1
|
Rashid A, Azad M, Krishnan A, Gupta JC, Talwar GP. Expression, purification and characterization of a novel triple fusion protein developed for the immunotherapy of survivin positive cancers. Protein Expr Purif 2025; 226:106614. [PMID: 39396748 DOI: 10.1016/j.pep.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Survivin is an inhibitor of apoptosis, and expressed in a large number of cancers. As Survivin expression is very low in normal tissues, it assumes significance as a prominent target for tumor diagnosis, prognosis and developing anti-cancer therapies. We report development of a novel triple fusion protein for a prospective vaccine against Survivin in targeted cancer immunotherapy. A gene was synthesized by combining the nucleotides encoding human origin Survivin and heat-labile enterotoxin of Escherichia coli (LTB). Further, nucleotides corresponding to single chain variable fragment (scFv) of a monoclonal having affinity for DEC205 receptor present on dendritic cells, were also incorporated into the gene sequence. This complete gene was expressed to a triple fusion recombinant protein using a bacterial expression vector under the control of robust bacteriophage T7 promoter. The recombinant DCSurvivin-LTB protein, with a size of approximately 60 kDa, was purified from the inclusion bodies using affinity based Ni-NTA columns. The purified protein was confirmed by the Western blot, and further characterized with circular dichroism, fluorescence spectroscopy and mass spectroscopy. This molecularly adjuvanted Survivin fusion protein designed to deliver to the dendritic cells for better antigen processing, elicited a stronger anti-Survivin immune response compared to Survivin protein alone. It can be an effective vaccine in active and passive immunotherapies for Survivin expressing cancer cells.
Collapse
Affiliation(s)
- Ambreen Rashid
- Talwar Research Foundation, E-8, Neb Valley, New Delhi, 110068, India; Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Mohammad Azad
- National Institute of Immunology, New Delhi, 110067, India.
| | | | - Jagdish C Gupta
- Talwar Research Foundation, E-8, Neb Valley, New Delhi, 110068, India.
| | - G P Talwar
- Talwar Research Foundation, E-8, Neb Valley, New Delhi, 110068, India.
| |
Collapse
|
2
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Pachimatla AG, Fenstermaker R, Ciesielski M, Yendamuri S. Survivin in lung cancer: a potential target for therapy and prevention-a narrative review. Transl Lung Cancer Res 2024; 13:362-374. [PMID: 38496694 PMCID: PMC10938099 DOI: 10.21037/tlcr-23-621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Background and Objective A versatile biomarker, survivin, is highly expressed in proliferating cells of multiple cancers in humans and animals. It is an apoptosis-regulating protein, engaging in a cascade of reactions that involve several other genes and protein interactions. Currently, researchers are investigating its therapeutic potential due to the evidence linking its overexpression to advanced-stage lung cancer. This review is centered around examining survivin-related molecular mechanisms and its therapeutic role specifically in lung cancer. Our objective is to discuss the role of survivin in prognosis and treatment response, shedding light on immune-targeted therapies, as well as outlining future directions for survivin-based vaccines in lung cancer. Methods The PubMed database and the United States National Library of Medicine search engine at the National Institutes of Health were searched on 24 August 2023 to identify published research studies. Searching "((((((airway [Title/Abstract]) OR (lung [Title/Abstract])) OR (pulm[Title/Abstract])) OR (bronch[Title/Abstract])) OR (nslc[Title/Abstract])) AND (((cancer[Title/Abstract]) OR (carcino[Title/Abstract])) OR (oncol[Title/Abstract]))) AND (survivin[Title/Abstract])" gave 728 results. After screening the title and abstracts and excluding the review articles 168 titles were shortlisted and full text studied. The discussions are added to relevant sections. Key Content and Findings Survivin is a cell cycle-dependent, inhibitor of apoptosis protein that contributes to carcinogenesis, tumor vascularization, metastasis, and treatment resistance. Several treatments that impact survivin either directly or indirectly have been reported as effective in treating lung cancer. Immunity-based therapy, a novel approach known for its targeted nature and minimal side effects, is currently under investigation for lung cancer treatment. Emerging survivin-centered vaccines exhibit promising attributes in terms of safety, effectiveness, and ability to stimulate an immune response. These factors point towards a significant potential for advancing the future of lung cancer prevention and enhancing overall survival rates. Conclusions Nuclear survivin is a potential biomarker for advanced non-small cell lung cancer. It plays a role in determining drug responsiveness and is found to be significantly elevated in cases of resistance to chemotherapy. Multiple compounds and immunization strategies have been identified to impact lung cancer cells; however, they are currently in the early stages of phase I or phase II clinical trials. The substantial promise of survivin-based immunogenicity-focused treatments warrants in-depth investigation and exploration.
Collapse
Affiliation(s)
- Akhil Goud Pachimatla
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael Ciesielski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Refahi R, Heidari Z, Mashhadi M. Association of High Serum Leptin Level with Papillary Thyroid Carcinoma: A Case-Control Study. Int J Hematol Oncol Stem Cell Res 2023; 17:210-219. [PMID: 37817973 PMCID: PMC10560642 DOI: 10.18502/ijhoscr.v17i3.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/22/2023] [Indexed: 10/12/2023] Open
Abstract
Background: Recently, the prevalence of thyroid cancer has increased. Although there are known risk factors for thyroid cancer, none of them can justify this recent increase. In addition to the known risk factors, other risk factors have been proposed. Leptin can be considered as one of these risk factors due to the recent increase in the prevalence of obesity in the population. Leptin is a common factor in obesity and thyroid cancer. Leptin exerts anti-apoptotic and mitogenic effects on cancer cells and also acts as an angiogenic factor. This study aimed to evaluate the serum leptin level in individuals who suffer from papillary thyroid carcinoma (PTC), cases with benign thyroid nodules (BTN), and a healthy group. Materials and Methods: In this study, newly diagnosed patients with PTC, BTNs, as well as euthyroid healthy control subjects without nodules were included. In all these participants, various clinical and laboratory parameters including thyroid function tests and serum leptin levels were measured and compared between the three study groups. For patients with PTC, leptin was assessed 12 weeks after total thyroidectomy. Results: Ninety-one cases with PTC, 90 cases with BTNs, and 88 controls were recruited. Serum leptin levels in the PTC group, benign group, and the control group were 22.34, 17.60, and 13.83 ng/ml, respectively, which was considerably higher in PTC cases compared to those with benign nodules and control group (P<0.001). There was a significant association between leptin with BMI, tumor size, and tumor stage in PTC patients. Also, in patients with BTNs, a correlation between BMI, tumor size, and leptin was observed. Conclusion: Serum leptin levels were considerably higher in cases with PTC than those with BTNs and controls and can be considered as a potential tumor marker for papillary thyroid cancer.
Collapse
Affiliation(s)
- Roya Refahi
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammadali Mashhadi
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
ElBakary NM, Hagag SA, Ismail MA, El-Sayed WM. New thiophene derivative augments the antitumor activity of γ-irradiation against colorectal cancer in mice via anti-inflammatory and pro-apoptotic pathways. Discov Oncol 2022; 13:119. [PMID: 36326938 PMCID: PMC9633918 DOI: 10.1007/s12672-022-00583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common types of cancer worldwide and the second cause of cancer-related deaths. It usually starts as an inflammation that progresses to adenocarcinoma. The goal of the present study was to investigate the antitumor efficacy of a new thiophene derivative against CRC in mice and explore the possible associated molecular pathways. The potential of this thiophene derivative to sensitize the CRC tumor tissue to a low dose of gamma irradiation was also investigated. METHODS Adult male mice were divided into seven groups; control, group treated with dimethylhydrazine (DMH) for the induction of CRC. The DMH-group was further divided into six groups and treated with either cisplatin, thiophene derivative, γ-irradiation, cisplatin + γ-irradiation, thiophene derivative + γ-irradiation, or left untreated. RESULTS DMH induced CRC as evidenced by the macroscopic examination of colon tissues and histopathology, and elevated the activities of cyclooxygenase2 (COX2) and nitric oxide synthase (iNOS). DMH also elevated kirsten rat sarcoma (KRAS) and downregulated the peroxisome proliferator activated receptor (PPARγ) as shown by RT-PCR and Western blotting. DMH exerted anti-apoptotic activity by reducing the expression of phosphorylated p53 and cleaved caspase3 at the gene and protein levels. The flow cytometry analysis showed that DMH elevated the necrosis and reduced the apoptosis compared to the other groups. The colon tissue from DMH-treated mice showed hyperplasia, aberrant crypt foci, loss of cell polarity, typical CRC of grade 4 with lymphocytes and macrophages infiltrating mucosa, muscularis mucosa, and submucosa score 3. Treatment with thiophene derivative or γ-irradiation ameliorated most of these deleterious effects of DMH. The concomitant action of thiophene derivative + γ-irradiation was typified by the better amelioration of tumor incidence and multiplicity, iNOS, PPARγ, p53, caspase 3, and histopathology of colon. CONCLUSION Taken together, the new thiophene derivative is a promising therapeutic candidate for treatment of colorectal cancer in mice. It also sensitizes the CRC tumor to the ionizing radiation through anti-inflammatory and pro-apoptotic pathways.
