitate endosome targeting and extracellular export of miRNAs. J Biol Chem 2024; 300:105750. [PMID: 38360271 PMCID: PMC10956062 DOI: 10.1016/j.jbc.2024.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.
Collapse
Affiliation(s)
- Syamantak Ghosh
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sourav Hom Choudhury
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Nebraska, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Nebraska, USA.
| |
Collapse
|
2
|
Wu X, Ramesh R, Wang J, Zheng Y, Armaly AM, Wei L, Xing M, Roy S, Lan L, Gao FP, Miao Y, Xu L, Aubé J. Small Molecules Targeting the RNA-Binding Protein HuR Inhibit Tumor Growth in Xenografts. J Med Chem 2023; 66:2032-2053. [PMID: 36690437 PMCID: PMC10101218 DOI: 10.1021/acs.jmedchem.2c01723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RNA-binding protein Hu antigen R (HuR) is a post-transcriptional regulator critical in several types of diseases, including cancer, making it a promising therapeutic target. We have identified small-molecule inhibitors of HuR through a screening approach used in combination with fragment analysis. A total of 36 new compounds originating from fragment linking or structural optimization were studied to establish structure-activity relationships in the set. Two top inhibitors, 1c and 7c, were further validated by binding assays and cellular functional assays. Both block HuR function by directly binding to the RNA-binding pocket, inhibit cancer cell growth dependence of HuR, and suppress cancer cell invasion. Intraperitoneal administration of inhibitor 1c inhibits tumor growth as a single agent and shows a synergistic effect in combination with chemotherapy docetaxel in breast cancer xenograft models. Mechanistically, 1c interferes with the HuR-TGFB/THBS1 axis.
Collapse
Affiliation(s)
| | - Remya Ramesh
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | - Youguang Zheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ahlam M Armaly
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | - Sudeshna Roy
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | | | | | | | - Liang Xu
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
4
|
Kim YS, Tang PW, Welles JE, Pan W, Javed Z, Elhaw AT, Mythreye K, Kimball SR, Hempel N. HuR-dependent SOD2 protein synthesis is an early adaptation to anchorage-independence. Redox Biol 2022; 53:102329. [PMID: 35594792 PMCID: PMC9121325 DOI: 10.1016/j.redox.2022.102329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
During metastasis cancer cells must adapt to survive loss of anchorage and evade anoikis. An important pro-survival adaptation is the ability of metastatic tumor cells to increase their antioxidant capacity and restore cellular redox balance. Although much is known about the transcriptional regulation of antioxidant enzymes in response to stress, how cells acutely adapt to alter antioxidant enzyme levels is less well understood. Using ovarian cancer cells as a model, we demonstrate that an increase in mitochondrial superoxide dismutase SOD2 protein expression is a very early event initiated in response to detachment, an important step during metastasis that has been associated with increased oxidative stress. SOD2 protein synthesis is rapidly induced within 0.5-2 h of matrix detachment, and polyribosome profiling demonstrates an increase in the number of ribosomes bound to SOD2 mRNA, indicating an increase in SOD2 mRNA translation in response to anchorage-independence. Mechanistically, we find that anchorage-independence induces cytosolic accumulation of the RNA binding protein HuR/ELAVL1 and promotes HuR binding to SOD2 mRNA. Using HuR siRNA-mediated knockdown, we show that the presence of HuR is necessary for the increase in SOD2 mRNA association with the heavy polyribosome fraction and consequent nascent SOD2 protein synthesis in anchorage-independence. Cellular detachment also activates the stress-response mitogen-activated kinase p38, which is necessary for HuR-SOD2 mRNA interactions and induction of SOD2 protein output. These findings illustrate a novel translational regulatory mechanism of SOD2 by which ovarian cancer cells rapidly increase their mitochondrial antioxidant capacity as an acute stress response to anchorage-independence.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Priscilla W Tang
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Jaclyn E Welles
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Weihua Pan
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Zaineb Javed
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Amal Taher Elhaw
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Hu Antigen R (HuR) Protein Structure, Function and Regulation in Hepatobiliary Tumors. Cancers (Basel) 2022; 14:cancers14112666. [PMID: 35681645 PMCID: PMC9179498 DOI: 10.3390/cancers14112666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Hepatobiliary tumors are a group of primary malignancies encompassing the liver, the intra- and extra-hepatic biliary tracts, and the gall bladder. Within the liver, hepatocellular carcinoma (HCC) is the most common type of primary cancer, which is, also, representing the third-most recurrent cause of cancer-associated death and the sixth-most prevalent type of tumor worldwide, nowadays. Although less frequent, cholangiocarcinoma (CCA) is, currently, a fatal cancer with limited therapeutic options. Here, we review the regulatory role of Hu antigen R (HuR), a ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), in the pathogenesis, progression, and treatment of HCC and CCA. Overall, HuR is proposed as a valuable diagnostic and prognostic marker, as well as a therapeutic target in hepatobiliary cancers. Therefore, novel therapeutic approaches that can selectively modulate HuR function appear to be highly attractive for the clinical management of these types of tumors. Abstract Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers. An overview of the main regulatory axes involving HuR, which are associated with cell proliferation, invasion, metastasis, apoptosis, and autophagy in HCC, is provided. These include the transcriptional, post-transcriptional, and post-translational modulators of HuR function, in addition to HuR target transcripts. Finally, whereas studies addressing the relevance of targeting HuR in CCA are limited, in the past few years, HuR has emerged as a potential therapeutic target in HCC. In fact, the therapeutic efficacy of some pharmacological inhibitors of HuR has been evaluated, in early experimental models of HCC. We, further, discuss the major findings and future perspectives of therapeutic approaches that specifically block HuR interactions, either with post-translational modifiers or cognate transcripts in hepatobiliary cancers.
Collapse
|
6
|
CircEIF3H-IGF2BP2-HuR scaffold complex promotes TNBC progression via stabilizing HSPD1/RBM8A/G3BP1 mRNA. Cell Death Dis 2022; 8:261. [PMID: 35568705 PMCID: PMC9107465 DOI: 10.1038/s41420-022-01055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is a molecular subtype with an unfavorable prognosis, and metastasis is the main reason for the failure of clinical treatment. However, the expression profile and regulatory function of circRNAs in TNBC progression are not fully understood. Herein, we performed high-throughput RNA-seq in paired breast cancer tissues and adjacent normal tissues and discovered a novel circRNA, circEIF3H, which was upregulated in breast cancer tissues. Large cohort survival analysis confirmed the association between high circEIF3H expression and poor prognosis of TNBC, indicating the vital function of circEIF3H in TNBC progression. Then we conducted both in vitro and in vivo experiments which illustrated that circEIF3H was essential for TNBC proliferation and metastasis. Further experiments showed that circEIF3H did not function as a microRNA sponge as in the most well-established pathway, but as a scaffold for IGF2BP2 and HuR to regulate the mRNA stability of HSPD1, RBM8A, and G3BP1. Our findings provide insight into a novel circRNA, circEIF3H, with significant cancer-promoting function via serving as a scaffold for IGF2BP2/HuR. These results identified circEIF3H as a potential target for developing individualized therapy of TNBC in the approaching future.
Collapse
|
7
|
Cai H, Zheng D, Yao Y, Yang L, Huang X, Wang L. Roles of Embryonic Lethal Abnormal Vision-Like RNA Binding Proteins in Cancer and Beyond. Front Cell Dev Biol 2022; 10:847761. [PMID: 35465324 PMCID: PMC9019298 DOI: 10.3389/fcell.2022.847761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
Abstract
Embryonic lethal abnormal vision-like (ELAVL) proteins are RNA binding proteins that were originally discovered as indispensable regulators of the development and functioning of the nervous system. Subsequent studies have shown that ELAVL proteins not only exist in the nervous system, but also have regulatory effects in other tissues. ELAVL proteins have attracted attention as potential therapeutic targets because they stabilize multiple mRNAs by binding within the 3′-untranslated region and thus promote the development of tumors, including hepatocellular carcinoma, pancreatic cancer, ovarian cancer, breast cancer, colorectal carcinoma and lung cancer. Previous studies have focused on these important relationships with downstream mRNAs, but emerging studies suggest that ELAVL proteins also interact with non-coding RNAs. In this review, we will summarize the relationship of the ELAVL protein family with mRNA and non-coding RNA and the roles of ELAVL protein family members in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
| | | | | | - Lehe Yang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Xiaoying Huang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Liangxing Wang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| |
Collapse
|
8
|
Assoni G, La Pietra V, Digilio R, Ciani C, Licata NV, Micaelli M, Facen E, Tomaszewska W, Cerofolini L, Pérez-Ràfols A, Varela Rey M, Fragai M, Woodhoo A, Marinelli L, Arosio D, Bonomo I, Provenzani A, Seneci P. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv Drug Deliv Rev 2022; 181:114088. [PMID: 34942276 DOI: 10.1016/j.addr.2021.114088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).
