1
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
2
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|
3
|
Systemic Efficacy of Sirolimus via the ERBB Signaling Pathway in Breast Cancer. Processes (Basel) 2022. [DOI: 10.3390/pr10030552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Rapamycin, also known as sirolimus, inhibits the mTOR pathway in complex diseases such as cancer, and its downstream targets are ribosomal S6 kinases (RPS6K). Sirolimus is involved in regulating cell growth and cell survival through roles such as the mediation of epidermal growth factor signaling. However, the systemic efficacy of sirolimus in pathway regulation is unclear. The purpose of this study is to determine systemic drug efficacy using computational methods and drug-induced datasets. We suggest a computational method using gene expression datasets induced by sirolimus and an inverse algorithm that simultaneously identifies parameters referring to gene–gene interactions. We downloaded two sirolimus-induced microarray gene expression datasets and used a computational method to obtain the most enriched pathway, then adopted an inverse algorithm to discover the gene–gene interactions of that pathway. In the results, RPS6KB1 was a target gene of sirolimus and was associated with genes in the pathway. The common gene interactions from two datasets were a hub gene, RPS6KB1, and 10 related genes (AKT3, CBLC, MAP2K7, NRG1/2, PAK3, PIK3CD/G, PRKCG, and SHC3) in the epidermal growth factor (ERBB) signaling pathway.
Collapse
|
4
|
Curigliano G, Martin M, Jhaveri K, Beck JT, Tortora G, Fazio N, Maur M, Hubner RA, Lahner H, Donnet V, Ajipa O, Li Z, Blumenstein L, Andre F. Alpelisib in combination with everolimus ± exemestane in solid tumours: Phase Ib randomised, open-label, multicentre study. Eur J Cancer 2021; 151:49-62. [PMID: 33964572 DOI: 10.1016/j.ejca.2021.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Combined mTORC1 inhibition with everolimus (EVE) and phosphatidylinositol 3-kinase catalytic subunit p110α blockade with alpelisib (ALP) has demonstrated synergistic efficacy in preclinical models and supports testing the combination of ALP and EVE in the clinical setting. The primary objective was to determine the maximum tolerated dose (MTD)/recommended dose for expansion (RDE) of ALP in combination with EVE and in combination with EVE and exemestane (EXE) and subsequently assess safety, preliminary efficacy and effect of ALP on the pharmacokinetics of EVE and determine the magnitude of the drug-drug interaction. PATIENTS AND METHODS Dose escalation phases were conducted in patients with advanced solid tumours and in postmenopausal women with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC). The dose expansion phase was conducted in patients with pancreatic neuroendocrine tumour and renal cell carcinoma (RCC) (both mechanistic target of rapamycin inhibitor [mTORi]-naive), in patients with mTORi-pretreated solid tumours and in postmenopausal women with HR+, HER2- ABC. RESULTS During the doublet escalation phase, dose-limiting toxicities (DLTs) were reported in 5 of 10 (50%) patients: one patient had grade (Gr) 2 hyperglycemia and one patient had Gr 3 diarrhoea in the 300 mg dose group, one patient had Gr 2 hyperglycemia and one patient had Gr 4 hypocalcaemia in the 250 mg dose group, and one patient in the 200 mg dose group had Gr 3 diarrhoea and Gr 3 stomatitis. The combination of ALP 250 mg + EVE 2.5 mg was declared as the MTD/RDE in subjects with advanced solid tumours. In the triplet escalation phase, one patient who received ALP 200 mg + EVE 2.5 mg + EXE 25 mg had a DLT of Gr 3 acute kidney injury. This dose combination was declared as the MTD and RDE in subjects with advanced HR-positive HER2-negative BC. The common adverse events (≥30% patients), occurring across all phases, were hyperglycaemia, stomatitis, diarrhoea, nausea, asthenia, decreased appetite and fatigue. The sixteen-week progression-free survival rate was 52.4% (90% confidence interval [CI]: 32.8, 71.4) in the RCC cohort, 35.3% (90% CI: 16.6, 58.0) in the prior pNET cohort and 30.0% (90% CI: 8.7, 60.7) in the prior mTORi cohort. The pharmacokinetics of 2.5 mg of EVE was largely unchanged in the presence of ALP, independent of the dose (250 mg or 300 mg). There were no clinically relevant drug-drug interactions observed between ALP and EVE. CONCLUSION The overall safety profile of ALP with EVE and EXE is manageable and reversible; no unexpected safety signals were noted compared with the individual safety profiles. Pharmacokinetics of ALP, EVE and EXE was largely unchanged in combination with each other.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Department of Oncology and Hematology, University of Milano, Milan, Italy; European Intitute of Oncology, IEO, IRCCS, Milan, Italy.
| | - Miguel Martin
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - J T Beck
- Highlands Oncology Group, AR, USA
| | | | - Nicola Fazio
- European Intitute of Oncology, IEO, IRCCS, Milan, Italy
| | | | | | | | | | | | - Zheng Li
- Novartis Pharmaceuticals, NJ, USA
| | | | | |
Collapse
|
5
|
A phase I trial of temsirolimus and erlotinib in patients with refractory solid tumors. Cancer Chemother Pharmacol 2020; 87:337-347. [PMID: 33159216 DOI: 10.1007/s00280-020-04183-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Resistance to treatment with inhibitors of mammalian target of rapamycin (mTOR) is partially mediated by activation of epidermal growth factor receptor (EGFR). We conducted a phase I study to determine the recommended phase II dose (RP2D) and dose-limiting toxicities (DLT) of temsirolimus (mTOR inhibitor) combined with erlotinib (EGFR inhibitor) in patients with refractory solid tumors. METHODS Standard "3 + 3" design was used for dose escalation. An expansion cohort at RP2D included only patients with squamous histology or mutations relevant to PI3K or EGFR pathway activation. Patients started daily erlotinib 7 days prior to starting temsirolimus on cycle 1. Intravenous temsirolimus was then administered weekly. Starting dose levels were 15 mg for temsirolimus and 100 mg for erlotinib. RESULTS Forty-four patients received treatment on this study (28 in dose escalation and 16 in the expansion cohort). The RP2D was temsirolimus 25 mg IV weekly and erlotinib 100 mg orally daily. Two patients experienced DLTs (G3 dehydration and G4 renal failure). The most common drug-related adverse events (all grades) were rash, mucositis/stomatitis, diarrhea, nausea and fatigue. No complete or partial responses were observed. The median duration on this study was 69 days (range 3-770) for escalation and 88 days (range 25-243) for expansion cohorts. Among 11 response-evaluable patients in the expansion cohort, 9 (82%) had stable disease and 2 (18%) had progressive disease. CONCLUSION The combination of temsirolimus and erlotinib at the RP2D was well tolerated, and the regimen resulted in prolonged disease stabilization in selected patients (NCT00770263).