Collapse
Affiliation(s)
- Nermeen M ElBakary
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Sanaa A Hagag
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Britigan EMC, Wan J, Sam DK, Copeland SE, Lasek AL, Hrycyniak LCF, Wang L, Audhya A, Burkard ME, Roopra A, Weaver BA. Increased Aurora B expression reduces substrate phosphorylation and induces chromosomal instability. Front Cell Dev Biol 2022; 10:1018161. [PMID: 36313574 PMCID: PMC9606593 DOI: 10.3389/fcell.2022.1018161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Increased Aurora B protein expression, which is common in cancers, is expected to increase Aurora B kinase activity, yielding elevated phosphorylation of Aurora B substrates. In contrast, here we show that elevated expression of Aurora B reduces phosphorylation of six different Aurora B substrates across three species and causes defects consistent with Aurora B inhibition. Complexes of Aurora B and its binding partner INCENP autophosphorylate in trans to achieve full Aurora B activation. Increased expression of Aurora B mislocalizes INCENP, reducing the local concentration of Aurora B:INCENP complexes at the inner centromere/kinetochore. Co-expression of INCENP rescues Aurora B kinase activity and mitotic defects caused by elevated Aurora B. However, INCENP expression is not elevated in concert with Aurora B in breast cancer, and increased expression of Aurora B causes resistance rather than hypersensitivity to Aurora B inhibitors. Thus, increased Aurora B expression reduces, rather than increases, Aurora B kinase activity.
Collapse
Affiliation(s)
- Eric M. C. Britigan
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel K. Sam
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Amber L. Lasek
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Beth A. Weaver,
| |
Collapse
|
7
|
New progress in diagnosis and treatment of pulmonary arterial hypertension. J Cardiothorac Surg 2022; 17:216. [PMID: 36038916 PMCID: PMC9422157 DOI: 10.1186/s13019-022-01947-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease. Although great progress has been made in its diagnosis and treatment in recent years, its mortality rate is still very significant. The pathophysiology and pathogenesis of PAH are complex and involve endothelial dysfunction, chronic inflammation, smooth muscle cell proliferation, pulmonary arteriole occlusion, antiapoptosis and pulmonary vascular remodeling. These factors will accelerate the progression of the disease, leading to poor prognosis. Therefore, accurate etiological diagnosis, treatment and prognosis judgment are particularly important. Here, we systematically review the pathophysiology, diagnosis, genetics, prognosis and treatment of PAH.
Collapse
|
8
|
Samuelov L, Bochner R, Magal L, Malovitski K, Sagiv N, Nousbeck J, Keren A, Fuchs-Telem D, Sarig O, Gilhar A, Sprecher E. Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Exp Dermatol 2021; 31:567-576. [PMID: 34787924 DOI: 10.1111/exd.14502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Psoriasis is characterized by aberrant activation of several pro-inflammatory circuits as well as abnormal hyperproliferation and dysregulated apoptosis of keratinocytes (KCs). Most currently available therapeutic options primarily target psoriasis-associated immunological defects rather than epidermal abnormalities. OBJECTIVE To investigate the efficacy of the histone deacetylase (HDAC) inhibitor, Vorinostat, in targeting hyperproliferation and impaired apoptosis in psoriatic skin. METHODS Vorinostat effect was investigated in primary KCs cell cultures using cell cycle analysis by flow cytometry, apoptosis assays (Annexin V-FICH and caspase-3/7) and antibody arrays, qRT-PCR and immunohistochemistry. Vorinostat impact on clinical manifestations of psoriasis was investigated in a chimeric mouse model. RESULTS Vorinostat was found to inhibit KCs proliferation and to induce their differentiation and apoptosis. Using a chimeric mouse model, vorinostat was found to result in marked attenuation of a psoriasiform phenotype with a significant decrease in epidermal thickness and inhibition of epidermal proliferation. CONCLUSIONS Our results support the notion that vorinostat, a prototypic HDAC inhibitor, may be of potential use in the treatment of psoriasis and other hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Bochner
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lee Magal
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nadav Sagiv
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Janna Nousbeck
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dana Fuchs-Telem
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Xie W, Yan O, Liu F, Han Y, Wang H. Prognostic Value of Survivin in Nasopharyngeal Carcinoma: A Systematic Review and Meta-analysis. J Cancer 2021; 12:4399-4407. [PMID: 34093840 PMCID: PMC8176404 DOI: 10.7150/jca.46282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Previous studies have shown that survivin has potential prognostic value in nasopharyngeal carcinoma. However, the results remained controversial until now. Thus, to investigate the influence of survivin expression on prognosis and clinical characteristics in nasopharyngeal carcinoma, we performed this meta-analysis. Methods: We searched PubMed, PMC, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure electronic databases from their establishment to 1 March 2021. The pooled hazard ratio (HR) and the pooled odds ratio (OR) were used to evaluate the prognostic and clinicopathological values of survivin in nasopharyngeal carcinoma. We used the I2 statistic and the Q test to evaluate heterogeneity. Meta-regression, publication bias, and sensitivity analyses were also conducted. Results: A total of 26 eligible studies with 2278 patients were included in our meta-analysis. We found that the expression of survivin is connected with poor overall survival (HR=1.94; 95% confidence interval (CI)=1.52-2.48; P<0.001), lymph node metastasis (OR=3.01; 95% CI=2.31- 3.91; P<0.001), local recurrence (OR=2.40; 95% CI=1.60-3.61, P<0.001), distant metastasis (OR=2.58; 95% CI=1.74-3.84, P<0.001), and a higher clinical stage (OR=4.58; 95% CI=2.81-7.47, P<0.001). However, no significant correlations were found between survivin expression and radio-sensitivity (OR=1.33; 95% CI=0.25-7.17, P=0.737) or gender (OR=1.02; 95% CI=0.75-1.39, P=0.887). Conclusions: This meta-analysis indicates that survivin could be used as a biomarker for predicting prognosis in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wenji Xie
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Ouying Yan
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Feng Liu
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yaqian Han
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Department of Radiotherapy, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
10
|
Abdel-Rasol M, El-Beih NM, Yahya SMM, Ismail MA, El-Sayed WM. The Antitumor Activity of a Novel Fluorobenzamidine against Dimethylhydrazine- Induced Colorectal Cancer in Rats. Anticancer Agents Med Chem 2021; 20:450-463. [PMID: 31736450 DOI: 10.2174/1871520619666191021162411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer is among the leading causes of death worldwide. The incidence of deaths is expected to be 11.4 million in 2030. OBJECTIVE We aimed to evaluate the in vitro and in vivo antioxidant and antitumor activities of a novel Bithiophene- Fluorobenzamidine (BFB) against DMH-induced colorectal cancer in rats. METHODS The antiproliferative activity of BFB against HCT-116 colon cancer cells and apoptotic genes was assessed. In vivo study was also conducted in which 80 adult male rats were divided into 5 groups; control, BFB, and the other 3 groups were injected with DMH (20mg/kg, s.c., for 9 weeks). Group 4 was injected with 5 doses of cisplatin (2.5mg/kg, i.p over 21 weeks) and group 5 was injected with 3 doses/week of BFB (2.5mg/kg, i.p, for 21 weeks). RESULTS BFB exhibited weak to moderate in vitro antioxidant activity. It had a strong antiproliferative activity with IC50 ~0.3µg/ml. BFB induced extrinsic apoptosis through the upregulation of FasL, TRAL, p53 and caspase-8, and intrinsic apoptosis through the downregulation of Bcl-2 and survivin. BFB decreased the tumor incidence, multiplicity and size and improved the decreased body weight. BFB also ameliorated the functions of kidney and liver and antioxidants deteriorated by DMH. BFB significantly improved the pathological changes caused by DMH in colon tissues. CONCLUSION BFB showed a very promising antitumor activity against colorectal cancer induced by DMH in rats without causing hepato- or nephrotoxicity.
Collapse
Affiliation(s)
- Mohammed Abdel-Rasol
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia 11566, Cairo, Egypt
| | - Nadia M El-Beih
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia 11566, Cairo, Egypt
| | - Shaymaa M M Yahya
- Department of Hormones, Medical Research Division, National Research Center, Dokki 12622, Giza, Egypt
| | - Mohamed A Ismail
- Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia 11566, Cairo, Egypt
| |
Collapse
|
11
|
Li K, Liu T, Chen J, Ni H, Li W. Survivin in breast cancer-derived exosomes activates fibroblasts by up-regulating SOD1, whose feedback promotes cancer proliferation and metastasis. J Biol Chem 2020; 295:13737-13752. [PMID: 32709750 DOI: 10.1074/jbc.ra120.013805] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a critical role in the coevolution of breast tumor cells and their microenvironment by modifying cellular compartments and regulating cancer cell functions via stromal-epithelial dialogue. However, the relationship and interaction between stromal and epithelial cells is still poorly understood. Herein, we revealed that breast cancer cells have a stronger ability to activate fibroblasts and transform them into myofibroblasts (CAF-like) than normal breast epithelial cells, and this stronger ability occurs through paracrine signaling. In turn, myofibroblasts promote the proliferation, epithelial-to-mesenchymal transition (EMT), and stemness of breast cancer cells. Detailed regulatory mechanisms showed that, compared with normal cells, Survivin is overexpressed in breast cancer cells and secreted extracellularly in the form of exosomes, which are then internalized by fibroblasts. Breast cancer cell-derived survivin up-regulates SOD1 expression in fibroblasts and then converts them into myofibroblasts, conversely inducing breast cancer progression in vitro and in vivo Thus, our results indicate that survivin acts as an activator of the tumor microenvironment and that SOD1 up-regulation in fibroblasts can promote breast cancer progression. These results suggest that targeting survivin and SOD1 may be a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Kangdi Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ting Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huying Ni
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Bernardo PS, Lemos LGT, de Moraes GN, Maia RC. Unraveling survivin expression in chronic myeloid leukemia: Molecular interactions and clinical implications. Blood Rev 2020; 43:100671. [PMID: 32107072 DOI: 10.1016/j.blre.2020.100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the BCR-ABL oncoprotein, known to drive leukemogenesis by orchestrating multiple signaling pathways ultimately involved in cell survival. Despite successful response rates of CML patients to tyrosine kinase inhibitors (TKIs), resistance eventually arises due to BCR-ABL-dependent and independent mechanisms. Survivin is an inhibitor of apoptosis protein acting in the interface between apoptosis deregulation and cell cycle progression. In CML, high levels of survivin have been associated with late stages of disease and therapy resistance. In this review, we provide an overview of important aspects concerning survivin subcellular localization and expression pattern in CML patients and cell lines. Moreover, we highlight the relevance of molecular networks involving survivin for disease progression and treatment resistance. Finally, we discuss the mechanisms accounting for survivin overexpression, as well as novel therapeutic interventions that have been designed to counteract survivin-associated malignancy in CML.