Collapse
Affiliation(s)
- Giulia Assoni
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosangela Digilio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Caterina Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Nausicaa Valentina Licata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elisa Facen
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Pérez-Ràfols
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Varela Rey
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Functional Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain; Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Luciana Marinelli
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), National Research Council (CNR), Via C. Golgi 19, I-20133 Milan, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
9
|
Rossi F, Beltran M, Damizia M, Grelloni C, Colantoni A, Setti A, Di Timoteo G, Dattilo D, Centrón-Broco A, Nicoletti C, Fanciulli M, Lavia P, Bozzoni I. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell 2022; 82:75-89.e9. [PMID: 34942120 PMCID: PMC8751636 DOI: 10.1016/j.molcel.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs) are widely expressed in eukaryotes and are regulated in many biological processes. Although several studies indicate their activity as microRNA (miRNA) and protein sponges, little is known about their ability to directly control mRNA homeostasis. We show that the widely expressed circZNF609 directly interacts with several mRNAs and increases their stability and/or translation by favoring the recruitment of the RNA-binding protein ELAVL1. Particularly, the interaction with CKAP5 mRNA, which interestingly overlaps the back-splicing junction, enhances CKAP5 translation, regulating microtubule function in cancer cells and sustaining cell-cycle progression. Finally, we show that circZNF609 downregulation increases the sensitivity of several cancer cell lines to different microtubule-targeting chemotherapeutic drugs and that locked nucleic acid (LNA) protectors against the pairing region on circZNF609 phenocopy such effects. These data set an example of how the small effects tuned by circZNF609/CKAP5 mRNA interaction might have a potent output in tumor growth and drug response.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Manuel Beltran
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Michela Damizia
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy; Institute of Molecular Biology and Pathology CNR, Rome 00185, Italy
| | - Chiara Grelloni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Alessio Colantoni
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Carmine Nicoletti
- DAHFMO - Section of Histology and Medical Embryology, Sapienza University of Rome, Rome 00185, Italy
| | - Maurizio Fanciulli
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology CNR, Rome 00185, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy.
| |
Collapse
|
10
|
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, Tatin F, Prats AC, Garmy-Susini B, DesGroseillers L, Lacazette E. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int J Mol Sci 2021; 23:215. [PMID: 35008641 PMCID: PMC8745428 DOI: 10.3390/ijms23010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Leïla Halidou Diallo
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Valérie Brunchault
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Nathalie Laugero
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florent Morfoisse
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florian David
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emilie Roussel
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Manon Nougue
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Audrey Zamora
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emmanuelle Marchaud
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florence Tatin
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Luc DesGroseillers
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Eric Lacazette
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| |
Collapse
|
11
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
12
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
13
|
Marques de Menezes EG, Jang K, George AF, Nyegaard M, Neidleman J, Inglis HC, Danesh A, Deng X, Afshari A, Kim YH, Billaud JN, Marson K, Pilcher CD, Pillai SK, Norris PJ, Roan NR. Seminal Plasma-Derived Extracellular-Vesicle Fractions from HIV-Infected Men Exhibit Unique MicroRNA Signatures and Induce a Proinflammatory Response in Cells Isolated from the Female Reproductive Tract. J Virol 2020; 94:e00525-20. [PMID: 32434889 PMCID: PMC7394899 DOI: 10.1128/jvi.00525-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
The continuing spread of HIV/AIDS is predominantly fueled by sexual exposure to HIV-contaminated semen. Seminal plasma (SP), the liquid portion of semen, harbors a variety of factors that may favor HIV transmission by facilitating viral entry into host cells, eliciting the production of proinflammatory cytokines, and enhancing the translocation of HIV across the genital epithelium. One important and abundant class of factors in SP is extracellular vesicles (EVs), which, in general, are important intercellular signal transducers. Although numerous studies have characterized blood plasma-derived EVs from both uninfected and HIV-infected individuals, little is known about the properties of EVs from the semen of HIV-infected individuals. We report here that fractionated SP enriched for EVs from HIV-infected men induces potent transcriptional responses in epithelial and stromal cells that interface with the luminal contents of the female reproductive tract. Semen EV fractions from acutely infected individuals induced a more proinflammatory signature than those from uninfected individuals. This was not associated with any observable differences in the surface phenotypes of the vesicles. However, microRNA (miRNA) expression profiling analysis revealed that EV fractions from infected individuals exhibit a broader and more diverse profile than those from uninfected individuals. Taken together, our data suggest that SP EVs from HIV-infected individuals exhibit unique miRNA signatures and exert potent proinflammatory transcriptional changes in cells of the female reproductive tract, which may facilitate HIV transmission.IMPORTANCE Seminal plasma (SP), the major vehicle for HIV, can modulate HIV transmission risk through a variety of mechanisms. Extracellular vesicles (EVs) are extremely abundant in semen, and because they play a key role in intercellular communication pathways and immune regulation, they may impact the likelihood of HIV transmission. However, little is known about the properties and signaling effects of SP-derived EVs in the context of HIV transmission. Here, we conduct a phenotypic, transcriptomic, and functional characterization of SP and SP-derived EVs from uninfected and HIV-infected men. We find that both SP and its associated EVs elicit potent proinflammatory transcriptional responses in cells that line the genital tract. EVs from HIV-infected men exhibit a more diverse repertoire of miRNAs than EVs from uninfected men. Our findings suggest that EVs from the semen of HIV-infected men may significantly impact the likelihood of HIV transmission through multiple mechanisms.
Collapse
Affiliation(s)
- Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Karen Jang
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | - Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| | | | - Ali Danesh
- Vitalant Research Institute, San Francisco, California, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA
| | | | - Young H Kim
- Agilent Technologies, Inc., Santa Clara, California, USA
| | | | - Kara Marson
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, California, USA
| |
Collapse
|
14
|
Chen W, Chen M, Zhao Z, Weng Q, Song J, Fang S, Wu X, Wang H, Zhang D, Yang W, Wang Z, Xu M, Ji J. ZFP36 Binds With PRC1 to Inhibit Tumor Growth and Increase 5-Fu Chemosensitivity of Hepatocellular Carcinoma. Front Mol Biosci 2020; 7:126. [PMID: 32766276 PMCID: PMC7381195 DOI: 10.3389/fmolb.2020.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth common cause of tumor-related death worldwide. ZFP36, a RNA-binding protein, decreases in many cancers and its role in HCC remains unclear. This study aimed to investigate the underlying mechanisms by which ZFP36 inhibited HCC progression and increased fluorouracil (5-Fu) sensitivity. We found that ZFP36 was downregulated and PRC1 was upregulated in HCC tissues compared with adjacent non-tumor tissues. In vitro investigation presented that ZFP36 acted as a tumor suppressor, while overexpression of PRC1 increased cell proliferation, colony formation and invasion. Further investigations demonstrated that overexpression of ZFP36 inhibited tumor growth and promoted 5-Fu sensitivity in xenograft tumor mice model, which could be reversed when PRC1 overexpressed simultaneously. Luciferase reporter assays and Ribonucleoprotein immunoprecipitation analysis indicated that ZFP36 could bind to adenylate uridylate-rich elements located in PRC1 mRNA 3′UTR to downregulate PRC1 expression. Taken together, our findings identified that ZFP36 regulated PRC1 to exert anti-tumor effect, which suggested a potential therapeutic strategy for treating HCC by exploiting ZFP36/PRC1 axis.
Collapse
Affiliation(s)
- Weiqian Chen
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Minjiang Chen
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zhongwei Zhao
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Qiaoyou Weng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jingjing Song
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Shiji Fang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xulu Wu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Hailin Wang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Dengke Zhang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Weibin Yang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Zufei Wang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Min Xu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jiansong Ji
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Radiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
15
|
Inhibition of Caspase-2 Translation by the mRNA Binding Protein HuR: A Novel Path of Therapy Resistance in Colon Carcinoma Cells? Cells 2019; 8:cells8080797. [PMID: 31366165 PMCID: PMC6721497 DOI: 10.3390/cells8080797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.