Collapse
|
6
|
Formisano L, Napolitano F, Rosa R, D'Amato V, Servetto A, Marciano R, De Placido P, Bianco C, Bianco R. Mechanisms of resistance to mTOR inhibitors. Crit Rev Oncol Hematol 2020; 147:102886. [PMID: 32014673 DOI: 10.1016/j.critrevonc.2020.102886] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
In several tumors the PI3K/AKT/mTOR pathway is frequently disrupted, an event that results in uncontrolled cell proliferation and tumor growth. Through the years, several compounds have been developed to inhibit the pathway at different steps: the mammalian target of rapamycin (mTOR) seemed to be the most qualified target. However, this kinase has such a key role in cell survival that mechanisms of resistance are rapidly developed. Nevertheless, clinical results obtained with mTOR inhibitors in breast cancer, renal cell carcinoma, neuroendocrine tumors and mantle cell lymphoma push oncologists to actively further develop these drugs, maybe by better selecting the population to which they are offered, through the research of predictive factors of responsiveness. In this review, we aim to describe mechanisms of resistance to mTOR inhibitors, from preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Rosa
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Valentina D'Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Marciano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Cataldo Bianco
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy.
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
7
|
Vaidya TR, Ande A, Ait-Oudhia S. Combining Multiscale Experimental and Computational Systems Pharmacological Approaches to Overcome Resistance to HER2-targeted Therapy in Breast Cancer. J Pharmacol Exp Ther 2019; 369:531-545. [PMID: 30898866 DOI: 10.1124/jpet.118.255752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of human epidermal growth factor receptor type-2 (HER2) therapy resistance in HER2-positive (HER2+) breast cancer (BC) poses a major clinical challenge. The primary mechanisms of resistance include aberrant activation of the HER2 and phosphatidylinositol 3-kinase/mammalian target of rapamycin/AKT8 virus oncogene cellular homolog (PI3K/Akt/mTOR) pathways. The existence of feedback loops in this pathway may engender resistance to targeted therapies such as everolimus, an mTOR inhibitor, resulting in a more aggressive form of refractory HER2+ BC. Here, we hypothesize that a triple and sequential combination therapy of paclitaxel, a potent cytotoxic agent, before concomitant administration of dasatinib, a SRC proto-oncogene nonreceptor tyrosine kinase (Src) family kinase inhibitor, with everolimus, restores sensitivity to treatment in refractory HER2+ BC. This was assessed by a combination of experimental and computational approaches. Quantitative systems pharmacological (QSP), pharmacokinetics (PK), and pharmacodynamics (PD) studies were conducted in static and three-dimensional and dynamic (3DD) cell culture systems using a HER2+ cell line resistant to HER2 therapy, JIMT-1. The dynamic responses in cellular viability and key signaling proteins in the HER2 and PI3K/Akt/mTOR pathways were measured upon treatments with single drugs, combinations, and appropriate controls. A QSP-PK/PD model was developed and used to optimize the sequence and interdose interval of the three agents in the combination. The proposed sequential combination therapy demonstrated strong cytotoxic effects in JIMT-1 cells, and our models predicted the usefulness of this combination over prolonged durations in the 3DD setting. Our combined experimental and QSP-PK/PD modeling approach may serve as a useful screening tool in predicting clinical efficacy of combination therapies in oncology. Nonetheless, further in vivo human xenograft tumor studies are warranted.
Collapse
Affiliation(s)
- Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| |
Collapse
|
8
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
9
|
Yoo SM, Lee CJ, Kang HC, Lee HS, Lee JY, Kim KD, Kim DJ, An HJ, Cho YY. Epimagnolin targeting on an active pocket of mammalian target of rapamycin suppressed cell transformation and colony growth of lung cancer cells. Mol Carcinog 2019; 58:1221-1233. [PMID: 30887599 DOI: 10.1002/mc.23005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 01/03/2023]
Abstract
Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin-Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)-induced G1/S cell-cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF-induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal-regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3β at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c-Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP-1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate-bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage-independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage-independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR-Akt-p70S6K and mTOR-Akt-GSK3β-AP-1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2-Akt-p70S6k signaling pathway.
Collapse
Affiliation(s)
- Sun-Mi Yoo
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Cheol-Jung Lee
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Han Chang Kang
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hye Suk Lee
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Joo Young Lee
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Dae Joon Kim
- Department of Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas
| | - Hyun-Jung An
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Yong-Yeon Cho
- Pharmaceutical Biochemistry, Basic Research Laboratory & BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Huynh H, Wei W, Wan Y. mTOR Inhibition Subdues Milk Disorder Caused by Maternal VLDLR Loss. Cell Rep 2018; 19:2014-2025. [PMID: 28591574 DOI: 10.1016/j.celrep.2017.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
It is unknown whether and how very-low density lipoprotein receptors (VLDLRs) impact skeletal homeostasis. Here, we report that maternal and offspring VLDLRs play opposite roles in osteoclastogenesis and bone resorption. VLDLR deletion in the offspring augments osteoclast differentiation by enhancing RANKL signaling, leading to osteoporosis. In contrast, VLDLR deletion in the mother alters milk metabolism, which inhibits osteoclast differentiation and causes osteopetrosis in the offspring. The maternal effects are dominant. VLDLR-null lactating mammary gland exhibits higher mTORC1 signaling and cholesterol biosynthesis. Pharmacological probing reveals that rapamycin, but not statin, treatment of the VLDLR-null mother can prevent both the low bone resorption and our previously described inflammatory fur loss in their offspring. Genetic rescue reveals that maternal mTORC1 attenuation in adipocytes, but not in myeloid cells, prevents offspring osteopetrosis and fur loss. Our studies uncover functions of VLDLR and mTORC1 in lactation and osteoclastogenesis, illuminating key mechanisms and therapeutic insights for bone and metabolic diseases.