Collapse
Affiliation(s)
- Paula Sabbo Bernardo
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Lauana Greicy Tonon Lemos
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Hennigs JK, Minner S, Tennstedt P, Löser R, Huland H, Klose H, Graefen M, Schlomm T, Sauter G, Bokemeyer C, Honecker F. Subcellular Compartmentalization of Survivin is Associated with Biological Aggressiveness and Prognosis in Prostate Cancer. Sci Rep 2020; 10:3250. [PMID: 32094363 PMCID: PMC7039909 DOI: 10.1038/s41598-020-60064-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
The role of subcellular survivin compartmentalization in the biology and prognosis of prostate cancer is unclear. We therefore investigated subcellular localization of survivin in more than 3000 prostate cancer patients by quantitative immunohistochemistry and performed transcriptomics of 250 prostate cancer patients and healthy donors using publicly available datasets. Survivin (BIRC5) gene expression was increased in primary prostate cancers and metastases, but did not differ in recurrent vs non-recurrent prostate cancers. Survivin immunohistochemistry (IHC) staining was limited exclusively to the nucleus in 900 prostate cancers (40.0%), and accompanied by various levels of cytoplasmic positivity in 1338 tumors (59.4%). 0.5% of prostate cancers did not express survivin. Nuclear and cytoplasmic survivin staining intensities were strongly associated with each other, pT category, and higher Gleason scores. Cytoplasmic but not nuclear survivin staining correlated with high tumor cell proliferation in prostate cancers. Strong cytoplasmic survivin staining, but not nuclear staining predicted an unfavorable outcome in univariate analyses. Multivariate Cox regression analysis showed that survivin is not an independent prognostic marker. In conclusion, we provide evidence that survivin expression is increased in prostate cancers, especially in metastatic disease, resulting in higher aggressiveness and tumor progression. In addition, subcellular compartmentalization is an important aspect of survivin cancer biology, as only cytoplasmic, but not nuclear survivin accumulation is linked to biological aggressiveness and prognosis of prostate cancers.
Collapse
Affiliation(s)
- Jan K Hennigs
- Department of Internal Medicine II - Oncology, Hematology, Bone Marrow Transplantation and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Institute of Pathology, University Medical Center Hamburg-Eppendorf, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Tennstedt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf Löser
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Department of Internal Medicine II - Oncology, Hematology, Bone Marrow Transplantation and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Charité-Universitätsmedizin, Berlin, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Internal Medicine II - Oncology, Hematology, Bone Marrow Transplantation and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedemann Honecker
- Department of Internal Medicine II - Oncology, Hematology, Bone Marrow Transplantation and Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Tumor and Breast Center ZeTuP, St. Gallen, Switzerland.
| |
Collapse
|
14
|
Izquierdo AG, Carreira MC, Amil M, Mosteiro CS, Garcia-Caballero T, Fernandez-Quintela A, Portillo MP, Casanueva FF, Crujeiras AB. An energy restriction-based weight loss intervention is able to reverse the effects of obesity on the expression of liver tumor-promoting genes. FASEB J 2019; 34:2312-2325. [PMID: 31908001 DOI: 10.1096/fj.201901147rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
The epidemiological evidence regarding the association of obesity with liver disease and possibly hepatocellular carcinoma highlights the need for investigations of whether obesity itself could induce the differential expression of genes commonly associated with the initial phase of liver tumorigenesis, and whether such phenomenon could be reversed after a weight loss intervention. In this study, obese Zucker rats were found to have dysregulated cell proliferation, antioxidative defenses, and tumor suppressor gene expression in association with liver dysfunction parameters, as well as oxidative stress and inflammation. Importantly, after a 4-week weight loss protocol of energy restriction and/or exercise, this effect on the liver carcinogenesis-related genes was reversed concomitantly with reductions in the fat mass, hepatic lipid content, oxidative stress, and inflammation. The findings indicate that the oxidative stress and inflammation associated with excess adiposity promote dysregulation of the genes involved in liver tumorigenesis. This is clinically relevant because these effects were detectable in the liver without evidence of a tumoral mass and were reversed after weight loss. Consequently, this study reveals the susceptibility of obese individuals to the initiation of a hepatocarcinogenic process, and how this can be prevented by achieving a healthy body weight.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Laboratory of Epigenomics in Endocrinology and Nutrition, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - María Amil
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Tomas Garcia-Caballero
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alfredo Fernandez-Quintela
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain
| | - María P Portillo
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Ana B Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| |
Collapse
|
15
|
Khan AA, Alanazi AM, Jabeen M, Chauhan A, Ansari MA. Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice. Sci Rep 2019; 9:15825. [PMID: 31676815 PMCID: PMC6825139 DOI: 10.1038/s41598-019-52142-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Short interfering RNA (siRNA) possesses special ability of silencing specific gene. To increase siRNA stability, transportation and its uptake by tumor cells, effective delivery to the appropriate target cells is a major challenge of siRNA-based therapy. In the present study, an effective, safe and biocompatible survivin siRNA encapsulated, GalNAc decorated PEGylated PLGA nanoconjugates (NCs) viz., GalNAc@PEG@siRNA-PLGA were engineered and their synergistic antitumor efficacy was evaluated for targeted delivery in HCC bearing experimental mice. GalNAc@PEG@siRNA-PLGA NCs were characterized for size, bioavailability, toxicity and biocompatibility. Their antitumor potential was evaluated considering gene silencing, apoptosis, histopathology and survival of treated mice. Exceptional accumulation of hepatocytes, reduction in survivin expression and prominent regression in tumor size confirmed the ASGPR-mediated uptake of ligand-anchored NCs and silencing of survivin gene in a targeted manner. Increased DNA fragmentation and potential modulation of caspase-3, Bax and Bcl-2 factors specified the induction of apoptosis that helped in significant inhibition of HCC progression. The potential synchronous and tumor selective delivery of versatile NCs indicated the effective payloads towards the target site, increased apoptosis in cancer cells and improved survival of treated animals.
Collapse
Affiliation(s)
- Azmat Ali Khan
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Amer M. Alanazi
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mumtaz Jabeen
- 0000 0004 1937 0765grid.411340.3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Arun Chauhan
- 0000 0004 1936 8163grid.266862.eDepartment of Neuroimmunology, School of Health and Medicine, University of North Dakota, Grand Forks, ND USA
| | - Mohammad Azam Ansari
- 0000 0004 0607 035Xgrid.411975.fDepartment of Epidemic Disease Research, Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| |
Collapse
|
16
|
Liu C, Wen C, Wang X, Wei Y, Xu C, Mu X, Zhang L, Wang X, Tian J, Ma P, Meng F, Zhang Q, Zhao N, Yu B, Gong T, Guo R, Wang H, Xie J, Sun G, Li G, Zhang H, Qin Q, Xu J, Dong X, Wang L. Golgi membrane protein GP73 modified-liposome mediates the antitumor effect of survivin promoter-driven HSVtk in hepatocellular carcinoma. Exp Cell Res 2019; 383:111496. [PMID: 31306654 DOI: 10.1016/j.yexcr.2019.111496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide, and there is currently no effective therapeutic strategy in clinical practice. Gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited because of the lack of tumor-specific targets and insufficient gene transfer. The study of targeted transport of therapeutic genes in HCC treatment seems to be very important. In this study, we evaluated a gene therapy approach targeting HCC using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system in HCC cell lines and in an in vivo human HCC xenograft mouse model. GP73-modified liposomes targeted gene delivery to the tumor tissue, and the survivin promoter drove HSVtk expression in the HCC cells. Our results showed that the survivin promoter was specifically activated in tumor cells and HSVtk was expressed selectively in tumor cells. Combined with GCV treatment, HSVtk expression resulted in suppression of HCC cell proliferation via enhancing apoptosis. Moreover, tail vein injection of GP73-HSVtk significantly suppressed the growth of xenograft tumors through an apoptosis-dependent pathway and extended the survival of tumor-bearing mice without damaging the mice liver functions. Taken together, this study demonstrates an effective cancer-specific gene therapy strategy using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system for HCC that can be further developed for future clinical trials.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chaochao Wen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xi Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunyang Xu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiuli Mu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lina Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xuan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiubo Tian
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Peiyuan Ma
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fanxiu Meng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Na Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hailong Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Gongqin Sun
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - Gaopeng Li
- Department of General Surgery, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hongwei Zhang
- Department of Haematology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qin Qin
- Central Laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi, China
| | - Jun Xu
- Department of General Surgery, Shanxi Dayi Hospital, Taiyuan, 030001, Shanxi, China.
| | - Xiushan Dong
- Department of General Surgery, Shanxi Dayi Hospital, Taiyuan, 030001, Shanxi, China
| | - Lumei Wang
- Department of Dermatology, Dong Guan People's Hospital, Dongguan, 523018, Guangdong, China.
| |
Collapse
|
17
|
Xie W, Wei L, Guo J, Guo H, Song X, Sheng X. Physiological functions of Wilms' tumor 1-associating protein and its role in tumourigenesis. J Cell Biochem 2019; 120:10884-10892. [PMID: 30756410 DOI: 10.1002/jcb.28402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
The Wilms' tumor-associated gene WT1 encodes a tumor suppressor gene, which is implicated in renal differentiation and development of adult urogenital system. Wilms' tumor 1-associating protein (WTAP) is initially identified as a nuclear protein that specifically interacts with WT1 in both in vitro and in vivo assays. WTAP is ubiquitously expressed in different tissues and various growth periods, and its expression is involved in cell cycle, RNA splicing and stabilization, N6-methyladenosine RNA modification, cell proliferation, and apoptosis as well as embryonic development. In the present review, we aimed to summarize the functions of WTAP in various physiological and pathological processes, in particular with regard to the current knowledge about the role of WTAP in tumorigenesis of different cancers.