Collapse
|
16
|
Parham LR, Williams PA, Chatterji P, Whelan KA, Hamilton KE. RNA regulons are essential in intestinal homeostasis. Am J Physiol Gastrointest Liver Physiol 2019; 316:G197-G204. [PMID: 30520692 PMCID: PMC6383383 DOI: 10.1152/ajpgi.00403.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial cells are among the most rapidly proliferating cell types in the human body. There are several different subtypes of epithelial cells, each with unique functional roles in responding to the ever-changing environment. The epithelium's ability for rapid and customized responses to environmental changes requires multitiered levels of gene regulation. An emerging paradigm in gastrointestinal epithelial cells is the regulation of functionally related mRNA families, or regulons, via RNA-binding proteins (RBPs). RBPs represent a rapid and efficient mechanism to regulate gene expression and cell function. In this review, we will provide an overview of intestinal epithelial RBPs and how they contribute specifically to intestinal epithelial stem cell dynamics. In addition, we will highlight key gaps in knowledge in the global understanding of RBPs in gastrointestinal physiology as an opportunity for future studies.
Collapse
Affiliation(s)
- Louis R. Parham
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Patrick A. Williams
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Priya Chatterji
- 2Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A. Whelan
- 3Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania,4Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kathryn E. Hamilton
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Carrascoso I, Alcalde J, Tabas-Madrid D, Oliveros JC, Izquierdo JM. Transcriptome-wide analysis links the short-term expression of the b isoforms of TIA proteins to protective proteostasis-mediated cell quiescence response. PLoS One 2018; 13:e0208526. [PMID: 30533021 PMCID: PMC6289441 DOI: 10.1371/journal.pone.0208526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Control of gene expression depends on genetics and environmental factors. The T-cell intracellular antigens T-cell intracellular antigen 1 (TIA1), TIA1-like/related protein (TIAL1/TIAR) and human antigen R (HuR/ELAVL1) are RNA-binding proteins that play crucial roles in regulating gene expression in both situations. This study used massive sequencing analysis to uncover molecular and functional mechanisms resulting from the short-time expression of the b isoforms of TIA1 and TIAR, and of HuR in HEK293 cells. Our gene profiling analysis identified several hundred differentially expressed genes (DEGs) and tens of alternative splicing events associated with TIA1b, TIARb and HuR overexpression. Gene ontology analysis revealed that the controlled expression of these proteins strongly influences the patterns of DEGs and RNA variants preferentially associated with development, reproduction, cell cycle, metabolism, autophagy and apoptosis. Mechanistically, TIA1b and TIARb isoforms display both common and differential effects on the regulation of gene expression, involving systematic perturbations of cell biosynthetic machineries (splicing and translation). The transcriptome outputs were validated using functional assays of the targeted cellular processes as well as expression analysis for selected genes. Collectively, our observations suggest that early TIA1b and TIARb expression operates to connect the regulatory crossroads to protective proteostasis responses associated with a survival quiescence phenotype.
Collapse
Affiliation(s)
- Isabel Carrascoso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - José Alcalde
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Daniel Tabas-Madrid
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - Juan Carlos Oliveros
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, C/ Darwin, Madrid, Spain
| | - José M. Izquierdo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Khazayel S, Mokarram P, Mohammadi Z, Ramezani F, Dayong Z. Derivative of Stevioside; CPUK02; Restores ESR1 Gene Methylation in MDA-MB 231. Asian Pac J Cancer Prev 2018; 19:2117-2123. [PMID: 30139210 PMCID: PMC6171390 DOI: 10.22034/apjcp.2018.19.8.2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: CPUK02 (15-Oxosteviol benzyl ester) is a new ent-kaurenoid derivative of stevioside and exhibits strong anti-cancer activity. Nowadays, the pattern of epigenetic in cancer has been topic of many studies and DNA methylation targeting represents a relevant strategy for cancer treatment. Since, no study conducted to this mechanism, we attempt to evaluate whether CPUK02 induce its anti-cancer effects via alteration the level of mRNA DNMT3B, DNMT3A expression and ESR1 methylation pattern in breast cancer cells line. Methods: MCF-7 (ER +) and MDA-MB231 (ER-) cell lines were treated for 24, 48 hours with 1 µM CPUK02 and 5-AZA-CdR (DNA methyltransferase inhibitor). Quantitative expression of DNMT3B and DNMT3A genes and ESR1 promoter methylation was assessed by Real-Time PCR and MS-PCR, respectively. Results: CPUK02 restored ESR1 promoter unmethylated allele in MDA-MB 231 cells. Also treatment with CPUK02 decreased the expression of both DNMT3A and DNMT3B genes like 5-AZA. The expression of DNMT genes were diminished by half compared with control cells. Conclusions: These results showed that CPUK02 has an anticancer effect on MDA-MB 231 cells which this effect can be done through several pathways.
Collapse
Affiliation(s)
- Saeed Khazayel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,
| | | | | | | | | |
Collapse
|
19
|
HuR silencing elicits oxidative stress and DNA damage and sensitizes human triple-negative breast cancer cells to radiotherapy. Oncotarget 2018; 7:64820-64835. [PMID: 27588488 PMCID: PMC5323119 DOI: 10.18632/oncotarget.11706] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
HuR is an mRNA-binding protein whose overexpression in cancer cells has been associated with poor prognosis and resistance to therapy. While reports on HuR overexpression contributing to chemoresistance exist, limited information is available on HuR and radioresistance especially in triple-negative breast cancer (TNBC). In this study we investigated the role of HuR in radiation resistance in three TNBC (MDA-MB-231, MDA-MB-468 and Hs578t) cell lines. Endogenous HuR expression was higher in TNBC cells compared to normal cells. siRNA mediated knockdown of HuR (siHuR) markedly reduced HuR mRNA and protein levels compared to scrambled siRNA (siScr) treatment. Further, siHuR treatment sensitized TNBC cells to ionizing radiation at 2 Gy compared to siScr treatment as evidenced by the significant reduction in clonogenic cell survival from 59%, 49%, and 65% in siScr-treated cells to 40%, 33%, and 46% in siHuR-treated MDA-MB-231, MDA-MB-468 and Hs578t cells, respectively. Molecular studies showed increased ROS production and inhibition of thioredoxin reductase (TrxR) in HuR knockdown cells contributed to radiosensitization. Associated with increased ROS production was evidence of increased DNA damage, demonstrated by a significant increase (p < 0.05) in γ-H2AX foci that persisted for up to 24 h in siHuR plus radiation treated cells compared to control cells. Further, comet assay revealed that HuR-silenced cells had larger and longer-lasting tails than control cells, indicating higher levels of DNA damage. In conclusion, our studies demonstrate that HuR knockdown in TNBC cells elicits oxidative stress and DNA damage resulting in radiosensitization.
Collapse
|
20
|
Fus ŁP, Pihowicz P, Koperski Ł, Marczewska JM, Górnicka B. High cytoplasmic HuR expression is associated with advanced pT stage, high grade and increased microvessel density in urothelial bladder carcinoma. Ann Diagn Pathol 2017; 33:40-44. [PMID: 29566946 DOI: 10.1016/j.anndiagpath.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022]
Abstract
PURPOSE HuR (human antigen R) protein is a RNA binding protein that stabilizes the mRNA and controls the translation of genes involved in cell proliferation, differentiation, and carcinogenesis. Overexpression of HuR was reported in a variety of cancers, however its clinical significance in urothelial bladder cancer (UBC) is still unknown. Our aim is to investigate the association between HuR expression and selected histopathological factors, such as tumor grade, pT stage, regional lymph nodes status and microvessel density (MVD). METHODS We studied expression of HuR protein in 119 patients with UBC in stages pTis and pTa-pT4 using immunohistochemistry (IHC). Tumor MVD was evaluated immunohistochemically using anti-CD31 antibody. RESULTS We observed no association between nuclear HuR immunoreactivity and tumor grade, stage or MVD. We found a significant association between cytoplasmic HuR positivity and high tumor grade, pT stage and MVD (p<0,001). We also observed significantly higher MVD values in cases with positive cytoplasmic HuR expression (p<0,001). No association between HuR immunoreactivity and lymph nodes status was found. CONCLUSIONS Our results may suggest that HuR is involved in the process of acquiring malignant histopathological features and ability to invade the muscularis propria by UBC cells. Considering frequent difficulties in diagnosing UBC in specimens obtained from transurethral tumor resection and the risk of understaging, cytoplasmic HuR expression would suggest an advanced disease and necessitate serial sectioning of the specimen in search of muscle invasion. Association between HuR expression and MVD could suggest HuR involvement in the process of angiogenesis in UBC.