Collapse
Affiliation(s)
- HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Wei
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro. Oncotarget 2017; 8:74688-74702. [PMID: 29088817 PMCID: PMC5650372 DOI: 10.18632/oncotarget.20342] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022] Open
Abstract
CC-115, a selective dual inhibitor of the mammalian target of rapamycin (mTOR) kinase and DNA-dependent protein kinase (DNA-PK), is undergoing Phase 1 clinical studies. Here we report the characterization of DNA-PK inhibitory activity of CC-115 in cancer cell lines. CC-115 inhibits auto-phosphorylation of the catalytic subunit of DNA-PK (DNA-PKcs) at the S2056 site (pDNA-PK S2056), leading to blockade of DNA-PK-mediated non-homologous end joining (NHEJ). CC-115 also indirectly reduces the phosphorylation of ataxia-telangiectasia mutated kinase (ATM) at S1981 and its substrates as well as homologous recombination (HR). The mTOR kinase and DNA-PK inhibitory activity of CC-115 leads to not only potent anti-tumor activity against a large panel of hematopoietic and solid cancer cell lines but also strong induction of apoptosis in a subset of cancer lines. Mechanistically, CC-115 prevents NHEJ by inhibiting the dissociation of DNA-PKcs, X-ray repair cross-complementing protein 4 (XRCC4), and DNA ligase IV from DNA ends. CC-115 inhibits colony formation of ATM-deficient cells more potently than ATM-proficient cells, indicating that inhibition of DNA-PK is synthetically lethal with the loss of functional ATM. In conclusion, CC-115 inhibits both mTOR signaling and NHEJ and HR by direct inhibition of DNA-PK. The mechanistic data not only provide selection of potential pharmacodynamic (PD) markers but also support CC-115 clinical development in patients with ATM-deficient tumors.
Collapse
|
12
|
Bell TM, Espina V, Senina S, Woodson C, Brahms A, Carey B, Lin SC, Lundberg L, Pinkham C, Baer A, Mueller C, Chlipala EA, Sharman F, de la Fuente C, Liotta L, Kehn-Hall K. Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis. Antiviral Res 2017; 143:162-175. [PMID: 28442428 DOI: 10.1016/j.antiviral.2017.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Despite over 60 years of research on antiviral drugs, very few are FDA approved to treat acute viral infections. Rift Valley fever virus (RVFV), an arthropod borne virus that causes hemorrhagic fever in severe cases, currently lacks effective treatments. Existing as obligate intracellular parasites, viruses have evolved to manipulate host cell signaling pathways to meet their replication needs. Specifically, translation modulation is often necessary for viruses to establish infection in their host. Here we demonstrated phosphorylation of p70 S6 kinase, S6 ribosomal protein, and eIF4G following RVFV infection in vitro through western blot analysis and in a mouse model of infection through reverse phase protein microarrays (RPPA). Inhibition of p70 S6 kinase through rapamycin treatment reduced viral titers in vitro and increased survival and mitigated clinical disease in RVFV challenged mice. Additionally, the phosphorylation of p70 S6 kinase was decreased following rapamycin treatment in vivo. Collectively these data demonstrate modulating p70 S6 kinase can be an effective antiviral strategy.
Collapse
Affiliation(s)
- Todd M Bell
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Caitlin Woodson
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashwini Brahms
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Alan Baer
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | | | - Faye Sharman
- Premier Laboratory, LLC, Boulder, CO, 80308, USA
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
13
|
Halasz M, Kholodenko BN, Kolch W, Santra T. Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Sci Signal 2016; 9:ra114. [PMID: 27879396 DOI: 10.1126/scisignal.aae0535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal transduction networks are often rewired in cancer cells. Identifying these alterations will enable more effective cancer treatment. We developed a computational framework that can identify, reconstruct, and mechanistically model these rewired networks from noisy and incomplete perturbation response data and then predict potential targets for intervention. As a proof of principle, we analyzed a perturbation data set targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) pathways in a panel of colorectal cancer cells. Our computational approach predicted cell line-specific network rewiring. In particular, feedback inhibition of insulin receptor substrate 1 (IRS1) by the kinase p70S6K was predicted to confer resistance to EGFR inhibition, suggesting that disrupting this feedback may restore sensitivity to EGFR inhibitors in colorectal cancer cells. We experimentally validated this prediction with colorectal cancer cell lines in culture and in a zebrafish (Danio rerio) xenograft model.
Collapse
Affiliation(s)
- Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. .,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. .,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tapesh Santra
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Abstract
The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology.