Collapse
Affiliation(s)
- Wenli Xie
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, P. R. China
| | - Ling Wei
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Jing Guo
- Shandong Cancer Hospital Affiliated to Shandong University, University of Jinan, Jinan, Shandong, P. R. China
| | - Hui Guo
- Shandong Cancer Hospital Affiliated to Shandong University, University of Jinan, Jinan, Shandong, P. R. China
| | - Xianrang Song
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Xiugui Sheng
- Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, P. R. China
| |
Collapse
|
18
|
Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: Focus on biosensing systems and biosensors for an anti-apoptotic protein survivin and survivin mRNA. Biosens Bioelectron 2019; 137:58-71. [PMID: 31078841 DOI: 10.1016/j.bios.2019.04.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The development of biosensors for cancer biomarkers has recently been expanding rapidly, offering promising biomedical applications of these sensors as highly sensitive, selective, and inexpensive bioanalytical tools that can provide alternative methodology to that afforded by the advanced hyphenated-instrumental techniques. In this review, we focus particularly on the detection of a member of the inhibitor of apoptosis proteins (IAP) family, protein survivin (Sur), a ubiquitous re-organizer of the cell life cycle with the ability to inhibit the apoptosis and induce an enhanced proliferation leading to the unimpeded cancer growth and metastasis. Herein, we critically evaluate the progress in the development of novel biosensing systems and biosensors for the detection of two survivin (Sur) biomarkers: the Sur protein and its messenger RNA (Sur mRNA), including immunosensors, electrochemical piezo- and impedance-sensors, electrochemi-luminescence biosensors, genosensors based on oligonucleotide molecular beacons (MBs) with fluorescent or electrochemical transduction, as well as the microfluidic and related analytical platforms based on solution chemistry. The in-situ applications of survivin biomarkers' detection technologies to equip nanocarriers of the controlled drug delivery systems with MB-based fluorescence imaging capability, apoptosis control, and mitigation of the acquired drug resistance are also presented and critically evaluated. Finally, we turn the attention to the application of biosensors for the analysis of Sur biomarkers in exosomes and circulating tumor cells for a non-invasive liquid biopsy. The prospect of a widespread screening for early cancers, based on inexpensive point-of-care testing using biosensors and multiplex biosensor arrays, as a means of reducing the high cancer fatality rate, is discussed.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| | - Katarzyna Ratajczak
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), 02776, Warsaw, Poland.
| |
Collapse
|
19
|
Nguyen HM, Dao MQ, La HT. Performance of survivin mRNA as a biomarker for breast cancer among Vietnamese women. Heliyon 2019; 5:e01371. [PMID: 30957048 PMCID: PMC6431741 DOI: 10.1016/j.heliyon.2019.e01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022] Open
Abstract
Objective This study aimed to perform the reverse-transcription polymerase chain reaction (RT-PCR) to express the survivin mRNA among patients with breast cancer in Vietnam and identify some potential associated clinical and pathological factors. Methods Peripheral blood (PB) samples and tissues on 43 patients with breast cancer and 21 patients with fibroids were obtained. The Real-time RT-PCR and gene sequencing techniques were employed to detect survivin gene in breast cancer cell lines and cancer tissues. Results Survivin mRNA transcription was detected in 32/43 (74,4%) of breast cancer tissues and 19/43 (44,2%) of PB samples of breast cancer patients, while it was detected in only 14,3 % fibrosis tissues and 0% in the blood of fibrosis patients. Survivin mRNA on the peripheral blood of breast cancer patients increased with tumor size, and stage of cancer (p < 0.05). In terms of breast cancer tissue, no difference was found in the rate of survivin mRNA expression in according to age, distant metastasis, lymph node, stages of cancer, and histopathology (p > 0.05). Conclusions Results provide the initial evidence of the expression of survivin mRNA in breast cancer patients in Vietnam, suggesting the role of survivin mRNA in breast cancer molecular pathology.
Collapse
Affiliation(s)
| | | | - Huyen Thi La
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
20
|
Amjadi F, Salehi E, Zandieh Z, Rashidi M, Taleahmad S, Javedani masrour M, Aflatoonian R, Mehdizadeh M. Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:426-431. [PMID: 31168348 PMCID: PMC6535203 DOI: 10.22038/ijbms.2019.32961.7874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/27/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES NOTCH signaling pathway is well known for its role in cell fate, cell survival, cell differentiation, and apoptosis. Some of the NOTCH signaling genes are critical for endometrial function and implantation in animals and appear to play a similar role in humans. The purpose of the current study was to investigate the potential roles of some main components of the NOTCH family in human endometrium during implantation period in common gynecological diseases. MATERIALS AND METHODS Endometrial NOTCH receptors NOTCH1, 3, 4 and ligand JAG1, 2 and survivin mRNA expression were investigated using the Q-PCR technique and the amount of the JAG1, 2 proteins was also determined by Western blot. Samples were obtained from 12 patients with endometriosis, 12 patients with repeated implantation failure (RIF), 12 patients with Polycystic Ovary Syndrome (PCOS) and 10 healthy fertile women as a control group. Data were analyzed using SPSS version 18. Group comparisons were performed by one-way ANOVA or Kruskal-Wallis. RESULTS All patient groups failed to show the expected mid-luteal increase in NOTCH1, JAG 1, 2, and survivin expression as documented in the control group. Moreover, a significant rise in NOTCH3 expression levels was found only in PCOS women. There was a direct correlation between gene expression and protein level for JAG 1, 2. CONCLUSION Aberrant NOTCH signaling molecules expression suggests that altered development of the endometrium at the molecular level may be associated with the impaired decidualization and implantation failure in gynecological disorders such as endometriosis, PCOS, and RIF.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Advanced Technologies, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Rashidi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), IVF Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Taleahmad
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojgan Javedani masrour
- Research and Clinical Center of Gynecology and Fertility, Shahid Akbarabadi Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Nguyen HM, Dao MQ, La HT. WITHDRAWN: Performance of survivin mRNA as a biomarker for breast cancer among Vietnamese women. Breast Dis 2019:BD180374. [PMID: 30958326 DOI: 10.3233/bd-180374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
| | | | - Huyen Thi La
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
22
|
Sheng L, Wan B, Feng P, Sun J, Rigo F, Bennett CF, Akerman M, Krainer AR, Hua Y. Downregulation of Survivin contributes to cell-cycle arrest during postnatal cardiac development in a severe spinal muscular atrophy mouse model. Hum Mol Genet 2019; 27:486-498. [PMID: 29220503 DOI: 10.1093/hmg/ddx418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive degeneration of spinal-cord motor neurons, leading to atrophy of skeletal muscles. However, accumulating evidence indicates that it is a multi-system disorder, particularly in its severe forms. Several studies delineated structural and functional cardiac abnormalities in SMA patients and mouse models, yet the abnormalities have been primarily attributed to autonomic dysfunction. Here, we show in a severe mouse model that its cardiomyocytes undergo G0/G1 cell-cycle arrest and enhanced apoptosis during postnatal development. Microarray and real-time RT-PCR analyses revealed that a set of genes associated with cell cycle and apoptosis were dysregulated in newborn pups. Of particular interest, the Birc5 gene, which encodes Survivin, an essential protein for heart development, was down-regulated even on pre-symptomatic postnatal day 0. Interestingly, cultured cardiomyocytes depleted of SMN recapitulated the gene expression changes including downregulation of Survivin and abnormal cell-cycle progression; and overexpression of Survivin rescued the cell-cycle defect. Finally, increasing SMN in SMA mice with a therapeutic antisense oligonucleotide improved heart pathology and recovered expression of deregulated genes. Collectively, our data demonstrate that the cardiac malfunction of the severe SMA mouse model is mainly a cell-autonomous defect, caused by widespread gene deregulation in heart tissue, particularly of Birc5, resulting in developmental abnormalities through cell-cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pengchao Feng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjie Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.,Envisagenics, Inc., New York, NY 10017, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Abstract
Breast cancer has a high incidence worldwide. The results of substantial studis reveal that inflammation plays an important role in the initiation, development, and aggressiveness of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with the reduced risk of the occurrence and progression of a number of types of cancer, particularly breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials have been implemented on integration treatment of celecoxib and shown encouraging results. Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, some unaddressed questions concerning the precise mechanism underlying the anticancer effect of celecoxib as well as its activity against different types of cancer. In this review, we discuss different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results signifying this beneficial effect.