Collapse
Affiliation(s)
- Łukasz Piotr Fus
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland.
| | - Paweł Pihowicz
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| | - Łukasz Koperski
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| | - Janina Maja Marczewska
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| | - Barbara Górnicka
- Department of Pathology, Medical University of Warsaw, Pawińskiego 7, 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Bisogno LS, Keene JD. RNA regulons in cancer and inflammation. Curr Opin Genet Dev 2017; 48:97-103. [PMID: 29175729 DOI: 10.1016/j.gde.2017.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Gene expression is the fundamental driving force that coordinates normal cellular processes and adapts to dysfunctional conditions such as oncogenic development and progression. While transcription is the basal process of gene expression, RNA transcripts are both the templates that encode proteins as well as perform functions that directly regulate diverse cellular processes. All levels of gene expression require coordination to optimize available resources, but how global gene expression drives cancers or responds to disrupting oncogenic mutations is not understood. Post-transcriptional coordination is controlled by RNA regulons that are governed by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) that bind and regulate multiple overlapping groups of functionally related RNAs. RNA regulons have been demonstrated to affect many biological functions and diseases, and many examples are known to regulate protein production in cancer and immune cells. In this review, we discuss RNA regulons demonstrated to coordinate global post-transcriptional mechanisms in carcinogenesis and inflammation.
Collapse
Affiliation(s)
- Laura Simone Bisogno
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Jack Donald Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
22
|
Lal P, Cerofolini L, D'Agostino VG, Zucal C, Fuccio C, Bonomo I, Dassi E, Giuntini S, Di Maio D, Vishwakarma V, Preet R, Williams SN, Fairlamb MS, Munk R, Lehrmann E, Abdelmohsen K, Elezgarai SR, Luchinat C, Novellino E, Quattrone A, Biasini E, Manzoni L, Gorospe M, Dixon DA, Seneci P, Marinelli L, Fragai M, Provenzani A. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res 2017; 45:9514-9527. [PMID: 28934484 PMCID: PMC5766160 DOI: 10.1093/nar/gkx623] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3′UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.
Collapse
Affiliation(s)
- Preet Lal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Linda Cerofolini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Chiara Zucal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Carmelo Fuccio
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Isabelle Bonomo
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Erik Dassi
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Stefano Giuntini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Danilo Di Maio
- Scuola Normale Superiore, Pisa 56126, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy
| | - Vikalp Vishwakarma
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sha Neisha Williams
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Max S Fairlamb
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rachel Munk
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Claudio Luchinat
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Alessandro Quattrone
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Emiliano Biasini
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy.,Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy
| | - Leonardo Manzoni
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Milan 20133, Italy
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di Milano, Milan 20133, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Marco Fragai
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | |
Collapse
|
23
|
Analysis of post-transcriptional regulation during cancer progression using a donor-derived isogenic model of tumorigenesis. Methods 2017; 126:193-200. [PMID: 28529064 DOI: 10.1016/j.ymeth.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/16/2017] [Indexed: 12/26/2022] Open
Abstract
Post-transcriptional regulation of gene expression by RNA binding proteins (RBPs) and non-coding RNAs plays an important role in global gene expression. Many post-transcriptional regulators are misexpressed and misregulated in cancers, resulting in altered programs of protein biosynthesis that can drive tumor progression. While comparative studies of several RBPs and microRNAs expressed in various cancer types have been reported, a model system that can be used to quantify RBP regulation and functional outcomes during the initiation and early stages of tumorigenesis is lacking. It was previously demonstrated that oncogenic transformation of normal human cells can be induced by expressing hTERT, p53DD, cyclin D1, CDK4R24C, C-MYCT58A and H-RASG12V. Here we describe a user-friendly method for generating this genetically defined model of step-wise tumorigenesis beginning with normal donor-derived human cells. This method immortalizes a donor's normal cells in about a week, reducing the chances of senescence. The entire stable system can be established in less than 12weeks. We then demonstrate the utility of such a system in elucidating the expression of multiple RBPs at an early step of tumor formation. We identify significant changes in the expression levels of transcripts encoding RBPs prior to transformation, suggesting that our described donor-derived isogenic system can provide insight about post-transcriptional regulation during the earliest stages of tumorigenesis in the context of diverse genetic backgrounds.
Collapse
|
24
|
Tseng HY, Chen YA, Jen J, Shen PC, Chen LM, Lin TD, Wang YC, Hsu HL. Oncogenic MCT-1 activation promotes YY1-EGFR-MnSOD signaling and tumor progression. Oncogenesis 2017; 6:e313. [PMID: 28394354 PMCID: PMC5520490 DOI: 10.1038/oncsis.2017.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor cells often produce high levels of reactive oxygen species (ROS) and display an increased ROS scavenging system. However, the molecular mechanism that balances antioxidative and oxidative stress in cancer cells is unclear. Here, we determined that oncogenic multiple copies in T-cell malignancy 1 (MCT-1) activity promotes the generation of intracellular ROS and mitochondrial superoxide. Overexpression of MCT-1 suppresses p53 accumulation but elevates the manganese-dependent superoxide dismutase (MnSOD) level via the YY1-EGFR signaling cascade, which protects cells against oxidative damage. Conversely, restricting ROS generation and/or targeting YY1 in lung cancer cells effectively inhibits the EGFR-MnSOD signaling pathway and cell invasiveness induced by MCT-1. Significantly, MCT-1 overexpression in lung cancer cells promotes tumor progression, necrosis and angiogenesis, and increases the number of tumor-promoting M2 macrophages and cancer-associated fibroblasts in the microenvironment. Clinical evidence further confirms that high expression of MCT-1 is associated with an increase in YY1, EGFR and MnSOD expression, accompanied by tumor recurrence, poor overall survival and EGFR mutation status in patients with lung cancers. Together, these data indicate that the MCT-1 oncogenic pathway is implicated in oxidative metabolism and lung carcinogenesis.
Collapse
Affiliation(s)
- H-Y Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y-A Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - J Jen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - P-C Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - L-M Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - T-D Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Y-C Wang
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - H-L Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
25
|
Badawi A, Hehlgans S, Pfeilschifter J, Rödel F, Eberhardt W. Silencing of the mRNA-binding protein HuR increases the sensitivity of colorectal cancer cells to ionizing radiation through upregulation of caspase-2. Cancer Lett 2017; 393:103-112. [PMID: 28219770 DOI: 10.1016/j.canlet.2017.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 12/27/2022]
Abstract
Increased abundance of the mRNA-binding protein human antigen R (HuR) is a characteristic feature of many cancers and frequently associated with a high grade malignancy and therapy resistance. HuR elicits a broad cell survival program mainly by stabilizing or increasing the translation of mRNAs coding for anti-apoptotic effector proteins. Conversally, we previously identified the pro-apoptotic caspase-2 as a novel HuR target which is mainly regulated at the level of translation. In this study, we investigated whether siRNA-mediated HuR knockdown interferes with cell survival and radiation sensitivity by monitoring apoptosis, DNA repair and three-dimensional (3D) clonogenic survival. We observed a significant elevation in caspase-2 upon HuR depletion and in turn, a sensitization of colorectal DLD-1 and HCT-15 cells to radiation-induced apoptosis as implicated by the dose-dependent elevation of sub-G1 phase cell entry and increased caspase-2, -3 and poly ADP-ribose polymerase (PARP)-cleavage, respectively. Coincidentally, HuR deficiency significantly elevated the number of radiation-induced γH2AX/53BP1-positive foci indicating an increase in DNA damage. Accordingly, the irradiation-dependent reduction in clonogenic cell survival was further impaired after knockdown of HuR. Importantly, HuR knockdown remained ineffective to radiation-induced cell responses after additional knockdown of caspase-2. Furthermore, by using RNA-pull down assay we demonstrate that irradiation (6 Gy) robustly increased HuR binding to caspase-2 mRNA. Collectively, sensitization of colon carcinoma cells to radiation-induced cell death and DNA-damage by HuR knockdown critically depends on caspase-2 and may represent a valuable approach to intervene with therapy resistance of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Amel Badawi
- pharmazentrum frankfurt/ZAFES, University of Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt/Main, Germany
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University of Frankfurt, Medical School, Frankfurt/Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt/Main, Germany
| | - Wolfgang Eberhardt
- pharmazentrum frankfurt/ZAFES, University of Frankfurt, Medical School, Frankfurt/Main, Germany.
| |
Collapse
|
26
|
Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev 2016; 33:83-93. [PMID: 27956133 DOI: 10.1016/j.cytogfr.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
Cytokines and growth factors regulate cell proliferation, differentiation, migration and apoptosis, and play important roles in coordinating growth signal responses during development. The expression of cytokine genes and the signals transmitted through cytokine receptors are tightly regulated at several levels, including transcriptional and post-transcriptional levels. A majority of cytokine mRNAs, including growth factor transcripts, contain AU-rich elements (AREs) in their 3' untranslated regions that control gene expression by regulating mRNA degradation and changing translational rates. In addition, numerous proteins involved in transmitting signals downstream of cytokine receptors are regulated at the level of mRNA degradation by GU-rich elements (GREs) found in their 3' untranslated regions. Abnormal stabilization and overexpression of ARE or GRE-containing transcripts had been observed in many malignancies, which is a consequence of the malfunction of RNA-binding proteins. In this review, we briefly summarize the role of AREs and GREs in regulating mRNA turnover to coordinate cytokine and growth factor expression, and we describe how dysregulation of mRNA degradation mechanisms contributes to the development and progression of cancer.