Collapse
Affiliation(s)
- Jianling Xie
- Nutrition and Metabolism, South Australian Health and Medical research Institute, Adelaide, SA, Australia
| | - Xuemin Wang
- Nutrition and Metabolism, South Australian Health and Medical research Institute, Adelaide, SA, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher G Proud
- Nutrition and Metabolism, South Australian Health and Medical research Institute, Adelaide, SA, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Shao J, Stout I, Hendriksen PJM, van Loveren H, Peijnenburg AACM, Volger OL. Protein phosphorylation profiling identifies potential mechanisms for direct immunotoxicity. J Immunotoxicol 2015; 13:97-107. [PMID: 25715851 DOI: 10.3109/1547691x.2015.1016635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Signaling networks are essential elements that are involved in diverse cellular processes. One group of fundamental components in various signaling pathways concerns protein tyrosine kinases (PTK). Various toxicants have been demonstrated to exert their toxicity via modulation of tyrosine kinase activity. The present study aimed to identify common cellular signaling pathways that are involved in chemical-induced direct immunotoxicity. To this end, an antibody array-based profiling approach was applied to assess effects of five immunotoxicants, two immunosuppressive drugs and two non-immunotoxic control chemicals on the phosphorylation of 28 receptor tyrosine kinases and 11 crucial signaling nodes in Jurkat T-cells. The phosphorylation of ribosomal protein S6 (RPS6) and of kinases Akt, Src and p44/42 were found to be commonly regulated by immunotoxicants and/or immunosuppressive drugs (at least three compounds), with the largest effect observed upon RPS6. Flow cytometry and Western blotting were used to further examine the effect of the model immunotoxicant TBTO on the components of the mTOR-p70S6K-RPS6 pathway. These analyses revealed that both TBTO and the mTOR inhibitor rapamycin inactivate RPS6, but via different mechanisms. Finally, a comparison of the protein phosphorylation data to previously obtained transcriptome data of TBTO-treated Jurkat cells resulted in a good correlation at the pathway level and indicated that TBTO affects ribosome biogenesis and leukocyte migration. The effect of TBTO on the latter process was confirmed using a CXCL12 chemotaxis assay.
Collapse
Affiliation(s)
- Jia Shao
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,b Department of Toxicogenomics , Maastricht University , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| | - Inge Stout
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands
| | - Peter J M Hendriksen
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| | - Henk van Loveren
- b Department of Toxicogenomics , Maastricht University , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and.,d National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Ad A C M Peijnenburg
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| | - Oscar L Volger
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| |
Collapse
|
16
|
Yori JL, Lozada KL, Seachrist DD, Mosley JD, Abdul-Karim FW, Booth CN, Flask CA, Keri RA. Combined SFK/mTOR inhibition prevents rapamycin-induced feedback activation of AKT and elicits efficient tumor regression. Cancer Res 2014; 74:4762-71. [PMID: 25023728 DOI: 10.1158/0008-5472.can-13-3627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resistance to receptor tyrosine kinase (RTK) blockade in breast cancer is often mediated by activation of bypass pathways that sustain growth. Src and mammalian target of rapamycin (mTOR) are two intrinsic targets that are downstream of most RTKs. To date, limited clinical efficacy has been observed with either Src or mTOR inhibitors when used as single agents. Resistance to mTOR inhibitors is associated with loss of negative feedback regulation, resulting in phosphorylation and activation of AKT. Herein, we describe a novel role for Src in contributing to rapalog-induced AKT activation. We found that dual activation of Src and the mTOR pathway occurs in nearly half of all breast cancers, suggesting potential cross-talk. As expected, rapamycin inhibition of mTOR results in feedback activation of AKT in breast cancer cell lines. Addition of the Src/c-Abl inhibitor, dasatinib, completely blocks this feedback activation, confirming convergence between Src and the mTOR pathway. Analysis in vivo revealed that dual Src and mTOR inhibition is highly effective in two mouse models of breast cancer. In a luminal disease model, combined dasatinib and rapamycin is more effective at inducing regression than either single agent. Furthermore, the combination of dasatinib and rapamycin delays tumor recurrence following the cessation of treatment. In a model of human EGFR-2-positive (HER2(+)) disease, dasatinib alone is ineffective, but potentiates the efficacy of rapamycin. These data suggest that combining mTOR and Src inhibitors may provide a new approach for treating multiple breast cancer subtypes that may circumvent resistance to targeted RTK therapies.
Collapse
Affiliation(s)
- Jennifer L Yori
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Kristen L Lozada
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Jonathan D Mosley
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Fadi W Abdul-Karim
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christine N Booth
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio. Department of Biomedical Engineering, Case Western Reserve University, School of Medicine, Cleveland, Ohio. Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio. Department of Genetics and Division of General Medical Sciences-Oncology, Case Western Reserve University, School of Medicine, Cleveland, Ohio.
| |
Collapse
|
17
|
Xie J, Proud CG. Signaling crosstalk between the mTOR complexes. ACTA ACUST UNITED AC 2014; 2:e28174. [PMID: 26779402 PMCID: PMC4705829 DOI: 10.4161/trla.28174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/16/2022]
Abstract
mTOR is a protein kinase which integrates a variety of environmental and intracellular stimuli to positively regulate many anabolic processes of the cell, including protein synthesis. It exists within two highly conserved multi-protein complexes known as mTORC1 and 2 mTORC2. Each of these complexes phosphorylates different downstream targets, and play roles in different cellular functions. They also show distinctive sensitivity to the mTOR inhibitor rapamycin. Nevertheless, despite their biochemical and functional differences, recent studies have suggested that the regulation of these complexes is tightly linked to each other. For instance, both mTORC1 and 2 share some common upstream signaling molecules, such as PI3K and tuberous sclerosis complex TSC, which control their activation. Stimulation of the mTOR complexes may also trigger both positive and negative feedback mechanisms, which then in turn either further enhance or suppress their activation. Here, we summarize some recently discovered features relating to the crosstalk between mTORC1 and 2. We then discuss how aberrant mTOR complex crosstalk mechanisms may have an impact on the development of human diseases and drug resistance.