Collapse
Affiliation(s)
- Jieqing Li
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China.,Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,Department of Nuclear Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| |
Collapse
|
24
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|
25
|
Dizdar L, Jünemann LM, Werner TA, Verde PE, Baldus SE, Stoecklein NH, Knoefel WT, Krieg A. Clinicopathological and functional implications of the inhibitor of apoptosis proteins survivin and XIAP in esophageal cancer. Oncol Lett 2018; 15:3779-3789. [PMID: 29467895 DOI: 10.3892/ol.2018.7755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Based on their overexpression and important roles in progression and therapy-resistance in malignant diseases, the inhibitor of apoptosis protein family (IAP) members, survivin and X-linked inhibitor of apoptosis protein (XIAP), represent attractive candidates for targeted therapy. The present study investigated the prognostic and biological relevance of survivin and XIAP in esophageal squamous-cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Survivin and XIAP expression was analyzed by immunohistochemistry using tissue microarrays containing 120 ESCC and 90 EAC samples as well as the corresponding non-neoplastic esophageal mucosa samples. IAP expression levels were then correlated to clinicopathological parameters and overall survival to identify any associations. In addition, esophageal cancer cell lines were treated with the survivin inhibitor YM155, and the XIAP inhibitors Birinapant and GDC-0152 in vitro. Survivin and XIAP expression were significantly increased in EAC and ESCC when compared with tumor-adjacent mucosa. In patients with ESCC XIAP expression was associated with female gender and advanced tumor stages, and nuclear survivin expression was associated with poor grading. High XIAP expression was identified as an independent negative prognostic marker in ESCC. By contrast, XIAP inhibitors did not affect cancer cell viability in vitro, and the small molecule survivin inhibitor YM155 significantly reduced cell viability and proliferation in esophageal cancer cell lines. Western blot analysis revealed a dose dependent decrease of survivin accompanied by an increased poly (adenosine diphosphate-ribose) polymerase cleavage following YM155 treatment. These findings underline the potential role of survivin and XIAP in the oncogenesis of esophageal cancer and provide a rationale for future clinical studies investigating the therapeutic efficacy of IAP directed therapies in patients with esophageal cancer.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa M Jünemann
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan E Baldus
- Institute of Pathology, Cytology and Molecular Pathology, D-51465 Bergisch Gladbach, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Wang YL, Shao X, Wang F, Zeng L, Hu L, Cui SQ, Hou G, Huang DN. Intron-specific shRNA-mediated downregulation of survivin and promotion of apoptosis in HeLa cells. Oncol Lett 2017; 14:5927-5933. [PMID: 29113228 PMCID: PMC5661408 DOI: 10.3892/ol.2017.6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Overexpression of the survivin gene contributes to tumorigenesis; it has been recognized as an important target for cancer therapy. In the present study, survivin expression was suppressed using recombinant plasmid mediated short hairpin RNAs (shRNAs) that were constructed to target exonic or intronic sequences of the survivin gene. In addition, a negative control shRNA was constructed. HeLa cells were transfected with specific shRNA constructs and the blocking efficiency of each shRNA was assessed at the mRNA and protein levels; and the five shRNA constructs with higher blocking efficiency were selected. Cell apoptosis was assessed by flow cytometry (FCM) following Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Hoechst staining was used to detect the morphological diversity of the nuclei in apoptotic cells. The results demonstrated that survivin expression was effectively reduced by the transfection of shRNAs in HeLa cells. In addition, the apoptotic rates of the shRNA-treated groups were significantly increased compared with the negative control group according to the FCM results. The nuclei of HeLa cells exhibited apoptotic characteristics in the shRNA-treated groups as identified by Hoechst staining. Survivin-targeting shRNAs effectively downregulated the expression of the gene and markedly increased the apoptotic rate of HeLa cells. Data from the present study also indicated that the intron-specific shRNA demonstrate a high efficiency of inhibition of survivin expression and were able to induce cell apoptosis of HeLa cells through RNAi, potentially providing novel target sites for tumor therapy. In conclusion, the present study suggests that intron-specific blocking of survivin by RNAi may provide a tool for anticancer therapy.
Collapse
Affiliation(s)
- Yue-Li Wang
- Department of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xin Shao
- People's Hospital of Shiyan, Shiyan, Hubei 442000, P.R. China
| | - Fa Wang
- Department of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liang Zeng
- Department of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liang Hu
- Department of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shi-Quan Cui
- Department of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Gan Hou
- Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Di-Nan Huang
- Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
27
|
Dizdar L, Tomczak M, Werner TA, Safi SA, Riemer JC, Verde PE, Stoecklein NH, Knoefel WT, Krieg A. Survivin and XIAP expression in distinct tumor compartments of surgically resected gastric cancer: XIAP as a prognostic marker in diffuse and mixed type adenocarcinomas. Oncol Lett 2017; 14:6847-6856. [PMID: 29109763 DOI: 10.3892/ol.2017.6999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
There is considerable evidence that the inhibitor of apoptosis protein (IAP) family serves a role in tumorigenesis. The most studied IAP family members, survivin and X-linked inhibitor of apoptosis (XIAP), have been demonstrated to serve as biomarkers in distinct tumor entities. Thus, the present study aimed to investigate the expression levels of both IAPs in the tumor center, invasion front and lymph node metastases of surgically resected gastric cancer (GC) specimens. Tissue microarrays containing samples from 201 primary GCs were analyzed. IAP expression was detected using immunohistochemistry in different tumor compartments, normal mucosa and lymph node metastases. In addition, the association between the expression levels of these proteins, and clinicopathological parameters and overall survival was investigated. High levels of survivin and XIAP were evident in GC, when compared with normal mucosa, and were correlated with intestinal-type and well-differentiated GC, as well as low International Union Against Cancer stages. Increased XIAP expression was detected in lymph node metastases as compared with corresponding primary tumors. XIAP overexpression was identified to be an independent negative prognostic marker in diffuse and mixed type GC. These results suggest a potential role of survivin and XIAP in the early phase of gastric carcinogenesis. In addition, increased XIAP expression in lymph node metastases supports the observation that IAPs serve an essential role in metastatic tumor disease. Since XIAP expression was identified to be associated with poor survival in diffuse and mixed type GC, XIAP may serve as a novel therapeutic target in these types of GC.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Monika Tomczak
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Sami A Safi
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Jasmin C Riemer
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| |
Collapse
|
28
|
Gaytan-Cervantes J, Gonzalez-Torres C, Maldonado V, Zampedri C, Ceballos-Cancino G, Melendez-Zajgla J. Protein Sam68 regulates the alternative splicing of survivin DEx3. J Biol Chem 2017; 292:13745-13757. [PMID: 28655776 DOI: 10.1074/jbc.m117.800318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA alternative splicing (AS) regulates the expression of a variety of genes involved in both physiological and pathological processes. AS of the anti-apoptotic and proliferation-associated survivin (BIRC5) gene generates six isoforms, which regulate key aspects of cancer initiation and progression. One of the isoforms is survivin DEx3, in which the exclusion of exon 3 generates a unique carboxyl terminus with specific anti-apoptotic functions. This isoform is highly expressed in advanced stages of breast and cervical tumors. Therefore, understanding the mechanisms that regulate survivin DEx3 mRNA AS is clearly important. To this end, we designed a minigene (M), and in combination with a series of deletions and site-directed mutations, we determined that the first 22 bp of exon 3 contain cis-acting elements that enhance the exclusion of exon 3 to generate the survivin DEx3 mRNA isoform. Furthermore, using pulldown assays, we discovered that Sam68 is a possible trans-acting factor that binds to this region and regulates exon 3 splicing. This result was corroborated using a cell line in which the Sam68 binding site in the survivin gene was mutated with the CRISPR/Cas system. This work provides the first clues regarding the regulation of survivin DEx3 mRNA splicing.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Epigenetics, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | | | | | | |
Collapse
|
29
|
Survivin and gynaecological tumours. Pathol Res Pract 2017; 213:295-300. [DOI: 10.1016/j.prp.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
|
30
|
Andrade AF, Borges KS, Suazo VK, Geron L, Corrêa CAP, Castro-Gamero AM, de Vasconcelos EJR, de Oliveira RS, Neder L, Yunes JA, Dos Santos Aguiar S, Scrideli CA, Tone LG. The DNA methyltransferase inhibitor zebularine exerts antitumor effects and reveals BATF2 as a poor prognostic marker for childhood medulloblastoma. Invest New Drugs 2016; 35:26-36. [PMID: 27785591 DOI: 10.1007/s10637-016-0401-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common solid tumor among pediatric patients and corresponds to 20 % of all pediatric intracranial tumors in this age group. Its treatment currently involves significant side effects. Epigenetic changes such as DNA methylation may contribute to its development and progression. DNA methyltransferase (DNMT) inhibitors have shown promising anticancer effects. The agent Zebularine acts as an inhibitor of DNA methylation and shows low toxicity and high efficacy, being a promising adjuvant agent for anti-cancer chemotherapy. Several studies have reported its effects on different types of tumors; however, there are no studies reporting its effects on MB. We analyzed its potential anticancer effects in four pediatric MB cell lines. The treatment inhibited proliferation and clonogenicity, increased the apoptosis rate and the number of cells in the S phase (p < 0.05), as well as the expression of p53, p21, and Bax, and decreased cyclin A, Survivin and Bcl-2 proteins. In addition, the combination of zebularine with the chemotherapeutic agents vincristine and cisplatin resulted in synergism and antagonism, respectively. Zebularine also modulated the activation of the SHH pathway, reducing SMO and GLI1 levels and one of its targets, PTCH1, without changing SUFU levels. A microarray analysis revealed different pathways modulated by the drug, including the Toll-Like Receptor pathway and high levels of the BATF2 gene. The low expression of this gene was associated with a worse prognosis in MB. Taken together, these data suggest that Zebularine may be a potential drug for further in vivo studies of MB treatment.