Collapse
Affiliation(s)
| | - Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Kotta-Loizou I, Vasilopoulos SN, Coutts RHA, Theocharis S. Current Evidence and Future Perspectives on HuR and Breast Cancer Development, Prognosis, and Treatment. Neoplasia 2016; 18:674-688. [PMID: 27764700 PMCID: PMC5071540 DOI: 10.1016/j.neo.2016.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Hu-antigen R (HuR) is an RNA-binding posttranscriptional regulator that belongs to the Hu/ELAV family. HuR expression levels are modulated by a variety of proteins, microRNAs, chemical compounds, or the microenvironment, and in turn, HuR affects mRNA stability and translation of various genes implicated in breast cancer formation, progression, metastasis, and treatment. The aim of the present review is to critically summarize the role of HuR in breast cancer development and its potential as a prognosticator and a therapeutic target. In this aspect, all the existing English literature concerning HuR expression and function in breast cancer cell lines, in vivo animal models, and clinical studies is critically presented and summarized. HuR modulates many genes implicated in biological processes crucial for breast cancer formation, growth, and metastasis, whereas the link between HuR and these processes has been demonstrated directly in vitro and in vivo. Additionally, clinical studies reveal that HuR is associated with more aggressive forms of breast cancer and is a putative prognosticator for patients' survival. All the above indicate HuR as a promising drug target for cancer therapy; nevertheless, additional studies are required to fully understand its potential and determine against which types of breast cancer and at which stage of the disease a therapeutic agent targeting HuR would be more effective.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom; First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Spyridon N Vasilopoulos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Robert H A Coutts
- Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
28
|
Eberhardt W, Badawi A, Biyanee A, Pfeilschifter J. Cytoskeleton-Dependent Transport as a Potential Target for Interfering with Post-transcriptional HuR mRNA Regulons. Front Pharmacol 2016; 7:251. [PMID: 27582706 PMCID: PMC4987335 DOI: 10.3389/fphar.2016.00251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
The ubiquitous mRNA binding protein human antigen R (HuR), a member of the embryonal lethal abnormal vision protein family has a critical impact on the post-transcriptional control of AU-rich element bearing mRNA regulons implied in inflammation, senescence, and carcinogenesis. HuR in addition to mRNA stability can affect many other aspects of mRNA processing including splicing, polyadenylation, translation, modulation of miRNA repression, and intracellular mRNA trafficking. Since many of the identified HuR mRNA targets ("HuR mRNA regulons") encode tumor-related proteins, HuR is not only discussed as an useful biomarker but also as promising therapeutic target for treatment of various human cancers. HuR which is most abundantly localized in the nucleus is translocated to the cytoplasm which is fundamental for most of the described HuR functions on target mRNAs. Accordingly, an elevation in cytoplasmic HuR was found in many tumors and correlated with a high grade of malignancy and a poor prognosis of patients. Therefore, direct interference with the intracellular trafficking of HuR offers an attractive approach to intervene with pathologically deregulated HuR functions. Data from several laboratories implicate that the integrity of the cytoskeleton is critical for HuR-mediated intracellular mRNA localization and translation. This review will particularly focus on drugs which have proven a direct inhibitory effect on HuR translocation. Based on the results from those studies, we will also discuss on the principle value of targeting cytoskeleton-dependent transport of HuR by natural or synthetic inhibitors as a potential therapeutic avenue for interfering with dysregulated post-transcriptional HuR mRNA regulons and related tumor cell functions. In spite of that, interfering with cytoplasmic HuR transport could highlight a so far underestimated action of microtubule inhibitors clinically used for cancer chemotherapy.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Amel Badawi
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Abhiruchi Biyanee
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
29
|
Hitti E, Bakheet T, Al-Souhibani N, Moghrabi W, Al-Yahya S, Al-Ghamdi M, Al-Saif M, Shoukri MM, Lánczky A, Grépin R, Győrffy B, Pagès G, Khabar KSA. Systematic Analysis of AU-Rich Element Expression in Cancer Reveals Common Functional Clusters Regulated by Key RNA-Binding Proteins. Cancer Res 2016; 76:4068-80. [PMID: 27197193 DOI: 10.1158/0008-5472.can-15-3110] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
Defects in AU-rich elements (ARE)-mediated posttranscriptional control can lead to several abnormal processes that underlie carcinogenesis. Here, we performed a systematic analysis of ARE-mRNA expression across multiple cancer types. First, the ARE database (ARED) was intersected with The Cancer Genome Atlas databases and others. A large set of ARE-mRNAs was over-represented in cancer and, unlike non-ARE-mRNAs, correlated with the reversed balance in the expression of the RNA-binding proteins tristetraprolin (TTP, ZFP36) and HuR (ELAVL1). Serial statistical and functional enrichment clustering identified a cluster of 11 overexpressed ARE-mRNAs (CDC6, KIF11, PRC1, NEK2, NCAPG, CENPA, NUF2, KIF18A, CENPE, PBK, TOP2A) that negatively correlated with TTP/HuR mRNA ratios and was involved in the mitotic cell cycle. This cluster was upregulated in a number of solid cancers. Experimentally, we demonstrated that the ARE-mRNA cluster is upregulated in a number of tumor breast cell lines when compared with noninvasive and normal-like breast cancer cells. RNA-IP demonstrated the association of the ARE-mRNAs with TTP and HuR. Experimental modulation of TTP or HuR expression led to changes in the mitosis ARE-mRNAs. Posttranscriptional reporter assays confirmed the functionality of AREs. Moreover, TTP augmented mitotic cell-cycle arrest as demonstrated by flow cytometry and histone H3 phosphorylation. We found that poor breast cancer patient survival was significantly associated with low TTP/HuR mRNA ratios and correlated with high levels of the mitotic ARE-mRNA signature. These results significantly broaden the role of AREs and their binding proteins in cancer, and demonstrate that TTP induces an antimitotic pathway that is diminished in cancer. Cancer Res; 76(14); 4068-80. ©2016 AACR.
Collapse
Affiliation(s)
- Edward Hitti
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Tala Bakheet
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Norah Al-Souhibani
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Suhad Al-Yahya
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Al-Ghamdi
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maher Al-Saif
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohamed M Shoukri
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - András Lánczky
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Renaud Grépin
- Centre Scientifique de Monaco Biomedical Department, Monaco, Principality of Monaco
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary. 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gilles Pagès
- University of Nice, Institute for research on cancer and aging of Nice (IRCAN), Nice, France
| | - Khalid S A Khabar
- Molecular BioMedicine Program, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
30
|
Holcik M. Could the eIF2α-Independent Translation Be the Achilles Heel of Cancer? Front Oncol 2015; 5:264. [PMID: 26636041 PMCID: PMC4659918 DOI: 10.3389/fonc.2015.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic initiation factor eIF2 is a key component of the ternary complex whose role is to deliver initiator tRNA into the ribosome. A variety of stimuli, both physiologic and pathophysiologic activate eIF2 kinases that phosphorylate the α subunit of eIF2, preventing it from forming the ternary complex, thus attenuating cellular protein synthesis. Paradoxically, in cancer cells, the phosphorylation of eIF2α is associated with activation of survival pathways. This review explores the recently emerged novel mechanism of eIF2α-independent translation initiation. This mechanism, which appears to be shared by some RNA viruses and Internal Ribosome Entry Site-containing cellular mRNAs and utilizes auxiliary proteins, such as eIF5B, eIF2D, and MCT-1, is responsible for the selective translation of cancer-associated genes and could represent a weak point amenable to specific targeting for the treatment of cancer.