Collapse
Affiliation(s)
- Jianling Xie
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| | - Chris G Proud
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| |
Collapse
|
18
|
Wang Y, Hu Z, Liu Z, Chen R, Peng H, Guo J, Chen X, Zhang H. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1. Autophagy 2013; 9:2069-86. [PMID: 24189100 DOI: 10.4161/auto.26447] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Here, we show that loss of TSC2 or PTEN enhanced etoposide-induced DNA damage and apoptosis, which was blunted by suppression of MTOR with either rapamycin or RNA interference. cAMP response element-binding protein 1 (CREB1), a nuclear transcription factor that regulates genes involved in survival and death, was positively regulated by MTOR in mouse embryonic fibroblasts (MEFs) and cancer cell lines. Silencing Creb1 expression with siRNA protected MTOR-hyperactive cells from DNA damage-induced apoptosis. Furthermore, loss of TSC2 or PTEN impaired either etoposide or nutrient starvation-induced autophagy, which in turn, leads to CREB1 hyperactivation. We further elucidated an inverse correlation between autophagy activity and CREB1 activity in the kidney tumor tissue obtained from a TSC patient and the mouse livers with hepatocyte-specific knockout of PTEN. CREB1 induced DNA damage and subsequent apoptosis in response to etoposide in autophagy-defective cells. Reactivation of CREB1 or inhibition of autophagy not only improved the efficacy of rapamycin but also alleviated MTOR inhibition-mediated chemoresistance. Therefore, autophagy suppression of CREB1 may underlie the MTOR inhibition-mediated chemoresistance. We suggest that inhibition of MTOR in combination with CREB1 activation may be used in the treatment of cancer caused by an abnormal PI3K-PTEN-AKT-TSC1/2-MTOR signaling pathway. CREB1 activators should potentiate the efficacy of chemotherapeutics in treatment of these cancers.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Medical Molecular Biology; Department of Physiology; Institute of Basic Medical Sciences and School of Basic Medicine; Graduate School of Peking Union Medical College; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rastogi R, Jiang Z, Ahmad N, Rosati R, Liu Y, Beuret L, Monks R, Charron J, Birnbaum MJ, Samavati L. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways. J Biol Chem 2013; 288:33966-33977. [PMID: 24126911 DOI: 10.1074/jbc.m113.492702] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.
Collapse
Affiliation(s)
- Ruchi Rastogi
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201
| | - Zhongliang Jiang
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201
| | - Nisar Ahmad
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201
| | - Rita Rosati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201
| | - Yusen Liu
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU-Q, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada
| | - Robert Monks
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, CRCHU-Q, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada
| | - Morris J Birnbaum
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan 48201; Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
20
|
Wong MM, Winkler B, Karamariti E, Wang X, Yu B, Simpson R, Chen T, Margariti A, Xu Q. Sirolimus stimulates vascular stem/progenitor cell migration and differentiation into smooth muscle cells via epidermal growth factor receptor/extracellular signal-regulated kinase/β-catenin signaling pathway. Arterioscler Thromb Vasc Biol 2013; 33:2397-406. [PMID: 23928863 DOI: 10.1161/atvbaha.113.301595] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown. APPROACH AND RESULTS Using an established technique, vascular progenitor cells were isolated from adventitial tissues of mouse vessel grafts and purified with microbeads specific for stem cell antigen-1. We provide evidence that vascular progenitor cells treated with sirolimus resulted in an induction of their migration in both transwell and wound healing models, clearly mediated by CXCR4 activation. We confirmed the sirolimus-mediated increase of migration from the adventitial into the intima side using an ex vivo decellularized vessel scaffold, where they form neointima-like lesions that expressed high levels of smooth muscle cell (SMC) markers (SM-22α and calponin). Subsequent in vitro studies confirmed that sirolimus can induce SMC but not endothelial cell differentiation of progenitor cells. Mechanistically, we showed that sirolimus-induced progenitor-SMC differentiation was mediated via epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 activation that lead to β-catenin nuclear translocation. The ablation of epidermal growth factor receptor, extracellular signal-regulated kinase 1/2, or β-catenin attenuated sirolimus-induced SM-22α promoter activation and SMC differentiation. CONCLUSIONS These findings provide direct evidence of sirolimus-induced progenitor cell migration and differentiation into SMC via CXCR4 and epidermal growth factor receptor/extracellular signal-regulated kinase/β-catenin signal pathways, thus implicating a novel mechanism of restenosis formation after sirolimus-eluting stent treatment.
Collapse
Affiliation(s)
- Mei Mei Wong
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu F, Wang YQ, Meng L, Gu M, Tan RY. FK506-binding protein 12 ligands: a patent review. Expert Opin Ther Pat 2013; 23:1435-49. [DOI: 10.1517/13543776.2013.828695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Ghosh S, Varela L, Sood A, Park BH, Lotan TL. mTOR signaling feedback modulates mammary epithelial differentiation and restrains invasion downstream of PTEN loss. Cancer Res 2013; 73:5218-31. [PMID: 23774212 DOI: 10.1158/0008-5472.can-13-0429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oncogenic signaling pathways are tightly regulated by negative feedback circuits and relief of these circuits represents a common mechanism of tumor drug resistance. Although the significance of these feedback pathways for signal transduction is evident, their relevance for cellular differentiation and morphogenesis in a genetically defined context is unclear. In this study, we used isogenic benign mammary organotypic cultures to interrogate the role of mTOR-mediated negative feedback in the specific setting of PTEN inactivation. We found that mTOR signaling promoted basal-like differentiation and repressed nuclear hormone receptor expression after short-term PTEN loss in murine cell cultures analyzed ex vivo. Unexpectedly, we found that PTEN inactivation inhibited growth factor-induced epithelial invasion and that downstream mTOR-mediated signaling feedback was both necessary and sufficient for this effect. Mechanistically, using isogenic MCF10A cells with and without somatic PTEN deletion, we showed that mTOR inhibition promoted EGF-mediated epithelial invasion by derepressing upstream EGF receptor, SRC tyrosine kinase, and phosphoinositide 3-kinase signaling. In addition to offering new signal transduction insights, these results bring to light a number of important and potentially clinically relevant cellular consequences of mTOR inhibition in the specific context of PTEN loss, including modulation of hormone and growth factor responsiveness and promotion of epithelial invasion. Our findings prompt future investigations of the possibility that mTOR inhibitor therapy may not only be ineffective but even deleterious in tumors with PTEN loss.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
23
|
Xu S, Li S, Guo Z, Luo J, Ellis MJ, Ma CX. Combined targeting of mTOR and AKT is an effective strategy for basal-like breast cancer in patient-derived xenograft models. Mol Cancer Ther 2013; 12:1665-75. [PMID: 23689832 DOI: 10.1158/1535-7163.mct-13-0159] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Basal-like breast cancer is an aggressive disease for which targeted therapies are lacking. Recent studies showed that basal-like breast cancer is frequently associated with an increased activity of the phosphatidylinositol 3-kinase (PI3K) pathway, which is critical for cell growth, survival, and angiogenesis. To investigate the therapeutic potential of PI3K pathway inhibition in the treatment of basal-like breast cancer, we evaluated the antitumor effect of the mTOR inhibitor MK-8669 and AKT inhibitor MK-2206 in WU-BC4 and WU-BC5, two patient-derived xenograft models of basal-like breast cancer. Both models showed high levels of AKT phosphorylation and loss of PTEN expression. We observed a synergistic effect of MK-8669 and MK-2206 on tumor growth and cell proliferation in vivo. In addition, MK-8669 and MK-2206 inhibited angiogenesis as determined by CD31 immunohistochemistry. Biomarker studies indicated that treatment with MK-2206 inhibited AKT activation induced by MK-8669. To evaluate the effect of loss of PTEN on tumor cell sensitivity to PI3K pathway inhibition, we knocked down PTEN in WU-BC3, a basal-like breast cancer cell line with intact PTEN. Compared with control (GFP) knockdown, PTEN knockdown led to a more dramatic reduction in cell proliferation and tumor growth inhibition in response to MK-8669 and MK-2206 both in vitro and in vivo. Furthermore, a synergistic effect of these two agents on tumor volume was observed in WU-BC3 with PTEN knockdown. Our results provide a preclinical rationale for future clinical investigation of this combination in basal-like breast cancer with loss of PTEN.