Collapse
Affiliation(s)
- Augusto Faria Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Kleiton Silva Borges
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Veridiana Kiill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, USP, São Paulo, Brazil
| | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.,Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
31
|
Hamy AS, Bieche I, Lehmann-Che J, Scott V, Bertheau P, Guinebretière JM, Matthieu MC, Sigal-Zafrani B, Tembo O, Marty M, Asselain B, Spyratos F, de Cremoux P. BIRC5 (survivin): a pejorative prognostic marker in stage II/III breast cancer with no response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2016; 159:499-511. [PMID: 27592112 DOI: 10.1007/s10549-016-3961-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Neoadjuvant systemic therapy (NAC) is currently used in the treatment of stage II/III breast cancer. Pathological complete response as a surrogate endpoint for clinical outcomes is not completely validated for all subgroups of breast cancers. Therefore, there is a need for reliable predictive tests of the most effective treatment. METHODS We used a combination of predictive clinical, pathological, and gene expression-based markers of response to NAC in a prospective phase II multicentre randomized clinical trial in breast cancer patients, with a long follow-up (8 years). This study concerned the subpopulation of 188 patients with similar levels of pathological response rates to sequential epirubicin/cyclophosphamide and docetaxel to determine predictive marker of pCR and DFS. We used a set of 45 genes selected from high throughput analysis and a standardized RT-qPCR. We analyzed the predictive markers of pathological complete response (pCR) and DFS in the overall population and DFS the subpopulation of 159 patients with no pCR. RESULTS In the overall population, combining both clinical and genomic variables, large tumor size, low TFF1, and MYBL2 overexpression were significantly associated with pCR. T4 Stage, lymphovascular invasion, negative PR status, histological type, and high values of CCNB1 were associated with DFS. In the no pCR population, only lymphovascular invasion and high values of BIRC5 were associated with DFS. CONCLUSIONS We confirm the importance of ER-related and proliferation genes in the prediction of pCR in NAC-treated breast cancer patients. Furthermore, we identified BIRC5 (survivin) as a main pejorative prognostic factor in patients with breast cancers with no pCR. These results also open perspective for predictive markers of new targeted therapies.
Collapse
Affiliation(s)
- A S Hamy
- Department of Biostatistics, Institut Curie, Paris, France
| | - I Bieche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - J Lehmann-Che
- APHP Molecular Oncology Unit, Hôpital Saint Louis, Paris Diderot University, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - V Scott
- Biology Department, Institut Gustave Roussy, Villejuif, France
| | - Ph Bertheau
- APHP Pathology Department, Hôpital Saint Louis, Paris Diderot University, Paris, France
| | - J M Guinebretière
- Pathology Department, Hôpital René-Huguenin, Institut Curie, Saint-Cloud, France
| | - M C Matthieu
- Pathology Department, Institut Gustave Roussy, Villejuif, France
| | | | - O Tembo
- APHP, Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris, France
| | - M Marty
- APHP, Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris, France
| | - B Asselain
- Department of Biostatistics, Institut Curie, Paris, France
| | - F Spyratos
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, Paris, France
| | - P de Cremoux
- APHP Molecular Oncology Unit, Hôpital Saint Louis, Paris Diderot University, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
32
|
D´Epiro GFR, Semprebon SC, Niwa AM, Marcarini JC, Mantovani MS. Roles of chlorophyllin in cell proliferation and the expression of apoptotic and cell cycle genes in HB4a non-tumor breast cells. Toxicol Mech Methods 2016; 26:348-54. [DOI: 10.3109/15376516.2016.1172692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Xu F, Wang J, Cao Z, Song M, Fu Y, Zhu Y, Li Y. cAMP/PKA Signaling Pathway Induces Apoptosis by Inhibited NF-κB in Aluminum Chloride-Treated Lymphocytes In Vitro. Biol Trace Elem Res 2016; 170:424-31. [PMID: 26280903 DOI: 10.1007/s12011-015-0461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023]
Abstract
To explore the apoptosis mechanism in lymphocytes of rats induced by aluminum chloride (AlCl3) by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, the splenic lymphocytes of rats were cultured and exposed to different concentrations of AlCl3 for 24 h. The final concentrations of AlCl3 (AlCl3 · 6H2O) in supernatant were 0 (control group, CG), 0.3 mmol/L (low-dose group, LG), 0.6 mmol/L (mid-dose group, MG), and 1.2 mmol/L (high-dose group, HG), respectively. Lymphocytes Apoptosis rate, intracellular cAMP content, PKA, survivin, B cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2-associated X protein (Bax) mRNA expressions, and the mRNA and protein expressions of nuclear factor-κ-gene binding (NF-κB, p65) were detected, respectively. The results showed that apoptosis index of lymphocytes, cAMP content in intracellular and PKA mRNA expression were significantly upregulated, whereas NF-κB and survivin mRNA expressions, nuclear NF-κB (p65) protein expression, and the ratio of Bcl-2 and Bax mRNA expression were downregulated in the AlCl3-treated groups compared with those in CG. The results indicated that the activated cAMP/PKA signaling pathway induces apoptosis by inhibited NF-κB in AlCl3-treated lymphocytes in vitro.
Collapse
Affiliation(s)
- Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanzhu Zhu
- Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
34
|
Vlčková K, Ondrušová L, Vachtenheim J, Réda J, Dundr P, Zadinová M, Žáková P, Poučková P. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death Dis 2016; 7:e2048. [PMID: 26775700 PMCID: PMC4816174 DOI: 10.1038/cddis.2015.389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Survivin, an important antiapoptotic protein, is expressed in tumors, whereas in normal tissues the expression of this protein is extremely low, defining a role for survivin as a cancer gene. Survivin exhibits multifunctional activity in tumor cells. However, why survivin expression is sharply and invariably restricted to tumor tissue remains unclear. Here, we identified 11 putative consensus binding sites for GLI transcription factors in the survivin promoter and characterized the promoter activity. Inhibitors of the Hedgehog/GLI pathway, cyclopamine and GANT61, decreased the promoter activity in reporter assays. ΔNGLI2 (which lacks the repressor domain) was the most potent vector in activating the survivin promoter–reporter. Moreover, GANT61, a GLI1/2 inhibitor, repressed endogenous survivin protein and mRNA expression in most cells across a large panel of tumor cell lines. Chromatin immunoprecipitation showed GLI2 binding to the survivin promoter. The ectopic GLI2-evoked expression of endogenous survivin was observed in normal human fibroblasts. GANT61 decreased survivin level in nude mice tumors, mimicking the activity of GANT61 in cultured cells. The immunohistochemistry and double immunofluorescence of human tumors revealed a correlation between the tissue regions showing high GLI2 and survivin positivity. Thus, these results demonstrated that survivin is a classical transcriptional target of GLI2, a Hedgehog pathway signaling effector. This potentially reflects the high expression of survivin in human tumor cells. As the Hedgehog pathway is upregulated in virtually all types of cancer cells, these findings substantially contribute to the explanation of uniform survivin expression in tumors as a potential target for the development of a more effective treatment of cancers through the inhibition of GLI2 to restrain survivin activity.
Collapse
Affiliation(s)
- K Vlčková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - L Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - J Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - J Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Dundr
- Institute of Pathology, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - M Zadinová
- Institute of Biophysics and Informatics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Žáková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| | - P Poučková
- Institute of Biophysics and Informatics, Charles University in Prague, 1st Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
35
|
Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo. Int J Mol Sci 2016; 17:ijms17010089. [PMID: 26771605 PMCID: PMC4730332 DOI: 10.3390/ijms17010089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022] Open
Abstract
Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.
Collapse
|
36
|
Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res Treat 2015; 155:53-63. [PMID: 26679694 PMCID: PMC4705120 DOI: 10.1007/s10549-015-3657-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023]
Abstract
Survivin overexpression, frequently found in breast cancers and others, is associated with poor prognosis. Its dual regulation of cell division and apoptosis makes it an attractive therapeutic target but its exact functions that are required for tumor maintenance are still elusive. Survivin protects cancer cells from genotoxic agents and this ability is generally assigned to a universal anti-apoptotic function. However, a specific role in cancer cell protection from DNA damage has been overlooked so far. We assessed DNA damage occurrence in Survivin-depleted breast cancer cells using γH2AX staining and comete assay. QPCR data and a gene conversion assay indicated that homologous recombination (HR) was impaired upon Survivin depletion. We conducted the analysis of Survivin and HR genes’ expression in breast tumors. We revealed BRCAness phenotype of Survivin-depleted cells using cell death assays combined to PARP targeting. Survivin silencing leads to DNA double-strand breaks in breast cancer cells and functionally reduces HR. Survivin depletion decreases the transcription of a set of genes involved in HR, decreases RAD51 protein expression and impairs the endonuclease complex MUS81/EME1 involved in the resolution of Holliday junctions. Clinically, EME1, RAD51, EXO1, BLM expressions correlate with that of BIRC5 (coding for Survivin) and are of prognostic value. Functionally, Survivin depletion triggers p53 activation and sensitizes cancer cells to of PARP inhibition. We defined Survivin as a constitutive actor of HR in breast cancers, and implies that its inhibition would enhance cell vulnerability upon PARP inhibition.