Collapse
Affiliation(s)
- Martin Holcik
- Department of Pediatrics, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
31
|
Dai B, Chen AY, Corkum CP, Peroutka RJ, Landon A, Houng S, Muniandy PA, Zhang Y, Lehrmann E, Mazan-Mamczarz K, Steinhardt J, Shlyak M, Chen QC, Becker KG, Livak F, Michalak TI, Talwani R, Gartenhaus RB. Hepatitis C virus upregulates B-cell receptor signaling: a novel mechanism for HCV-associated B-cell lymphoproliferative disorders. Oncogene 2015; 35:2979-90. [PMID: 26434584 PMCID: PMC4821826 DOI: 10.1038/onc.2015.364] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 08/03/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Abstract
B-cell receptor (BCR) signaling is essential for the development of B cells and has a critical role in B-cell neoplasia. Increasing evidence indicates an association between chronic hepatitis C virus (HCV) infection and B-cell lymphoma, however, the mechanisms by which HCV causes B-cell lymphoproliferative disorder are still unclear. Herein, we demonstrate the expression of HCV viral proteins in B cells of HCV-infected patients and show that HCV upregulates BCR signaling in human primary B cells. HCV nonstructural protein NS3/4A interacts with CHK2 and downregulates its activity, modulating HuR posttranscriptional regulation of a network of target mRNAs associated with B-cell lymphoproliferative disorders. Interestingly, the BCR signaling pathway was found to have the largest number of transcripts with increased association with HuR and was upregulated by NS3/4A. Our study reveals a previously unidentified role of NS3/4A in regulation of host BCR signaling during HCV infection, contributing to a better understanding of the molecular mechanisms underlying HCV-associated B-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- B Dai
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - A Y Chen
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - C P Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - R J Peroutka
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - A Landon
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - S Houng
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - P A Muniandy
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Y Zhang
- Gene Expression and Genomics Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - E Lehrmann
- Gene Expression and Genomics Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - K Mazan-Mamczarz
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - J Steinhardt
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - M Shlyak
- Department of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Q C Chen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K G Becker
- Gene Expression and Genomics Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - F Livak
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA
| | - T I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - R Talwani
- Department of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R B Gartenhaus
- Department of Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA.,Veterans Administration Medical Center, Baltimore, MD, USA
| |
Collapse
|
32
|
Lymphotoxin α, a novel target of posttranscriptional gene regulation by HuR in HepG2 cells. FEBS Lett 2015; 589:1943-50. [PMID: 25980610 DOI: 10.1016/j.febslet.2015.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022]
Abstract
The role of the RNA-binding protein human antigen R (HuR) in hepatocarcinogenesis is still elusive. By employing short hairpin (sh)RNA-dependent knockdown approach, we demonstrate that lymphotoxin α (LTα) is a target of posttranscriptional gene regulation by HuR in hepatocellular carcinoma (HepG2) cells. Consequently, the increased mRNA decay upon HuR depletion significantly affects lymphotoxin expression at both, the mRNA and protein level. Biotin-pulldown assay showed that HuR specifically interacts with the 3'-untranslated region (3'-UTR) of the LTα mRNA. Furthermore, electrophoretic mobility shift assay (EMSA) implicates that the RNA-binding critically depends on the RNA recognition motif 2 (RRM2) and the hinge region of HuR.
Collapse
|
33
|
Growth factor dependent regulation of centrosome function and genomic instability by HuR. Biomolecules 2015; 5:263-81. [PMID: 25803745 PMCID: PMC4384122 DOI: 10.3390/biom5010263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/10/2023] Open
Abstract
The mRNA binding protein HuR is over expressed in cancer cells and contributes to disease progression through post-transcriptional regulation of mRNA. The regulation of HuR and how this relates to glioma is the focus of this report. SRC and c-Abl kinases regulate HuR sub-cellular trafficking and influence accumulation in the pericentriolar matrix (PCM) via a growth factor dependent signaling mechanism. Growth factor stimulation of glioma cell lines results in the associate of HuR with the PCM and amplification of centrosome number. This process is regulated by tyrosine phosphorylation of HuR and is abolished by mutating tyrosine residues. HuR is overexpressed in tumor samples from patients with glioblastoma and associated with a reduced survival. These findings suggest HuR plays a significant role in centrosome amplification and genomic instability, which contributes to a worse disease outcome.
Collapse
|
34
|
Herdy B, Karonitsch T, Vladimer GI, Tan CSH, Stukalov A, Trefzer C, Bigenzahn JW, Theil T, Holinka J, Kiener HP, Colinge J, Bennett KL, Superti-Furga G. The RNA-binding protein HuR/ELAVL1 regulates IFN-β mRNA abundance and the type I IFN response. Eur J Immunol 2015; 45:1500-11. [PMID: 25678110 DOI: 10.1002/eji.201444979] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Abstract
Secretion of type I interferon (IFN) is the first cellular reaction to invading pathogens. Despite the protective function of these cytokines, an excessive response to their action can contribute to serious pathologies, such as autoimmune diseases. Transcripts of most cytokines contain adenylate-uridylate (A/U)-rich elements (AREs) that make them highly unstable. RNA-binding proteins (RBPs) are mediators of the regulatory mechanisms that determine the fate of mRNAs containing AREs. Here, we applied an affinity proteomic approach and identified lethal, abnormal vision, drosophila-like 1 (ELAVL1)/Hu antigen R (HuR) as the predominant RBP of the IFN-β mRNA ARE. Reduced expression or chemical inhibition of HuR severely hampered the type I IFN response in various cell lines and fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. These results define a role for HuR as a potent modulator of the type I IFN response. Taken together, HuR could be used as therapeutic target for diseases where type I IFN production is exaggerated.
Collapse
Affiliation(s)
- Barbara Herdy
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Karonitsch
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregory I Vladimer
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Chris S H Tan
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexey Stukalov
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Claudia Trefzer
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes W Bigenzahn
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tamara Theil
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Holinka
- Department of Orthopedics, Medical University of Vienna, Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jacques Colinge
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Keiryn L Bennett
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
35
|
Tong X, Mirzoeva S, Veliceasa D, Bridgeman BB, Fitchev P, Cornwell ML, Crawford SE, Pelling JC, Volpert OV. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. Oncotarget 2014; 5:11413-27. [PMID: 25526033 PMCID: PMC4294383 DOI: 10.18632/oncotarget.2551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023] Open
Abstract
Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis.
Collapse
Affiliation(s)
- Xin Tong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Salida Mirzoeva
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dorina Veliceasa
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bryan B. Bridgeman
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Philip Fitchev
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Mona L. Cornwell
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Susan E. Crawford
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Jill C. Pelling
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Olga V. Volpert
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Wurth L, Gebauer F. RNA-binding proteins, multifaceted translational regulators in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:881-6. [PMID: 25316157 DOI: 10.1016/j.bbagrm.2014.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) orchestrate transcript fate and function. Even though alterations in post-transcriptional events contribute to key steps of tumor initiation and progression, RBP-mediated control has remained relatively unexplored in cancer. Here, we discuss examples of this promising field focusing on translation regulation, and highlight the variety of molecular mechanisms by which RBPs impinge on translation with consequences for tumorigenesis. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Laurence Wurth
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
37
|
Doller A, Badawi A, Schmid T, Brauss T, Pleli T, zu Heringdorf DM, Piiper A, Pfeilschifter J, Eberhardt W. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking. Exp Cell Res 2014; 330:66-80. [PMID: 25240929 DOI: 10.1016/j.yexcr.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D1 encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E2 synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC.
Collapse
Affiliation(s)
- Anke Doller
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Amel Badawi
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Tobias Schmid
- Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Thilo Brauss
- Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Thomas Pleli
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | | | - Albrecht Piiper
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Wolfgang Eberhardt
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany.
| |
Collapse
|
38
|
Campos-Melo D, Droppelmann CA, Volkening K, Strong MJ. RNA-binding proteins as molecular links between cancer and neurodegeneration. Biogerontology 2014; 15:587-610. [PMID: 25231915 DOI: 10.1007/s10522-014-9531-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022]
Abstract
For many years, epidemiological studies have suggested an association between cancer and neurodegenerative disorders-two disease processes that seemingly have little in common. Although these two disease processes share disruptions in a wide range of cellular pathways, including cell survival, cell death and the cell cycle, the end result is very divergent: uncontrolled cell survival and proliferation in cancer and progressive neuronal cell death in neurodegeneration. Despite the clinical data connecting these two disease processes, little is known about the molecular links between them. Among the mechanisms affected in cancer and neurodegenerative diseases, alterations in RNA metabolism are obtaining significant attention given the critical role for RNA transcription, maturation, transport, stability, degradation and translation in normal cellular function. RNA-binding proteins (RBPs) are integral to each stage of RNA metabolism through their participation in the formation of ribonucleoprotein complexes (RNPs). RBPs have a broad range of functions including posttranscriptional regulation of mRNA stability, splicing, editing and translation, mRNA export and localization, mRNA polyadenylation and miRNA biogenesis, ultimately impacting the expression of every single gene in the cell. In this review, we examine the evidence for RBPs as being key a molecular linkages between cancer and neurodegeneration.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | | | | | | |
Collapse
|
39
|
Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014:970607. [PMID: 25180174 PMCID: PMC4142390 DOI: 10.1155/2014/970607] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.