Collapse
Affiliation(s)
- Siguang Xu
- Section of Breast Oncology, Division of Oncology, Department of Internal Medicine, Washington University in St Louis, School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
24
|
Naing A. Overcoming resistance to mTOR inhibition for enhanced strategies in clinical trials. Expert Opin Investig Drugs 2013; 22:679-85. [PMID: 23631743 DOI: 10.1517/13543784.2013.795947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Radhakrishnan P, Baraneedharan U, Veluchamy S, Dhandapani M, Pinto DD, Thiyagarajan S, Thayakumar A, Prasath A, A K, Velu A, Jain M, Brijwani N, Narayanan P, Kekatpure VD, Majumder B, Majumder PK. Inhibition of Rapamycin-Induced AKT Activation Elicits Differential Antitumor Response in Head and Neck Cancers. Cancer Res 2013; 73:1118-27. [DOI: 10.1158/0008-5472.can-12-2545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Ibrahim YH, García-García C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzmán M, Grueso J, Rodríguez O, Calvo MT, Aura C, Díez O, Rubio IT, Pérez J, Rodón J, Cortés J, Ellisen LW, Scaltriti M, Baselga J. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2012; 2:1036-47. [PMID: 22915752 DOI: 10.1158/2159-8290.cd-11-0348] [Citation(s) in RCA: 477] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED PARP inhibitors are active in tumors with defects in DNA homologous recombination (HR) due to BRCA1/2 mutations. The phosphoinositide 3-kinase (PI3K) signaling pathway preserves HR steady state. We hypothesized that in BRCA-proficient triple-negative breast cancer (TNBC), PI3K inhibition would result in HR impairment and subsequent sensitization to PARP inhibitors. We show in TNBC cells that PI3K inhibition leads to DNA damage, downregulation of BRCA1/2, gain in poly-ADP-ribosylation, and subsequent sensitization to PARP inhibition. In TNBC patient-derived primary tumor xenografts, dual PI3K and PARP inhibition with BKM120 and olaparib reduced the growth of tumors displaying BRCA1/2 downregulation following PI3K inhibition. PI3K-mediated BRCA downregulation was accompanied by extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of an active form of MEK1 resulted in ERK activation and downregulation of BRCA1, whereas the MEK inhibitor AZD6244 increased BRCA1/2 expression and reversed the effects of MEK1. We subsequently identified that the ETS1 transcription factor was involved in the ERK-dependent BRCA1/2 downregulation and that knockdown of ETS1 led to increased BRCA1/2 expression, limiting the sensitivity to combined BKM120 and olaparib in 3-dimensional culture. SIGNIFICANCE Treatment options are limited for patients with TNBCs. PARP inhibitors have clinical activity restricted to a small subgroup of patients with BRCA mutations. Here, we show that PI3K blockade results in HR impairment and sensitization to PARP inhibition in TNBCs without BRCA mutations, providing a rationale to combine PI3K and PARP inhibitors in this indication. Our findings could greatly expand the number of patients with breast cancer that would benefit from therapy with PARP inhibitors. On the basis of our findings, a clinical trial with BKM120 and olaparib is being initiated in patients with TNBCs.