Collapse
|
37
|
Han Z, Lee S, Je S, Eom CY, Choi HJ, Song JJ, Kim JH. Survivin silencing and TRAIL expression using oncolytic adenovirus increase anti-tumorigenic activity in gemcitabine-resistant pancreatic cancer cells. Apoptosis 2015; 21:351-64. [DOI: 10.1007/s10495-015-1208-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Sanhueza C, Wehinger S, Castillo Bennett J, Valenzuela M, Owen GI, Quest AFG. The twisted survivin connection to angiogenesis. Mol Cancer 2015; 14:198. [PMID: 26584646 PMCID: PMC4653922 DOI: 10.1186/s12943-015-0467-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis family of proteins (IAPs) that controls cell division, apoptosis, metastasis and angiogenesis, is overexpressed in essentially all human cancers. As a consequence, the gene/protein is considered an attractive target for cancer treatment. Here, we discuss recent findings related to the regulation of survivin expression and its role in angiogenesis, particularly in the context of hypoxia. We propose a novel role for survivin in cancer, whereby expression of the protein in tumor cells promotes VEGF synthesis, secretion and angiogenesis. Mechanistically, we propose the existence of a positive feed-back loop involving PI3-kinase/Akt activation and enhanced β-Catenin-TCF/LEF-dependent VEGF expression followed by secretion. Finally, we elaborate on the possibility that this mechanism operating in cancer cells may contribute to enhanced tumor vascularization by vasculogenic mimicry together with conventional angiogenesis.
Collapse
Affiliation(s)
- C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - S Wehinger
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - J Castillo Bennett
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - M Valenzuela
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - G I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Facultad de Ciencias Biológicas & Center UC Investigation in Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
39
|
Pandey A, Vishnoi K, Mahata S, Tripathi SC, Misra SP, Misra V, Mehrotra R, Dwivedi M, Bharti AC. Berberine and Curcumin Target Survivin and STAT3 in Gastric Cancer Cells and Synergize Actions of Standard Chemotherapeutic 5-Fluorouracil. Nutr Cancer 2015; 67:1293-304. [PMID: 26492225 DOI: 10.1080/01635581.2015.1085581] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aberrantly expressed survivin and STAT3 signaling have emerged as major determinants of chemoresistance in gastric cancer. We evaluated effects of potent herbal derivatives curcumin, berberine, and quercetin on STAT3 signaling, survivin expression, and response to 5-fluorouracil (5-FU) treatment in gastric cancer cells (AGS). Cytotoxic and inhibitory effects of berberine, curcumin, and quercetin alone or in combination with 5-FU were examined by MTT assay, and their effect on survivin, STAT3, and the phosphorylated active STAT3 (pSTAT3) expression was examined by western blotting. Effect of these herbal derivatives on STAT3 DNA binding activity was measured by electrophoretic mobility shift assay. Curcumin, berberine, and quercetin effectively downregulated pSTAT3 levels, survivin expression, and gastric cancer cells viability in a dose-dependent manner (with corresponding IC50 values of 40.3μM, 29.2μM and 37.5μM, respectively). Berberine was more effective in inhibiting survivin expression as compared to other herbal agents. 5-FU in combination with berberine or curcumin showed a synergistic inhibition of survivin and STAT3 level resulting in enhanced cell death in gastric cancer cells. Overall, our data suggest use of berberine and curcumin as adjunct therapeutics to overcome chemoresistance during treatment of gastric malignancies.
Collapse
Affiliation(s)
- Arvind Pandey
- a Division of Molecular Oncology , Institute of Cytology and Preventive Oncology, Noida, India and Center for Biotechnology, University of Allahabad , Allahabad , India
| | - Kanchan Vishnoi
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| | - Sutapa Mahata
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| | | | - Sri Prakash Misra
- c Department of Gastroenterology , MLN Medical College , Allahabad , India
| | - Vatsala Misra
- d Department of Pathology , MLN Medical College , Allahabad , India
| | - Ravi Mehrotra
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| | - Manisha Dwivedi
- c Department of Gastroenterology , MLN Medical College , Allahabad , India
| | - Alok C Bharti
- b Division of Molecular Oncology , Institute of Cytology and Preventive Oncology , Noida , India
| |
Collapse
|
40
|
Xu Y, Wang X, Gao L, Zhu J, Zhang H, Shi H, Woo M, Wu X. Prolactin-stimulated survivin induction is required for beta cell mass expansion during pregnancy in mice. Diabetologia 2015; 58:2064-73. [PMID: 26099856 DOI: 10.1007/s00125-015-3670-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/26/2015] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Prolactin (PRL)-stimulated beta cell proliferation is critical for maternal pancreatic beta cell mass expansion during pregnancy. However, the molecular effectors of the multiple putative signalling pathways downstream of the PRL receptor (PRL-R) are still elusive. Survivin has been shown to be induced during pregnancy. The aim of the present study was to define the essential role of survivin in gestational beta cell mass expansion. METHODS Expression of survivin was assessed in mouse islets during pregnancy and in insulinoma cells (INS-1) stimulated with PRL. Pregnant mice with targeted deletion of the survivin gene (also known as Birc5) in beta cells were assessed to determine the essential function of survivin in maternal beta cell mass expansion. INS-1 cells stimulated with PRL were used to explore the role of survivin in signalling pathways downstream of the PRL-R. RESULTS Survivin was significantly upregulated in maternal islets during pregnancy. With PRL stimulation, induction of survivin expression occurred predominantly in the nucleus and was associated with cell cycle progression to S and G2/M phase. Beta cell-specific survivin-knockout pregnant mice displayed glucose intolerance, attenuated beta cell mass expansion and impaired beta cell proliferation, with significant attenuation in the increased expression of Cdk4/Ccnd1, E2f1, p53 (also known as Trp53) and p21 (also known as Cdkn1a) compared with wild-type controls during pregnancy. Targeted deletion of survivin in INS-1 cells resulted in cell cycle disturbance with an arrest in G1/S phase after PRL stimulation. Inhibitors of Akt, signal transducer and activator of transcription 5 (STAT5), PIM or extracellular signal-regulated kinase (ERK), significantly decreased the expression of survivin in PRL-stimulated INS-1 cells. CONCLUSIONS/INTERPRETATION Survivin directly participates in PRL-mediated beta cell proliferation via Akt, STAT5-PIM and ERK signalling pathways during pregnancy.
Collapse
Affiliation(s)
- Yili Xu
- Department of Endocrinology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis. Toxicology 2015; 333:37-44. [DOI: 10.1016/j.tox.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
42
|
Mitotic slippage and expression of survivin are linked to differential sensitivity of human cancer cell-lines to the Kinesin-5 inhibitor monastrol. PLoS One 2015; 10:e0129255. [PMID: 26035434 PMCID: PMC4452773 DOI: 10.1371/journal.pone.0129255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
The mitotic Kinesin-5 motor proteins crosslink and slide apart antiparallel spindle microtubules, thus performing essential functions in mitotic spindle dynamics. Specific inhibition of their function by monastrol-like small molecules has been examined in clinical trials as anticancer treatment, with only partial success. Thus, strategies that improve the efficiency of monastrol-like anticancer drugs are required. In the current study, we examined the link between sensitivity to monastrol and occurrence of mitotic slippage in several human cell-lines. We found that the rank of sensitivity to monastrol, from most sensitive to least sensitive, is: AGS > HepG2 > Lovo > Du145 ≥ HT29. We show correlation between the sensitivity of a particular cell-line to monastrol and the tendency of the same cell-line to undergo mitotic slippage. We also found that in the monastrol resistant HT29 cells, prolonged monastrol treatments increase mRNA and protein levels of the chromosomal passenger protein survivin. In contrast, survivin levels are not increased by this treatment in the monastrol-sensitive AGS cells. We further show that over-expression of survivin in the monastrol-sensitive AGS cells reduces mitotic slippage and increases resistance to monastrol. Finally, we show that during short exposure to monastrol, Si RNA silencing of survivin expression reduces cell viability in both AGS and HT29 cells. Our data suggest that the efficiency of anti-cancer treatment with specific kinesin-5 inhibitors may be improved by modulation of expression levels of survivin.