Collapse
|
40
|
Govindaraju S, Lee BS. Krüppel -like factor 8 is a stress-responsive transcription factor that regulates expression of HuR. Cell Physiol Biochem 2014; 34:519-32. [PMID: 25116351 DOI: 10.1159/000363019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIMS HuR is an RNA-binding protein that regulates the post-transcriptional life of thousands of cellular mRNAs and promotes cell survival. HuR is expressed as two mRNA transcripts that are differentially regulated by cell stress. The goal of this study is to define factors that promote transcription of the longer alternate form. METHODS Effects of transcription factors on HuR expression were determined by inhibition or overexpression of these factors followed by competitive RT-PCR, gel mobility shift, and chromatin immunoprecipitation. Transcription factor expression patterns were identified through competitive RT-PCR and Western analysis. Stress responses were assayed in thapsigargin-treated proximal tubule cells and in ischemic rat kidney. RESULTS A previously described NF-κB site and a newly identified Sp/KLF factor binding site were shown to be important for transcription of the long HuR mRNA. KLF8, but not Sp1, was shown to bind this site and increase HuR mRNA levels. Cellular stress in cultured or native proximal tubule cells resulted in a rapid decrease of KLF8 levels that paralleled those of the long HuR mRNA variant. CONCLUSIONS These results demonstrate that KLF8 can participate in regulating expression of alternate forms of HuR mRNA along with NF-κB and other factors, depending on cellular contexts.
Collapse
Affiliation(s)
- Suman Govindaraju
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Ohio State Biochemistry Program, Columbus, Ohio, USA
| | | |
Collapse
|
41
|
Chen JC, Johnson BA, Erikson DW, Piltonen TT, Barragan F, Chu S, Kohgadai N, Irwin JC, Greene WC, Giudice LC, Roan NR. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum Reprod 2014; 29:1255-70. [PMID: 24626806 PMCID: PMC4017943 DOI: 10.1093/humrep/deu047] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/30/2014] [Accepted: 02/12/2014] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. WIDER IMPLICATIONS OF THE FINDINGS The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose.
Collapse
Affiliation(s)
- Joseph C. Chen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Brittni A. Johnson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - David W. Erikson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Terhi T. Piltonen
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
- Department of Obstetrics and Gynecology and Center of Clinical Research, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Fatima Barragan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Simon Chu
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Nargis Kohgadai
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Juan C. Irwin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Department of Medicine, and Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Linda C. Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Nadia R. Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Doyle F, Tenenbaum SA. Trans-regulation of RNA-binding protein motifs by microRNA. Front Genet 2014; 5:79. [PMID: 24795744 PMCID: PMC4006066 DOI: 10.3389/fgene.2014.00079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/25/2014] [Indexed: 12/24/2022] Open
Abstract
The wide array of vital functions that RNA performs is dependent on its ability to dynamically fold into different structures in response to intracellular and extracellular changes. RNA-binding proteins regulate much of this activity by targeting specific RNA structures or motifs. One of these structures, the 3-way RNA junction, is characteristically found in ribosomal RNA and results from the RNA folding in cis, to produce three separate helices that meet around a central unpaired region. Here we demonstrate that 3-way junctions can also form in trans as a result of the binding of microRNAs in an unconventional manner with mRNA by splinting two non-contiguous regions together. This may be used to reinforce the base of a stem-loop motif being targeted by an RNA-binding protein. Trans interactions between non-coding RNA and mRNA may be used to control the post-transcriptional regulatory code and suggests a possible role for some of the recently described transcripts of unknown function expressed from the human genome.
Collapse
Affiliation(s)
- Francis Doyle
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, State University of New York Albany, NY, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, State University of New York Albany, NY, USA
| |
Collapse
|
43
|
Schueler M, Munschauer M, Gregersen LH, Finzel A, Loewer A, Chen W, Landthaler M, Dieterich C. Differential protein occupancy profiling of the mRNA transcriptome. Genome Biol 2014; 15:R15. [PMID: 24417896 PMCID: PMC4056462 DOI: 10.1186/gb-2014-15-1-r15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022] Open
Abstract
Background RNA-binding proteins (RBPs) mediate mRNA biogenesis, translation and decay. We recently developed an approach to profile transcriptome-wide RBP contacts on polyadenylated transcripts by next-generation sequencing. A comparison of such profiles from different biological conditions has the power to unravel dynamic changes in protein-contacted cis-regulatory mRNA regions without a priori knowledge of the regulatory protein component. Results We compared protein occupancy profiles of polyadenylated transcripts in MCF7 and HEK293 cells. Briefly, we developed a bioinformatics workflow to identify differential crosslinking sites in cDNA reads of 4-thiouridine crosslinked polyadenylated RNA samples. We identified 30,000 differential crosslinking sites between MCF7 and HEK293 cells at an estimated false discovery rate of 10%. 73% of all reported differential protein-RNA contact sites cannot be explained by local changes in exon usage as indicated by complementary RNA-seq data. The majority of differentially crosslinked positions are located in 3′ UTRs, show distinct secondary-structure characteristics and overlap with binding sites of known RBPs, such as ELAVL1. Importantly, mRNA transcripts with the most significant occupancy changes show elongated mRNA half-lives in MCF7 cells. Conclusions We present a global comparison of protein occupancy profiles from different cell types, and provide evidence for altered mRNA metabolism as a result of differential protein-RNA contacts. Additionally, we introduce POPPI, a bioinformatics workflow for the analysis of protein occupancy profiling experiments. Our work demonstrates the value of protein occupancy profiling for assessing cis-regulatory RNA sequence space and its dynamics in growth, development and disease.
Collapse
|
44
|
AngiotensinII induces HuR shuttling by post-transcriptional regulated CyclinD1 in human mesangial cells. Mol Biol Rep 2014; 41:1141-50. [PMID: 24390237 DOI: 10.1007/s11033-013-2960-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 12/21/2013] [Indexed: 12/17/2022]
Abstract
Abnormal proliferation of human mesangial cells was the earliest pathological character in chronic kidney disease and linked to the accumulation of extracellular matrix and glomerular sclerosis. Multifunctional Angiotensin (AngII) had been emerged as a key player in initiation and progression of fibrogenic processes in kidney. In mesangial cells, treatment with the proliferation stimulus AngII triggered the escalated cyclinD1 expression, where its association with HuR increased dramatically. In our study, it was demonstrated that both in vivo and in vitro HuR redistribution in dysregulated mesangial cell proliferation accompanied by an abundant cyclinD1 expression following the AngII treatment. ActinomycinD experiments revealed that AngII stabilized cyclinD1 mRNA in human mesangial cells via HuR. Furthermore, employing the RIP-Chip assay yielded cyclinD1 mRNA with a higher affinity to HuR in mesangial cells induced by AngII compared with the normal ones in vitro study. Analysis of a cyclinD1 mRNA directly implicated HuR in regulating cyclinD1 production: cyclinD1 translation increased in HuR-shuttling cells induced by AngII and declined in cells in which HuR levels were lowered by RNA interference. We proposed that the release of HuR-bound mRNAs via an AngII-cyclinD1-HuR regulatory axis was implicated in the evolution of proliferative kidney diseases, providing us a novel therapeutic strategy to treat glomerular disease.
Collapse
|
45
|
Talwar S, House R, Sundaramurthy S, Balasubramanian S, Yu H, Palanisamy V. Inhibition of caspases protects mice from radiation-induced oral mucositis and abolishes the cleavage of RNA-binding protein HuR. J Biol Chem 2013; 289:3487-500. [PMID: 24362034 DOI: 10.1074/jbc.m113.504951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oral mucosal epithelium is typically insulted during chemotherapy and ionizing radiation (IR) therapy and disposed to mucositis, which creates painful inflammation and ulceration in the oral cavity. Oral mucositis alters gene expression patterns, inhibits cellular growth, and initiates cell death in the oral epithelial compartments. Such alterations are governed by several different factors, including transcription factors, RNA-binding proteins, and microRNAs. IR-induced post-transcriptional regulation of RNA-binding proteins exists but is poorly studied in clinically relevant settings. We herein report that the RNA-binding protein human antigen R (HuR) undergoes cleavage modification by caspase-3 following IR-induced oral mucositis and subsequently promotes the expression of the pro-apoptotic factor BAX (Bcl-2-associated X protein), as well as cell death. Further analyses revealed that the HuR cleavage product-1 (HuR-CP1) directly associates and stabilizes the BAX mRNA and concurrently activates the apoptotic pathway. On the other hand, a noncleavable isoform of HuR promotes the clonogenic capacity of primary oral keratinocytes and decreases the effect of IR-induced cell death. Additionally, specific inhibition of caspase-3 by a compound, NSC321205, increases the clonogenic capacity of primary oral keratinocytes and causes increased basal layer cellularity, thickened mucosa, and elevated epithelial cell growth in the tongues of mice with oral mucositis. This protective effect of NSC321205 is mediated by a decrease in caspase-3 activity and the consequent inhibition of HuR cleavage, which reduces the expression of BAX in mice with IR-induced oral mucositis. Thus, we have identified a new molecular mechanism of HuR in the regulation of mRNA turnover and apoptosis in oral mucositis, and our data suggest that blocking the cleavage of HuR enhances cellular growth in the oral epithelial compartment.