Collapse
Affiliation(s)
- Yasir H Ibrahim
- Experimental Therapeutics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Pg Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
β-Transducin repeats-containing protein (β-TrCP) is the substrate recognition subunit of the SCF (SKP1, CUL1, and F-box protein)-type E3 ubiquitin ligase complex. SCF(β-TrCP) ubiquitinates specifically phosphorylated substrates to promote their subsequent destruction by the 26S proteasome and plays a critical role in various human diseases including tumorigenesis. We and others (Duan S et al. Mol Cell 44: 317-324, 2011; Gao D et al. Mol Cell 44: 290-303, 2011; Zhao Y et al. Mol Cell 44: 304-316, 2011) recently reported that SCF(β-TrCP) regulates cell growth and autophagy by controlling the ubiquitination and destruction of DEPTOR, an endogenous mammalian target of rapamycin inhibitor, in a phosphorylation-dependent manner. In this review, we discuss β-TrCP's new downstream substrate, DEPTOR, as well as summarize the novel functional aspects of β-TrCP in controlling cell growth and regulating autophagy, in part through governing the stability of DEPTOR.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
28
|
Chen YT, Tan KA, Pang LY, Argyle DJ. The class I PI3K/Akt pathway is critical for cancer cell survival in dogs and offers an opportunity for therapeutic intervention. BMC Vet Res 2012; 8:73. [PMID: 22647622 PMCID: PMC3515332 DOI: 10.1186/1746-6148-8-73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/02/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Using novel small-molecular inhibitors, we explored the feasibility of the class I PI3K/Akt/mTORC1 signaling pathway as a therapeutic target in canine oncology either by using pathway inhibitors alone, in combination or combined with conventional chemotherapeutic drugs in vitro. RESULTS We demonstrate that growth and survival of the cell lines tested are predominantly dependent on class I PI3K/Akt signaling rather than mTORC1 signaling. In addition, the newly developed inhibitors ZSTK474 and KP372-1 which selectively target pan-class I PI3K and Akt, respectively, and Rapamycin which has been well-established as highly specific mTOR inhibitor, decrease viability of canine cancer cell lines. All inhibitors demonstrated inhibition of phosphorylation of pathway members. Annexin V staining demonstrated that KP372-1 is a potent inducer of apoptosis whereas ZSTK474 and Rapamycin are weaker inducers of apoptosis. Simultaneous inhibition of class I PI3K and mTORC1 by ZSTK474 combined with Rapamycin additively or synergistically reduced cell viability whereas responses to the PI3K pathway inhibitors in combination with conventional drug Doxorubicin were cell line-dependent. CONCLUSION This study highlighted the importance of class I PI3K/Akt axis signaling in canine tumour cells and identifies it as a promising therapeutic target.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK, EH25 9RG
| | | | | | | |
Collapse
|
29
|
Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 2011; 83:286-95. [PMID: 22100870 DOI: 10.1016/j.bcp.2011.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
We previously demonstrated that the widely used immunosuppressive drugs cyclosporin A (CsA) and tacrolimus (FK506), independent of immunophilin binding, can activate profibrogenic transforming growth factor β (TGFβ)/Smad signaling cascades in rat renal mesangial cells (MC). Here we report that both peptidyl-prolyl cis/trans isomerase (PPIase) inhibitors activate the extracellular-signaling regulated kinase (ERK) a member of the mitogen activated protein kinase (MAPK) and induce a rapid and transient increase in ERK phosphorylation. The MEK inhibitor U0126, the reactive oxygen species (ROS) scavenger N-acetyl-cysteine (NAC), a cell-permeant superoxide dismutase (SOD) and stigmatellin, an inhibitor of mitochondrial cytochrome bc1 complex strongly attenuated the increase in ERK1/2 phosphorylation triggered by PPIase inhibitors. Moreover, neutralizing antibodies against heparin binding-epidermal growth factor (HB-EGF), and inhibition of the EGF receptor by either small interfering (si)RNA or AG1478, demonstrate that ERK activation by both PPIase inhibitors is mediated via HB-EGF-induced EGF receptor (EGFR) tyrosine kinase activation. The strong inhibitory effects achieved by GM6001 and TAPI-2 furthermore implicate the involvement of a desintegrin and metalloproteinase 17 (ADAM17). Concomitantly, the PPIase inhibitor-induced ADAM17 secretase activity was significantly reduced by SOD and stigmatellin thus suggesting that mitochondrial ROS play a primary role in PPIase inhibitor-induced and ADAM17-mediated HB-EGF shedding. Functionally, both immunosuppressants caused a strong increase in MC proliferation which was similarly impeded when cells were treated in the presence of NAC, TAPI-2 or AG1478, respectively. Our data suggest that CsA and FK506, via ROS-dependent and ADAM17-catalyzed HB-EGF shedding induce the mitogenic ERK1/2 signaling cascade in renal MC.
Collapse
|
30
|
Serra V, Scaltriti M, Prudkin L, Eichhorn PJA, Ibrahim YH, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S, Gili M, Russillo M, Parra JL, Singh S, Arribas J, Rosen N, Baselga J. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 2011; 30:2547-57. [PMID: 21278786 PMCID: PMC3107390 DOI: 10.1038/onc.2010.626] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/08/2022]
Abstract
There is a strong rationale to therapeutically target the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in breast cancer since it is highly deregulated in this disease and it also mediates resistance to anti-HER2 therapies. However, initial studies with rapalogs, allosteric inhibitors of mTORC1, have resulted in limited clinical efficacy probably due to the release of a negative regulatory feedback loop that triggers AKT and ERK signaling. Since activation of AKT occurs via PI3K, we decided to explore whether PI3K inhibitors prevent the activation of these compensatory pathways. Using HER2-overexpressing breast cancer cells as a model, we observed that PI3K inhibitors abolished AKT activation. However, PI3K inhibition resulted in a compensatory activation of the ERK signaling pathway. This enhanced ERK signaling occurred as a result of activation of HER family receptors as evidenced by induction of HER receptors dimerization and phosphorylation, increased expression of HER3 and binding of adaptor molecules to HER2 and HER3. The activation of ERK was prevented with either MEK inhibitors or anti-HER2 monoclonal antibodies and tyrosine kinase inhibitors. Combined administration of PI3K inhibitors with either HER2 or MEK inhibitors resulted in decreased proliferation, enhanced cell death and superior anti-tumor activity compared with single agent PI3K inhibitors. Our findings indicate that PI3K inhibition in HER2-overexpressing breast cancer activates a new compensatory pathway that results in ERK dependency. Combined anti-MEK or anti-HER2 therapy with PI3K inhibitors may be required in order to achieve optimal efficacy in HER2-overexpressing breast cancer. This approach warrants clinical evaluation.