Collapse
|
43
|
Bongiovanni L, D'Andrea A, Porcellato I, Ciccarelli A, Malatesta D, Romanucci M, Della Salda L, Mechelli L, Brachelente C. Canine cutaneous melanocytic tumours: significance of β-catenin and survivin immunohistochemical expression. Vet Dermatol 2015; 26:270-e59. [DOI: 10.1111/vde.12211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Bongiovanni
- Faculty of Veterinary Medicine; University of Teramo; Piazza A. Moro 45 Teramo 64100 Italy
| | - Alessandra D'Andrea
- Faculty of Veterinary Medicine; University of Teramo; Piazza A. Moro 45 Teramo 64100 Italy
| | - Ilaria Porcellato
- Department of Veterinary Medicine; University of Perugia; Via San Costanzo 4 Perugia 06126 Italy
| | - Andrea Ciccarelli
- Faculty of Political Science; University of Teramo; Campus Coste Sant'Agostino Teramo 64100 Italy
| | - Daniela Malatesta
- Faculty of Veterinary Medicine; University of Teramo; Piazza A. Moro 45 Teramo 64100 Italy
| | - Mariarita Romanucci
- Faculty of Veterinary Medicine; University of Teramo; Piazza A. Moro 45 Teramo 64100 Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine; University of Teramo; Piazza A. Moro 45 Teramo 64100 Italy
| | - Luca Mechelli
- Department of Veterinary Medicine; University of Perugia; Via San Costanzo 4 Perugia 06126 Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine; University of Perugia; Via San Costanzo 4 Perugia 06126 Italy
| |
Collapse
|
44
|
Abstract
OBJECTIVES Survivin, an antiapoptotic gene inhibited by p53, is overexpressed in human cancers and correlates with chemotherapy resistance. Here, we investigated the mutual regulatory mechanism between MGMT (O-methylguanine DNA methyltransferase) and survivin. METHODS This study used standard techniques for protein and messenger RNA levels, promoter activity, protein-DNA interaction, cell viability, and correlative animal model. RESULTS O-benzylguanine (BG), a potent inhibitor of MGMT (a DNA repair protein), curtails the expression of survivin in pancreatic cancer. Silencing MGMT by small interfering RNA down-regulates survivin transcription. p53 inhibition enhances MGMT and survivin expressions. When p53 was silenced, BG-induced MGMT inhibition was not associated with the down-regulation of survivin, underscoring the regulatory role of p53 in the MGMT-survivin axis. O-benzylguanine inhibits survivin and PCNA (proliferating cell nuclear antigen) at messenger RNA and protein levels in PANC-1 and L3.6pl cells and decreases survivin promoter activity via increased p53 recruitment to the survivin promoter. In orthotopic pancreatic xenografts established in nude mice, BG ± gemcitabine (GEM) decrease survivin expression in tumor tissue; protein levels and immunohistochemistry show significant decrease in survivin and PCNA levels, which correlate with increased sensitivity to GEM. CONCLUSIONS MGMT inhibition is associated with decrease in survivin expression and increase in sensitivity to GEM in pancreatic cancer.
Collapse
|
45
|
Yuan J, Xiao G, Peng G, Liu D, Wang Z, Liao Y, Liu Q, Wu M, Yuan X. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun 2014; 457:171-6. [PMID: 25542152 DOI: 10.1016/j.bbrc.2014.12.078] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3' UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.
Collapse
Affiliation(s)
- Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China
| | - Zeyou Wang
- Cancer Research Institute, Central South University, Changsha, Hunan 410008, PR China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China
| | - Minghua Wu
- The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China; Cancer Research Institute, Central South University, Changsha, Hunan 410008, PR China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008, PR China.
| |
Collapse
|
46
|
Morgan SS, Cranmer LD. Vorinostat synergizes with ridaforolimus and abrogates the ridaforolimus-induced activation of AKT in synovial sarcoma cells. BMC Res Notes 2014; 7:812. [PMID: 25406429 PMCID: PMC4247709 DOI: 10.1186/1756-0500-7-812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/31/2014] [Indexed: 11/13/2022] Open
Abstract
Background Curative treatments for patients with metastatic synovial sarcoma (SS) do not exist, and such patients have a poor prognosis. We explored combinations of molecularly-targeted and cytotoxic agents to identify synergistic treatment combinations in SS cells. Methods Two SS cell lines (HS-SY-II and SYO-I) were treated with single agents or combinations of molecularly targeted therapies (HDAC inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and cytotoxic agents. After 72 hours, cell viability was measured using the MTS cell proliferation assay. Combination Indices (CI) were calculated to determine whether each combination was synergistic, additive, or antagonistic. Western Blot analysis assessed alterations in total and phospho-AKT protein levels in response to drug treatment. Results We determined the single-agent IC50 for ridaforolimus, vorinostat, doxorubicin, and melphalan in HS-SY-II and SYO-I. Synergism was apparent in cells co-treated with ridaforolimus and vorinostat: CI was 0.28 and 0.63 in HS-SY-II and SYO-I, respectively. Ridaforolimus/doxorubicin and ridaforolimus/melphalan exhibited synergism in both cell lines. An additive effect was observed with combination of vorinostat/doxorubicin in both cell lines. Vorinostat/melphalan was synergistic in HS-SY-II and additive in SYO-I. Western blot analysis demonstrated that ridaforolimus increased pAKT-ser473 levels; this effect was abrogated by vorinostat co-treatment. Conclusions The combination of ridaforolimus and vorinostat demonstrates in vitro synergism in SS. Addition of vorinostat abrogated ridaforolimus-induced AKT activation. Since AKT activation is a possible mechanism of resistance to mTOR inhibitors, adding vorinostat (or another HDAC inhibitor) may be a route to circumvent AKT-mediated resistance to mTOR inhibitors.
Collapse
Affiliation(s)
| | - Lee D Cranmer
- The University of Arizona Cancer Center, 1515 N, Campbell Avenue, Tucson, AZ 85724-5024, USA.
| |
Collapse
|
47
|
Guo H, Lu Y, Wang J, Liu X, Keller ET, Liu Q, Zhou Q, Zhang J. Targeting the Notch signaling pathway in cancer therapeutics. Thorac Cancer 2014; 5:473-86. [PMID: 26767041 DOI: 10.1111/1759-7714.12143] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022] Open
Abstract
Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer-related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the Notch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the Notch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the Notch signaling pathway.
Collapse
Affiliation(s)
- Huajiao Guo
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Yi Lu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Jianhua Wang
- Department of Biochemistry and Molecular & Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education Shanghai, China; Institute of Medical Science, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xia Liu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan Ann Arbor, Michigan, USA
| | - Qian Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China; Center for Translational Medicine, Guangxi Medical University Nanning, China; Department of Urology and Pathology, School of Medicine, University of Michigan Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Xu Q, Liu M, Xu N, Zhu H. Variation in Sp1 binding sites correlates with expression of survivin in breast cancer. Mol Med Rep 2014; 10:1395-9. [PMID: 25018047 DOI: 10.3892/mmr.2014.2371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 11/06/2022] Open
Abstract
Survivin is the smallest member of the inhibitor of apoptosis (IAP) family and is deregulated in breast cancer, where it is associated with a poor overall prognosis. It is well established that survivin overexpression predominately occurs at the transcriptional level. Numerous transcription factors bind to specific sequences in the promoter regions of genes and are involved in transcriptional regulation. Specificity protein (Sp) 1 binding sites have been found in the promoter region of the survivin gene. The present study aimed to investigate whether variations in Sp1 binding sites affect survivin expression. Nested polymerase chain reaction followed by DNA sequencing were performed to analyze the survivin gene promoter region in 42 breast cancer tissue samples. Furthermore, survivin expression was assessed using immunohistochemistry. High survivin protein expression was found in 66.7% (28/42) of breast cancer tissue samples. In addition, 15 variations in seven Sp1 binding sites were detected in 12 samples and Sp1 binding site variation was found to be associated with low survivin expression in the 42 samples. These findings suggested that variations in Sp1 binding sites may be associated with survivin expression.
Collapse
Affiliation(s)
- Qing Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
49
|
Bracht T, Hagemann S, Loscha M, Megger DA, Padden J, Eisenacher M, Kuhlmann K, Meyer HE, Baba HA, Sitek B. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration. J Proteome Res 2014; 13:2771-82. [PMID: 24818710 DOI: 10.1021/pr401188r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.
Collapse
Affiliation(s)
- Thilo Bracht
- Medizinisches Proteom-Center, Ruhr Universität Bochum , Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Human survivin and Trypanosoma cruzi calreticulin act in synergy against a murine melanoma in vivo. PLoS One 2014; 9:e95457. [PMID: 24755644 PMCID: PMC3995754 DOI: 10.1371/journal.pone.0095457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/27/2014] [Indexed: 02/08/2023] Open
Abstract
Immune-based anti-tumor or anti-angiogenic therapies hold considerable promise for the treatment of cancer. The first approach seeks to activate tumor antigen-specific T lymphocytes while, the second, delays tumor growth by interfering with blood supply. Tumor Associated Antigens are often employed to target tumors with therapeutic drugs, but some are also essential for tumor viability. Survivin (Surv) is a member of the inhibitor of apoptosis protein family that is considered a Tumor Associated Antigen important for cancer cell viability and proliferation. On the other hand, Trypanosoma cruzi (the agent of Chagas’ disease) calreticulin (TcCRT) displays remarkable anti-angiogenic properties. Because these molecules are associated with different tumor targets, we reasoned that immunization with a Surv-encoding plasmid (pSurv) and concomitant TcCRT administration should generate a stronger anti-tumor response than application of either treatment separately. To evaluate this possibility, C57BL/6 mice were immunized with pSurv and challenged with an isogenic melanoma cell line that had been pre-incubated with recombinant TcCRT (rTcCRT). Following tumor cell inoculation, mice were injected with additional doses of rTcCRT. For the combined regimen we observed in mice that: i). Tumor growth was impaired, ii). Humoral anti-rTcCRT immunity was induced and, iii).In vitro rTcCRT bound to melanocytes, thereby promoting the incorporation of human C1q and subsequent macrophage phagocytosis of tumor cells. These observations are interpreted to reflect the consequence of the following sequence of events: rTcCRT anti-angiogenic activity leads to stress in tumor cells. Murine CRT is then translocated to the external membrane where, together with rTcCRT, complement C1 is captured, thus promoting tumor phagocytosis. Presentation of the Tumor Associated Antigen Surv induces the adaptive anti-tumor immunity and, independently, mediates anti-endothelial cell immunity leading to an important delay in tumor growth.
Collapse
|