Collapse
Affiliation(s)
- Sudha Talwar
- From the Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, and
| | | | | | | | | | | |
Collapse
|
46
|
Jayaseelan S, Doyle F, Tenenbaum SA. Profiling post-transcriptionally networked mRNA subsets using RIP-Chip and RIP-Seq. Methods 2013; 67:13-9. [PMID: 24257445 DOI: 10.1016/j.ymeth.2013.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/26/2022] Open
Abstract
Post-transcriptional regulation of messenger RNA contributes to numerous aspects of gene expression. The key component to this level of regulation is the interaction of RNA-binding proteins (RBPs) and their associated target mRNA. Splicing, stability, localization, translational efficiency, and alternate codon use are just some of the post-transcriptional processes regulated by RBPs. Central to our understanding of these processes is the need to characterize the network of RBP-mRNA associations and create a map of this functional post-transcriptional regulatory system. Here we provide a detailed methodology for mRNA isolation using RBP immunoprecipitation (RIP) as a primary partitioning approach followed by microarray (Chip) or next generation sequencing (NGS) analysis. We do this by using specific antibodies to target RBPs for the capture of associated RNA cargo. RIP-Chip/Seq has proven to be is a versatile, genomic technique that has been widely used to study endogenous RBP-RNA associations.
Collapse
Affiliation(s)
- Sabarinath Jayaseelan
- SUNY-College of Nanoscale Science and Engineering, Nanobioscience Constellation, State University of New York, Albany, NY 12203, USA
| | - Francis Doyle
- SUNY-College of Nanoscale Science and Engineering, Nanobioscience Constellation, State University of New York, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- SUNY-College of Nanoscale Science and Engineering, Nanobioscience Constellation, State University of New York, Albany, NY 12203, USA.
| |
Collapse
|
47
|
Shih HJ, Chen HH, Chen YA, Wu MH, Liou GG, Chang WW, Chen L, Wang LH, Hsu HL. Targeting MCT-1 oncogene inhibits Shc pathway and xenograft tumorigenicity. Oncotarget 2013; 3:1401-15. [PMID: 23211466 PMCID: PMC3717801 DOI: 10.18632/oncotarget.688] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Overexpression of Shc adaptor proteins is associated with mitogenesis, carcinogenesis and metastasis. Multiple copies in T-cell malignancy 1 (MCT-1) oncoprotein promotes cell proliferation, survival and tumorigenic effects. Our current data show that MCT-1 is a novel regulator of Shc-Ras-MEK-ERK signaling and MCT-1 is significantly co-activated with Shc gene in human carcinomas. The knockdown of MCT-1 enhances apoptotic cell death accompanied with the activation of caspases and cleavage of caspase substrates under environmental stress. The cancer cell proliferation, chemo-resistance and tumorigenic capacity are proved to be effectively suppressed by targeting MCT-1. Accordingly, an important linkage between MCT-1 oncogenicity and Shc pathway in tumor development has now been established. Promoting MCT-1 expression by gene hyperactivation may be recognized as a tumor marker and MCT-1 may serve as a molecular target of cancer therapy.
Collapse
Affiliation(s)
- Hung-Ju Shih
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schulz S, Doller A, Pendini NR, Wilce JA, Pfeilschifter J, Eberhardt W. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR. Cell Signal 2013; 25:2485-95. [PMID: 23978401 DOI: 10.1016/j.cellsig.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/06/2013] [Accepted: 08/15/2013] [Indexed: 01/21/2023]
Abstract
The ubiquitous mRNA binding protein human antigen R (HuR) participates in the post-transcriptional regulation of many AU-rich element (ARE)-bearing mRNAs. Previously, by using in vitro kinase assay, we have identified serines (Ser) 158, 221 and 318 as targets of protein kinase C (PKC)-triggered phosphorylation. In this study, we tested whether GFP- or GST-tagged HuR constructs bearing a phosphomimetic Ser (S)-to-Asp (D) substitution at the different PKC target sites, would affect different HuR functions including HuR nucleo-cytoplasmic redistribution and binding to different types of ARE-containing mRNAs. The phosphomimetic GFP-tagged HuR protein bearing a phosphomimetic substitution in the hinge region of HuR (HuR-S221D) showed an increased cytoplasmic abundance when compared to wild-type HuR. Conversely, data from in vitro kinase assay and electrophoretic mobility shift assay (EMSA), implicates that phosphorylation at Ser 221 is not relevant for mRNA binding of HuR. Quantification of in vitro binding affinities of GST-tagged wild-type HuR and corresponding HuR proteins bearing a phosphomimetic substitution in either RRM2 (HuR-S158D) or in RRM3 (HuR-S318D) by microscale thermophoresis (MST) indicates a specific binding of wild-type HuR to type I, II or type III-ARE-oligonucleotides in the high nanomolar range. Interestingly, phosphomimetic mutation at position 158 or 318 had a negative influence on HuR binding to type I- and type II-ARE-mRNAs whereas it significantly enhanced HuR affinity to a type III-ARE substrate. Our data suggest that differential phosphorylation of HuR by PKCs at different HuR domains coordinates subcellular HuR distribution and leads to a preferential binding to U-rich bearing target mRNA.
Collapse
Affiliation(s)
- Sebastian Schulz
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Dassi E, Zuccotti P, Leo S, Provenzani A, Assfalg M, D’Onofrio M, Riva P, Quattrone A. Hyper conserved elements in vertebrate mRNA 3'-UTRs reveal a translational network of RNA-binding proteins controlled by HuR. Nucleic Acids Res 2013; 41:3201-16. [PMID: 23376935 PMCID: PMC3597683 DOI: 10.1093/nar/gkt017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 02/06/2023] Open
Abstract
Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3'-UTRs.
Collapse
Affiliation(s)
- Erik Dassi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Paola Zuccotti
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Sara Leo
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Alessandro Provenzani
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Michael Assfalg
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Mariapina D’Onofrio
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Paola Riva
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, via Viotti, 3/5 20133 Milano, Italy, Laboratory of Genomic Screening, Centre for Integrative Biology, University of Trento, Trento, via delle Regole, 101 38123 Mattarello (TN) Italy and Department of Biotechnology, University of Verona, Province of Verona, Ca' Vignal 1, Strada Le Grazie 15 37134 Verona, Italy
| |
Collapse
|
50
|
Simone LE, Keene JD. Mechanisms coordinating ELAV/Hu mRNA regulons. Curr Opin Genet Dev 2013; 23:35-43. [PMID: 23312841 PMCID: PMC3617084 DOI: 10.1016/j.gde.2012.12.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 12/25/2022]
Abstract
The 5' and 3' untranslated regions (UTRs) of messenger RNAs (mRNAs) function as platforms that can determine the fate of each mRNA individually and in aggregate. Multiple mRNAs that encode proteins that are functionally related often interact with RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) that coordinate their expression in time and space as RNA regulons within the ribonucleoprotein (RNP) infrastructure we term the ribonome. Recent ribonomic methods have emerged that can determine which mRNAs are bound and regulated by RBPs and ncRNAs, some of which act in combination to determine global outcomes. ELAV/Hu proteins bind to AU-rich elements (ARE) in mRNAs and regulate their stability from splicing to translation, and the ubiquitous HuR protein has been implicated in cancerous cell growth. Recent work is focused on mechanistic models of how ELAV/Hu proteins increase mRNA stability and translation by repressing microRNAs (miRs) and the RNA induced silencing complex (RISC) via ARE-based ribonucleosomes that may affect global functions of mRNA regulons.
Collapse
Affiliation(s)
- Laura E. Simone
- Department of Molecular Genetics & Microbiology Duke University Medical Center Durham, NC 27710
| | - Jack D. Keene
- Department of Molecular Genetics & Microbiology Duke University Medical Center Durham, NC 27710
| |
Collapse
|