Collapse
Affiliation(s)
- V Serra
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - M Scaltriti
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - L Prudkin
- Molecular Pathology Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - P J A Eichhorn
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - Y H Ibrahim
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - S Chandarlapaty
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - B Markman
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - O Rodriguez
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - M Guzman
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - S Rodriguez
- Molecular Pathology Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - M Gili
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - M Russillo
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
| | - J L Parra
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - S Singh
- Prometheus Therapeutics and Diagnostics, San Diego, CA, USA
| | - J Arribas
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Acançats, Barcelona, Spain
| | - N Rosen
- Program in Molecular Pharmacology and Chemistry and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Baselga
- Experimental Therapeutics Program, Vall d′Hebron Institute of Oncology, Barcelona, Spain
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
31
|
Dreesen IAJ, Fussenegger M. Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of chinese hamster ovary cells. Biotechnol Bioeng 2010; 108:853-66. [PMID: 21404259 DOI: 10.1002/bit.22990] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 01/14/2023]
Abstract
Engineering of mammalian production cell lines to improve titer and quality of biopharmaceuticals is a top priority of the biopharmaceutical manufacturing industry providing protein therapeutics to patients worldwide. While many engineering strategies have been successful in the past decade they were often based on the over-expression of a single transgene and therefore limited to addressing a single bottleneck in the cell's production capacity. We provide evidence that ectopic expression of the global metabolic sensor and processing protein mammalian target of rapamycin (mTOR), simultaneously improves key bioprocess-relevant characteristics of Chinese hamster ovary (CHO) cell-derived production cell lines such as cell growth (increased cell size and protein content), proliferation (increased cell-cycle progression), viability (decreased apoptosis), robustness (decreased sensitivity to sub-optimal growth factor and oxygen supplies) and specific productivity of secreted human glycoproteins. Cultivation of mTOR-transgenic CHO-derived cell lines engineered for secretion of a therapeutic IgG resulted in antibody titers of up to 50 pg/cell/day, which represents a four-fold increase compared to the parental production cell line. mTOR-based engineering of mammalian production cell lines may therefore have a promising future in biopharmaceutical manufacturing of human therapeutic proteins.
Collapse
Affiliation(s)
- Imke A J Dreesen
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
32
|
Bergkvist GT, Argyle DJ, Morrison L, MacIntyre N, Hayes A, Yool DA. Expression of epidermal growth factor receptor (EGFR) and Ki67 in feline oral squamous cell carcinomas (FOSCC). Vet Comp Oncol 2010; 9:106-17. [PMID: 21569196 DOI: 10.1111/j.1476-5829.2010.00239.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aims of this study were to establish expression of epidermal growth factor receptor (EGFR) and Ki67 in 67 archived biopsy samples of feline oral squamous cell carcinomas (FOSCCs) and to establish if the expression of either markers was predictive of survival. Samples were immunohistochemically labelled for the two proteins and scored. Statistical analyses of data, including Kaplan-Meier survival curves, were performed. All samples expressed both markers although levels differed between samples. Median overall survival was 46 days and 1-year survival was 5%. There was no correlation between Ki67 and EGFR scores (Pearson's correlation coefficient, P = 0.861). Low cellular proliferation (low Ki67 score) was positively correlated with an overall longer survival (Log Rank, P = 0.02) and a trend towards better survival for the high EGFR group was observed (Log Rank, P = 0.076). Ki67 and EGFR immunostaining in FOSCC may be of value as biochemical markers for screening of biopsies from cases of FOSCC.
Collapse
Affiliation(s)
- G T Bergkvist
- Royal (Dick) School of Veterinary Studies and Roslin Institute, Division of Veterinary Clinical Sciences, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Bergkvist GT, Yool DA. Epidermal growth factor receptor as a therapeutic target in veterinary oncology. Vet Comp Oncol 2010; 9:81-94. [PMID: 21569194 DOI: 10.1111/j.1476-5829.2010.00237.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor that stimulates cell proliferation and survival and becomes dysregulated in a range of solid tumours in man. It is recognized as a key oncogenic driver and has become a favoured therapeutic target and a prognostic and predictive marker of cancer in man. In animals, EGFR dysregulation is emerging as a potential factor in the development of a number of naturally occurring tumours including mammary, lung, glial and epithelial cancers. Comparative analyses suggest that these diseases share many features with equivalent diseases in man and EGFR may have value as a prognostic or a biological marker of animal disease. There is still little direct evidence that EGFR is a critical oncogenic driver in naturally occurring animal disease and there are no veterinary trials of EGFR-targeted therapy. These will be critical steps in establishing a role for EGFR in veterinary oncology.
Collapse
Affiliation(s)
- G T Bergkvist
- Royal (Dick) School of Veterinary Studies and Roslin Institute, Division of Veterinary Clinical Sciences, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| | | |
Collapse
|
34
|
Renken C, Fischer DC, Kundt G, Gretz N, Haffner D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 2010; 26:92-100. [PMID: 20615907 DOI: 10.1093/ndt/gfq384] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Activation of the mTOR pathway has been implicated in the mediation of the progression of polycystic kidney disease (PKD). Whereas targeted inhibition of mTOR has been proven to be effective in various animal models of autosomal dominant PKD, its efficacy in autosomal recessive PKD (ARPKD) remains to be elucidated. We examined the effects of sirolimus in PCK rats, an orthologous animal model of human ARPKD. METHODS Weaned PCK rats (n = 85) and SD-control rats (n = 72) received drinking water without and with sirolimus (corresponding to a daily intake of 2 mg/kg body weight) for 4, 8 and 12 weeks, respectively. The renal and hepatic functions were monitored throughout the treatment periods. Kidneys and livers were harvested and investigated with respect to progression of fibrosis, and number and size of cysts using the QWin image analysis programme. Expression of Akt, mTOR and its downstream target pS6K were assessed by immunohistochemistry. RESULTS Five out of 43 sirolimus-treated PCK rats, but none of the controls, died during the study. Sirolimus treatment resulted in slightly reduced weight gain. In PCK rats, grossly enlarged kidney and livers as well as hepatic fibrosis together with enlarged bile ducts were readily detectable. Whereas activation of Akt/mTOR signalling was hardly detectable in the kidneys of SD rats, strong signals were seen in the kidneys of PCK rats. Despite a significantly reduced relative kidney weight after 12 weeks of treatment (P < 0.05), neither fibrosis and cyst area nor renal function improved during treatment. Sirolimus-treated PCK rats showed only a minor inhibition of renal mTOR-specific phosphorylation of S6K. Male PCK rats on sirolimus presented with increased concentrations of bile acids and bilirubin compared with controls (each P < 0.05 at 12 weeks). Similar, albeit non-significant, effects were noted in female PCK rats. CONCLUSIONS Sirolimus failed to attenuate progression of kidney and liver disease in PCK rats. The lack of a protective effect might be due to intrinsic or acquired rapamycin resistance in this animal model of ARPKD.
Collapse
Affiliation(s)
- Catharina Renken
- Department of Pediatrics, University Children’s Hospital, Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|